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Genome-wide association meta-analysis of 30,000 samples identifies
seven novel loci for quantitative ECG traits
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Abstract
Genome-wide association studies (GWAS) of quantitative electrocardiographic (ECG) traits in large consortia have
identified more than 130 loci associated with QT interval, QRS duration, PR interval, and heart rate (RR interval). In the
current study, we meta-analyzed genome-wide association results from 30,000 mostly Dutch samples on four ECG traits: PR
interval, QRS duration, QT interval, and RR interval. SNP genotype data was imputed using the Genome of the Netherlands
reference panel encompassing 19 million SNPs, including millions of rare SNPs (minor allele frequency < 5%). In addition
to many known loci, we identified seven novel locus-trait associations: KCND3, NR3C1, and PLN for PR interval, KCNE1,
SGIP1, and NFKB1 for QT interval, and ATP2A2 for QRS duration, of which six were successfully replicated. At these
seven loci, we performed conditional analyses and annotated significant SNPs (in exons and regulatory regions),
demonstrating involvement of cardiac-related pathways and regulation of nearby genes.

Introduction

Quantitative electrocardiographic (ECG) traits have been
well studied in large consortia, identifying over 130 sig-
nificant loci. Some loci were associated with multiple
traits. Nevertheless, these loci collectively explain only a
small portion of the genetic variation of these traits [1].
Large GWAS meta-analyses on PR interval [2, 3], RR
interval/heart rate [4, 5], QRS duration [6, 7], and QT
interval [8–10] were based on HapMap imputations [11].
Testing ~2.5 million SNPs, these studies provided good
coverage of common variation in the genome. SNPs with
lower allele frequencies (e.g., minor allele frequencies
between 1 and 5%), however, are poorly covered [12, 13].
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While HapMap included only 270 samples (30 trios and
90 unrelated samples) from three continental populations
[11], the 1000 Genomes Project Phase 3 contains
2504 samples from 26 populations [14]. Larger reference
panels cover a broader variety of haplotypes and, there-
fore, increase the quality of imputation in a GWAS
sample. Moreover, the number of observed SNPs
also increases, expanding the number available for
imputation. This has led to novel findings in non-ECG
related studies [15].

In the current study, we meta-analyzed genome-wide data
on four ECG traits in 30,000 predominantly Dutch samples.
We tested over 19 million SNPs for association, which were
imputed using the Genome of the Netherlands (GoNL)
reference panel [16]. This dataset contains whole-genome
sequencing data at 12x coverage collected in 250 families
(trios and parents with two offspring). Nearly all poly-
morphic sites with a population frequency of more than 0.5%
are captured. This makes it one of the largest single popu-
lation sequencing efforts worldwide and the trio design
ensures very accurate haplotype phasing. These features and
the good match with the predominantly Dutch cohorts, make
this dataset well suited as a reference panel for imputation.
Using this approach, we had two aims: (1) the discovery of
novel loci associated with ECG traits, and (2) the fine-
mapping and functional annotation of known regions asso-
ciated with ECG traits. We increased our SNP density almost
seven-fold compared to previous studies based on HapMap,
enabling us to study key signals in much finer detail.

Methods

Individual cohort data

Eight cohorts were included in the discovery phase of this
study, totaling approximately 30,000 samples (Supple-
mentary Tables 1 and 2, Supplementary Notes). Most study
participants were Dutch with the exception of most parti-
cipants of PROSPER; this study included approximately
19% samples of Dutch origin, while the remaining samples
were of other European descent. All cohorts performed
stringent quality control to exclude low-quality samples and
SNPs prior to imputation and also post-imputation. Impu-
tation was performed using 998 phased haplotypes from the
Genome of the Netherlands Project release 4 as the refer-
ence panel, encompassing 19,763,454 SNPs [16]. All
genomic data in this manuscript is listed with respect to the
hg19 (build37) reference genome.

We evaluated four phenotypes on the electrocardiogram:
RR interval, PR interval, QRS duration, and QT interval.
Seven out of eight cohorts contributed data to all four
phenotypes; NTR only had data on RR interval available.

Samples of non-European descent and samples with miss-
ing data were excluded, as well as individuals that fulfilled
any of the exclusion criteria listed in Supplementary
Table 3. SNPs were individually tested for association with
each trait using linear models. For all four phenotypes, we
included age, sex, height, BMI, and study specific covari-
ates (for instance to correct for study site, relatedness, or
population stratification) as covariates. In addition, RR
interval and hypertension (in those cohorts that had data
available on this measure) were included as covariates for
QT interval to reduce noise introduced by these factors. We
chose these covariates to correspond with previously pub-
lished GWAS on these four ECG traits.

Quality control and meta-analysis

Association results from all cohorts were collected at a single
site and underwent quality control. SNPs with extreme values
of beta (>1000 or <−1000), standard error (SE) (>1000), or
imputation quality (<0.1 or >1.1) were removed and dis-
tributions of beta, SE, and P-values were manually checked.
We made QQ-plots to test P-value distributions, which were
stratified by minor allele frequency and by imputation qual-
ity. Aberrant subsets of SNPs (usually with very low fre-
quency) were removed from downstream analyses.

Inverse-variance fixed-effect model meta-analyses were
conducted for all four traits using MANTEL [17]. For each
individual GWAS, genomic inflation factors (lambda) were
calculated and, during meta-analysis, standard errors were
adjusted accordingly to correct for population structure and
technical errors. We did not correct for genomic inflation
after meta-analysis. SNP associations were considered sig-
nificant if P ≤ 5 × 10–8.

Follow-up on known and novel loci

For each locus, we tested the number of independent signals
using the LD structure from GoNL in GCTA-COJO, which
was designed to allow conditional analyses based on
summary-level data [18]. Secondary hits had to fulfill two
criteria: (1) genome-wide significant in the GWAS, and (2)
P < 1 × 10–5 after conditioning to correct for multiple testing
of 4757 significant SNPs across all four traits. A novel locus
for a trait was defined if the significant SNPs, or SNPs
within a distance of 1Mb upstream and downstream of the
significant SNPs, had not been observed before in GWAS
of the same trait. We performed a look-up of all novel loci
in previous HapMap-based GWAS.

Replication of novel loci in CHARGE

We sought to replicate our findings in 13 independent
cohorts taking part in the CHARGE consortium [19]

J. van Setten et al.



(Supplementary Tables 1 and 2, Supplementary notes).
Twelve studies (TwinsUK, CHS, ARIC, KORA F3, KORA
S4, JHS, AGES, BRIGHT, YFS, INGI-FVG, and INGI-
CARL) used 1000 Genomes Phase 1 as their imputation
reference panel and a single study (Inter99) provided only
genotyped data. All studies contained samples of European
ancestry, except for JHS, which consisted only of African-
American samples. The summary-level results for all novel
SNPs determined in the discovery analysis were combined
in inverse-variance fixed-effects meta-analyses. A two-sided
P-value ≤ 0.05, in conjunction with a concordant effect
direction, was considered significant.

In silico tests of possibly functional SNPs

We looked up the functional annotations for all SNPs that
reached genome-wide significance in any of the four traits.
First, we checked whether SNPs were potentially damaging
to protein function, testing all non-synonymous SNPs in
SIFT [20] and PolyPhen-2 [21]. Second, we used GREAT
[22] to identify biological pathways in which regulatory
SNPs are involved, testing the index SNPs for all locus-trait
associations. Lastly, we tested all significant SNPs one by
one for their possible effect on regulatory regions using
RegulomeDB [23].

Results

Meta-analysis detects novel loci

We conducted a GWAS meta-analysis comprising eight
cohorts that together encompassed approximately
30,000 samples. Over 19 million SNPs, imputed using the
GoNL reference panel, were assessed for association with
four quantitative ECG traits: RR, PR, QRS, and QT. Con-
sidering all traits, we observed 52 locus-phenotype asso-
ciations (17 for PR, 13 for QRS, 15 for QT, and 7 for RR;
Supplementary Figures 1 and 2, Supplementary Table 4). A
locus was defined as an associated region (containing one or
more SNPs with P ≤ 5 × 10–8) that is located at least 1 Mb
away from the next (i.e., if two associated SNPs are within
1Mb, they belong to the same locus). Of these 52 loci, 45
have been observed before in large GWAS meta-analyses
[2–4, 7–9] and seven are novel findings (Table 1). Box 1
shows regional association plots and provides additional
information on the seven novel loci. Imputation qualities of
the index SNPs were 0.60 and 0.84 for the relatively rare
KCNE1 and KCDN1 variants, respectively, and >0.96
for the remaining common index SNPs. The variance
explained by each of these variants ranges between 0.09
and 0.23%.

Fine-mapping of known loci

For each locus, we tested if more than one independent
signal was present (Supplementary Table 4). Thirteen loci
had suggestive evidence of having more than one inde-
pendent signal; four locus-phenotype associations had five
or more independent signals. The SCN5A/SCN10A locus
was the most outstanding locus with eleven independent
signals for PR, and six for QRS. NOS1AP for QT contained
seven independent signals.

Replication in CHARGE

For six out of seven novel loci, we were able to conduct
look-ups of the index SNP or a proxy SNP in strong LD
(r2 ≥ 0.89) in previous large-scale HapMap-based GWAS.
These GWAS contained over 70,000 samples each, and
included many of the Dutch cohorts from our current study.
All six loci were associated with their respective traits (P ≤
0.004). Next, we tested the seven novel loci for replication
in 13 studies from the CHARGE consortium. In contrast to
the HapMap look-ups, this replication was independent
from the Dutch discovery sample. Results are shown in
Table 1. Allele frequencies were very similar to the dis-
covery dataset, except for JHS, which consists of indivi-
duals of African-American descent. Effect directions for all
seven SNPs were concordant between our primary findings
and replication, with effect sizes between 0.2 and 1.5 times
those of the betas in the discovery study. Six of seven loci
were replicated with P < 0.05, three of which pass Bonfer-
roni correction, accounting for seven tests.

Functional SNPs in genes and regulatory regions

All genome-wide significant SNPs were tested in silico for
their potential effect on gene expression and protein struc-
ture. Ten loci contained, in total, 15 non-synonymous SNPs,
which were tested using the prediction programs PolyPhen-2
and SIFT. According to PolyPhen-2, three SNPs were pos-
sibly damaging (rs1805128 in KCNE1 for QT, rs12666989
in UFSP1 for RR, and rs2070492 in SLC22A14 for PR).
SIFT predicted only one SNP to be damaging to a protein
(rs3746471 in KIAA1755 for RR).

We used GREAT to test all 100 index SNPs from the
four ECG traits combined for their biological function in
cis-regulatory regions. Significant GO-terms (molecular
function, biological process, and cellular component),
human phenotypes, and disease ontologies are shown in
Supplementary Table 5a–d. In total, these index SNPs
mapped to 103 genes.

Of 52 locus-phenotype associations, 34 contained sig-
nificant SNPs that have a RegulomeDB score of 3 or better,

Genome-wide association meta-analysis of 30,000 samples identifies seven novel loci for quantitative. . .
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meaning that they may affect protein binding (Supplemen-
tary Table 6). We observed 15 loci containing SNPs with
scores of 1 (likely to affect binding and linked to the
expression of a gene target), 15 loci containing SNPs with a
maximum score of 2 (likely to affect binding), and four loci
that have SNPs with a maximum score of 3 (less likely to
affect binding). Eighteen loci contained only SNPs with
scores from 4 to 6 (minimal binding evidence) and 7 (no
data available).

Discussion

We imputed over 19 million SNPs using GoNL as the
reference panel, and tested these SNPs for association with
four traits in eight predominantly Dutch cohorts comprising
roughly 30,000 samples. We observed 52 locus-phenotype
associations, seven of which were novel (Table 1, Box 1,
Supplementary Table 4).

Discovery of loci associated with quantitative ECG
traits

We detected seven novel loci, three for PR interval, three
for QT interval, and one for QRS duration (Box 1). No
novel loci were found for RR interval, accounting for loci
previously associated with either RR interval [4] or heart
rate [5]. We replicated six out of seven novel loci utilizing
13 independent studies from the CHARGE consortium.
Interestingly, the only variant that does not replicate is
rs74640693 for PR interval, located close to PLN (phos-
pholamban). Variants in this gene have been consistently
associated with various QRS measures [6] but not with PR
interval. The gene transcribes the phospholamban protein,
which is important in calcium signaling in cardiac muscle
cells [24]. Although a Dutch-specific pathogenic mutation,
p.Arg14del, in the PLN gene has been described [25], it is
unlikely that this mutation drives the association signal in
our study because the allele frequency of SNP rs74640693

Box 1

Seven novel loci were identified; three for PR, three for QT, and one for QRS. Information and regional association plots are shown for every
locus. Each SNP is plotted with respect to its chromosomal location (hg19, x-axis) and its P-value (y-axis on the left). The tall blue spikes
indicate the recombination rate (y-axis on the right) at that region of the chromosome.
We observed two independent signals at the KCND3 gene. The first signal consists of low-frequency SNPs (MAF < 3.8%, index SNP MAF=
2.4%) upstream of KCND3 (top), while the second signal contains intronic SNPs with much higher allele frequencies (index SNP MAF=
19.6%, bottom). KCND3 encodes voltage-gated potassium channel subunit Kv4.3. SNPs near KCND3 have been associated with P-wave
duration and ST-T wave amplitude [29], and with Atrial Fibrillation in the Japanese population [30]. It is thought that KCND3 overexpression
may be involved in Brugada syndrome because of its direct interaction with KCNE3. This gene inhibits KCND3, and specific mutations in the
latter gene lead to Brugada syndrome [31, 32]. Moreover, it has been shown that mutations in KCND3 cause spinocerebellar ataxia [33]
(Fig. 1a, b).
The association signal in this locus spans the NR3C1 gene, with the two genome-wide significant SNPs located between NR3C1 and
ARHGAP26. Both SNPs are common, with MAFs of approximately 45%. NR3C1 encodes the glucocorticoid receptor, which interacts with a
wide variety of proteins, transcription factors, and other cellular compounds [34]. In mice, this gene is involved in cardiac development [35],
and overexpression causes ECG abnormalities [36], which makes it likely that this is the gene underlying the association signal. ARHGAP26
encodes GRAF protein (GTPase Regulator Associated with Focal Adhesion Kinase), which is required in specific exo- and endocytosis
pathways [37], but also for muscle development [38]. Mutations in this gene have been implicated in leukemia [39] (Fig. 1c).
Fig 1d: This locus has been associated previously with RR interval [4], QT interval [8, 9], and QRS duration [7]. The index SNP has a MAF of
5.4% and the association signals spans SLC35F1 and PLN. The latter gene encodes phospholamban, which is an important regulator of cardiac
contractility [40]. SLC35F1 encodes a transporter protein that is highly expressed in the human brain [41] (Fig. 1d).
Although only one (common, MAF= 32.2%) SNP reached genome-wide significance, SNPs in strong LD with the index SNP span an area of
almost 500 kb, covering many genes. This locus has been associated with QT interval previously [10]. Our most significant SNP is located just
downstream of ATP2A2, a strong candidate gene in this region that encodes a SERCA Ca2+ ATPase, which is involved in calcium transport in
the human heart and under regulation of phospholamban [42] (Fig. 1e).
This locus spans ~300 kb in between two recombination hotspots. Significant SNPs are in almost complete LD with each other, with minor
allele frequencies of approximately 15%. The locus spans two genes, SGIP1 and TCTEX1D1. SGIP1 encodes a proline-rich endocytic protein
that interacts with endophilin and is involved in energy homeostasis [43, 44]. This gene is mainly expressed in the human brain [43] and has
been associated with fat mass [45]. The TCTEX1D1 gene belongs to the dynein light chain Tctex-type family and has an unknown function
(Fig. 1f).
The most significant SNPs in this locus are located upstream of the NFKB1 gene, encoding the NF-kappa-B p105 subunit. SNPs in this locus
are common (MAF= 43.5%). An indel in the promotor of this gene has been associated with coronary heart disease [46] and dilated
cardiomyopathy [47]. This particular indel is in moderate LD with the index SNP in this locus (r2 in GoNL= 0.4). NFKB1 is a transcription
factor is involved in many immune- and tumor-related processes, and has been associated with ulcerative colitis [48] and bladder cancer [49]
(Fig. 1g).
This locus contains a low frequency SNP (MAF= 1.7%) with a large effect on QT interval. This SNP has been observed in GWAS before, but
could not be replicated (in this [8] and later studies [10]) because it was poorly imputed so only cohorts that genotyped the SNP directly could
be included [8]. KCNE1 encodes a voltage-gated potassium channel, and the index SNP encodes a pathogenic Asp to Asn amino acid
substitution at position 85 of KCNE1, causing long QT syndrome 5 [50] (Fig. 1h).

Genome-wide association meta-analysis of 30,000 samples identifies seven novel loci for quantitative. . .



is similar in our samples (4.9%) compared to other samples
of European ancestry (4.6% in the 12 European CHARGE
replication cohorts). Furthermore, the allele frequency of

this SNP is ~5 times higher than that of the mutation and the
SNP is located ~200 kb upstream of the PLN gene, so,
therefore, not in LD with these mutations. In addition, a

Figure 1 (Box 1) Novel loci associated with PR, QRS, and QT. KCND3, associated with PR interval (a, b). ARHGAP26 and NR3C1, associated
with PR interval (c). SLC35F1 and PLN, associated with PR interval (d). ATP2A2, associated with QRS duration (e). SGIP1 and TCTEX1D1,
associated with QT interval (f). NFKB1, associated with QT interval (g). KCNE1, associated with QT interval (h)
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recent large study of PR interval used the Illumina exome
chip to identify a common variant (rs74640693, allele fre-
quency 47%) in this region [26], however, this variant is not
in LD with the variant that we identified (r2= 0.04). To
confirm that the lack of association was not caused by
strand issues (because rs74640693 is an A/T variant), we
tested the nearby proxy SNP rs12210733 (which is an A/G
variant, r2= 0.89) in the CHARGE replication cohorts, and
found it was also non-significant.

We looked up our top SNPs in previous, much larger,
HapMap-based GWAS meta-analyses to determine why our
SNPs were not identified in those studies (Table 1). Two loci
contained rare SNPs with MAF < 5%. Low-frequency SNPs
at KCND3 were not present in HapMap and could therefore
not be tested. The functional SNP at KCNE1 was observed
in a single cohort in a meta-analysis in 2009, but this result
could neither be replicated in other cohorts [9], nor in later
studies, because the imputation quality was too low.

For common SNPs (MAF > 5%), it is much more diffi-
cult to define why they were not previously observed at
genome-wide significance. For many loci we may have
better tags of the causal variants because our coverage is
almost sevenfold greater. Indeed, the index SNPs at PLN
(PR), NFKB1 (QT), and ATP2A2 (QRS) were not tested in
previous studies. Nevertheless, for all SNPs, proxies with r2

> 0.9 were available in the respective studies (Table 1).
Common SNPs at KCND3 (PR), NR3C1 (PR), and SGIP1
(QT) were present in HapMap. Both proxies and directly
imputed SNPs were at least nominally significant in pre-
vious studies (P-values ranging from 10–3 to 10–6) with
typically high imputation quality.

In addition to the “winner’s curse” effect, we expect that
higher quality imputation due to the considerably larger
haplotype panel (compared to HapMap) and the ancestry
matching between GoNL and our Dutch cohorts will
improve the power to detect a true association signal, if
present. Although combining multiple reference panels for
imputation is becoming the new standard [27], limitations to
our study remain: (1) the GoNL reference panel may not
contain sufficient information on rare SNPs; (2) the small
sample size of individual cohorts may cause abnormal
behavior of rare SNPs as a group, requiring us to remove that
subset of SNPs; or (3) the sample size or power of the overall
study is still limited to detect rare variant associations.

Fine-mapping of known loci

Although we did not sequence the loci containing the
known and novel signals, we have a much denser inter-
rogation of these regions compared to previous (HapMap-
based) studies. In an attempt to fine map the significant loci,
we annotated all significant SNPs with their predicted
functional consequences.

First, we used SIFT and PolyPhen-2 to predict the effect
of 15 non-synonymous SNPs that were associated with one
of the ECG traits at genome-wide significance. PolyPhen-2
classified three SNPs as possibly damaging and SIFT pre-
dicted only one SNP to be damaging. These were non-
overlapping, raising questions as to the actual effect of these
SNPs on their respective genes. Functional studies should
be pursued to test the direct effect of these SNPs on protein
structure.

Combining all index SNPs, we tested the function of
those SNPs located in cis-regulatory regions using GREAT
[22]. We identified 100 independent SNP-trait associations,
which mapped to 103 genes. Interestingly, we find hundreds
of significant nodes, of which the vast majority is related to
cardiac functioning and heart disease (Supplementary
Table 5a–e). This shows that, indeed, many SNPs are
located in cis-regulatory regions of genes that are critical in
the functioning of the human heart, which implicates a
regulatory function of these loci rather than a structural
function changing the protein directly. One example is
shown in Supplementary Figure 3; this figure contains all
significant GO molecular function nodes. Most of these
nodes are in the group of transporter activity, which
includes all transmembrane channels that are known to be
important for cardiac function.

Because the GREAT pathways show that many SNPs
probably have their effect on the trait due to gene regula-
tion, we extracted all significant SNPs from RegulomeDB
to check which variants would likely affect binding in
regulatory regions. A majority of loci contained at least one
SNP that was expected to affect transcription factor binding
(Supplementary Table 6). The score that is provided by
RegulomeDB indicates that a SNP is likely (or less likely)
located in a binding site. Interestingly, there are strong
differences between loci in terms of the number of SNPs
that may have a regulatory effect, and percentage of loci per
trait that have a high score. For instance, seven out of 15 QT
interval loci contains SNPs with a score of 1, while only a
single PR interval locus contains a SNP with this score. The
SCN5A/SCN10A locus is strongly associated with PR
interval (best SNP P= 4.9 × 10–107) and contains over
450 significant SNPs. Nevertheless, only six SNPs have a
score of 2 or 3, and none of the significant SNPs have a
score of 1. However, many binding sites are tissue specific,
and, therefore, testing SNPs with high scores systematically
for their role in cardiac tissue could lead to more knowledge
about their biological function.

Conclusions

Using the Genome of the Netherlands as imputation refer-
ence panel, we identified seven novel loci for quantitative
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ECG traits. Higher SNP density and higher imputation
quality enabled us to annotate known loci, facilitating future
studies to understand the biological effects of causal var-
iants at many loci. Ultimately, combining imputation
reference panels and increasing sample size for GWAS
meta-analyses will continue to increase power for genetic
discovery and novel target identification. With many
sequencing efforts ongoing and large population-based
cohorts being genotyped (such as UK Biobank, of which
the first release data showed 46 novel loci for RR interval
[28]), we can expect hundreds of novel loci for ECG phe-
notypes in the near future.

Funding Folkert W. Asselbergs is supported by UCL Hospitals NIHR
Biomedical Research Centre.

Compliance with ethical standards

Conflict of interest de Bakker is currently an employee of and owns
equity in Vertex Pharmaceuticals. M.J. Caulfield is Chief Scientist for
Genomics England a UK Government company. The remaining
authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Silva CT, Kors JA, Amin N, Dehghan A, Witteman JC, Will-
emsen R, et al. Heritabilities, proportions of heritabilities
explained by GWAS findings, and implications of cross-
phenotype effects on PR interval. Hum Genet. 2015;134:1211–9.

2. Pfeufer A, van Noord C, Marciante KD, Arking DE, Larson MG,
Smith AV, et al. Genome-wide association study of PR interval.
Nat Genet. 2010;42:153–9.

3. van Setten J, Brody JA, Jamshidi Y, Swenson BR, Butler AM,
Campbell H, et al. PR interval genome-wide association
metaanalysis identifies 50 loci associated with atrial and
atrioventricular electrical activity. Nat Commun. 2018;9:2904.

4. Eijgelsheim M, Newton-Cheh C, Sotoodehnia N, de Bakker PI,
Muller M, Morrison AC, et al. Genome-wide association analysis
identifies multiple loci related to resting heart rate. Hum Mol
Genet. 2010;19:3885–94.

5. den Hoed M, Eijgelsheim M, Esko T, Brundel BJ, Peal DS, Evans
DM, et al. Identification of heart rate-associated loci and their
effects on cardiac conduction and rhythm disorders. Nat Genet.
2013;45:621–31.

6. van der Harst P, van Setten J, Verweij N, Vogler G, Franke L,
Maurano MT, et al. 52 Genetic Loci Influencing Myocardial
Mass. J Am Coll Cardiol. 2016;68:1435–48.

7. Sotoodehnia N, Isaacs A, de Bakker PI, Dorr M, Newton-Cheh C,
Nolte IM, et al. Common variants in 22 loci are associated with
QRS duration and cardiac ventricular conduction. Nat Genet.
2010;42:1068–76.

8. Newton-Cheh C, Eijgelsheim M, Rice KM, de Bakker PI, Yin X,
Estrada K, et al. Common variants at ten loci influence QT interval
duration in the QTGEN Study. Nat Genet. 2009;41:399–406.

9. Pfeufer A, Sanna S, Arking DE, Muller M, Gateva V, Fuchsberger
C, et al. Common variants at ten loci modulate the QT interval
duration in the QTSCD Study. Nat Genet. 2009;41:407–14.

10. Arking DE, Pulit SL, Crotti L, van der Harst P, Munroe PB,
Koopmann TT, et al. Genetic association study of QT interval
highlights role for calcium signaling pathways in myocardial
repolarization. Nat Genet. 2014;46:826–36.

11. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs
RA, et al. A second generation human haplotype map of over 3.1
million SNPs. Nature. 2007;449:851–61.

12. Barrett JC, Cardon LR. Evaluating coverage of genome-wide
association studies. Nat Genet. 2006;38:659–62.

13. Pe'er I, de Bakker PI, Maller J, Yelensky R, Altshuler D, Daly MJ.
Evaluating and improving power in whole-genome association
studies using fixed marker sets. Nat Genet. 2006;38:663–7.

14. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison
EP, Kang HM, et al. A global reference for human genetic var-
iation. Nature. 2015;526:68–74.

15. de Vries PS, Sabater-Lleal M, Chasman DI, Trompet S, Ahluwalia
TS, Teumer A, et al. Comparison of HapMap and 1000 Genomes
Reference Panels in a Large-Scale Genome-Wide Association
Study. PLoS ONE. 2017;12:e0167742.

16. Genome of the Netherlands C. Whole-genome sequence variation,
population structure and demographic history of the Dutch
population. Nat Genet. 2014;46:818–25.

17. de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S,
Voight BF. Practical aspects of imputation-driven meta-analysis
of genome-wide association studies. Hum Mol Genet. 2008;17:
R122–128.

18. Yang J, Ferreira T, Morris AP, Medland SE, Genetic Investigation
of ATC, Replication DIG et al. Conditional and joint multiple-
SNP analysis of GWAS summary statistics identifies additional
variants influencing complex traits. Nat Genet. 2012;44:369–75.
S361–363.

19. Psaty BM, O'Donnell CJ, Gudnason V, Lunetta KL, Folsom AR,
Rotter JI, et al. Cohorts for Heart and Aging Research in Genomic
Epidemiology (CHARGE) Consortium: Design of prospective
meta-analyses of genome-wide association studies from 5 cohorts.
Circ Cardiovasc Genet. 2009;2:73–80.

20. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding
non-synonymous variants on protein function using the SIFT
algorithm. Nat Protoc. 2009;4:1073–81.

21. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova
A, Bork P, et al. A method and server for predicting damaging
missense mutations. Nat Methods. 2010;7:248–9.

22. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe
CB, et al. GREAT improves functional interpretation of cisregu-
latory regions. Nat Biotechnol. 2010;28:495–501.

23. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA,
Kasowski M, et al. Annotation of functional variation in personal
genomes using RegulomeDB. Genome Res. 2012;22:1790–7.

24. Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, et al.
Targeted ablation of the phospholamban gene is associated with
markedly enhanced myocardial contractility and loss of beta-
agonist stimulation. Circ Res. 1994;75:401–9.

25. van der Zwaag PA, van Rijsingen IA, de Ruiter R, Nannenberg
EA, Groeneweg JA, Post JG, et al. Recurrent and founder muta-
tions in the Netherlands-Phospholamban p.Arg14del mutation

J. van Setten et al.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


causes arrhythmogenic cardiomyopathy. Neth Heart J.
2013;21:286–93.

26. Lin H, van Setten J, Smith AV, Bihlmeyer NA, Warren HR,
Brody JA, et al. Common and Rare Coding Genetic Variation
Underlying the Electrocardiographic PR Interval. Circ Genom
Precis Med. 2018;11:e002037.

27. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR,
Teumer A, et al. A reference panel of 64,976 haplotypes for
genotype imputation. Nat Genet. 2016;48:1279–83.

28. Eppinga RN, Hagemeijer Y, Burgess S, Hinds DA, Stefansson K,
Gudbjartsson DF, et al. Identification of genomic loci associated
with resting heart rate and shared genetic predictors with all-cause
mortality. Nat Genet. 2016;48:1557–63.

29. Verweij N, Mateo Leach I, Isaacs A, Arking DE, Bis JC, Pers TH,
et al. Twenty-eight genetic loci associated with ST-T-wave
amplitudes of the electrocardiogram. Hum Mol Genet.
2016;25:2093–103.

30. Low SK, Takahashi A, Ebana Y, Ozaki K, Christophersen IE,
Ellinor PT, et al. Identification of six new genetic loci associated
with atrial fibrillation in the Japanese population. Nat Genet.
2017;49:953–8.

31. Lundby A, Olesen SP. KCNE3 is an inhibitory subunit of the
Kv4.3 potassium channel. Biochem Biophys Res Commun.
2006;346:958–67.

32. Delpon E, Cordeiro JM, Nunez L, Thomsen PE, Guerchicoff A,
Pollevick GD, et al. Functional effects of KCNE3 mutation and its
role in the development of Brugada syndrome. Circ Arrhythm
Electrophysiol. 2008;1:209–18.

33. Lee YC, Durr A, Majczenko K, Huang YH, Liu YC, Lien CC, et
al. Mutations in KCND3 cause spinocerebellar ataxia type 22.
Ann Neurol. 2012;72:859–69.

34. Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in
health and disease. Trends Pharmacol Sci. 2013;34:518–30.

35. Rog-Zielinska EA, Thomson A, Kenyon CJ, Brownstein DG,
Moran CM, Szumska D, et al. Glucocorticoid receptor is required
for foetal heart maturation. Hum Mol Genet. 2013;22:3269–82.

36. Oakley RH, Cidlowski JA. The biology of the glucocorticoid
receptor: new signaling mechanisms in health and disease. J
Allergy Clin Immunol. 2013;132:1033–44.

37. Lundmark R, Doherty GJ, Howes MT, Cortese K, Vallis Y,
Parton RG, et al. The GTPase-activating protein GRAF1 regulates
the CLIC/GEEC endocytic pathway. Curr Biol. 2008;18:1802–8.

38. Doherty JT, Lenhart KC, Cameron MV, Mack CP, Conlon FL,
Taylor JM. Skeletal muscle differentiation and fusion are regu-
lated by the BAR-containing Rho-GTPase-activating protein
(Rho-GAP), GRAF1. J Biol Chem. 2011;286:25903–21.

39. Borkhardt A, Bojesen S, Haas OA, Fuchs U, Bartelheimer D,
Loncarevic IF, et al. The human GRAF gene is fused to MLL in a
unique t(5;11)(q31; q23) and both alleles are disrupted in three
cases of myelodysplastic syndrome/acute myeloid leukemia with a
deletion 5q. Proc Natl Acad Sci USA. 2000;97:9168–73.

40. Brittsan AG, Kranias EG. Phospholamban and cardiac contractile
function. J Mol Cell Cardiol. 2000;32:2131–9.

41. Nishimura M, Suzuki S, Satoh T, Naito S. Tissue-specific mRNA
expression profiles of human solute carrier 35 transporters. Drug
Metab Pharmacokinet. 2009;24:91–99.

42. Kranias EG, Hajjar RJ. Modulation of cardiac contractility by
the phospholamban/SERCA2a regulatome. Circ Res. 2012;110:
1646–60.

43. Trevaskis J, Walder K, Foletta V, Kerr-Bayles L, McMillan J,
Cooper A, et al. Src homology 3-domain growth factor recep-
torbound 2-like (endophilin) interacting protein 1, a novel neu-
ronal protein that regulates energy balance. Endocrinology.
2005;146:3757–64.

44. Uezu A, Horiuchi A, Kanda K, Kikuchi N, Umeda K, Tsujita K, et
al. SGIP1alpha is an endocytic protein that directly interacts with
phospholipids and Eps15. J Biol Chem. 2007;282:26481–9.

45. Cummings N, Shields KA, Curran JE, Bozaoglu K, Trevaskis J,
Gluschenko K, et al. Genetic variation in SH3-domain GRB2-like
(endophilin)-interacting protein 1 has a major impact on fat mass.
Int J Obes (Lond). 2012;36:201–6.

46. Vogel U, Jensen MK, Due KM, Rimm EB, Wallin H, Nielsen
MR, et al. The NFKB1 ATTG ins/del polymorphism and risk of
coronary heart disease in three independent populations. Athero-
sclerosis. 2011;219:200–4.

47. Zhou B, Rao L, Peng Y, Wang Y, Li Y, Gao L, et al. Functional
polymorphism of the NFKB1 gene promoter is related to the
risk of dilated cardiomyopathy. BMC Med Genet. 2009;
10:47.

48. Karban AS, Okazaki T, Panhuysen CI, Gallegos T, Potter JJ,
Bailey-Wilson JE, et al. Functional annotation of a novel NFKB1
promoter polymorphism that increases risk for ulcerative colitis.
Hum Mol Genet. 2004;13:35–45.

49. Tang T, Cui S, Deng X, Gong Z, Jiang G, Wang P, et al. Insertion/
deletion polymorphism in the promoter region of NFKB1 gene
increases susceptibility for superficial bladder cancer in Chinese.
DNA Cell Biol. 2010;29:9–12.

50. Paulussen AD, Gilissen RA, Armstrong M, Doevendans PA,
Verhasselt P, Smeets HJ, et al. Genetic variations of
KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-
induced long QT syndrome patients. J Mol Med (Berl).
2004;82:182–8.

Affiliations

Jessica van Setten 1
● Niek Verweij 2,3

● Hamdi Mbarek 4
● Maartje N. Niemeijer5 ● Stella Trompet6 ●

Dan E. Arking7
● Jennifer A. Brody8 ● Ilaria Gandin9

● Niels Grarup 10
● Leanne M. Hall11,12 ● Daiane Hemerich1,13

●

Leo-Pekka Lyytikäinen14
● Hao Mei15 ● Martina Müller-Nurasyid 16,17,18,19

● Bram P. Prins20 ● Antonietta Robino21
●

Albert V. Smith22,23 ● Helen R. Warren24,25
● Folkert W. Asselbergs 1,26,27

● Dorret I. Boomsma4 ●

Mark J. Caulfield24,25
● Mark Eijgelsheim5,28

● Ian Ford29
● Torben Hansen10

● Tamara B. Harris30 ● Susan R. Heckbert31 ●

Jouke-Jan Hottenga4 ● Annamaria Iorio32
● Jan A. Kors33 ● Allan Linneberg 34,35

● Peter W. MacFarlane36 ●

Thomas Meitinger18,37,38 ● Christopher P. Nelson11,12
● Olli T. Raitakari39 ● Claudia T. Silva Aldana 40,41,42

●

Gianfranco Sinagra32 ● Moritz Sinner17,18 ● Elsayed Z. Soliman43
● Monika Stoll44,45,46 ● Andre Uitterlinden5,47

●

Cornelia M. van Duijn40
● Melanie Waldenberger18,48,49 ● Alvaro Alonso 50

● Paolo Gasparini51,52 ●

Vilmundur Gudnason22,23
● Yalda Jamshidi 20

● Stefan Kääb17,18
● Jørgen K. Kanters 53

● Terho Lehtimäki14 ●

Patricia B. Munroe24,25 ● Annette Peters18,49,54 ● Nilesh J. Samani11,12 ● Nona Sotoodehnia55 ● Sheila Ulivi21 ●

Genome-wide association meta-analysis of 30,000 samples identifies seven novel loci for quantitative. . .

http://orcid.org/0000-0002-4934-7510
http://orcid.org/0000-0002-4934-7510
http://orcid.org/0000-0002-4934-7510
http://orcid.org/0000-0002-4934-7510
http://orcid.org/0000-0002-4934-7510
http://orcid.org/0000-0002-4303-7685
http://orcid.org/0000-0002-4303-7685
http://orcid.org/0000-0002-4303-7685
http://orcid.org/0000-0002-4303-7685
http://orcid.org/0000-0002-4303-7685
http://orcid.org/0000-0002-1108-0371
http://orcid.org/0000-0002-1108-0371
http://orcid.org/0000-0002-1108-0371
http://orcid.org/0000-0002-1108-0371
http://orcid.org/0000-0002-1108-0371
http://orcid.org/0000-0001-5526-1070
http://orcid.org/0000-0001-5526-1070
http://orcid.org/0000-0001-5526-1070
http://orcid.org/0000-0001-5526-1070
http://orcid.org/0000-0001-5526-1070
http://orcid.org/0000-0003-3793-5910
http://orcid.org/0000-0003-3793-5910
http://orcid.org/0000-0003-3793-5910
http://orcid.org/0000-0003-3793-5910
http://orcid.org/0000-0003-3793-5910
http://orcid.org/0000-0002-1692-8669
http://orcid.org/0000-0002-1692-8669
http://orcid.org/0000-0002-1692-8669
http://orcid.org/0000-0002-1692-8669
http://orcid.org/0000-0002-1692-8669
http://orcid.org/0000-0002-0994-0184
http://orcid.org/0000-0002-0994-0184
http://orcid.org/0000-0002-0994-0184
http://orcid.org/0000-0002-0994-0184
http://orcid.org/0000-0002-0994-0184
http://orcid.org/0000-0001-8172-5860
http://orcid.org/0000-0001-8172-5860
http://orcid.org/0000-0001-8172-5860
http://orcid.org/0000-0001-8172-5860
http://orcid.org/0000-0001-8172-5860
http://orcid.org/0000-0002-2225-8323
http://orcid.org/0000-0002-2225-8323
http://orcid.org/0000-0002-2225-8323
http://orcid.org/0000-0002-2225-8323
http://orcid.org/0000-0002-2225-8323
http://orcid.org/0000-0003-0151-6482
http://orcid.org/0000-0003-0151-6482
http://orcid.org/0000-0003-0151-6482
http://orcid.org/0000-0003-0151-6482
http://orcid.org/0000-0003-0151-6482
http://orcid.org/0000-0002-3267-4910
http://orcid.org/0000-0002-3267-4910
http://orcid.org/0000-0002-3267-4910
http://orcid.org/0000-0002-3267-4910
http://orcid.org/0000-0002-3267-4910


James G. Wilson56
● Eco J. C. de Geus 4

● J. Wouter Jukema 57
● Bruno Stricker5 ● Pim van der Harst 2,58,59

●

Paul I. W. de Bakker60,61 ● Aaron Isaacs 44,45,46

1 Division Heart & Lungs, Department of Cardiology, University
Medical Center Utrecht, University of Utrecht, Utrecht, The
Netherlands

2 Department of Cardiology, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands

3 Program in Medical and Population Genetics, Broad Institute of
MIT and Harvard, Cambridge, MA, USA

4 Department of Biological Psychology, Amsterdam Public Health
Research Institute, Vrije Universiteit Amsterdam, Amsterdam, The
Netherlands

5 Department of Epidemiology, Erasmus MC, Rotterdam, The
Netherlands

6 Department of Internal Medicine, Section of Gerontology and
Geriatrics, Leiden University Medical Center, Leiden, The
Netherlands

7 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins
University School of Medicine, Baltimore, MD, USA

8 Cardiovascular Health Research Unit, Department of Medicine,
University of Washington, Seattle, WA, USA

9 Research Unit, AREA Science Park, Trieste, Italy

10 The Novo Nordisk Foundation Center for Basic Metabolic
Research, Faculty of Health and Medical Sciences, University of
Copenhagen, Copenhagen, Denmark

11 Department of Cardiovascular Sciences, University of Leicester,
Leicester, England

12 NIHR Leicester Biomedical Research Centre, Glenfield Hospital,
Groby Road, Leicester, UK

13 CAPES Foundation, Ministry of Education of Brazil, Brasília, DF
70040-020, Brazil

14 Department of Clinical Chemistry, Fimlab Laboratories, and
Finnish Cardiovascular Research Center - Tampere, Faculty of
Medicine and Life Sciences, University of Tampere, 33520
Tampere, Finland

15 Center of Biostatistics and Bioinformatics, University of
Mississippi Medical Center, Jackson, MS 39216, USA

16 Institute of Genetic Epidemiology, Helmholtz Zentrum München -
German Research Center for Environmental Health,
Neuherberg, Germany

17 Department of Medicine I, Ludwig-Maximilians-Universität,
Munich, Germany

18 DZHK (German Centre for Cardiovascular Research), Partner Site
Munich Heart Alliance, Munich, Germany

19 Chair of Genetic Epidemiology, IBE, Faculty of Medicine,
LMU Munich, Germany

20 Human Genetics Research Centre, ICCS, St George’s University
of London, London, UK

21 Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”,

Trieste, Italy

22 Icelandic Heart Association, Kopavogur, Iceland

23 Faculty of Medicine, University of Iceland, Reykavik, Iceland

24 William Harvey Research Institute, Barts and The London School
of Medicine & Dentistry, Queen Mary University of London,
London, UK

25 NIHR Barts Cardiovascular Research Centre, Barts and The
London School of Medicine & Dentistry, Queen Mary University
of London, London, UK

26 Durrer Center for Cardiovascular Research, Netherlands Heart
Institute, Utrecht, The Netherlands

27 Institute of Cardiovascular Science, Faculty of Population Health
Sciences, and Farr Institute of Health Informatics Research and
Institute of Health Informatics, University College London,
London, UK

28 Department of Nephrology, University Medical Center Groningen,
Groningen, The Netherlands

29 Robertson Centre for Biostatistics, University of Glasgow,
Glasgow, UK

30 Laboratory of Epidemiology, Demography and Biometry,
National Institute on Aging, Bethesda, MD, USA

31 Cardiovascular Health Research Unit and Department of
Epidemiology, University of Washington, Seattle, WA, USA

32 Cardiovascular Department, “Ospedali Riuniti and University of
Trieste”, Trieste, Italy

33 Department of Medical Informatics, Erasmus University Medical
Center, Rotterdam, The Netherlands

34 Center for Clinical Research and Prevention, Bispebjerg and
Frederiksberg Hospital-The Capital Region,
Copenhagen, Denmark

35 Department of Clinical Medicine, Faculty of Health and Medical
Sciences, University of Copenhagen, Copenhagen, Denmark

36 Institute of Health and Wellbeing, University of Glasgow,
Glasgow, UK

37 Institute of Human Genetics, Helmholtz Zentrum München -
German Research Center for Environmental Health,
Neuherberg, Germany

38 Institute of Human Genetics, Technische Universität München,
Munich, Germany

39 Department of Clinical Physiology and Nuclear Medicine, Turku
University Hospital, and Research Centre of Applied and
Preventive Cardiovascular Medicine, University of Turku,
Turku 20520, Finland

40 Genetic Epidemiology Unit, Department of Epidemiology,
Erasmus MC, University Medical Center Rotterdam,
Rotterdam, The Netherlands

41 Doctoral Program in Biomedical Sciences, Universidad del

J. van Setten et al.

http://orcid.org/0000-0001-6022-2666
http://orcid.org/0000-0001-6022-2666
http://orcid.org/0000-0001-6022-2666
http://orcid.org/0000-0001-6022-2666
http://orcid.org/0000-0001-6022-2666
http://orcid.org/0000-0002-3246-8359
http://orcid.org/0000-0002-3246-8359
http://orcid.org/0000-0002-3246-8359
http://orcid.org/0000-0002-3246-8359
http://orcid.org/0000-0002-3246-8359
http://orcid.org/0000-0002-2713-686X
http://orcid.org/0000-0002-2713-686X
http://orcid.org/0000-0002-2713-686X
http://orcid.org/0000-0002-2713-686X
http://orcid.org/0000-0002-2713-686X
http://orcid.org/0000-0001-5037-4834
http://orcid.org/0000-0001-5037-4834
http://orcid.org/0000-0001-5037-4834
http://orcid.org/0000-0001-5037-4834
http://orcid.org/0000-0001-5037-4834


Rosario, Bogotá, Colombia

42 Institute of translational Medicine-IMT-Center For Research in
Genetics and Genomics-CIGGUR, GENIUROS Research Group,
School of Medicine and Health Sciences, Universidad del Rosario,
Rosario, Colombia

43 Epidemiological Cardiology Research Center (EPICARE),
Department of Epidemiology and Prevention, Wake Forest
University School of Medicine, Winston-Salem, NC, USA

44 CARIM School for Cardiovascular Diseases, Maastricht
University, Maastricht, The Netherlands

45 Maastricht Centre for Systems Biology (MaCSBio), Maastricht
University, Maastricht, The Netherlands

46 Department of Biochemistry, Maastricht University,
Maastricht, The Netherlands

47 Department of Internal Medicine, Erasmus University Medical
Center, Rotterdam, The Netherlands

48 Research unit of Molecular Epidemiology, Helmholtz Zentrum
München - German Research Center for Environmental Health,
Neuherberg, Germany

49 Institute of Epidemiology II, Helmholtz Zentrum München -
German Research Center for Environmental Health,
Neuherberg, Germany

50 Department of Epidemiology, Rollins School of Public Health,
Emory University, Atlanta, GA, USA

51 DSM, University of Trieste, Trieste, Italy

52 IRCCS-Burlo Garofolo Children Hospital, Via dell’Istria 65,
Trieste, Italy

53 Laboratory of Experimental Cardiology, University of
Copenhagen, Copenhagen, Denmark

54 German Center for Diabetes Research, Neuherberg, Germany

55 Cardiovascular Health Research Unit, Division of Cardiology,
University of Washington, Seattle, WA, USA

56 Department of Physiology and Biophysics, University of
Mississippi Medical Center, Jackson, MS, USA

57 Department of Cardiology, Leiden University Medical Center,
Leiden, The Netherlands

58 Department of Genetics, University Medical Center Groningen,
University of Groningen, Groningen, The Netherlands

59 Durrer Center for Cardiogenetic Research, ICIN-Netherlands
Heart Institute, Utrecht, The Netherlands

60 Department of Genetics, University Medical Center Utrecht,
Utrecht, The Netherlands

61 Department of Epidemiology, Julius Center for Health Sciences
and Primary Care, University Medical Center Utrecht,
Utrecht, The Netherlands

Genome-wide association meta-analysis of 30,000 samples identifies seven novel loci for quantitative. . .


	Genome-wide association meta-analysis of 30,000�samples identifies seven novel loci for quantitative ECG traits
	Abstract
	Introduction
	Methods
	Individual cohort data
	Quality control and meta-analysis
	Follow-up on known and novel loci
	Replication of novel loci in CHARGE
	In silico tests of possibly functional SNPs

	Results
	Meta-analysis detects novel loci
	Fine-mapping of known loci
	Replication in CHARGE
	Functional SNPs in genes and regulatory regions

	Discussion
	Discovery of loci associated with quantitative ECG traits
	Fine-mapping of known loci

	Conclusions
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References
	A8




