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Abstract: Background and aims: Cross-sectional twin and family studies
report a moderate heritability of baseline levels of C-reactive protein
(CRP) ranging from 0.10 to 0.65 for different age ranges. Here, we
investigated the stability and relative impact of genetic and
environmental factors underlying serum levels of CRP, using a
longitudinal classical twin design.

Methods: A maximum of 6,201 female twins from the TwinsUK registry with
up to three CRP measurements (i.e. visit 1 [V1], visit 2 [V2] and visit 3
[V3]) over a 10 year follow-up period were included in this study.
Structural equation modeling was applied to dissect the observed
phenotypic variance into its genetic and environ-mental components. To
estimate the heritability of CRP as well as its genetic and environmental
correlations across different time points, a trivariate model was used.
Results: Natural log (1ln) CRP levels significantly increased from V1 to
V2 (p=4.4x10-25) and between V1 and V3 (p=1.2x10-15), but not between V2
and V3. The median (IQR) follow-up time between V1 and V3 was 9.58 (8.00-
10.46) years. Heritability estimates for CRP were around 50% and constant
over time (0.46-0.52). Additionally adjustment for BMI did not meaningful
change the heritability estimates (0.49-0.51). The genetic correlations
between visits were significantly smaller than one, ranging from 0.66 to
0.85.

Conclusions: The present study provides evidence for stable heritability
estimates of CRP of around 50% with advancing age. However, between-visit
genetic correlations are significantly lower than 1 indicating emergence
of new genetic effects on CRP levels with age.



Highlights

Highlights
e Heritability estimates of C-reactive Protein (CRP) are around 50% and remain
stable with advancing age.
e Adjustment for body mass index did not change heritability estimates of CRP.

¢ New genetic effects on CRP levels emerge with advancing age.
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Abstract

Background and aims: Cross-sectional twin and family studies report a moderate
heritability of baseline levels of C-reactive protein (CRP) ranging from 0.10 to 0.65 for
different age ranges. Here, we investigated the stability and relative impact of genetic
and environmental factors underlying serum levels of CRP, using a longitudinal
classical twin design.

Methods: A maximum of 6,201 female twins from the TwinsUK registry with up to
three CRP measurements (i.e. visit 1 [V1], visit 2 [V2] and visit 3 [V3]) over a 10 year
follow-up period were included in this study. Structural equation modeling was
applied to dissect the observed phenotypic variance into its genetic and environ-
mental components. To estimate the heritability of CRP as well as its genetic and
environmental correlations across different time points, a trivariate model was used.
Results: Natural log (In) CRP levels significantly increased from V1 to V2 (p=4.4x10"
) and between V1 and V3 (p=1.2x10"°), but not between V2 and V3. The median
(IQR) follow-up time between V1 and V3 was 9.58 (8.00-10.46) years. Heritability
estimates for CRP were around 50% and constant over time (0.46-0.52). Additionally
adjustment for BMI did not meaningful change the heritability estimates (0.49-0.51).
The genetic correlations between visits were significantly smaller than one, ranging
from 0.66 to 0.85.

Conclusions: The present study provides evidence for stable heritability estimates of
CRP of around 50% with advancing age. However, between-visit genetic correlations
are significantly lower than 1 indicating emergence of new genetic effects on CRP

levels with age.

Keywords: aging, longitudinal, twins, heritability, C-reactive protein
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Introduction

The link between ageing and inflammation is well established. Low levels of microbial
exposition early in life is known to promote the development of more competent
immune pathways and regulatory processes. Such effective anti-inflammatory
networks may counterbalance proinflammatory pathways (and CRP levels) activated
by chronic diseases such as obesity and atherosclerosis [1]. Furthermore, ageing is
known to be associated with a gradual dysregulation of inflammatory pathways
resulting in an elevation of inflammatory factors [2-5]. It has been demonstrated that
chronic low grade inflammation predisposes to many chronic, age-related diseases,
such as those of the pulmonary and cardiovascular system [6-9]. We have
previously demonstrated the role of age as a moderator of the genetic and
environmental influences on baseline levels of inflammatory markers.[10].

An important, well established inflammatory marker is C-reactive protein
(CRP). Its baseline levels are considered to reflect systemic inflammation.
Considering the relationship of increased baseline CRP levels with a variety of
disorders, including cancer [11], bipolar disorder [12], cardiovascular diseases [13—
15], type 2 diabetes [16], and all-cause mortality [17], regulation of baseline CRP
levels are of particular interest. In this context, baseline CRP levels have shown to be
influenced by a variety of environmental and genetic factors. However, their relative
importance and exact extent to which these factors account for the total variance in
CRP level remains unknown [18].

Heritability studies aim to estimate the relative influence of heritable and
environmental factors on a trait [19]. Twin and family studies in a wide variety of

populations with different age ranges showed a moderate heritability of baseline CRP
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levels, with heritability estimates ranging from 0.10 to 0.65 [20—40] (Supplementary
Table 3).

CRP levels have been shown to be fairly stable over time. DeGoma et al. [41]
analyzed serial CRP measures of 255 participants to evaluate the intraindividual
variability of CRP over a median follow up period of 4.7 years. The multivariable-
adjusted intraclass correlation coefficient (ICC) of CRP was estimated as 0.62. The
intraindividual variability of CRP was also investigated by Wu et al. [42], using CRP
levels of 56,218 Chinese adults over a two-year follow-up time. The ICC of CRP was
reported as 0.55 for men and 0.60 for women. Interestingly, the stability of CRP
gradually increased with age. However, twin and family studies mentioned above
used single CRP measurement for their heritability calculation rather than longitudinal
measurements. Limited by this cross-sectional design, heritability estimates for CRP
as reported above only provide a snapshot at one particular point in time, potentially
providing at least a partial explanation for the wide variety of heritability estimates
reported in the literature [20—40].

To the best of our knowledge, no longitudinal twin studies on CRP levels have
been conducted to date. The aim of this study was to evaluate the heritabilities and
the extent to which genetic and environmental influences contribute to the stability or
change of CRP over time in a large population of adult females using a classical twin

design, including up to three CRP measurements over a ten year follow-up period.

Material and Methods
Subjects
The study was conducted in 6,201 women from the Twins UK registry. Details of the

Twins UK registry have been published before [43]. Zygosity was determined by
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guestionnaire supplemented by DNA fingerprinting in cases with disputed or
uncertain zygosity. CRP measurement follow-up was performed up to 3 times, giving
6,201 measurements in visit 1 (1,457 monozygotic (MZ) pairs, 1,584 dizygotic (DZ)
pairs and 119 singletons), 2,251 measurements in visit 2 (452 MZ-pairs, 632 DZ-
pairs and 83 singletons) and 528 measurements in visit 3 (139 MZ-pairs, 112 DZ-

pairs and 26 singletons).

C-reactive protein analysis

High sensitive CRP was measured by latex-enhanced nephelometry on a Siemens
(formally Behring) Prospec Nephelometer. The intra-assay precision expressed as
coefficient of variation (CV) of this method is around 3.5% CV at 1.5 mg/l and 3.1% at

12 mg/l and is expected to be <2% CV across the linear range of the assay.

Analytical approach

Natural log (In) transformation was necessary for the CRP data in order to obtain a
better approximation of the normal distribution. Secondly, InCRP was adjusted for
age. This is a common procedure in twin analyses because age can spuriously
introduce a shared environmental effect if there is a significant correlation between
the phenotype and age, because twins are always of the same age. Next, covariate
analysis was performed, testing for: current smoking, body mass index (BMI), current
oral contraceptive (OC) use and current hormone replacement therapy (HRT). It was
our goal to test for a limited number of important covariates (i.e., age and BMI),
rather than a more extensive list of potential covariates with more moderate effect
sizes. This choice is unlikely to have biased our heritability estimates, because the

potential effects of these covariates, in as far as they represent environmental
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influences, will have ended up in the estimate of the Unique Environmental variance
components E). No significant contribution to CRP variance was found for smoking,
OC and HRT (p>0.05), the covariate models used were: 1) Age and 2) Age + BMI.
That is, INCRP was adjusted for age in model 1 and for both age and BMI in model 2
after which the residuals were used in the model fitting. Models were fitted to the raw
data using normal theory maximum likelihood allowing inclusion of incomplete data,
for example, when data were only available in one twin of a pair or in a limited
number of visits.

Linear mixed model analysis was applied in longitudinal analyses to determine
whether INCRP differed between visits while accounting for both repeated
measurements and twin relatedness by including the twin and family identification
numbers as random effects in the model. Models with and without BMI as fixed effect
were analyzed. The same approach was also used to test for differences in INCRP
levels between visits among those twins that returned for a second and/or a third
visit. In simple cross-sectional analyses we used generalized estimating equations
(GEE) to take account of the relatedness between twins. For example, to evaluate
potential selective drop out over the different visits, we tested for the difference in
age, BMI and InCRP at baseline (i.e., visit 1) between twins that returned for a
second or third visit and those that did not return using GEE. GEE was also used to

test for differences in baseline characteristics between MZ and DZ twins.

Model fitting
Structural equation modeling (SEM) was the primary method of analysis. SEM is
based on the comparison of the variance-covariance matrices in MZ and DZ twin

pairs and allows separation of the observed phenotypic variance into its genetic and
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environmental components: additive (A) or dominant (D) genetic components and
common (C) or unique (E) environmental components, the latter also containing
measurement error. The choice to start with either D or C in the full model depends
on the relation between the MZ (rMZ) and DZ (rDZ) twin correlations. A D component
is implied if 2xrDZ<rMZ whereas a C component is indicated if 2xrDZ>rMZ. Dividing
each of these components by the total variance yields the different standardized
components of variance. For example, the narrow sense heritability (h?) can be
defined as the proportion of the total variance attributable to additive genetic variation
[19].

For the longitudinal analysis, a trivariate SEM or path model (also known as a
Cholesky decomposition, Figure 1) was used. With this model we can estimate both
the heritability of CRP at different times of measurement separately, and also the
genetic (rg) and environmental (re or rc) correlations between different time points,
giving an estimation of the (in)stability of genetic and environmental influences with
advancing age. We can further test whether the genes influencing CRP are the same
(i.e. rg=1), partly the same (i.e. 0 < rg <1) or entirely different (i.e. rg=0) at different
times of measurement (and therefore different ages). If they are partly the same, this
bivariate model allows quantification of the amount of overlap between genes
influencing CRP at different ages by calculating the genetic correlation between the
traits: ry = COVA (trait 1, trait 2)/N(Vatraitl * Vatrait2).

Shared and unique environmental correlations can be calculated in a similar
fashion [44,45]. In order to test for differences between twin 1 and twin 2, visits 1, 2
and 3 and differences between MZ and DZ twins, we tested whether the means

could be set equal between different twins (twin 1 and twin 2), time points (visit 1, 2
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and 3) and zygosity groups (MZ and DZ) without a decline in model fit. A significant

decline indicates that means cannot be assumed to be equal.

--Insert-Figure-1- about here--

Software

All data handling and preliminary analyses were done with STATA (version 10.1,
Statacorp, TX, USA). Quantitative genetic modeling was carried out using the Mx
software package [46].

Models were fitted to the raw data using normal theory maximum likelihood
allowing inclusion of incomplete data, for example, when data were only available in
one twin of a pair or in a limited number of visits. Using this method, Mx yields
efficient maximum likelihood estimates even in the case of missing data through
calculating twice the negative log-likelihood of the data for each observation (i.e. twin
pair) [46]. This procedure follows the theory described by Lange et al., [47] based on

the multivariate normal probability density function of a vector of observed scores.

Results

In Figure 2 the distributions of INCRP at the three visits for all twins combined are
shown. INCRP levels significantly increased from visit 1 (V1) to visit 2 (V2) (p=4.4x10
%) and between V1 and visit 3 (V3) (p=1.2x10"), but not between V2 and V3
(p=0.69). Adjustment for BMI did not meaningfully change these results. The median
(IQR) follow-up time was 5.60 (2.87-7.56) years between V1 and V2, 6.17 (4.10-7.53)
between V2 and V3 and 9.58 (8.00-10.46) between V1 and V3. When limiting the

analyses to individuals who returned for all 3 visits (robustness check), results were
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very similar. INCRP levels among the 2,251 “returners” significantly increased in the
interval between V1 and V2 (p=1.8x10?%), and between V1 and V3 (N= 528;
p=4.1x10"%), but not between V2 and V3 (N= 528; p=0.62) (Supplementary Figure

1). Additionally adjusting INCRP for BMI did not meaningfully change these results.

--Insert-Figure-2-about here--

Baseline characteristics of MZ and DZ twins for the three visits are
summarized in Table 1. Significant differences between MZ and DZ twins exist for
age (Visit 2 and 3, p<0.01), BMI (Visit 2, p<0.05) and InCRP levels (Visit 1 and 2,
p<0.05). In our twin models we corrected INCRP for both age and BMI.

Even though we optimally made use of the available follow-up measures of
CRP over a ten year period, only subsamples of twins returned for the second and/or
third visit. Those twins that returned for a second and/or third visit were not entirely
representative of the whole sample as they were several years older, had lower BMIs
and lower levels of CRP at baseline (details given in Supplementary Table 2).

Table 2 shows the intraclass twin correlations and results of the univariate
SEM analysis of the two models for each of the three visits. For all three visits and
both age adjusted, and age plus BMI adjusted INCRP values MZ twin correlations
were at least about twice as large as the DZ correlations clearly indicating the
importance of genetic effects on INCRP. In all models and visits, an AE-model was
the best-fitting model. Heritabilities range from 0.46-0.52 (model 1) and 0.49-0.51
(model 2). The heritabilities remain relatively stable over time and their confidence

intervals overlap for all visits and models.

10
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--Insert-Table-1-about here—

Table 3 shows the results of the longitudinal trivariate analysis (Cholesky
decomposition). We first tested effects of twin, visit and zygosity on the means. For
model 1, mean values of twin 1 and twin 2 could be set equal within MZ and within
DZ twins, but could not be set equal across visits and zygosity groups. For model 2,
in which CRP was adjusted for BMI, the means could additionally be set equal across
all 3 visits, but remained different between MZ and DZ twins (see also Table 1).
Since CRP levels between MZ and DZ twin pairs were different we allowed the
means to remain different among zygosity groups in our statistical model to ensure
that these differences could not bias the variance component.

No evidence for a significant effect of genetic dominance was found as the AE
model fitted best for both models. Heritability estimates for CRP were around 50%
and very stable over time (0.50-0.53). Adjustment for BMI reduced heritabilities
somewhat (0.45-0.49).

The genetic correlations between first and second (respectively second and
third) follow-up visits were 0.82 and 0.85 (model 1), and 0.78 and 0.77 (model 2).
These correlations are large, but significantly smaller than 1 based on the
nonoverlapping 95% Cls indicating the emergence of new genetic effects with age.
When comparing the first with the third visit, the genetic correlation dropped (0.66 for
model 1 and 0.55 for model 2), indicating increasingly different genetic effects with
age. Environmental correlations between first and second (respectively second and
third) follow-up visits were much smaller than the genetic correlations with estimates
of 0.16 and 0.27 (model 1), and 0.15 and 0.26 (model 2). When comparing the first

with the third visit, the correlation remained the same (0.19).

11
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We did not find evidence for genetic dominance however, in contrast to some
previous cross-sectional twin studies that also had large sample sizes [37,39].

A limitation of the present study however, is that our conclusions are not
generalizable to men, or subjects with diseases since only data on relatively healthy
women was assessed. The benefit of this homogenous sample on the other hand, is
that the results cannot be confounded by gender or disease since these covariates
have previously been shown to have significant effects [48].

Even though we optimally made use of the available follow-up measures of
CRP over a ten year period, only subsamples of twins returned for the second and/or
third visits.However, the Mx software package is capable of handling missing data by
obtaining maximum likelihood estimates and takes advantage of including all
available data rather than complete cases only [46]. Furthermore, a sensitivity
analysis including only twins for which CRP data was available for all three visits
yielded similar findings. As such, we believe it is unlikely that the differences between
returning and non-returning twins will have translated into major biases in our model
fitting parameter estimates.

An interesting feature of our study, as mentioned above, is that we are the first
to demonstrate relative stable heritabilities over time in a longitudinal design, even
though the CRP levels itself do not seem stable (higher CRP-levels are described
with advancing age) [2-5]. The present results show that the increase in CRP levels
off between V2 and V3 and partial differences in gene repertoire may well be
responsible for this. However, the aim of the present study was to describe stability
and change of (co)variance patterns over time in terms of changes in underlying

genetic and environmental variance components rather than explaining trends

13
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in,mean-CRP-levels over time. As such, further biological explanations of this age
trend in mean CRP remain speculative.

It has been hypothesized before that increased CRP levels with age may
result from increases in “low grade, systemic, chronic inflammation” (due to
atherosclerosis for example) [2-5]. Based on our previous findings [10], one may
have expected an increasingly important role for random (i.e., unique environmental)
components reflecting reduced homeostatic control with age in this process.
However, this was not supported by our recent findings.

The role of immunological pathways in somatic outcomes has well been
established, as mentioned before in the introduction. This is, for example, illustrated
by results on the role of microbial exposition in early life in the development of
immune pathways and regulatory mechanisms [1], showing that a lack of exposition
predisposes to “disrupted” immunological pathways and increased risk for allergic
disorders. In this context, the relationship between Immunglobulin-E (IgE) and CRP
would be of particular interest. This could be investigated in a multivariate twin study
assessing the phenotypic and genetic relationship between IgE, CRP and age similar
to our recent work on the relationship between neuroticism, CRP, fibrinogen, and IgG
[49,50].

Genome-wide association studies (GWASS) have been able to identify several
genomic loci associated with serum levels of CRP. These studies have used large
sample sizes of adult population, but have not compared (possibly different) genomic
effects on CRP levels with advancing age [51,52]. Our results on the other hand
indicate emergence of some new genetic effects on CRP with age and hence,
warrants the need to repeat large GWAS studies with stratifying the study population

for different age ranges. Post-GWAS analyses of the abovementioned CRP GWAS

14
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results revealed different biological processes involved in CRP metabolism [53].
However, it is unclear whether these processes are stable with advancing age.

The present study provides evidence of a substantial role for genetics in the
regulation of baseline CRP levels. Heritabilities are stable with advancing age, and
(more interestingly) the impact of environmental components remains relatively
stable too during the ten years our subjects were followed. Considering the genetic
correlations were significantly smaller than 1 and reduced with follow-up time, genes
regulating CRP levels at younger ages must be partly different from those at more
advanced ages. These results are in contrast with previous (cross-sectional) findings
of other inflammatory markers, which indicate moderation of (changing) unique
environmental factors with age in the regulation of IL-1B and TNF-a levels [10].

In conclusion, this study emphasizes the relatively stable role of genetics in
regulation of CRP levels, emphasizing its potential as a biomarker of ageing over
other, more biologically reactive substances, in the various immunological pathways.
Furthermore, the present study highlights the importance of a combination of both
environmental factors and complex genetic pathways underlying the ageing process.
Finally, even though the quantitative role of genetics in regulation of baseline CRP
levels remained largely the same with age, the actual genes responsible for these
effects were partly different at different ages. As such, future gene finding efforts
need to take this into account, for example through investigating gene by age

interaction effects.
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Figure captions

Figure 1

Path diagram for a bivariate model. For clarity, only one twin is depicted. A1, A2, A3
= Genetic variance components; C1, C2, C3 = common environmental variance
components; E1, E2, E3 = unique environmental variance components; V1, V2, V3 =
Visit 1, 2 and 3; all through a33 = genetic path coefficients (or factor loadings); c11
through ¢33 = common environmental path coefficients (or factor loadings); ell

through e33 = unique environmental path coefficients (or factor loadings).

Figure 2
Distributions of INCRP at the three visits. An asterix means that there is a significant

difference (p<0.05) in In(CRP) between the respective visits.

Supplementary figure 1

Distributions of paired differences in INCRP between two visits. An asterix means that

the paired difference is significantly different from zero (p<0.05).
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Table 1

Table 1. General characteristics of twins by zygosity and visit number.

MZ Dz p-value
N Age (years) N Age (years)
Visitl 2,955 49.1+13.4 3,246 48.3+x12.4 ns
Visit2 934 57.9+10.1 1317 56.0+£10.3 <0.01
Visit3 292 65.618.1 236 61.4+9.7 <0.01
N BMI (kg/m?) N BMI (kg/m?)
Visitl 2,955 25.4+4.6 3,246 25.6+4.7 ns
Visit2 934 25.7+4.2 1,317 26.314.8 <0.05
Visit3 292 26.1+4.2 236 26.3+4.4 ns
N CRP (mg/L) N CRP (mg/L)
Visitl 2,955 1.20(0.48-3.15) 3,246 1.44(0.58-3.47) <0.05
Visit2 934 1.45(0.68-3.39) 1,317 1.61(0.72-3.89) <0.05
Visit3 292 1.54 (0.73 -3.18) 236 159 (0.73-3.80) ns

Note: Differences between MZ and DZ twins were tested using GEE with adjustment

for age (for BMI) and age and BMI (for CRP). CRP was transformed by natural

logarithm prior to analysis. Abbreviations: BMI, Body Mass Index; CRP, C-reactive

protein; DZ, dizygotic twins; MZ, monozygotic twins; N, number of subjects; n.s., not

significant. Data are given in mean=SD for age and BMI and median (IQR) for CRP.



Table 2

Table 2: Intraclass correlations and parameter estimates of best fitting univariate models of INCRP at the three visits

Visit Model Intraclass correlations Univariate Model Fitting
rMZ (95% ClI) rDZ (95% Cl) A (95% CI) E (95% Cl)
1 N, pairs 1457 1584
1 0.54 (0.50-0.58) 0.24 (0.20-0.29) AE  0.52 (0.46 —0.58) 0.48 (0.42 — 0.54)
2 0.48 (0.44-0.52) 0.20 (0.16-0.25) AE  0.51(0.38—-0.61) 0.49 (0.39 —0.62)
2 N, pairs 452 632
1 0.50 (0.43-0.57) 0.25(0.18-0.33) AE  0.51(0.45-0.57) 0.49 (0.43 — 0.55)
2 0.46 (0.38-0.53) 0.24 (0.17-0.31) AE  0.51(0.39-0.62) 0.49 (0.38 — 0.61)
3 N, pairs 139 112
1 0.54 (0.43-0.66) 0.13 (0.00-0.31) AE  0.46 (0.40 — 0.52) 0.54 (0.48 — 0.60)
2 0.51 (0.39-0.64) 0.15 (0.00-0.33) AE  0.49 (0.36 —0.59) 0.51 (0.41 — 0.64)

Note: Model 1, adjusted for age; Model 2, adjusted for age and BMI; A, additive genetic variance component; E, unique

environmental variance component.



Table 3

Table 3: Parameter estimates (95% CI) of best fitting trivariate models of INnCRP

levels.

Model

1

2

3

1

0.53 (0.50-0.56)
0.82 (0.74-0.90)
0.66 (0.51-0.81)
0.48 (0.44-0.51)
0.78 (0.70-0.87)

0.55 (0.40-0.70)

0.16 (0.09-0.23)
0.50 (0.45-0.57)
0.85 (0.71-0.97)
0.15 (0.08-0.22)
0.45 (0.40-0.52)

0.77 (0.61-0.92)

0.19 (0.06-0.31)
0.27 (0.12-0.40)
0.52 (0.39-0.62)
0.19 (0.06-0.31)
0.26 (0.12-0.39)

0.49 (0.36-0.59)

Note: The best fitting model for all analyses was the AE model; Genetic correlations
[rg (95% CI)] are given below the diagonal and environmental correlations [re (95%

Cl)] above the diagonal; Heritability [ry (95% CI)] estimates are given on the diagonal

in bold, Model 1, adjusted for age; Model 2, adjusted for age and BMI.



