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The molecular bases of vertebrate eye formation have been extensively investigated

during the past 20 years. This has resulted in the definition of the backbone of the

gene regulatory networks controlling the different steps of eye development and has

further highlighted a substantial conservation of these networks among vertebrates. Yet,

the precise morphogenetic events allowing the formation of the optic cup from a small

group of cells within the anterior neural plate are still poorly understood. It is also unclear

if the morphogenetic events leading to eyes of very similar shape are indeed comparable

among all vertebrates or if there are any species-specific peculiarities. Improved imaging

techniques have enabled to follow how the eye forms in living embryos of a few vertebrate

models, whereas the development of organoid cultures has provided fascinating tools to

recapitulate tissue morphogenesis of other less accessible species. Here, we will discuss

what these advances have taught us about eye morphogenesis, underscoring possible

similarities and differences among vertebrates. We will also discuss the contribution of

cell shape changes to this process and how morphogenetic and patterning mechanisms

integrate to assemble the final architecture of the eye.
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The development of the vertebrate eye has attracted the interest of classical embryologists for more
than a century and that of modern developmental geneticists for the past two decades (Spemann,
1901; Chow and Lang, 2001). This continuous interest is possibly linked to several of it
characteristics. For example, the eye is much more accessible to experimental manipulations
than the rest of the Central Nervous System (CNS); it is also an ideal model to study signaling
and inductive events, as its formation involves the interaction among different tissues including
the neural and non-neural ectoderm, the axial meso-endoderm, and the periocular mesenchyme
(Fuhrmann, 2010; Sinn and Wittbrodt, 2013; Bazin-Lopez et al., 2015). The multi-branched
evolutionary history behind the emergence of visual organs from an ancestral prototypic eye has
also attracted the attention of researchers in the evo-devo field, converting the eye to an excellent
tool for morphological and molecular evolutionary studies (Arendt, 2003; Letelier et al., 2017). The
latter have helped to understand the logic of their gene regulatory networks and have established
that vertebrate eye formation depends on the reiterative use of a core set of regulatory molecules
highly conserved among invertebrates and vertebrates (Fuhrmann, 2010; Beccari et al., 2013). These
gene regulatory networks are described in several comprehensive reviews to which the readers
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are referred to (Chow and Lang, 2001; Martinez-Morales et al.,
2004; Adler and Canto-Soler, 2007; Fuhrmann, 2010; Cavodeassi
and Houart, 2012; Beccari et al., 2013; Amram et al., 2017). Old
morphological studies based on static images together with more
recent molecular studies have also established that eye formation
starts with the specification of eye field within the anterior neural
plate (ANP), followed by their lateral protrusion to form the optic
vesicles, and the infolding of the vesicles into bi-layered optic
cups (Hilfer, 1983; Schmitt and Dowling, 1994; Li et al., 2000;
Kwan et al., 2012).

FROM A FLAT EYE FIELD TO A
TRI-DIMENSIONAL OPTIC VESICLE

The rough description of eye morphogenesis described above
has been highly refined in the recent years. Technical advances
in imaging procedures coupled with the use of transparent
fish embryos, such as those of zebrafish and medaka fishes,
have indeed provided a better grasp of the cell choreography
that organizes eye progenitors into optic vesicles (England
et al., 2006; Rembold et al., 2006; Martinez-Morales et al.,
2009; Picker et al., 2009; Kwan et al., 2012; Ivanovitch et al.,
2013). The specification of eye field within the ANP occurs
at early stages of CNS formation concomitantly with the
specification of the neighboring telencephalic and hypothalamic
fields. Observations in fish embryos indicated that patterning
acquisition is associated with a profound cell reorganization
during which the cells belonging to different domains follow
radically different trajectories: telencephalic precursors converge
dorsally and medially, whereas eye field cells evaginate medio-
laterally (England et al., 2006; Rembold et al., 2006). A notable
aspect of this reorganization is the high cohesion with which
the eye field cells move, remaining strictly segregated from
those of surrounding domains. Domains’ separation is controlled
by sets of cell adhesion molecules, such as Nlcam, expressed
at high levels only in the telencephalic domain, so that up-
regulating Nlcam levels in retinal progenitors force them to take
trajectories comparable to those of telencephalic cells (Brown
et al., 2010). On the other hand, Eph receptors and their
Ephrin ligands, expressed in complementary domain in the ANP,
promote the active segregation of eye field cells from those of
the neighboring domains. Interference with Eph/Ephrin activity
results in inefficient segregation of eye and telencephalic cells,
with a consequent defective optic vesicle evagination and brain
morphogenesis (Cavodeassi et al., 2013). Hence, it seems that the
activation of a bidirectional signal upon Eph/Ephrin interaction
results in cell repulsion, creating a virtual “fence” between the eye
field and the neighboring domains, much resembling Eph/Ephrin
role in hindbrain segmentation (Calzolari et al., 2014). The
combined functions of the chemokine receptor Cxcr4 and the
Wnt signaling pathway instead contribute to maintain cell
cohesion within the eye field (Cavodeassi et al., 2005, 2013; Bielen
and Houart, 2012). In the absence of cxcr4, which is normally
expressed in the eye field, telencephalic and eye progenitors
intermingle, thereby compromising forebrain morphogenesis
(Bielen and Houart, 2012). Similar results have been obtained

with the manipulation of components of Wnt non-canonical
signaling in the ANP that results in defective cell arrangement
during optic vesicle evagination (Cavodeassi et al., 2005).

Besides these specific movements, teleost eye field cells
undergo dynamic cell shape changes as they organize into
optic vesicles. At neural plate stage, eye field cells have a
mesenchymal and non-polarized appearance and form a multi-
layered structure (Ciruna et al., 2006; Tawk et al., 2007; Ivanovitch
et al., 2013). At the onset of zebrafish optic vesicle evagination,
cells located at the most lateral (marginal) regions of the
eye field elongate and polarize, thus acquiring neuroepithelial
characteristics (Figure 1A). This process requires the deposition
of a laminin-rich extracellular matrix (ECM) around the eye
field. In the absence of laminin, marginal cells do not elongate
appropriately and often show disrupted apico-basal organization,
failing to become organized into a nascent pseudostratified
epithelium (Ivanovitch et al., 2013). This lack of polarity is quite
persistent as it has been observed in laminin mutants analyzed
and also at optic cup stages (Bryan et al., 2016). As marginal
cells are displaced laterally, forming two bulges at the side of
the neural tube, the remaining progenitors located at the core
of the eye field undergo the same elongation and polarization to
intercalate among the lateral ones till the end of the evagination
process (Figure 1A; Ivanovitch et al., 2013). The net result is
a dynamic expansion of the optic vesicles (Rembold et al.,
2006; Kwan et al., 2012; Ivanovitch et al., 2013) although the
underlying molecular control is still poorly understood. One of
the possible regulators of this cell intercalation might be the
non-canonical Wnt signaling pathway, as its activation drives
similar cell rearrangements in other morphogenetic processes,
such as the convergence-extension rearrangements occurring
during embryonic gastrulation (Heisenberg et al., 2000). Other
signaling pathways, such as those triggered by Fgf and Hh ligands
and involved in partitioning of the nascent optic vesicle along
the proximo-distal and naso-temporal axis (Picker and Brand,
2005; Picker et al., 2009; Hernandez-Bejarano et al., 2015), might
be also relevant for these early morphogenetic movements, as
morphogenesis and patterning are tightly coordinated events
(Picker et al., 2009).

Independent of their molecular regulation, the end result of
the early morphogenetic movements occurring in the teleost
neural plate is the formation of two bulges composed of
a folded neuroepithelium separated by a virtual ventricle
(Figure 1A). One of the outstanding questions is whether the
cell rearrangements observed during the reorganization of the
teleost eye field into optic vesicles occur also in birds and in
mammals. The difficulties in obtaining homogeneous labeling
of bird eye field cells, a precondition for specific imaging,
and the in utero development of mammalian embryos have
so far hindered comparative studies at these very early stages.
Nevertheless, the sequence of events or their timings are likely
different, although optic vesicle evagination in chick embryos
and mammal organoids requires the presence of a laminin-rich
ECM (Svoboda and O’Shea, 1987; Eiraku et al., 2011). Indeed,
the incipient optic vesicles of chick and mouse embryos are
composed of already polarized neuroepithelial cells of a cuboidal
shape that appear to elongate as the optic vesicle evaginate
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FIGURE 1 | Schematic representation of tissue organization during optic vesicle evagination. Drawings represent frontal sections of the forebrain at the level of the

developing optic vesicle from a teleost (A) and amniotes (B) embryo. (A, top) A laminin-rich basement membrane becomes assembled around the fish eye primordium

(purple) at the onset of optic vesicle evagination, a process that is thought to promote the elongation and polarization of marginal eye cells (orange, elongating cells;

yellow, cells that have already acquired a neuroepithelial appearance). The cells at the core of the eye primordium (green) gradually incorporate into the nascent

neuroepithelium by intercalating amongst the marginal cells. (A, bottom) Once evagination has concluded the optic vesicles are organized as a neuroepithelial

structure, surrounded by a mature basement membrane and with a small luminal space toward the center of the primordia. (B) Eye precursors in amniotes are already

organized as a mature, cuboidal epithelium at the onset of evagination (top); the optic pits expand and give rise to two optic vesicles with a big luminal space (bottom).

(Figure 1B) to shorten again when the optic vesicle is fully
formed (Camatini and Ranzi, 1976; Svoboda and O’Shea, 1987).
Unlike teleosts, the mammalian and bird eye neuroepithelium
surrounds a large ventricle and its enlargement likely occurs
owing to the incorporation of already polarized neuroepithelial
cells coming from the adjacent and already folded neural tube
(Figure 1B). Nevertheless, future technical advances are needed
to verify if this assumption is correct.

BENDING THE OPTIC VESICLES INTO
OPTIC CUPS

From the previous paragraphs, it seems reasonable to state that
early eye morphogenesis is not equivalent among vertebrates.
However, there is a developmental window in which embryos
of the same animal group but of different species display highest
anatomical similarity (Slack et al., 1993). This reference concept
is known as the “phylotypic period” in the “Evo-Devo” field,
and for eye development, it arguably corresponds with the early
stages of optic cup formation. It is within this window that
the morphology of the eye rudiment converges in a common
architecture for all vertebrate species (Plouhinec et al., 2005).

It is also during this period—after eye precursors get specified
in the anterior neural tissue, but before neuronal differentiation
begins—that the basic blueprint of the organ is established. This
is achieved through the segregation of conserved gene regulatory
circuits conferring identity to each one of the presumptive
territories of the optic cup: the neural retina, the retinal
pigmented epithelium (RPE), and the optic stalk (Fuhrmann,
2010). Gene regulatory networks specific for ocular domains are,
in turn, under the control of polarizing morphogens such as
FGFs (secreted from the presumptive lens and the retina), Shh
and nodal (secreted from the CNS midline), and activins, Wnts,
and BMPs (secreted by the extraocular mesenchyme and the
dorsal ectoderm; Adler and Canto-Soler, 2007; Martinez-Morales
and Wittbrodt, 2009; Fuhrmann, 2010; Steinfeld et al., 2013). In
spite of the divergent mechanisms responsible for the formation
of the optic vesicle in different vertebrate groups, their final
organization in all species is that of a pseudostratified epithelium
in which precursor cells are elongated and polarized (Ivanovitch
et al., 2013; Strzyz et al., 2016). Regardless of the vertebrate group
considered and the size of the separating ventricle, the embryonic
vesicle consists of two epithelial layers that oppose apically and
that will bend wrapping around the lens vesicle as development
proceeds. How this bending occurs, is the eye morphogenetic
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event that has perhaps received the most attention in recent
years, leading to significant advances in our understanding
of its cellular and molecular bases. The outcome, to which
different groups and model organisms have contributed, is the
identification of a number of morphogenetic movements and
cell shape changes that are outlined in the following paragraphs
(Figure 2), underscoring their possible discrepancies.

Folding through Lens-Retina Coordination
The formation of the optic cup and the invagination of the
lens vesicle occur simultaneously. Therefore, in principle, both
processes could be linked, and there are studies showing that
optic vesicle development depends on early inductive signals
emanating from the pre-lens ectoderm (Hyer et al., 2003).
Furthermore, in chick embryos, early removal of the lens
ectoderm or degradation of the corresponding ECM prevents
optic vesicle in-folding (Oltean et al., 2016). In mouse embryos,

there is also evidence of the presence of lens-derived filopodia-
dependent pulling forces connecting the lens ectoderm and the
optic vesicle neuroepithelium (Figure 2A) (Chauhan et al., 2015).
Genetic interference with filopodia formation, by conditional
ablation of the RhoGTPase familymemberCdc42 or of its IRSp53
effector in the lens, results in an uncoordinated folding of both
lens and retinal epithelial surfaces (Chauhan et al., 2009). The
presence of inter-epithelial filopodia is likely a mammalian or
a species-specific phenomenon, as these types of extensions are
apparently absent inmany of the other vertebrate systems studied
(i.e., zebrafish and chicken). Nevertheless, filopodia emerging
from basal surface of the neural retina have been described in
medaka (Martinez-Morales et al., 2009; Porazinski et al., 2015),
but their contribution to the folding of the optic cup has not been
investigated. This allows inferring the existence of alternative
uncharacterized mechanisms responsible for the coordinated
adjustment of the optic cup and lens morphology in vertebrates.

FIGURE 2 | Schematic representation of the different mechanisms described for optic cup morphogenesis (A) Intraepithelial filopodia, (B) Basal constriction, (C)

Apical constriction, and (D) Rim involution mechanisms are represented. In each one of the panels, the direction of morphogenetic forces is indicated with solid red

arrows and cells displacement trajectories with dotted red arrows. The morphology of representative cells is also depicted. Ls, lens; nr, neural retina; rpe, retinal

pigmented epithelium.
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Furthermore, there is evidence indicating that the presence of
the lens vesicle is not an absolute requirement for optic cup
folding. Surgical removal of the lens shortly after invagination
starts (i.e., HH13) does not impair optic cup folding in chick
embryos (Oltean et al., 2016). Similar conclusions can be drawn
from the induction of ectopic cups by six3 overexpression in
medaka embryos (Loosli et al., 1999) and the generation of
self-organized eyes from ES-cultured cells in mammals (Eiraku
et al., 2011; Nakano et al., 2012). In both cases, optic cup
morphogenesis proceeds in the absence of a lens, suggesting
that the acquisition of a cup shape is an intrinsic property of
the organoid tissue. Lens-retinal interaction has, however, other
functions. For example, the physiology of vision imposes the
existence of fine-tuning mechanisms to adjust the inter-epithelial
distance and the curvature of the lens to the photoreceptive
surface of the retina and vice-versa.

Folding by Basal Constriction and
ECM-Attachment
Optic cup formation entails the active bending of the
neuroepithelium toward its basal surface (Figure 2B). By analogy
to apical constriction processes described in other epithelia
(Sawyer et al., 2010), basal constriction of the neuroblasts’
end-feet was hypothesized as a main morphogenetic mechanism
for retinal bending (Martinez-Morales and Wittbrodt, 2009;
Martinez-Morales et al., 2009). This initial suggestion was based
on the observation of wider basal feet in the retinal epithelium
of medaka opo mutants, which are characterized by strong optic
folding defects (Martinez-Morales et al., 2009). The existence
of a basal shrinkage process was, however, formally confirmed
only very recently via direct imaging analysis of the neuroblasts’
behavior in zebrafish (Figure 2B) (Nicolas-Perez et al., 2016;
Sidhaye and Norden, 2017). As reported for other constricting
epithelia (Martin et al., 2009; Gorfinkiel and Blanchard, 2011),
zebrafish retinal precursors exhibit a pulsatile behavior with
episodic contractions of the basal feet that correlate with myosin
foci condensation (Nicolas-Perez et al., 2016). A number of
reports indicate that proper attachment to the extracellular
matrix is essential for the transmission of the constriction
forces that shape the organ. The direct role of integrins in the
formation of the eye chamber has been documented in teleosts,
chicken, and human tissues (Svennevik and Linser, 1993;
Martinez-Morales and Wittbrodt, 2009; Nakano et al., 2012).
Furthermore, it has been shown that the polarized trafficking of
integrin receptors toward the basal surface—controlled by the
molecular antagonism between the protein Opo (ojoplano) and
the clathrin adaptors numb and numb-like—plays an essential
role during optic cup folding (Bogdanovic et al., 2012). A critical
morphogenetic role for the ECM is also supported by the ocular
phenotype of laminin mutants in zebrafish including lama1
and lamc1 mutants, which show optic cup defects and impaired
constriction of the basal end-feet of neuroepithelial cells (Lee
and Gross, 2007; Bryan et al., 2016; Nicolas-Perez et al., 2016;
Sidhaye and Norden, 2017).

Experimental measurement of tissue stiffness in folding
optic cups in chick embryos suggests that the ECM constrains

basally the tangential growth of the epithelium, preventing
its natural evagination and forcing tissue to infold (Oltean
et al., 2016). Computational modeling based on data obtained
from collagenase treated cups predicts that the ECM-provided
constrain is sufficient to drive the morphogenesis of the
organ (Oltean et al., 2016). However, laser-induced local
ablation of the basal surface in the invaginating retina of the
zebrafish results in a fast relaxation of the entire cup toward
its basal side (Nicolas-Perez et al., 2016). These apparently
conflicting observations would indicate a complex mechanical
contribution of the ECM to optic cup morphogenesis. The
precise balance between the ECM biophysical properties—
as a constraining barrier for growth and as a belt for the
transmission of tensional forces at a supra-cellular scale—
may critically depend on the developmental window and
the model organism considered and might need further
studies.

Folding by Apical Constriction and
Proliferation Control of the Optic Cup
Hinge
The bi-layered structure of the optic primordium imposes
that those cells positioned at the hinge region—between the
inner/medial, future retina, and outer/lateral future RPE layers—
have to constrict apically to allow acute bending at the tissue
margin (Figure 2C). This has set forward the idea that the
constriction of these hinge cells may contribute actively to
the invagination process. The observation of changes in cell
shape and in the levels of phosphorylated myosin light chain in
mouse ESCs-derived, and even with human ES cells (Nakano
et al., 2012), organoids provided the ground for a spring-based
computational model of optic cup formation (Eiraku et al., 2011,
2012). According to this “relaxation-expansion” hypothesis, the
combination of tangential expansion of the epithelium and apical
constriction at the rims together with a differential stiffness of
the outer and inner optic cup layers suffices for an epithelial
fold-back allowing for invagination of the optic cup (Eiraku
et al., 2012). A variation on this idea has come from studies
in mouse embryos. Preventing the secretion of all Wnt ligands
from the placodal ectoderm of the lens reduces the number
of cells at the outer hinge layer and interferes with complete
folding of the optic cup (Carpenter et al., 2015). These same
experiments, however, suggest that differential forces at the
hinge are not required for the formation of the cup, as a
part of the folding nevertheless occurs. One possibility is that
the entire outer layer of the optic cup (and not only that
at the rim) might be important for folding. Indeed, in Otx
mouse mutants, in which the RPE is specified as a neural
retina, the optic cup does not fold properly (Martinez-Morales
et al., 2001). Alternatively, basal constriction of inner layer cells
together with changes at the hinge could synergize to induce
folding. Nevertheless, at the moment, there is still insufficient
experimental data to validate the predictions of the “relaxation-
expansion” model that, although attractive, needs to be tested in
living embryos.
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Rim Involution as a Motor for Optic Cup
Folding
A number of studies in zebrafish have described that,
during optic cup invagination, precursor cells translocate
from the outer/medial epithelial layer (presumptive RPE) to
the inner/lateral epithelial layer (presumptive neural retina;
Figure 2D). Initial observations, combining toluidine staining
and fluorescent tracking in zebrafish embryos, reported a
progressive narrowing of the outer layer at the expenses
of the inner layer (Li et al., 2000). This study shows that
approximately the peripheral third of the 24 hpf neural retina
derives from outer layer precursors. More recently, time-lapse
analyses of the invagination stages (18–24 hpf) confirmed
previous observations and provided a detailed description of
the translocation movements in vivo (Picker et al., 2009; Kwan
et al., 2012). A subsequent imaging study showed that this
phenomenon has a ventral and temporal prevalence, depends
on BMP signaling, and is relevant for optic cup morphogenesis
(Heermann et al., 2015). Indeed, progenitors flowing through
the rim may act as a mechanism for coupling morphogenesis
and retinal determination, with flattening of the presumptive
RPE acting as a motor of the translocation process (Heermann
et al., 2015). The active migratory behavior of the rim has
been recently further analyzed, thereby leading to somewhat
different conclusions. In this case, the interaction of basal
lamellipodia with the underlying ECM directs the progenitors
to flow through the rim region (Sidhaye and Norden, 2017).
Therefore, cell-ECM interactions would be not only essential for
basal constriction but also for active rim migration/involution
(Nicolas-Perez et al., 2016; Sidhaye and Norden, 2017). To what
extent the both morphogenetic mechanisms—RPE flattening and
collective migration at the rim—are acting in a coordinated
manner, in isolation, or together with constriction mechanisms
remains to be investigated. It is also important to consider
that although some specific morphogenetic movements observed
during optic cup formation in zebrafish (i.e., pinwheel and
anterior rotation) have also been confirmed in chicken, this

is not the case for rim involution movements (Kwan et al.,
2012). Therefore, whether rim involution movements represent
a universal mechanism for optic cup folding in vertebrates or a
species-specific adaptation to the fast zebrafish development is
still uncertain.

In conclusion, there is no doubt that eye formation requires
cell rearrangements perhaps beyond what we could have
previously envisioned, but it is also clear that many questions
still remain open. Are these morphogenetic mechanisms, mostly
described for teleost fish, universal in all vertebrates? Which
is their relative contribution in each species? Do they act
coordinately, sequentially, or in an independent manner? What
are the driving forces for each one of the cell rearrangement
described so far? Tackling all these complex questions will require
further comparative analyses and comprehensive computational
modeling. Furthermore, we know very little on how tensional
forces and cell shape changes integrate with instructive signaling
and tissue patterning mechanisms to guarantee the precise 3D,
and even 4D, architecture of the vertebrate eye. The latter is an
additional challenging question that needs to be solved in future
studies.
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