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At birth, neonates are particularly vulnerable to infection and transplacental transfer 
of immunoglobulin G (IgG) from mother to fetus provides crucial protection in the first 
weeks of life. Transcytosis of IgG occurs via binding with the neonatal Fc receptor (FcRn) 
in the placental synctiotrophoblast. As maternal vaccination becomes an increasingly 
important strategy for the protection of young infants, improving our understanding 
of transplacental transfer and the factors that may affect this will become increasingly 
important, especially in low-income countries where the burden of morbidity and mortal-
ity is highest. This review highlights factors of relevance to maternal vaccination that may 
modulate placental transfer—IgG subclass, glycosylation of antibody, total maternal IgG 
concentration, maternal disease, infant gestational age, and birthweight—and outlines 
the conflicting evidence and questions that remain regarding the complexities of these 
relationships. Furthermore, the intricacies of the Ab–FcRn interaction remain poorly 
understood and models that may help address future research questions are described.
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iNTRODUCTiON

Despite medical advances, infection continues to be a leading cause of neonatal and infant morbid-
ity and mortality worldwide (1). At birth, neonates encounter a wide range of new pathogens and 
have an inexperienced immune system, making them particularly vulnerable to infection (2). The 
transfer of antibodies from the mother to the fetus across the human placenta is central for providing 
immunity in early life. Vaccination in pregnancy is a strategy that aims to protect mother and infant 
by increasing the concentration of maternal vaccine-specific antibody, and thereby the quantity 
transferred to the infant by transplacental transfer (3). This serves to protect the newborn until the 
time of infant vaccination, or until the window period of greatest susceptibility has passed.

In the human placenta, a histological barrier separates the blood in the maternal and fetal circula-
tions. This barrier consists of two layers: the multinucleated synctiotrophoblast and the endothelial 
cells of the fetal capillaries. Wide ranges of substances are transferred, either actively or passively, 
across the placenta from mother to fetus, including the nutrients and solutes needed for normal fetal 
growth and development. Many compounds of low molecular weight (<500 Da) will simply diffuse 
across the placental tissue, whereas substances of very high molecular weight are usually not able to 
transverse the placental barrier (4). One of the exceptions is immunoglobulin G (IgG), which has a 
molecular mass of 160 kDa, yet is actively transported from mother to fetus (5). Of the five antibody 
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classes in humans, IgG is the only one to be transferred across 
the placenta in significant quantities, and this process begins at 
around 13 weeks of gestation (6).

Transplacental antibody transfer occurs via binding with the 
neonatal Fc Receptor (FcRn) in the placental synctiotrophoblast 
(7). A better understanding of mechanisms underlying FcRn-
mediated transplacental antibody transfer, and the factors that 
affect these, is thus crucial for the optimization of maternal 
vaccination strategies, especially for developing countries where 
the burden of maternal and neonatal morbidity and mortality 
is highest (3). This review therefore sets out to summarize our 
current understanding of this field, review factors affecting FcRn-
mediated transport of relevance to vaccination in pregnancy, and 
highlight gaps in our knowledge to direct future research.

THe ROLe OF vACCiNATiON iN 
PReGNANCY

Increasingly, vaccination in pregnancy is being recognized as a 
vital strategy to protect mother, fetus, and infant from infection 
and the associated adverse consequences. A number of vaccines 
are now routinely offered to pregnant women in several coun-
tries, including tetanus, influenza, and pertussis (8). Other vac-
cines may be offered to women in special circumstances (such 
as foreign travel and during outbreaks) and include menin-
gococcus, inactivated poliovirus, and hepatitis A and B. Live 
vaccines are contraindicated in pregnancy. Vaccines currently 
progressing through the vaccine pipeline with a specific indica-
tion of use in pregnancy or pre-pregnancy include respiratory 
syncytial virus (RSV) (9), group B streptococcus (GBS) (10), 
and cytomegalovirus (11). Vaccination in the neonatal period 
is challenging as neonates may mount ineffective protective 
immunity, and the presence of maternal antibodies can blunt 
vaccine responses (2, 12).

Maternal vaccination is a highly effective approach to protect 
infants from infection. Early evidence comes from a study of teta-
nus vaccination in pregnancy in Papua New Guinea in the 1960s. 
Ten percent of infants born to mothers who received either no 
doses or one dose of tetanus developed neonatal tetanus compared 
to 0.57% of infants whose mothers had received three doses (13). 
More recent observational (14) and randomized controlled trials 
(RCTs) (15–17) conducted in both developed and developing 
countries have demonstrated that infants of influenza vaccinated 
mothers were 45–63% less likely to have episodes of proven influ-
enza illness in early infancy (4–6 months of age). Furthermore, 
two of these RCTs showed that influenza vaccination reduced the 
incidence of maternal respiratory illness by 36 and 50.4% (15, 16). 
Maternal vaccination with a pertussis-containing vaccine is now 
routinely recommended in several countries and has been shown 
to be safe and to result in high concentrations of antibody in the 
infant over the first 2 months of life (18–21). Furthermore, mater-
nal vaccination against pertussis has been demonstrated to have 
an effectiveness of over 90% at preventing disease in infants up to 
3 months of age (22–24). Little is known regarding the beneficial 
effects of vaccination in pregnancy on breast-feeding, in which 
the transfer of secretory immunoglobulin A (IgA) antibodies 

serve to protect infants in the first few months of life by bind-
ing and opsonizing pathogenic microorganisms (25). However, 
recent studies have demonstrated that higher concentrations of 
secretory IgA to various diseases exist following maternal vac-
cination (26), with the strongest evidence coming from studies of 
influenza vaccination (27, 28).

Underpinning maternal vaccination is the effective FcRn-
mediated transplacental transfer of vaccine-induced maternal 
IgG. A better understanding of the mechanisms of transplacental 
antibody transfer and the factors that affect this is crucial to opti-
mize maternal vaccination strategies. Factors discussed below 
include IgG subclass, IgG glycosylation, maternal IgG concentra-
tion, maternal disease, gestational age at birth, and birthweight, 
all of which may all affect the protection conferred to the infant 
by maternal vaccination.

igG AND THe FcRn

The human IgG molecule is a heterodimer of two identical 
50 kDa heavy chains and two identical 23 kDa light chains (5) 
(Figure 1A). The heavy chains are of five different classes: μ, γ, δ, 
α, and ε, with four subclasses of γ and two of α. The light chains 
are of two classes: κ and λ (29). Together, the light and heavy 
chains form a Y-shaped structure, consisting of two fragment 
antigen-binding (Fab) arms, which contain the antigen-binding 
site and one crystallizable (Fc) tail region (30). The Fab region 
consists of constant and variable regions of the light chain, con-
stant region 1 of the heavy chain (CH1), and variable region of the 
heavy chain (VH). Constant regions two and three of the heavy 
chain (CH2 and CH3) form the fragment crystallizable (Fc) tail 
region (30). A flexible hinge of disulfide bonds connects the CH1 
and CH2 domains, to allow the Fab arms freedom of movement 
from the fragment crystallizable (Fc) tail. The outward-facing 
part of the interface between the CH2 and CH3 domains is where 
binding with FcRn occurs.

On the basis that whole IgG molecules and the Fc portion of IgG 
pass into the fetal circulation more readily than antigen-binding 
Fab fragments, it was hypothesized in the 1960s that receptors for 
the Fc part of IgG (FcγR) may be involved in the placental transfer 
of IgG (31). A functionally distinct FcγR was first proposed to 
mediate this specific transport of IgG by Brambell (32, 33), and 
this was later established to be the neonatal Fc receptor (FcRn)—
termed as such due to its identification in the gut epithelial cells 
of neonatal rats (34). Its existence was confirmed by further work 
in mice (35, 36), and direct evidence of its involvement in the 
delivery of maternal IgG came from ex vivo perfused placenta 
studies comparing the maternofetal transfer of a recombinant 
IgG1 with that of a variant containing a mutation in the Fc region 
that did not bind to FcRn (37).

The structure of FcRn is unlike other Fc receptors and is 
markedly similar in structure to major histocompatibility 
complex (MHC) class I, with which it shares 22–29% sequence 
homology (37) (Figure 1B). It is a heterodimer consisting of a 
complex of two chains: a polypeptide α-chain (heavy chain) and 
β2-microglobulin (light chain) (38). The heavy (45 kDa) α-chain 
is encoded on chromosome 19 and consists of three extracel-
lular domains (α1, α2, and α3), a transmembrane region, and a 
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FiGURe 1 | Schematic of the structure of human immunoglobulin G (A) and the neonatal Fc receptor (B).
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short cytoplasmic tail. While the α-domains are closely related 
to MHC class I, the transmembrane and cytoplasmic domains 
distinguish FcRn from other receptors of the same class (39). 
The light (12  kDa) chain, β2-microglobulin (β2m), is encoded 
on chromosome 15 and is non-covalently associated with the α3 
domain (38).

The role of FcRn extends beyond its role in placental FcRn 
transport. It is central to the homeostatic maintenance of both 
serum IgG and albumin levels by protecting them from lysoso-
mal degradation and is thereby responsible for their long serum 
half-lives relative to other plasma proteins (40, 41). Furthermore, 
FcRn is increasingly recognized to have a wide role in modulat-
ing humoral and cell-mediated immunity (42). It is involved in 
the bidirectional transcytosis of IgG and IgG immune complexes 
across various human epithelia (43–45), and its expression in 

hematopoietic cells (46, 47) is essential for the enhancement of 
IgG-mediated phagocytosis (48), anti-tumor immunosurveillance 
(49), and the direction of immune complexes to lysosomes in 
dendritic cells in order to facilitate antigen presentation (50, 51).

MeCHANiSMS OF FcRn-MeDiATeD igG 
TRANSCYTOSiS iN THe PLACeNTA

The placenta is a complex organ of which the basic functional unit 
is the chorionic villus (52, 53). Villi are highly branched vascular 
projections of fetal tissue, through which fetal blood flows from 
the umbilical cord. The villi are surrounded chorion, which 
consists of two layers: the outer syncytiotrophoblast (which is in 
direct contact with maternal blood flowing through the intervil-
lous space) and the inner layer of cytotrophoblast progenitor 
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FiGURe 2 | Schematic of the microstructure of the human placental barrier at term (A) and the neonatal Fc receptor (FcRn)-mediated endocytosis of 
immunoglobulin G (IgG) across the placental syncytiotrophoblast (B).

4

Wilcox et al. Review of Transplacental Antibody Transfer

Frontiers in Immunology | www.frontiersin.org October 2017 | Volume 8 | Article 1294

cells. Under the chorion lies the stroma and the fetal capillaries 
(Figure 2A).

Unlike other FcγRs, the interaction of FcRn with IgG displays 
a strong pH dependence, such that high-affinity binding occurs 
at pH 6.0, but little or no binding occurs at physiological pH 7.4 
(54). This pH-selective binding is key to the effective transport 
of IgG across the synctiotrophoblast of the placenta from the 
maternal to fetal circulation. Various crystallography studies have 
found structural modifications in the FcRn α-chain that might 
contribute to this pH dependence. This characteristic is likely 
mediated, at least in part, via protonation of histidine residues 
(the only amino acid that changes between pH 5.5 and 7.4) at the 
CH2–CH3 domain interface of IgG (54–56). Additionally, thermal 
denaturation studies have shown that the FcRn heterodimer is 
significantly more stable at pH 6 than pH 8 (57).

To be successfully transferred across the placenta, maternal 
IgG must cross the synctiotrophoblast layer, the villous stroma, 
and the fetal vessel endothelium. The mechanisms of FcRn-
mediated IgG trancytosis across the synctiotrophoblast have 
been elucidated by the use of the BeWo choriocarcinoma cell line  
(a model for placental trophoblast) (58) and fluorescence micros-
copy of FcRn-green fluorescent protein-transfected live human 
endothethial cells, which enable analysis of the intracellular 
trafficking of IgG in real time (Figure 2B) (59, 60). These studies 
suggest that IgG is taken up from the extracellular fluid on the 
apical side of the synctiotrophoblast by endocytosis. Within the 
acidic environment of endosomes, IgG binds with membrane-
bound FcRn and is protected from proteolytic degradation by 
lysosomal enzymes. IgG is then transcytosed to the basal cell 
surface, where a return to physiological pH causes dissociation of 
IgG from FcRn. FcRn may then be recycled back to the maternal 
membrane to perform more cycles of transcytosis.

The mechanisms underlying the initial endocytosis of IgG, and 
onward transport of IgG across the villous stroma and the fetal 
vessel endothelium remain somewhat of a gap in our knowledge. 

It is controversial as to whether FcRn is also expressed in fetal 
vessel endothelium. Various studies using immunohistochemical 
staining of placental sections with anti-FcRn antibodies have 
shown a mix of some (61, 62) or no (36). FcRn expression in 
fetal endothelium, and some evidence, points toward alternative 
Fc receptors in the further movement of IgG (63, 64).

FACTORS ASSOCiATeD wiTH CHANGeS 
iN TRANSPLACeNTAL ANTiBODY 
TRANSFeR

How Does the Structure of igG vary 
between Subclasses and How Might This 
Affect FcRn Binding and Transplacental 
Transfer?
Human IgG can be divided into four subclasses (IgG1, IgG2, IgG3, 
and IgG4), named in order of decreasing abundance (65). IgG 
subclasses are over 90% identical at the amino acid level; however, 
each subclass has a unique functional profile. In human serum, 
FcRn prolongs the half-life of IgG1, IgG2, and IgG4 equally. It is 
thought that FcRn does not prolong the half-life of IgG3 in the 
same way, because IgG3 has an arginine at position 435 instead of 
the histidine found at the same position in the other subclasses, 
except for individuals expressing a natural IgG3 variant (H435) 
(66). IgG1 is preferentially transported across the placenta, followed 
by IgG4, IgG3, and IgG2 (37, 67). Placental IgG transport has been 
estimated by comparing cord and maternal concentrations of IgG 
subclasses. These studies have shown that concentrations of IgG1, 
IgG4, and H435-containing allotypes of IgG3 exceed maternal 
levels; however, levels of IgG2 do not (68–70). This suggests that 
the placental transport of IgG2 is significantly less efficient.

One explanation for this difference in placental transport 
relates to the IgG hinge region, as differences in the length 
and flexibility of the hinge region are found in the subclasses.  
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The length and flexibility of the hinge region affects the orientation 
and movement of the Fab arms in relation to the Fc tail (5). The 
relative flexibility differs as follows: lgG3 > lgG1 > lgG4 > lgG2 
(71). IgG2 has been demonstrated to have a uniquely short hinge 
region, comprising 12 amino acids and containing a poly-proline 
double helix, stabilized by four inter-heavy chain disulfide bridges 
(72). This causes the Fab arms to be relatively close to the Fc tail 
and enables its κ isotope, but not λ isotope, to form three disulfide 
isoforms that differ from each other with relation to their disulfide 
bridges in the hinge region (73). It has therefore been postulated 
that one these IgG2κ isoforms may have decreased interaction 
with FcRn and account for the reduced placental transport dis-
played by IgG2. However, recent studies in humans have found 
that FcRn binding does not seem to vary among these different 
disulfide isoforms (74) and that no preference occurs for recycling 
and placental transport of IgG2λ or IgG2k (69).

The question therefore remains over the mechanism underlying 
the reduced placental transport of IgG2 relative to other subclasses. 
One possible explanation relates to recent findings suggesting that 
different proteins are involved in regulating FcRn-mediated IgG 
transcytosis (actin motor myosin Vb and Rab25) and recycling 
(Rab11a), respectively (75). While IgG2 transport through the 
placenta is indeed low, its recycling and half-life extension in the 
adult circulation are even better than IgG1 (69). It is therefore a 
possibility that regulation by these proteins varies depending on 
IgG subclass, but how the stoichiometry of IgG2 may affect these 
intracellular processes requires further study. Another possible 
explanation is that another Fc receptor, FcγRIIb, may play a role 
in modulating transplacental antibody transport (76, 77). A role 
for FcγRIIb might provide a plausible explanation for the reduced 
transport of IgG2 because, unlike other subclasses, IgG2 has almost 
non-existent binding affinity to FcγRIIb (78).

The discrepancy between transfers of different IgG subclasses 
may have key implications for maternal vaccination. IgG2 is 
crucial for the opsonization and killing of polysaccharide-encap-
sulated pathogens and is induced by polysaccharide vaccines 
(69). Conversely, vaccines that contain protein antigens, such 
as tetanus, predominantly elicit production of IgG1 and IgG3. 
Therefore, transcytosis of some vaccine-induced IgG subclasses 
is more efficient than others. Future work to optimize placental 
transfer of IgG2 has the potential to better protect infants against 
important polysaccharide-encapsulated pathogens such as GBS, 
Haemophilus influenzae B (HiB), and Neisseria meningitidis (79).

How Does Glycosylation of igG Affect 
FcRn Binding and Transplacental 
Transfer?
Glycosylation involves the covalent addition of sugar moieties 
(such as fructose, galactose, and sialic acid) to proteins. The 
dynamics and binding affinity of IgG can be influenced by its 
glycosylation (80), and IgG exists in a number of glycosylated 
variants (glycoforms) (81). Both pregnancy and disease may have 
an impact on IgG glycosylation. Pregnancy is associated with 
increased Fc and Fab region galactosylation and sialylation (82). 
Interestingly, pregnancy is also associated with clinical improve-
ment of autoimmune disease (such as rheumatoid arthritis), 

which, as well as infectious disease, is associated with a reduction 
in galactosylation of IgG in human serum (83).

Neonatal Fc receptor binds to the outward-facing part of the 
CH2 and CH3 domains of the Fc region of IgG. The N-glycosylation 
site occupies the inner part of the Fc region at asparagine 297, help-
ing to maintain its quaternary structure and stability [Figure 1A; 
Ref. (84)]. It has therefore been suggested that IgG glycosylation 
may affect the IgG–FcRn interaction and that that there may be a 
preferential placental transport for glycosylated IgG. Supportive 
evidence for the hypothesis of preferential transport of glyco-
sylated IgG comes from studies in the 1990s, which demonstrated 
reduced concentrations of non-glycosylated IgG and higher 
concentrations of galactosylated IgG in newborn infants (85, 86). 
More recently, Dashivets et al. studied enzymatically engineered 
glycosylation variants and showed that deglycosylated IgG1 had 
a slightly diminished binding to FcRn, with digalactosylated IgG 
demonstrating superior binding than monogalactosylated and 
agalactosylated variants (87). Furthermore, in  vivo pharmaco-
logical studies have also shown an impact of the glycan on the 
half-life mediated by FcRn (88).

Evidence to the contrary, however, includes a study by 
Bakchoul et al. that showed agalactosylated IgG was transported 
equally well across the placenta (89). In addition, Einarsdottir 
et al. studied Fc region glycosylation for all IgG subclasses in 10 
pairs of fetal and maternal IgG samples. They demonstrated com-
parable Fc region glycosylation for all IgG subclasses (including 
galactosylation, sialylation, bisecting G1cNAc, and fucosylation), 
suggesting that transplacental IgG transfer does not favor certain 
Fc glycoforms (90). However, another more recent study by the 
same group in 2016 found clear, albeit minor, differences in the 
N-glycosylation profile of IgG between maternal and umbilical 
cord plasma in 42 mother–newborn pairs (91). Levels of galac-
tosylation were slightly higher for cord IgG, with lower levels 
of bisection, sialylation, and sialylation per galactose. Possible 
reasons for the differences observed between studies include a 
IgG subclass-related transport bias (discussed previously), as well 
as the method of measurement, which was at the released glycans 
level in the 2016 study, rather than by analyzing IgG-derived 
Fc-glycopeptides (92). It is therefore possible that it is the quality 
of Ab glycosylation, rather than the total quantity of glycosylation 
that determines transplacental transfer. It is not known how vac-
cination in pregnancy might affect glycosylation of IgG and the 
efficacy of transplacental transfer of vaccine-specific IgG and is an 
area where more research is needed.

How Does Total Maternal igG 
Concentration Affect Transplacental 
Transfer of Specific igG?
It is well established that maternal antibody levels play a role 
in determining transfer efficiency. Neonatal IgG levels usually 
correlate with maternal ones; however, it has been suggested 
that once maternal total IgG levels reach a threshold (>15 g/L), 
FcRn can become saturated (37, 93). IgG must then compete 
for a finite number of FcRn receptors. Unbound IgG molecules 
are subsequently destroyed through the lysosomal degradation 
process within cells. This is supported by African studies showing 
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that reduced IgG transfer ratios were associated with the higher 
maternal total IgG levels (94, 95). Furthermore, a number of more 
recent studies have demonstrated negative correlations between 
maternal IgG levels and placental transfer ratios for both total and 
antigen-specific IgG (96–98).

Very high concentrations of vaccine-specific antibodies could 
potentially result in a reduced proportion of maternal IgG being 
transferred across the placenta to the infant, resulting in a lower 
transplacental transfer ratio. However, the concentration of 
antibody in cord blood is still likely to be significantly higher in 
infants born to vaccinated women compared to infants born to 
unvaccinated women and therefore may not have implications 
for protective infant immunity, and to date, no adverse clinical 
outcomes have been observed.

How Does Maternal Disease Affect the 
Ab–FcRn interaction and Placental 
Transfer of igG?
Maternal Infectious Disease
It is now well established that maternal chronic infection can 
reduce the transplacental transfer of IgG specific to a variety 
of important childhood pathogens, including RSV, measles, 
tetanus, and HiB (37, 99–103). The majority of these studies 
have focused on placental malaria and HIV, which are par-
ticularly prevalent in developing countries and continue to 
exert a significant burden of morbidity and mortality globally. 
These include studies of HIV-exposed but uninfected infants, 
which showed reduced transplacental transfer ratios and lower 
concentrations of specific antibodies than HIV-unexposed 
infants did to HiB, pertussis, pneumococcus, and tetanus at 
birth (104).

The mechanisms behind this reduced transfer are poorly 
understood, and current models remain speculative. Infections 
may impact on IgG transfer directly through infection and 
inflammation of the placenta, or a reduction FcRn-antibody 
binding avidity, or as detailed above, via induction of hyper-
gammaglobulinemia (IgG  >  15  g/L) leading to saturation of 
placental FcRn (105). Studies assessing the impact of infection 
and hypergammaglobulinemia have had a great deal of overlap 
between these populations (>90%), complicating the inter-
pretation of these effects independently (95). One Malawian 
study demonstrated that reduced antibody transfer in placental 
malaria may occur independently of hypergammaglobulinemia 
using multivariate regression analysis (106); however, more 
recent conflicting evidence from Papua New Guinea showed that 
only hypergammaglobulinemia, and not placental malaria, was 
associated with impaired transport of RSV antibody (99). Further 
studies are therefore clearly needed to understand the complexi-
ties of these relationships.

Interestingly, non-pregnant individuals with infectious 
diseases such as HIV have been shown to have significantly 
higher levels of galactose-deficient IgG than healthy controls.  
If glycosylation does indeed impact on the Ab–FcRn interaction 
as discussed above, then this may represent a further possible 
mechanism by which HIV could impact on placental IgG transfer 
and thus the effectiveness of maternal vaccination (107, 108).

Maternal Nutrition and Non-Communicable Diseases
Maternal malnutrition can have adverse implications for the 
neonate, and it has been demonstrated that neonatal immune 
responses may be modulated by the nutrition of a mother during 
gestation (108). One study reported a 14% reduction in antibody 
transfer among malnourished pregnant women compared to 
controls (109); however, the reasons for this are unclear and 
possibly relate to differences in placental size, morphology, and 
vascular development (110, 111). Other studies of micronutrients 
include a recent review of antenatal zinc supplementation that 
did not find significant evidence for the positive effect of zinc on 
antibody transport (112).

Another significant maternal morbidity is diabetes mellitus, 
which can either be pre-existing or gestational and affects 0.2–0.3 
and 2–5% of pregnancies, respectively (113). To date, the effect 
of maternal hyperglycemia on FcRn and IgG transfer remains 
unclear. Stach et al. (98) demonstrated an increased rate of IgG 
transfer in hyperglycemic mothers for all antigens they studied 
(GBS, Klebsiella LPS, and Pseudomonas LPS), as did França et al. 
(114). More recently, De Souza et al. investigated both the transfer 
of IgG and expression of FcRn expression (measured by flow 
cytometry), in normo- and hyperglycemic mothers (115). They 
found that mothers with pre-existing type 2 diabetes had lower 
total levels of IgG, and reduced leukocyte FcRn expression across 
maternal blood, cord blood, and placental samples (collected at 
delivery) compared with normoglycemic mothers. Interestingly 
however, FcRn expression increased with mild gestational hyper-
glycemia. There was no statistically significant difference in total 
IgG levels in newborns between groups of mothers. Differences 
were observed on subclass analysis however, with significantly 
lower transfer of IgG1, IgG3, and IgG4 in women affected by 
diabetes, but significantly higher transfer of IgG3 in women with 
mild gestational hyperglycemia.

This decrease in FcRn expression may explain the reduced 
transfer of some IgG subclasses in mothers with diabetes. 
Furthermore, high levels of glycated IgG have been demon-
strated in the plasma of patients with diabetes, and this may have 
an effect on the avidity of binding with FcRn and its transfer 
across the placenta (116, 117). The question also remains over 
why higher transfer might occur for IgG3 in the context of mild 
gestational hyperglycemia. Hyperglycemia is associated with a 
variety of alterations to placental structure, including increased 
numbers of glucose transporters (118) and a discontinuity in the 
trophoblastic layer (119), which may both facilitate the passage of 
glucose, and possibly some immunoglobulins, across the placenta 
(120). Additionally, greater placental villous capillarization has 
been noted in women with mild gestational hyperglycemia, and 
may facilitate placental transfer of a variety of substances (121).

Another common complication in pregnancy is maternal 
hypertension, affecting 2–3% of pregnancies (122). One study has 
examined the effect of pregnancy-induced hypertension on IgG 
transfer and, interestingly, found that hypertension was associ-
ated was increased transfer of IgG against Klebsiella spp. (98). This 
might be considered paradoxical given the immune-pathological 
damage observed in the placenta of hypertensive women (123).

Clinical trials of vaccination in pregnancy typically enroll 
healthy women, without chronic infections or co-morbidities.  
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As these factors may influence transplacental transfer of antibody 
and therefore the protection afforded to the infant, it is important 
to also design studies, which assess vaccines in pregnancies in 
“real-life” settings, without the extensive exclusion criteria 
applied to early phase clinical trials. These data also suggest that 
optimization of maternal health for the benefit of mother and 
infant is important.

How Does the Ab–FcRn interaction 
Change across Gestation and 
Birthweight?
Placental transfer of IgG occurs in an exponential fashion 
as pregnancy progresses, with minimal transfer in the first 
trimester (6). In the second trimester, the use of cordocentesis 
has demonstrated that fetal IgG rises from roughly 10% of the 
maternal concentration at 17–22  weeks of gestation, to 50% at 
28–32 weeks (124). In the third trimester, the rate of IgG transfer 
rises significantly (particularly from 36 weeks), with the increase 
of fetal IgG concentrations between 29 and 41 weeks of gestation 
doubling that of 17–28 weeks. At term, fetal levels vary, however, 
usually exceed maternal levels by 20–30% (64, 125, 126).

It follows therefore that a reduced transfer of IgG in preterm 
infants compared with term infants has been demonstrated for a 
variety of pathogens (97, 127, 128) particularly for infants born 
at less than 36  weeks of gestation (126). This knowledge has 
significant implications for the optimal timing of vaccination 
in pregnancy and has shaped the development of maternal vac-
cination strategies, reviewed by Calvert et al. (129). In order to 
protect preterm infants, a vaccine would need to be given early 
in pregnancy to ensure sufficient time of transport of IgG to the 
infant. However, later vaccination could be more desirable to 
more closely match the peak antibody response with the peak 
of transplacental transport of IgG to the infant. There remains 
debate in the published literature about the optimal timing of vac-
cination in pregnancy. It is worth noting that, given the increased 
susceptibility of premature infants to serious early-life infections, 
the optimal strategy may require a compromise between giving 
the best protection to term babies, versus protecting all viable 
infants.

Birthweight may also affect IgG transfer, with studies demon-
strating a reduced transfer of antibodies in term low birthweight 
infants (65, 130). Interestingly, on subclass analysis, the reduced 
transfer seen in premature and low birth weight infants has been 
shown to be specific to IgG1 and IgG2, which may in part explain 
the higher susceptibility of premature infants to infections caused 
by polysaccharide-encapsulated pathogens which predominantly 
elicit IgG2 production, such as GBS (97, 127).

It is thought that this change in rate of transplacental 
transfer may partly occur because of increased expression of 
FcRn throughout gestation; however, this is yet to be formally 
demonstrated and our understanding of the evolving expression 
of FcRn remains poor. Whether alternations in the Ab–FcRn 
interaction may also play a role in this effect is unknown. It is 
worth noting that preterm labor and low birthweight are associ-
ated with numerous maternal pathologies, such as gestational 
hypertension, diabetes, and preeclampsia, which may also have 

a direct or indirect effect on placental function and the Ab–FcRn 
interaction. Thus, interpreting their independent effects may 
therefore be challenging.

wHAT MODeLS OF PLACeNTAL 
FUNCTiON ARe CURReNTLY AvAiLABLe 
TO STUDY TRANSPLACeNTAL TRANSFeR 
OF iMMUNiTY?

Over the years, several models of placental function have been 
developed to study the transplacental transfer of substances, 
including IgG. Mouse and rat models have been central to the 
discovery of FcRn (34) and have provided useful insights into 
the possible mechanisms of FcRn-mediated IgG transfer in situa-
tions where human studies are considered invasive or impractical 
(131). However, they differ from humans in many key features 
including levels of FcRn expression (132), immunological func-
tion (133), and placental anatomy (77). Another major model 
has been paired maternal–cord samples, which have been used 
widely and offer the possibility of comparing blood samples from 
the mother at the time of delivery with umbilical cord blood. The 
ratio of cord:maternal antibody concentration has been used as a 
proxy for placental transport (104).

In addition, several ex vivo and in vitro placental models are 
available to study transplacental transfer at a more mechanistic 
level. The cell line most commonly used is the choriocarcinoma-
derived BeWo (b30) cell line, which can be cultured to form 
polarized, confluent monolayers with tight junctions for use in 
directional transport studies. These trophoblast cells serve as 
an in vitro model of the rate-limiting barrier of maternal–fetal 
exchange and can be used to study placental metabolism and 
transport of numerous substances, including IgG (134–136). 
BeWo cells also demonstrate hormone secretion properties and 
characteristics of third trimester trophoblasts; however, the model 
lacks connective tissue and fetal endothelium, which are present 
in the in vivo human placenta. Also, as single cytotrophoblast cells 
with tight junctions, they do not fully recapitulate the multinu-
cleate syncytiotrophoblast, which is the cell type in contact with 
maternal blood. Forskolin treatment has sometimes been used, as 
it can induce fusion of BeWos to form syncytia (137). However, 
this fusion is variable and never reaches 100%, so is unable to 
create a complete syncytiotrophoblast barrier for transfer studies. 
Culture of isolated primary term cytotrophoblasts, which differ-
entiate in culture to model syncytiotrophoblasts can be employed 
to overcome this issue (138).

The gold standard for placental transfer studies is the placental 
perfusion model. For this, a term placental cotyledon is cannu-
lated and re-perfused to model the fetal and maternal circulations, 
enabling the study of the placental transfer of a chosen substance 
(139). Compared to placental transfer in  vivo, this model is 
obviously simplified and does not take into account some of the 
possible maternal/fetal physiological variables. It does however 
offer the best technique to study the transplacental exchange of 
substances across the intact human placenta (134, 140).

The BeWo and placental perfusion models have shown good 
comparability in studies comparing the transport of different 
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compounds across the placenta in terms of rank order; however, 
the transfer rate is much slower in BeWo cells (141, 142). This 
could be due to the higher pressure and flow in the circula-
tion pump setup of the perfusion model, and while the BeWo 
cell monolayer can be placed on a shaking plate to create flow, 
this is not in the same magnitude as the placenta and there is 
a lack of hydrostatic pressure on the fetal side (140). Also, as 
mentioned above, the BeWo is a cytotrophoblast model, not a 
syncytiotrophoblast model, and thus, uptake rates and receptor 
expression may differ. Despite its limitations, the BeWo model 
is far less technically challenging to perform than the perfusion 
model, which requires very rapid access to fresh placenta samples 
and has a high failure rate (134). It therefore may present a useful 
first-step model for those wishing to investigate placental trans-
fer, before progressing to the more complex placental perfusion 
model, particularly for the study of inter-individual differences or 
disease states (139, 143).

One other consideration is that both the BeWo model and 
the placental perfusion models only enable the modeling of 
term placenta. This represents a gap in our knowledge, particu-
larly as maternal vaccines are often given in the first and second 
trimester. One way to overcome this issue could be through 
the use of the placental explant model. For this, small placental 
villous explants are dissected and cultured in vitro. This model 
can be performed with placental tissue of any gestation and 

thus is a commonly used model for early placental function, as 
samples are obtainable from termination of pregnancies. The 
explant model enabled the first demonstration of Zika virus 
infection of the first trimester placenta in vitro (144) and has 
been used to investigate placental uptake of other substances, 
including glucose (145), amino acids (146), and exosomes 
(147). The explant model has not been extensively used for 
antibody investigations, except for in the study of antiphos-
pholipid antibodies (148); this is likely due to the fact that it 
does not fully model maternal to fetal transfer. Nevertheless, 
the ability to demonstrate uptake into intact human placental 
tissue from across gestation could provide useful information 
regarding maternal antibody uptake and interaction with the 
FcRn throughout pregnancy, both requisite steps for transfer of 
antibody to the fetus.

CONCLUSiON

Since its first identification in 1989, it has become increasingly 
apparent that FcRn plays a lifelong role in immunity. Importantly 
for neonates, FcRn is crucial for establishing humoral immunity 
via transplacental IgG transfer, and this exciting research field 
continues to expand.

This review has highlighted a number of factors that may affect 
the effective FcRn-mediated transplacental antibody transfer, 

FiGURe 3 | Conceptual diagram of the factors that may modulate placental antibody transfer of relevance to maternal vaccination.
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