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Abstract
Pancreatic cancer cells show varying sensitivity to the anticancer effects of gemcitabine. However, as a
chemotherapeutic agent, gemcitabine can cause intolerably high levels of toxicity and patients often develop
resistance to the beneficial effects of this drug. Combination studies show that use of gemcitabine with the pro-
apoptotic cytokine TRAIL can enhance the inhibition of survival and induction of apoptosis of pancreatic cancer cells.
Additionally, following combination treatment there is a dramatic increase in the level of the hypophosphorylated
form of the tumour suppressor protein 4E-BP1. This is associated with inhibition of mTOR activity, resulting from
caspase-mediated cleavage of the Raptor and Rictor components of mTOR. Use of the pan-caspase inhibitor Z-VAD-
FMK indicates that the increase in level of 4E-BP1 is also caspase-mediated. ShRNA-silencing of 4E-BP1 expression
renders cells more resistant to cell death induced by the combination treatment. Since the levels of 4E-BP1 are
relatively low in untreated pancreatic cancer cells these results suggest that combined therapy with gemcitabine and
TRAIL could improve the responsiveness of tumours to treatment by elevating the expression of 4E-BP1.

Introduction
Pancreatic ductal adenocarcinoma (PDAC) is an

aggressive cancer with 5-year survival rates that have
remained at only about 5%1,2. The disease is often only
detected at a late stage but, additionally, tumours are
commonly resistant to conventional therapies3. As a sin-
gle agent, the nucleoside analogue gemcitabine has been
the standard treatment for pancreatic cancer for several
years, and patients have been shown to have an improved
quality of life following therapy4. However, the

development of resistance to treatment presents an urgent
need for novel strategies, including the identification of
agents that can enhance the effect of gemcitabine at doses
that have low toxicity5,6. In many cancers the protein
kinase mammalian target of rapamycin (mTOR) is
hyperactivated, leading to an increase in the phosphor-
ylation of several downstream targets7,8. One such target
is the tumour suppressor 4E-BP1. In its hypopho-
sphorylated form 4E-BP1 functions as a binding protein
that regulates the availability of the oncogenic polypeptide
chain initiation factor eIF4E during the initiation of pro-
tein synthesis9,10. Previous studies have shown that in
some pancreatic cancer cells 4E-BP1 is expressed at very
low levels and that the protein is highly phosphorylated11.
Indeed, the levels of phosphorylated 4E-BP1 have been
used as a prognostic indicator in a number of cancer
types12–16.
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Many studies have established that the levels of eIF4E
are elevated in a number of malignancies and that
excessive expression of eIF4E is oncogenic due to its
ability to confer resistance to apoptosis17–24. Conversely,
the dephosphorylated form of 4E-BP1 has pro-apoptotic
effects25,26. There is a correlation between the extent of
phosphorylation of 4E-BP1 and the state of aggressiveness
of tumours27,28, and changes in the levels of the tumour
suppressor can affect the ability of malignant cells to
undergo apoptosis29,30.
A better understanding of cancer immunotherapy has

identified the tumour necrosis factor-related apoptosis-
inducing ligand (TRAIL) as a cytokine with the ability to
target cancer cells whilst sparing non-malignant cells.
This property indicates that TRAIL has the potential to
be an important anticancer agent31,32. TRAIL induces
extrinsic apoptosis by binding to either of two death
receptors (DRs), TRAIL-R1/DR4 and TRAIL-R2/DR5.
However, recent work indicates that many cancer cell
lines are resistant to TRAIL treatment and this has
limited its therapeutic use33. In fact, several clinical
trials using soluble forms of TRAIL such as dulanerim
have proved disappointing34,35. With the emergence of
newer and more stable forms of TRAIL, coupled with
more efficient delivery methods, the potential for more
effective therapies looks promising36,37. Relatively few

studies have thus far focused on the possible use of
combination therapy using gemcitabine together with
TRAIL38–40.
We have previously investigated the role of 4E-BP1 in

regulating the sensitivity of pancreatic cancer cells to
TRAIL-induced apoptosis29. However, the possible
importance of 4E-BP1 in determining the effectiveness of
TRAIL in combination with gemcitabine has not been
addressed. In this study we have used soluble recombi-
nant human TRAIL in combination with gemcitabine to
investigate possible effects on the regulation of apoptosis
in pancreatic cancer cells. We demonstrate that the use of
gemcitabine and TRAIL enhances the inhibition of sur-
vival of pancreatic cancer cells and provide data to show
that both the extent of dephosphorylation and the level of
total 4E-BP1 are strongly increased as a result of the
combination treatment. These changes are associated
with an inhibition of mTOR activity and caspase-
mediated cleavage of the Raptor and Rictor components
of mTOR. Reducing the expression of 4E-BP1 using small
hairpin RNAs (shRNAs) impairs the induction of cell
death following combination treatment of the pancreatic
cancer cells. Possible mechanisms by which 4E-BP1
functions as an important determinant of the sensitivity
of pancreatic cancer cells to cell death effects of gemci-
tabine and TRAIL are discussed.

Fig. 1 Effect of gemcitabine and/or TRAIL on PDAC survival. BxPC-3, MIA PaCa-2 and PANC-1 cells were seeded in 96-well plates at a cell
seeding density of 3x104 cells/cm2. a Sensitivity of cells to gemcitabine was assessed by MTT assay. Cells were treated with increasing amounts of
gemcitabine (0.001–1000 μM) for 24 h (n = 4). b Sensitivity of cells to TRAIL was assessed by MTT assay. Cells were treated with increasing amounts of
TRAIL (0.001–1000 ng/ml) for 4 h (n = 4). c–e Sensitivity of cells to gemcitabine and TRAIL combination treatment was assessed by MTT assay. Cells
were treated with increasing amounts of gemcitabine (0.1–100 μM) for 24 h (n = 4) and/or 10 or 100 ng/ml TRAIL for 4 h for BxPC-3 and MIA PaCa-2
cells and 6 h for PANC-1 cells (n = 4). All experiments were repeated three times and data are provided as means ± SEM (one representative
experiment is shown). P-values were calculated using Student’s t-test to determine the statistical significance of the difference between a, b
untreated cells and cells treated with either 1000 μM gemcitabine or 1000 ng/ml TRAIL, respectively (ns: P > 0.05, *P < 0.05, **P < 0.01) and c–e cells
treated with 100 μM gemcitabine and cells treated with 100 μM gemcitabine plus 100 ng/ml TRAIL (***P < 0.001)
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Results
Cytotoxic effects of gemcitabine and TRAIL treatment on
human pancreatic cancer cells
As gemcitabine is widely used as a first-line che-

motherapeutic drug in the treatment of pancreatic can-
cer, characterisation of its cytotoxic effects has been
widely reported41–43. Using the thiazolyl blue
tetrazolium bromide (MTT) assay we have extended
these studies to examine the effects of gemcitabine in
combination with TRAIL in three PDAC cell lines:
BxPC-3; MIA PaCa-2; and PANC-1. All three cell lines
exhibited relatively poor sensitivity to the cytotoxic
effects of gemcitabine alone after 24 h exposure to con-
centrations up to 1000 μM (Fig. 1a). In parallel with these
assays we tested the sensitivities of the cell lines to
TRAIL alone. MIA PaCa-2 cells were the most sensitive
to treatment and exposure to a concentration of 10 ng/
ml TRAIL significantly inhibited their survival. BxPC-3
were resistant to TRAIL at up to 100 ng/ml (4 h treat-
ment), and there was no significant effect of TRAIL on
the survival of PANC-1 cells even at a 10-fold higher
concentration (Fig. 1b).
We then examined whether co-treatment of the cells

with both reagents could result in a more significant
inhibition of survival. The MTT assays showed that a
treatment using 100 μM gemcitabine in combination with
100 ng/ml TRAIL significantly inhibited cell survival in all
three cell types (Fig. 1c–e). For example, whereas 100 μM
gemcitabine alone had only effects of 24.3% and 4.9% on
BxPC-3 and MIA PaCa-2 cells, respectively, in the pre-
sence of TRAIL at 100 ng/ml for 4 h the inhibitory effects
of gemcitabine were increased to 56.5% and 39.2%. As the
PANC-1 cell line was less responsive to TRAIL, we
extended the treatment time to 6 h and were able to show
similar effects in these cells too (Fig. 1e and Supplemen-
tary Fig. S1a).

Gemcitabine enhances TRAIL-induced apoptosis
Since TRAIL is a well-known inducer of apoptosis we

used the trypan blue exclusion assay to assess the effect of
co-treatment with gemcitabine on cell viability. Even in
the case of PANC-1 cells, the least responsive of the cell
types, 100 μM gemcitabine in combination with 100 ng/
ml TRAIL significantly inhibited viability, reducing it by
43.8%, whereas either agent alone was much less effective
(Fig. 2a).
The induction of apoptosis following combination

treatment of the PANC-1 cells was monitored using a
variety of methods. Using flow cytometry we observed
that combination treatment of PANC-1 cells resulted in
significantly enhanced externalisation of phosphati-
dylserine (measured by Annexin V binding) compared to
the treatments with gemcitabine or TRAIL alone (Fig. 2b).
Time-lapse microscopy was used to assess morphological

changes over time and to measure the % of cells that
become committed to apoptosis (Fig. 2c, d). Figure 2c
demonstrates that after a 24 h period of treatment with
100 μM gemcitabine in combination with 100 ng/ml
TRAIL, 82.5% of PANC-1 cells had undergone complete
apoptosis, significantly much higher than with the indi-
vidual treatments alone.
We further examined the ability of the combination

therapy to enhance apoptosis using western blotting to
determine the cleavage of caspase-8 and poly(ADP-ribose)
polymerase (PARP) (Fig. 3a). All three cell lines showed
enhanced cleavage of both caspase substrates following
the combination treatment, with PANC-1 cells exhibiting
virtually complete cleavages at 6 h. Additionally, we
observed cleavage of BID, a BH3 domain-containing pro-
apoptotic Bcl2 family member in PANC-1 cells (Fig. 3b).
Such cleavage releases a potent pro-apoptotic activity of
BID and provides a critical link between the activation of
caspase-8 and the intrinsic apoptotic pathway44.
Both the inhibition of survival and the induction of

apoptosis following combination treatment were caspase-
dependent as these effects were blocked by the addition of
the pan-caspase inhibitor Z-VAD-FMK (Fig. 3b, c).

Effects of gemcitabine and TRAIL on the mTOR pathway
The pharmacological targeting of the mTOR/4E-BP1

pathway in pancreatic cancer has been previously repor-
ted45. In order to investigate whether the pathway is
involved in the inhibition of survival and pro-apoptotic
effects of gemcitabine and TRAIL on PDAC cells, we
characterised the effects of these agents on various aspects
of the mTOR pathway. The effects of the gemcitabine and
TRAIL combination were apparent at the level of phos-
phorylation of mTOR itself, which showed depho-
sphorylation at Ser2448 in PANC-1 cell (Fig. 4a). In
addition, there was TRAIL-mediated and caspase-
dependent cleavage of the proteins Raptor and Rictor,
which are associated with the mTORC-1 and mTORC-2
complexes, respectively (Fig. 4a). Similar effects on the
level of phosphorylation of mTOR- and caspase-mediated
cleavage of Raptor and Rictor were also observed in
BxPC-3 and MIA PaCa-2 cells (Supplementary Fig. 2a, b).
We have previously shown that TRAIL can cause the

dephosphorylation of the mTOR substrate 4E-BP1 in
pancreatic cancer cells29. However, the effect of the
cytokine when used in combination with gemcitabine on
the phosphorylation state of 4E-BP1 has not previously
been investigated. Extracts made from the three cell lines
were analysed by western blotting using either antibodies
to total 4E-BP1 or three phospho-specific antibodies
recognising the phosphorylation sites Ser65, Thr37/46 or
Thr70 (Fig. 4b, c).
With the exception of MIA PaCa-2 cells there was very

little effect on the levels of total 4E-BP1 following the
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individual treatments (in PANC-1 cells very little 4E-BP1
could be detected under these conditions) (Fig. 4b).
TRAIL treatment alone had no significant effect on
phosphorylation of 4E-BP1 at any of the sites investigated.
Interestingly, gemcitabine alone caused depho-
sphorylation of 4E-BP1 at Ser65 in all three cell lines
(Fig. 4b, c). In PANC-1 cells this dephosphorylation was
observed despite negligible levels of total protein being
detectable (Fig. 4b, c). Gemcitabine treatment of PANC-1
cells resulted in a significant 57% reduction in

phosphorylation of 4E-BP1 at Ser65, whereas gemcitabine
plus TRAIL resulted in a 74.6% reduction (Fig. 4d).
The most dramatic changes in the levels and phos-

phorylation of 4E-BP1 followed combination treatment
of the cells, where a marked elevation in the levels of
total 4E-BP1 was observed in all three cell lines (parti-
cularly BxPC-3 and MIA PaCa-2) (Fig. 4b). Additionally,
all cell types exhibited strong dephosphorylation of Ser65

in response to gemcitabine plus TRAIL (Fig. 4b, c).
Dephosphorylation at the other sites was observed but is

Fig. 2 Combination treatment induces apoptosis. a PANC-1 cells were seeded in triplicate in 12-well plates at a cell seeding density of 3×104

cells/cm2 and left to attach overnight. Cells were treated with 100 μM gemcitabine for 24 h and/or 100 ng/ml TRAIL for 6 h. The viability of the cells
was assessed by trypan blue exclusion assay. Quadruplicate cell counts were used to calculate each cell density. These were performed for three
independently seeded wells and percentage viability was determined. b A total of 1×106 PANC-1 cells were treated with 100 μM gemcitabine for 24
h and/or 100 ng/ml TRAIL for 6 h. Induction of early apoptosis in PANC-1 cells was assessed using flow cytometry following staining with FITC
Annexin V. The data represent means ± SEM of three experiments performed in triplicate. c, d PANC-1 cells were seeded in triplicate in 12-well plates
at a cell seeding density of 3×104 cells/cm2 and left to attach overnight. Cells were treated with 100 μM gemcitabine for 24 h and/or 100 ng/ml TRAIL
for 6 h and monitored by time-lapse microscopy. c The appearance of a pre-apoptotic morphology was scored and the % apoptotic cells after 24 h
determined. The data are the means ± SEM from three independent experiments. d Phase contrast microscopy images of cells treated as indicated.
a–c All experiments were repeated three times and data are provided as means ± SEM (one representative experiment is shown). P-values were
calculated using Student’s t-test to determine the statistical significance of the difference between cells treated with 100 μM gemcitabine and cells
treated with 100 μM gemcitabine plus 100 ng/ml TRAIL (*P < 0.05, **P < 0.01, ***P < 0.001)
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only apparent when the large increases in total levels of
4E-BP1 are taken into account. The substantial increase
in the level of total 4E-BP1 is of considerable interest in
view of the fact that 4E-BP1 expression is severely
repressed in a high proportion of human pancreatic
tumours11. As we did not observe any changes in the
levels of the potentially oncogenic factor eIF4E following
treatment (Fig. 4b), the ratio of 4E-BP1 to eIF4E becomes
much higher after gemcitabine and TRAIL treatment
and it is therefore not surprising that there was a marked
inhibition of protein synthesis (Supplementary Fig. S1b,
c, d and data not shown). Using protein synthesis assays
we determined that MIA PaCa-2 cells treated with 100
μM gemcitabine in combination with 100 ng/ml TRAIL
for 4 h showed a 73% inhibition of protein synthesis
compared to 45% inhibition following treatment of the

cells with 100 μM gemcitabine in combination with 10
ng/ml TRAIL for 4h.
Consistent with the above findings, the use of m7GTP-

Sepharose affinity chromatography to purify eIF4E and its
associated proteins demonstrated a large increase in the
binding of 4E-BP1 to eIF4E in PANC-1 cells treated with
100 μM gemcitabine in combination with 100 ng/ml
TRAIL for 6 h (Supplementary Fig. S1b).
Since TRAIL enhances caspase activity in its target cells

we investigated the caspase-dependence of the effects of this
combination treatment, using the board specific caspase
inhibitor Z-VAD-FMK. Interestingly, both the increases in
levels of 4E-BP1 and the dephosphorylation of 4E-BP1 and
mTOR described above require caspase activity as pre-
treatment of the cells with the pan-caspase inhibitor Z-
VAD-FMK was able to prevent these effects (Fig. 4a).

Fig. 3 Combination treatment induces caspase-dependent apoptosis. BxPC-3, MIA PaCa-2 and PANC-1 cells were seeded in 96-well plates
at a cell seeding density of 3×104 cells/cm2. a, b Caspase-mediated cleavage of caspase-8 and PARP was assessed by western blotting in cells
treated with 100 μΜ gemcitabine for 24 h and/or 100 ng/ml TRAIL for 4 h for BxPC-3 and MIA PaCa-2 cells, and 4 and 6 h for PANC-1 cells (n = 3). One
representative experiment is shown. Lysates were prepared and equal amounts (15 μg total protein) were subjected to SDS–PAGE, transferred to
PVDF membranes and then immunoblotted with antibodies directed against a PARP (top panel), caspase-8 (middle panel) or GAPDH (bottom panel).
b Caspase-mediated cleavages of caspase-8, PARP and BID in the presence or absence of the pan-caspase inhibitor Z-VAD-FMK (10 μM) were
assessed by western blotting in cells treated as described above. Membranes were immunoblotted with antibodies directed against caspase-8, PARP
and BID. GAPDH was used as a loading control. c The inhibition of cell survival following combination treatment was assessed in the presence or
absence of the pan-caspase inhibitor Z-VAD-FMK. PANC-1 cells were seeded in 96-well plates at a cell seeding density of 3×104 cells/cm2. Cells were
treated with 100 μM gemcitabine for 24 h and/or 100 ng/ml TRAIL for 6 h in the presence or absence of 10 μM Z-VAD-FMK. Cell survival was assessed
using the MTT assay. All experiments were repeated three times and data are provided as means ± SEM (one representative experiment is shown). P-
values were calculated using Student’s t-test to determine the statistical significance of the difference between cells treated with 100 μM
gemcitabine and those treated with both 100 μM gemcitabine and 100 ng/ml TRAIL (*P < 0.05, **P < 0.01, ***P < 0.001)
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Role of 4E-BP1 in the cytotoxic effects of gemcitabine and
TRAIL
Following on from the above data, we investigated

whether 4E-BP1 plays a required role in the regulation of
survival of PDAC cells by the combination of gemcitabine
and TRAIL. For this purpose as the MIA PaCa-2 cell line
is the only cell line, which expresses constitutive high
levels of 4E-BP1 while eIF4E is equally expressed in the
three (Fig. 4b)46, we employed two stable MIA PaCa-2 cell
lines engineered to express either shRNA directed against
4E-BP1 or scrambled shRNA as a control47.
In contrast to the MIA PaCa-2 cells used in our earlier

work, both genetically modified cell types were resistant
to TRAIL alone (Supplementary Fig. S3a), likely due to
acquired changes during the process of stable cell line
selection. Furthermore, when we tested the combination
treatment using a TRAIL treatment time of 6 h it was
apparent that there was no difference between the extent
of survival of the two cell types as determined by the MTT

assay (Supplementary Fig. S3b). However, after an
extended treatment time of 24 h with gemcitabine plus
TRAIL we did observe significant resistance of the cells in
which 4E-BP1 expression had been silenced (Fig. 5a),
suggesting a role for the tumour suppressor protein in the
longer-term effects of the combination treatment. Using
m7GTP-Sepharose affinity chromatography we were able
to demonstrate that in the cells in which 4E-BP1 had not
been silenced there was an increase in the binding of
dephosphorylated 4E-BP1 to eIF4E that was more
apparent following combination treatment of the cells
(Fig. 5b).

Discussion
Although various trials have investigated treatments

using gemcitabine in combination with a number of
reagents, none of these treatments was shown to be sig-
nificantly more effective than gemcitabine alone48–51. So
despite being first approved 30 years ago, gemcitabine still

Fig. 4 Combination treatment targets the mTOR pathway and alters the phosphorylation of 4E-BP1 in PDAC cells. BxPC-3, MIA PaCa-2 cells
and PANC-1 cells were treated with 100 μΜ gemcitabine for 24 h and/or 100 ng/ml TRAIL for 4 h. A unit of 15 μg of total protein lysate was analysed
using western blotting. a PANC-1 cell lysates were analysed with antibodies directed against total mTOR, mTOR Ser2448, Raptor, Rictor, total 4E-BP1,
4E-BP1 Ser65 and GAPDH. b BxPC-3, MIA PaCA-2 and PANC-1 lysates were analysed to look at the effect on levels and phosphorylation of 4E-BP1 at
residues Ser65, Thr 37/46 and Thr70 as well as levels of eIF4E. GAPDH was used as a loading control. c The change in phosphorylation of 4E-BP1 at Ser65

in PANC-1 cells following combination treatment using TRAIL treatment for either 4 or 6 h was assessed by western blotting. PVDF membranes were
immunoblotted with antibodies directed against total 4E-BP1 and 4E-BP1 residue Ser65. d The relative levels of phosphorylation of 4E-BP1 at Ser65

were quantified by scanning densitometry using ImageJ and the data are shown on the histogram as % of the values for untreated cells. All
experiments were repeated three times and data are provided as means ± SEM. P-values were calculated using Student’s t-test to determine the
statistical significance of the difference between untreated cells and cells treated with either gemcitabine or gemcitabine plus TRAIL (*P < 0.05 and
***P < 0.001)
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remains the first-line therapy for pancreatic cancer. In this
manuscript we have investigated the effect of combining
gemcitabine with the cytokine TRAIL on the survival of
three PDAC and two genetically modified PDAC cell
lines. We have established that using TRAIL and gemci-
tabine in combination can significantly inhibit survival
and induce apoptosis in these cells. In particular, the
combination treatment was effective in the survival of the
PANC-1 cell line that is highly resistant to gemcitabine
treatment alone. Although all three PDAC cell lines
examined showed differing sensitivities to treatment with
TRAIL as previously shown29, it is of significance that in
the presence of TRAIL the cells become responsive to
concentrations of gemcitabine that alone are ineffective.
Moreover, in the more gemcitabine-sensitive cell line,
BxPC-3, TRAIL renders the cells responsive to much
lower concentrations of gemcitabine. We used the MIA
PaCa-2 cell type to establish that the combined effect of
100 μM gemcitabine together with 100 ng/ml TRAIL was
synergistic in nature, at the level of total protein synthesis.
In analysing the induction of apoptosis in PDAC cells

we have shown that the combination of gemcitabine and
TRAIL activates a caspase-mediated mechanism that
leads to the cleavage of a number of substrates, namely
PARP, caspsase-8 and BID. In all PDAC cell lines tested
we also identified additional new caspase targets, notably
the Rictor and Raptor components of the mTORC-1 and
mTORC-2 complexes of mTOR. There is recent evidence
indicating that Raptor is indeed cleaved by caspases but
this has never been investigated in this model52. TRAIL-
induced cleavage of components of mTORC-1 and

mTORC-2 during cell death in PDAC cells suggests
treatment options targeting this pathway53.
Previous studies of the underlying mechanisms by

which gemcitabine and TRAIL induce cell death
have implicated a number of signalling molecules. We
have previously shown that TRAIL can cause depho-
sphorylation of the regulatory protein 4E-BP1 in a
number of tumour cell types29,54,55. However, the effects
of a combination treatment using gemcitabine and
TRAIL on the phosphorylation and levels of this tumour
suppressor in PDAC cell lines have been overlooked
until now. Our present findings suggest that gemcitabine
treatment of all PDAC cell lines investigated
leads to dephosphorylation of 4E-BP1 at residue Ser65.
However, gemcitabine alone is not sufficient to induce
cell death. Since there is little or no effect of gemcitabine
alone on the activity of mTOR, as judged by the
state of phosphorylation of residue Ser2448, it is likely
that the effect of gemcitabine on 4E-BP1 phosphoryla-
tion is mTOR-independent. Using western blotting we
were able to see a dephosphorylation of 4E-BP1 at Ser65

in all cell lines following treatment with 100 μM gem-
citabine and 100 ng/ml TRAIL, and in the PANC-1 cells
the combination treatment significantly reduced the
phosphorylation of this residue compared to untreated
cells. The latter effect coincides with dephosphorylation
of mTOR at Ser2448 as well as caspase-dependent clea-
vages of Raptor and Rictor. Overall, these observations
indicate that the combination of gemcitabine and TRAIL
acts via both mTOR-dependent and -independent
pathways.

Fig. 5 4E-BP1 is involved in the regulation of cell survival following gemcitabine and TRAIL treatment. a, b MIA PaCa-2 cells expressing a
small hairpin RNA (shRNA) directed against 4E-BP1 and control cells expressing a scrambled shRNA were seeded in 96-well plates at a cell seeding
density of 3×104 cells/cm2. a The sensitivity of cells to gemcitabine and TRAIL combination treatment was assessed by MTT assay. Cells were treated
with increasing amounts of gemcitabine (0.1–100 μM) for 24 h (n = 4) and/or 100 ng/ml TRAIL for 24 h (n = 4). All experiments were repeated three
times and data are provided as means ± SEM. One representative experiment is shown. P-values were calculated using Student’s t-test to determine
the statistical significance of the difference between cells expressing a scrambled shRNA and cells expressing a shRNA directed against 4E-BP1, both
cell lines having been treated with 10 or 100 μM gemcitabine and 100 ng/ml TRAIL (*P < 0.05). b Lysates made from cells treated as in a were used to
purify eIF4E using chromatography on m7GTP-Sepharose beads as described in Methods. The levels of eIF4E and of the 4E-BP1 associated with it
were determined by SDS gel electrophoresis and immunoblotting. Total cell lysates were analysed in parallel. Quantification was carried out by
densitometry using ImageJ and the ratios of 4E-BP1 to eIF4E in the m7GTP-purified samples (in arbitrary units) are indicated

Elia et al. Cell Death and Disease  (2017) 8:3204 Page 7 of 11

Official journal of the Cell Death Differentiation Association



In addition to the dephosphorylation of 4E-BP1 we
noted very marked increases in the levels of total 4E-BP1
in all cell lines following the combination treatment. This
is likely to be of considerable significance with regards to
the functional activity of the protein. In PANC-1 cells
binding of 4E-BP1 to eIF4E, isolated on m7GTP-Sephar-
ose, was only observed at the higher levels of 4E-BP1,
namely after TRAIL treatment alone or after TRAIL in
combination with gemcitabine. This is likely to be of
particular relevance in PDAC cells where the basal levels
of 4E-BP1 are very low11. Taken together, these data
suggest that gemcitabine leads to a dephosphorylation of
4E-BP1 but that this alone is not sufficient to induce cell
death. However, gemcitabine potentiates the pro-
apoptotic effect of TRAIL by a mechanism that may
involve enhanced expression of 4E-BP1.
To test whether changes in the levels of 4E-BP1 play a

role in determining the sensitivity of PDAC cells to the
combination treatment we used a MIA PaCa-2 cell line in
which 4E-BP1 can be downregulated47. The cell lines used
for this experiment were derived from MIA PaCa-2 but
proved to be much more resistant to TRAIL than the MIA
PaCa-2 cells used in our other studies. Treatment of both
the control and 4E-BP1-negative cells with concentrations
of TRAIL up to 1000 ng/ml for 6 h had little effect on the
survival of these MIA PaCa-2-derived cell lines. This may
be a consequence of the selection of stable transfectants
with puromycin during the development of the cell line.
However, extended treatment of these cells with TRAIL
for 24 h enabled us to demonstrate that in the absence of
4E-BP1 the cells were significantly more resistant to the
combination treatment. The data from these experiments
further suggest that the pro-apoptotic effect of TRAIL
alone is not dependent on 4E-BP1 but the potentiating
effect of gemcitabine is dependent on expression of the
tumour suppressor.
Although in some circumstances TRAIL has been

shown to promote the growth of pancreatic cancer56 there
is extensive evidence for a physiological function of
endogenous TRAIL as a tumour suppressor. The cytokine
has been shown to be an important natural effector
molecule in the armoury of host defences against trans-
formed cells and it has a critical role in immune surveil-
lance57,58. Whilst we have investigated the effect of
combining gemcitabine with TRAIL as a basis for an
improved chemotherapeutic approach, newly emerging
immunotherapies targeted against pancreatic cancer that
increase the levels of endogenous TRAIL may also benefit
from the combined use of gemcitabine59–61. Endogen-
ously expressed TRAIL is known to be several orders of
magnitude more active than conventional soluble trimeric
TRAIL62. Irrespective of either therapeutic approach, this
study shows the promising potential of using a combi-
nation of gemcitabine with TRAIL as a way of re-

sensitising gemcitabine-resistance PDAC cells, ultimately
inducing these cells to undergo apoptosis. Our data sug-
gest that the marked upregulation and dephosphorylation
of 4E-BP1 is likely to play an important role in this pro-
motion of cell death.

Methods
Materials
Tissue culture reagents were supplied by Sigma, Poole,

UK. Antibody to 4E-BP1 (R113) was from Santa Cruz
Biotechnology, CA, USA. Antibodies against phosphory-
lated 4E-BP1 (anti-Ser65 catalogue number 9451, anti-
Thr37/46 catalogue number 9459 and anti-Thr70 catalogue
number 9455), caspase-8, biotinylated gel markers and
cell lysis buffer were all from Cell Signalling Technology,
Hitchin, UK. Mouse anti-PARP was purchased from BD
Pharmingen, Oxford, UK. The antibody to GAPDH was
from Millipore, Watford, UK. All secondary anti-
bodies (anti-rabbit-horseradish peroxidase (HRP) linked,
anti-mouse-HRP linked or anti-biotin-HRP linked) were
obtained from Cell Signalling Technology. Polyvinylidene
fluoride (PVDF) membrane and rainbow markers were
supplied by GE Healthcare, Amersham, UK. Immobilised
m7GTP-Sepharose was from Jena Biosciences, Jena, Ger-
many. Human TRAIL was from PeproTech EC Ltd,
London, UK. MTT was from Sigma.

Cell culture
The pancreatic cancer cell lines MIA PaCa-2, BxPC-3

and PANC-1 were all American Type Culture Collection-
certified. MIA PaCa-2 and PANC-1 were maintained in
Dulbecco’s modified Eagle medium supplemented with
penicillin (50 units/ml), streptomycin (50 units/ml) and
10% fetal bovine serum (FBS). BxPC-3 cells were main-
tained in RPMI 1640 supplemented with antibiotics as
above and 20% FBS. Cells were maintained in monolayer
cultures at 37 oC in humidified air with 5% CO2. MIA
PaCa-2 cells with constitutive silencing of 4E-BP1 were
engineered using pLKO vectors (Sigma), as previously
described47. shRNA vector accession numbers are as fol-
lows: 4E-BP1 TRCN0000040203 and non-target shRNA
control SHC002. Small interfering RNAs targeting 4E-
BP1 (Applied Biosystems and Life Technologies, Carlsbad,
CA, USA, forward 50-CAAGAACGAACCCUUCCUU-30
and reverse) were transfected using the siPort NeoFx
reagent (Applied Biosystems and Life Technologies),
according to the manufacturer’s instructions.

Immunoblotting
Cells were harvested, washed in phosphate-buffered

saline (PBS) and subjected to lysis using cell lysis buffer
(20 mM Tris-HCl (pH 7.5), 150mM NaCl, 1 mM EDTA,
1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate,
1 mM β-glycerophosphate, 1 mM sodium orthovanadate

Elia et al. Cell Death and Disease  (2017) 8:3204 Page 8 of 11

Official journal of the Cell Death Differentiation Association



(Na3VO4) and 1 µg/ml leupeptin). Cell pellets were vor-
texed with buffer and lysed by incubating with lysis buffer
on ice for 5 min. Samples were sonicated for approxi-
mately five pulses using a sonicator (Jencons), and then
centrifuged at 14 000×g for 10 min at 4 °C. Equal amounts
of whole-cell extract were fractionated by electrophoresis
on SDS polyacrylamide gels and the proteins transferred
to PVDF paper and immunoblotted as described63. Band
intensities were determined by quantitative densitometry
using ImageJ (http://rsbweb.nih.gov/ij/).

Tetrazolium reduction assay
Cells were seeded in 96-well plates at 3×104 cells/cm2.

Following the various cell treatments, 25 μl of MTT were
added to each well and left for 2 h in the incubator at 37 °C.
The formazan crystals generated by viable cells were
solubilized using SDS reagent and cells were incubated
overnight in an atmosphere of 5% CO2 in a 37 °C humi-
dified incubator. Quantitative determination of cell viability
was obtained by utilising a SpectraMax 340PC384 Micro-
plate Reader; absorbance of each sample was measured in
quadruplicate at a wavelength of 595 nm.

Trypan blue exclusion assay
Cells were seeded in triplicate in 12-well plates at 3×104

cells/cm2. Following treatment all media and cells were
transferred from each well into labelled Eppendorf tubes. A
volume of 200 µl per sample were then transferred to fresh
Eppendorf tubes with 200 µl 0.4% Trypan Blue solution and
tubes were briefly vortexed. Several counts were made for
each tube and percentage viability was determined using
the following formula: [(number of total cells− number of
dead (blue) cells)/number of total (blue and white) cells]×
100= percentage cell viability].

Time-lapse microscopy
The kinetics of the commitment of cells to apoptosis

were measured by time-lapse digital image microscopy as
previously described64. Cells were observed in an Olympus
IX70 inverted microscope enclosed within a 37 °C chamber
in a 5% CO2/95% air atmosphere. Images were captured
every 15min using a Hamamatsu C4742-95 digital camera
and, for each condition, 40 cells per field of view were
randomly chosen at the beginning of the time course. The
images were analysed using Image Pro Plus software
(Media Cybernetics, USA) with cells committed to apop-
tosis scored according to the time at which clear changes in
morphology (cytoplasmic and nuclear shrinkage and a
change to a phase bright appearance) were first observed.

Flow cytometry
The cells were lifted from the plates with accutase and

resuspended in 1 ml cold PBS together with the super-
natant media that the cells had been grown in (containing

any cells that may have lifted as a result of treatment).
Cells were pelleted and the wash repeated. Cells were
resuspended in 1× binding buffer at a concentration of
1×106 cells and stained using an FITC Annexin V
Apoptosis Detection Kit 1 (BD Pharmingen, San Diego,
USA) according to the manufacturer’s instructions. Flow
cytometry was carried out on a LSR II flow cytometer (BD
Biosciences, San Jose, CA, USA). Analysis was carried out
with FlowJo software (Tree Star, Ashland, OR, USA).
Unstained cells and cells stained only with FITC Annexin
V were used as controls.

Measurement of overall rates of protein synthesis
Protein synthesis in intact cells was measured by the

incorporation of [35S] methionine (2–4 μCi/ml for 1 h)
into trichloroacetic acid-insoluble material as described
previously54. Total cellular protein content was deter-
mined and overall rates of protein synthesis were calcu-
lated as counts per min incorporated per μg protein.

m7GTP-Sepharose chromatography
Initiation factor eIF4E and its associated proteins were

isolated from cell extracts (containing equal amounts of
protein) by affinity chromatography on m7GTP-
Sepharose beads as described65. Bound proteins were
eluted with SDS gel sample buffer and analysed by gel
electrophoresis and immunoblotting as described above.

Statistical analysis
All data are presented as the means ± SEM of at least

three independent measurements. Prism 5 software
(GraphPad) was used for statistical analysis. A ‘P’-value of
<0.05 was considered to be statistically significant.
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