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Abstract: Modern vaccinology has increasingly focused on non-living vaccines, which are more 18 

stable than live-attenuated vaccines but often show limited immunogenicity. Immunostimulatory 19 
substances, known as adjuvants, are traditionally used to increase the magnitude of protective 20 
adaptive immunity in response to a pathogen-associated antigen. Recently developed adjuvants 21 
often include substances that stimulate pattern recognition receptors (PRRs), essential components 22 
of innate immunity required for the activation of antigen-presenting cells (APCs), which serve as a 23 
bridge between innate and adaptive immunity. Nearly all PRRs are potential targets for adjuvants. 24 
Given the recent success of toll-like receptor (TLR) agonists in vaccine development, molecules 25 
with similar, but additional, immunostimulatory activity, such as defective interfering particles 26 
(DIPs) of viruses, represent attractive candidates for vaccine adjuvants. This review outlines some 27 
of the recent advances in vaccine development related to the use of TLR agonists, summarizes the 28 
current knowledge regarding DIP immunogenicity, and discusses the potential applications of 29 
DIPs in vaccine adjuvantation. 30 

Keywords: defective interfering particles; defective viral genomes; innate immunity; vaccine 31 
adjuvants; pattern recognition receptor agonists  32 

 33 

1. Making better vaccines; vaccine adjuvants 34 

Vaccines have proved to be one of the most successful medical interventions ever implemented; 35 
some of the greatest success stories in public health are attributed to vaccination, such as the 36 
worldwide eradication of smallpox and the near-elimination of poliovirus. Modern vaccines act by 37 
inducing a protective adaptive immune response to a pathogen-associated antigen by mimicking the 38 
naturally occurring immune response to a disease-causing pathogen but without causing disease. 39 
The initiation of innate immunity and the activation of specialized antigen-presenting cells (APCs) 40 
pave the way to a pathogen-specific long-lasting adaptive immune response. Traditionally, vaccines 41 
have comprised either live-attenuated variants of the targeted pathogen or non-living antigens, 42 
ranging from inactivated/killed pathogens to recombinant antigens [1]. Live-attenuated vaccines 43 
have good immunogenicity and are safe for most recipients; however, these types of vaccines can 44 

mailto:nsulta01@ucy.ac.cy
mailto:s.goodbourn@sgul.ac.uk
http://jgv.microbiologyresearch.org/content/journal/jgv/10.1099/rer@st-andrews.ac.uk
mailto:avasou01@ucy.ac.cy
mailto:lkostrik@ucy.ac.cy


Viruses 2017, 9, x FOR PEER REVIEW  2 of 18 

 

cause disease when administered to individuals with an unrecognized immunodeficiency and they 45 
also exhibit a potential of reversion to virulence [2]. Non-living antigen vaccines are safer for 46 
immunocompromised individuals but are often poorly immunogenic. Immunostimulatory 47 
substances, known as adjuvants, help increase vaccine immunogenicity and have been used in 48 
human vaccines for more than 80 years. Aluminum salts were the first adjuvant used in human 49 
vaccines in 1932 [3, 4], and novel adjuvants have been introduced in vaccine formulations only in the 50 
last two decades [5, 6]. The improvements in vaccine immunogenicity when an antigen is 51 
co-administered with an adjuvant are exemplified by the case of H5N1 pandemic influenza vaccines 52 
[7]. Compared to non-adjuvanted and alum-adjuvanted vaccines, oil-in-water emulsions (MF-59) 53 
have conferred significant adjuvant effects on inactivated H5N1 pandemic influenza vaccines in 54 
humans, inducing improved immunogenicity in all age ranges and cross-reactive immune 55 
protection against H5 subtype clades as well as sparing antigen, thereby allowing an effective 56 
increase in supply [5]. The H5N1 experience illustrates that vaccine immunogenicity can be 57 
remarkably improved when vaccines are administered with the appropriate adjuvant. Despite great 58 
advances in vaccine efficacy and implementation over the past several decades, infectious diseases 59 
remain the most important cause of childhood mortality [8], while respiratory infections, diarrhea 60 
and tuberculosis all rank in the top ten leading causes of death across all age groups [9]. The most 61 
important challenges in vaccine development are linked to (i) complex pathogens, such as those that 62 
cause immune dysfunction in the host (e.g., human immunodeficiency virus; HIV), those with 63 
complex life cycles (e.g., malaria) or those with a latent disease phase (e.g., Mycobacterium 64 
tuberculosis), and (ii) high-risk populations, such as infants (immature immunity), the elderly 65 
(immunosenescence), and chronically diseased or immunocompromised individuals (reviewed by 66 
[10]). Recent advances in immunology, especially a greater understanding of the link between innate 67 
and adaptive immunity, allow the development of novel adjuvants that can selectively activate 68 
immunological pathways to obtain the desired immune response against a specific pathogen in 69 
distinct target populations. 70 

Adjuvants can augment the immune response to vaccines through a variety of mechanisms, 71 
including deposition of vaccine (antigen) and the activation of innate immunity. Early innate 72 
immunity constitutes the first line of defense against pathogen invasion. Early pathogen recognition 73 
plays a crucial role in the subsequent triggering of a proinflammatory response to the invading 74 
pathogen while orchestrating pathogen-specific adaptive immune responses. Adjuvants can 75 
stimulate innate immunity by interacting with cellular pattern recognition receptors (PRRs), which 76 
detect pathogen-associated molecular patterns (PAMPs), distinct, evolutionarily conserved 77 
structures on pathogens [11]. Currently, several PRRs have been identified, including the 78 
well-characterized toll-like receptors (TLRs), retinoic acid-inducible gene I (RIG-I)-like receptors 79 
(RLRs), nucleotide-binding oligomerization domain (Nod)-like receptors (NLRs), C-type lectin 80 
receptors (CLRs) and the recently described cytosolic DNA sensors (CDSs) [12]. APCs, such as 81 
dendritic cells (DCs), express a repertoire of PRRs, allowing the recognition of a range of pathogenic 82 
constituents. Upon PAMP engagement, PRRs trigger complex signal cascades that lead to the 83 
production of an appropriate set of cytokines and chemokines, including interferons (IFNs), the 84 
enhancement of antigen presentation capacity and the migration of DCs to lymphoid tissues, where 85 
the DCs interact with T cells and B lymphocytes to initiate and shape the adaptive immune response. 86 
The matured DCs are also endowed with the ability to stimulate naïve CD4+ T cells into different T 87 
helper (Th) subsets (e.g., Th1 and Th2 cells), which provide help to B cells to facilitate antibody 88 
production [13]. The differentiation of Th cells is regulated by several cytokines; for example, the 89 
development of naïve CD4+ lymphocytes into Th1 cells is regulated by a number of cytokines 90 
including IL-12, IL-15 and IL-27 [14]. In brief, a Th1 response primarily develops following infection 91 
with intracellular pathogens, such as viruses and some bacteria, whereas Th2 cells predominate in 92 
response to large extracellular parasites [15]. Since most licensed adjuvants induce a Th2-type 93 
response rather than a Th1-type response [16], a current challenge is to develop adjuvants that induce 94 
a strong Th1 bias to increase the efficacy of vaccination against intracellular pathogens, such as HIV 95 
and malaria. 96 
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PRR agonists have been in the spotlight recently because of their profound immunostimulatory 97 
effects, which are associated with the induction of innate immunity. The nature of innate immunity 98 
is coupled with subsequent adaptive immunity; consequently, activators of PRRs, such as TLR 99 
agonists and poly I:C (reviewed below), can enhance or even tailor the immunogenicity of a given 100 
vaccine and are, therefore, considered promising molecules for developing new vaccine adjuvants. 101 
Furthermore, PRR agonists may be utilized as alternative forms of prophylactic or therapeutic 102 
agents to combat infectious diseases. [13, 17]. Defective interfering particles (DIPs) are mutant virus 103 
particles that contain defective virus genomes (DVGs), a subset of which are powerful activators of 104 
innate immunity Indeed, DIPs of negative-sense RNA viruses are critical danger signals for viral 105 
infection, because these particles specifically stimulate RLR signaling and, therefore, their presence 106 
instigates powerful antiviral immunity. The evident immunostimulatory activity of DIPs led to the 107 
study of defective viral particles as narrow- or broad-spectrum antivirals (reviewed by [18]) and 108 
also as vaccine adjuvants. In this review, we discuss the importance of innate immunity in acquiring 109 
pathogen-specific adaptive immunity, how PRR agonists are being developed as vaccine adjuvants, 110 
and how virus DIPs and DVGs offer advantages for the enhancement of immune responses. 111 

2. PRRs agonists: A diverse class of vaccine adjuvants 112 

 Recent advances in the study of innate immune receptors and their ligands has laid the 113 
foundation for the development of a series of novel immunoenhancers, a number of which are 114 
currently approved for human use (Figure 1). Given that TLRs are the most extensively 115 
characterized class of PRRs, it is not surprising that most adjuvants in clinical use target TLRs 116 
(comprehensively reviewed by others [19-22]). Ten TLRs have been identified in humans and are 117 
categorized into two groups: those located at the cell membrane and the intracellular TLRs, which 118 
are expressed on the membrane of endocytic vesicles or other intracellular organelles [23, 24]. TLR4 119 
is unique among TLRs as it initiates pathways in different cellular locations including the cell 120 
membrane and intracellular compartments. The location of TLRs is directly associated with the type 121 
of microbial PAMPs they recognize. For instance, TLRs expressed on the cell membrane sense 122 
microbial membrane components, including lipids and flagella, whereas TLRs expressed in 123 
intracellular vesicles sense microbial nucleic acids, including double-stranded RNA (dsRNA), 124 
single-stranded RNA (ssRNA) and CpG DNA motifs [25] (Figure 1).  125 

TLR-based adjuvants mimic PAMP(s) generated during a natural infection and, therefore, can 126 
be highly effective against pathogens or diseases that naturally activate the associated PRRs. For 127 
instance, TLRs play a vital role in the control of hepatitis B virus (HBV) infections in vivo, specifically 128 
by activating antiviral innate immune responses and modulating HBV-specific adaptive immunity, 129 
which is crucial for terminating the virus infection [26]. Natural or synthetic ligands of several TLRs 130 
are present in licensed human vaccines, or are currently being tested in clinical trials, as adjuvants in 131 
various vaccine formulations. These are ligands of either surface TLRs (e.g., TLR4 and TLR5) or 132 
ligands of endosomal TLRs (e.g., TLR7/8 and TLR9) (Figure 1). The adjuvant system 04 (AS04) 133 
represents one of the most successful adjuvant systems currently present in two registered vaccines: 134 
Fendrix, the HBV vaccine [5], and Cervarix, the human papillomavirus (HPV-16/18) cervical cancer 135 
vaccine [27]. AS04 combines aluminum salts and the TLR4-agonist 136 
3-O-deacylated-4’-monophosphoryl lipid A (MPLA), a detoxified derivative of lipopolysaccharide 137 
(LPS) with retained immunostimulatory capacity [28]. More specifically, MPLA stimulates a 138 
polarized Th1 cell response, in contrast to the mixed Th1-Th2 cell response of aluminum salts alone 139 
[29, 30], and induces considerably fewer pro-inflammatory cytokines than the parent LPS molecule 140 
[31]. In addition to AS04, the AS01 and AS02 adjuvant systems also consist of MPLA but in 141 
combination with Quillaja saponaria Molina fraction 21 (saponin QS-21) and a liposomal suspension 142 
(AS01) or an oil-in-water emulsion (AS02) [28]. AS01 is present in Mosquirix, the first malaria 143 
vaccine to be approved for immunization against Plasmodium falciparum [32]. Although AS02 was the 144 
first adjuvant to be tested in trials as an adjuvant for the malaria vaccine, AS01 induced better 145 
antigen-specific immunity to the P. falciparum circumsporozoite (CS) and was therefore selected for 146 
use in Mosquirix [33, 34]. Several clinical trials are presently investigating the adjuvant activity of 147 
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AS01 and AS02 in vaccines against HIV, tuberculosis, HBV and malaria. In addition to these 148 
MPLA-based adjuvant systems, MPLA has also been approved for use in an allergy vaccine, namely, 149 
Pollinex Quattro. Specifically, MPLA triggers a Th1-type immune response characterized by an 150 
increase in allergen-specific antibody levels when administered to patients suffering from seasonal 151 
allergic rhinitis [35]. Pollinex Quattro is in clinical use against seasonal allergic rhinitis in some 152 
countries, and ongoing clinical trials are also evaluating MPLA as a potential adjuvant for vaccines 153 
targeting other pathogens, including leishmania parasites and herpes virus [20]. In addition, 154 
aminoalkyl glucosaminide 4-phosphates (AGPs) represent a new class of synthetic lipid A analogs 155 
that can be manufactured at high purity as single chemical units, unlike MPLA [36]. RC-529 (also 156 
known as Ribi.529) belongs to the AGP family and is a fully synthetic monosaccharide mimetic of 157 
MPLA. Notably, RC-529 increased the immunogenicity of the human HBV recombinant vaccine 158 
Supervax, compared with that of the aluminum-adjuvanted version of the vaccine [37]. Supervax 159 
has an acceptable safety profile and is approved for vaccination against HBV in Argentina [37].  160 

 161 

 162 

Figure 1. PRR agonists used as vaccine adjuvants in the clinic or in clinical trials (not an exhaustive 163 
list) referenced in the manuscript. For simplicity, figure shows TLR4 only on cell membrane, 164 
however TLR4 can signal both at cell membrane and endosomes. Abbreviations: PRR, Pattern 165 
recognition receptor; RLRs, RIG-I-like receptors; TLRs, Toll-like receptors; pppRNA, 166 
triphosphate-RNA; dsRNA, double-stranded RNA; LPS, lipopolysaccharide; ssRNA, 167 
single-stranded RNA; CpG-ODNs, CpG-containing oligonucleotides; polyI:C, 168 
polyinosinic:polycytidylic acid; MPLA, monophosphoryl lipid A; AS, adjuvant system; HBV, 169 
hepatitis B virus; HPV, human papillomavirus. 170 
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Several other TLR ligands have shown promising adjuvant activity in clinical trials (Figure 1). 171 
Imiquimod (R837) belongs to the imidazoquinoline family and is a small synthetic compound 172 
recognized by the TLR7 receptor in endosomes. Imiquimod has been successfully used to treat 173 
HPV-induced genital warts and certain skin cancers under the brand name of Aldara [38]. The use of 174 
imiquimod as a vaccine adjuvant is still under investigation; however, a recent clinical trial has 175 
demonstrated that pretreatment with topical imiquimod significantly enhances the immunogenicity 176 
of the intradermal trivalent influenza vaccine [39]. Likewise, synthetic oligonucleotides (ODNs) 177 
harboring CpG motifs (CpG-ODNs) elicit potent immunostimulatory responses through TLR9 and 178 
have shown promising adjuvant activity in both experimental and clinical settings. The immune 179 
effects of CpG-ODNs result from the activation of TLR9s expressed on DCs and B cells, which 180 
subsequently stimulate several aspects of innate and adaptive immunity, including the production 181 
of IFNs and pro-inflammatory cytokines (IL-6, TNF-α), activation of NK cells, and differentiation of 182 
Th1 immune cells [40]. CpG-ODNs have improved the immunogenicity of a commercially available 183 
HBV vaccine (Engerix-B) [41], increased the antigen-specific immune responses against anthrax [42], 184 
and demonstrated promising activity as an immunotherapy for the treatment of cancer [43]. 185 
Numerous ongoing clinical trials are investigating the therapeutic potential of CpG-ODNs as 186 
adjuvants for vaccines targeting cancer, infectious diseases and allergies [20]. Lastly, flagellin, the 187 
main constituent of bacterial flagella, is potently recognized by cell surface TLR5 and has shown 188 
promising immunoenhancing activity in novel formulations of influenza vaccines. Specifically, 189 
recombinant influenza vaccines comprising flagellin fused to influenza antigens [e.g., matrix protein 190 
2 (M2; VAX102) or hemagglutinin (HA; VAX128)] resulted in high antibody titers, seroconversion 191 
and protection [44, 45]. Flagellin-adjuvanted recombinant influenza vaccines therefore represent a 192 
promising next-generation vaccine technology.  193 

Several synthetic dsRNAs have also been designed to mimic the natural dsRNA ligands of 194 
PRRs, such as RLRs and TLR3 (Figure 1). Among them, polyinosinic:polycytidylic acid (polyI:C) is a 195 
potent activator of the type I IFN response [46], representing a promising immunostimulatory 196 
candidate for vaccines. PolyI:C signaling is primarily dependent on TLR3 and MDA-5 and strongly 197 
drives cell-mediated immunity and the production of type I IFNs [47, 48]. Although polyI:C is 198 
highly effective in modulating innate immunity, it was demonstrated early on that human serum 199 
has a relatively high level of enzymatic activity that causes polyI:C hydrolysis and inactivation [49]. 200 
Based on this phenomenon, poly-ICLC, a derivative of polyI:C stabilized with poly-L-lysine and 201 
carboxymethylcellulose, has improved pharmacokinetic properties while maintaining the 202 
immunostimulatory activity of the parental molecule [50]. PolyI:C/poly-ICLC elicits strong Th1 203 
immune responses in mice and nonhuman primates [51, 52]. Notably, type I IFN signaling through 204 
IFNAR is required for polyI:C to establish Th1 responses to a DC-targeted HIV gag protein vaccine in 205 
mice [51, 53]. Because type I IFNs have been linked to the activation of Th1 responses while serving 206 
as counter-regulators of Th2 differentiation (reviewed by [14]), it is believed that the ability of 207 
synthetic dsRNAs to induce Th1 immunity is related to their well-documented ability to induce 208 
IFNs. The effectiveness of polyI:C/poly-ICLC as an HIV vaccine adjuvant is still under 209 
investigation; numerous clinical studies are also investigating the efficacy and tolerability of 210 
poly-ICLC as an anti-retroviral agent. 211 

Early innate immunity plays a significant role in controlling tumor progression; for this reason, 212 
PRR agonists have also been actively pursued for their anti-tumor properties and therapeutic 213 
potential as adjuvants for cancer vaccines. Current evidence suggests that type I IFN signaling 214 
participates in innate recognition of tumors and subsequently leads to a functional tumor-associated 215 
antigen (TAA)-specific T cell immunity [54, 55]. In fact, spontaneous anti-tumor immunity is likely 216 
to be related to damage-associated molecular patterns (DAMPs), which are molecules that are 217 
usually released by dying or dead cells as a signal of danger. Such cancer-derived DAMPs can be 218 
recognized by PRR receptors on innate immune cells, which subsequently trigger innate immunity 219 
[56]. Therefore, the idea of stimulating PRR receptors to potentiate anti-tumor immunity has been 220 
eagerly embraced by tumor immunologists, and poly(I:C)/poly-ICLC is currently considered one of 221 
the most promising immunotherapeutic agents for improving cancer immunotherapy outcomes. 222 
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The addition of poly(I:C)/poly-ICLC as a single adjuvant to different cancer vaccine formulations 223 
enhances the induction of TAA-specific T cell immunity to several tumor types, such as 224 
lymphomas, melanomas and lung cancer tumors, demonstrating promising adjuvant activity for 225 
immunotherapies [57]. The anti-tumor activity of poly(I:C)/poly-ICLC is being tested in ongoing 226 
clinical trials [58-60] and has been shown to be safe in humans [61]. In addition to 227 
poly(I:C)/poly-ICLC, a novel RNA-based PRR agonist (RNAdjuvant®) has also proven to have 228 
potent immunostimulatory effects for cancer vaccines [62] and will be employed in the therapeutic 229 
cancer vaccine formulation developed by the HEPAVAC Consortium to specifically target liver 230 
cancer [63]. Taken together, the results from clinical studies substantiate the ability of synthetic PRR 231 
agonists to initiate anti-tumor immune responses in combination with cancer vaccines, increasing 232 
their potential application in future therapeutic interventions.  233 

Despite the evident immunostimulatory activity of PRR agonists, the use of such molecules as 234 
vaccine adjuvants still has several limitations. The cost of manufacturing, especially for synthetic 235 
agonists such as synthetic dsRNAs, remains a major limitation for their future clinical application. 236 
Expensive adjuvants increase vaccine pricing, which can limit vaccine’s worldwide distribution.  237 
Moreover, for intracellular PRR agonists, efficient delivery to target cells is vital for maximal 238 
adjuvant activity, as inefficient internalization would diminish their ability to activate PRR 239 
receptors. In currently used adjuvant systems, this issue is addressed by combining intracellular 240 
PRR agonists with carrier systems (such as liposomes and nanocarriers) [19]. This approach appears 241 
to improve the effect of the ligands by facilitating their internalization and thus potentiating their 242 
activity. Furthermore, since most of current PRR agonists target TLRs, the immune effects of these 243 
molecules are essentially restricted to immune cells, where TLRs are ubiquitously expressed. 244 
Regardless, it has been unambiguously illustrated that PRR agonists are reliable microbial mimics 245 
that efficiently stimulate innate immunity and consequently remain a promising class of new 246 
adjuvant candidates that is being further explored.   247 

3. The immunostimulatory activity of negative-sense RNA virus DIPs 248 

Given the diversity of PRRs and the large number of their possible ligands, only a small 249 
portion of PRR ligands has been investigated as vaccine adjuvants. Therefore, identifying and 250 
understanding the mode of action of natural PRR agonists, represents a fertile area of research to 251 
broaden the molecular diversity within this class of adjuvants. DIPs of negative-sense RNA viruses 252 
are strong activators of innate immunity and could also represent attractive vaccine adjuvants that, 253 
as will be discussed, may have additional benefits over TLR agonists.  254 

It is believed that DIPs arise spontaneously due to errors made by viral polymerases, however 255 
recent genomic and functional analyses support that DIPs are less likely to be generated randomly. 256 
DIPs contain defective viral genomes (DVGs), in which at least one gene is deleted, either entirely or 257 
sufficiently to cause a loss of function. The resulting DI viruses are defective for replication because 258 
these viruses have lost an essential gene(s) required for replication and, therefore, only replicate in 259 
the presence of a coinfecting wild-type (“helper”) virus that provides the missing functions [64, 65]. 260 
DIPs are referred to as ‘’interfering’’ because they attenuate the replication of the wild-type virus 261 
[66]. Owing to their smaller size, DVGs have a competitive advantage in replication rate and thus 262 
can be synthesized more rapidly by the viral polymerase; after multiple rounds of replication, the 263 
copy number of DVGs outpaces that of the wild-type virus (reviewed by [67]). The ability of DIPs to 264 
interfere with wild-type virus replication was first described for the influenza virus in the 1940s 265 
[68]. The generation of DIPs has been more extensively studied in RNA viruses since the 266 
RNA-dependent RNA polymerase of these viruses lacks proofreading capacity and is therefore 267 
more prone to making errors during the replication process. However, DIPs are not an exclusive 268 
feature of RNA viruses because potentially all viruses are capable of spontaneously making 269 
mistakes during their replication cycle. DVGs have been isolated from several distinct viral families, 270 
including Rhabdoviridae, Togaviridae, Flaviviridae, Paramyxoviridae, Papillomaviridae, Adenoviridae, 271 
Herpesviridae, Tombusviridae, bacteriophages and many more (reviewed by [18, 69]). Although the 272 
accumulation of DVGs was demonstrated early on in vitro, initial investigations failed to detect 273 
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DVGs in natural infections, suggesting that DVGs are laboratory artifacts. Advances in molecular 274 
techniques, especially deep sequencing analysis, helped overcome technical difficulties in 275 
discriminating between wild-type and defective genomes, leading to the identification of defective 276 
genomes in a number of human infections. DVGs were first identified from patients with viral 277 
hepatitis infections [70-72] and were more recently isolated from patients infected with dengue [73], 278 
influenza A virus [74] and respiratory syncytial virus (RSV) [75]. The ability of defective genomes to 279 
attenuate standard virus replication, in combination with the transmissibility of the defective 280 
genomes between individuals, underpins the potential role of DVGs in driving virus-host 281 
co-evolution, and perhaps promoting virus persistence. Nonetheless, the biological role of DIPs in 282 
the context of natural infections is still under investigation. 283 

Most of the current understanding of the immunostimulatory activity of DIPs comes from 284 
studies on negative-sense RNA virus DIPs, in particular those of influenza viruses and 285 
paramyxoviruses, including Sendai virus (SeV), parainfluenza virus type 5 (PIV5) and human 286 
human respiratory virus (RSV). The immunogenicity of DIPs generated by other virus classes, such 287 
as positive sense ssRNA (+ssRNA), dsRNA viruses or different types of DNA viruses remains 288 
largely unknown, therefore this review focuses on the immune effects generated by DIPs of 289 
negative-sense RNA viruses. Two major types of DI genomes have been described for 290 
negative-sense RNA viruses: (i) copyback DVGs, which consist of a segment of the viral genome and 291 
an authentic terminus followed by an inverted repeat of this segment and the end sequence [76]; and 292 
(ii) DVGs that contain internal deletions but retain their 3’ leader (Le) and 5’ trailer (Tr) sequences 293 
and therefore can produce viral translation products [77, 78]. A schematic diagram of how internal 294 
deletion and copyback DIPs are generated during the replication of the paramyxovirus PIV5 is 295 
shown in Figure 2. 296 

DIPs of negative-sense RNA viruses initiate cellular immune responses by stimulating strong 297 
signaling of intracellular RLRs, namely, RIG-I and melanoma differentiation-associated protein 5 298 
(MDA-5), which are helicases expressed in most cell types [75, 79-81] (Figure 3). Several studies have 299 
demonstrated that copyback genomes dominate IFN-inducing DI populations of paramyxoviruses 300 
[80, 82-84], suggesting that unique secondary RNA structures present in these short defective 301 
genomes are perhaps driving their immunostimulatory properties. Indeed, although 5-di- or 302 
5-triphosphates (5’-PPP) coupled to specific single- or double-stranded RNA motifs are known to 303 
trigger RLR signaling, a recent study has identified a natural viral RNA motif (SeV DVG70-114) that 304 
serves as a PAMP enhancer and promotes potent RLR stimulation [85]. Adding a 5’-cap structure or 305 
removing 5’-PPP significantly reduces but does not eliminate the ability of DVGs to induce IFN [83], 306 
indicating that the DVG sequence composition is also critical for effective activation of RLR 307 
signaling. Notably, although influenza viruses have not been reported to generate copyback DVGs, 308 
only internal deletions, influenza DI genomes are also capable of stimulating RIG-I signaling 309 
through a mechanism that remains to be elucidated [86].  310 

The engagement of RLRs is strongly linked to the stimulation of innate immune responses, 311 
especially the production of type I IFNs, which elicit an antiviral function by inducing a wide array 312 
of IFN-stimulated genes (ISGs). In brief, the cellular IFN response is divided into two pathways: the 313 
IFN-induction and IFN signaling pathways. The engagement of PRRs activates a number of 314 
downstream kinases that are essential for the phosphorylation of IFN regulatory factor 3 (IRF3) and 315 
nuclear factor kappa B (NF-κB), which subsequently translocate to the nucleus to induce the IFN 316 
promoter [87]. Following its induction, IFN is secreted from infected cells and binds to the IFN 317 
receptor on the surface of infected or uninfected cells to mediate the activation of the IFN signaling 318 
pathway, which is also known as the JAK (Janus-activated kinase)/STAT (signal transducers and 319 
activators of transcription) signaling pathway [88]. More specifically, engaging the IFN receptor 320 
(IFNAR) with its ligand causes the phosphorylation of STAT1 and STAT2, which dimerize and 321 
translocate into the nucleus. In the nucleus, STATs bind to IRF9 to form interferon-stimulated gene 322 
(ISG) factor 3 (ISGF3), which is a transcription factor that regulates the expression of hundreds of 323 
ISGs. Most ISGs encode products with discrete antiviral functions, but many ISGs have still not been 324 
fully characterised [89]. 325 
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Figure 2. Schematic representation of defective viral genome (DVG) generation during the 327 
replication of parainfluenza virus 5 (PIV5). Genome structure of PIV5 and its mechanism of 328 
transcription (Panel A), standard replication (Panel B) and faulty replication that leads to the 329 
formation of DVGs (Panel C). PIV5 has a negative-sense single-stranded RNA genome 15,246 nt 330 
long. The PIV5 genome encodes eight transcription units, and carries non-coding leader (Le) and 331 
trailer (Tr) sequences at its 3’ and 5’ ends, respectively, which are essential for controlling 332 
transcription and replication. Similar to all paramyxoviruses, PIV5 expresses an RNA-dependent 333 
RNA polymerase from the large (L) gene. The viral polymerase recognizes the genomic Le promoter 334 
and directs the synthesis of both viral mRNAs and antigenomes, which comprise the exact 335 
full-length complementary sequence of the genome. To produce separate mRNAs, the polymerase 336 
must recognize the gene start (GS) and gene end (GE) signal sequences of each gene. During 337 
replication, the full-length antigenomic RNA serves as the template for the synthesis of new genomic 338 
RNA from the antigenomic Tr promoter. At a high multiplicity of infection, the viral polymerase 339 
loses processivity, resulting in spontaneous errors. These errors are responsible for the generation of 340 
faulty genomes, known as DVGs. There are two major types of DVGs: copyback DVGs and internal 341 
deletions. Copyback DVGs maintain an authentic terminus (5’ end) and contain a segment of the 342 
viral genome flanked by a reverse complementary version of this segment. Copyback DVGs arise 343 
when the viral polymerase detaches from the template and reattaches to the nascent strand, which is 344 
then copied. The second type of DVG is generated when the viral polymerase drops off the original 345 
template and reattaches further downstream, resulting in a genomic deletion. As a result, these 346 
DVGs contain internal deletions but retain their 3’ Le and 5’ Tr sequences.  347 
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Figure 3. Innate and adaptive immune responses to defective interfering particles (DIPs). DIPs contain truncated forms of viral genomes, known as defective viral 349 
genomes (DVGs). Copyback DVGs have complementary ends allowing the formation of double-stranded RNA (dsRNA) structures, which can be recognized by 350 
retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), namely, RIG-I and melanoma differentiation-associated protein 5 (MDA-5). The stimulation of RLR 351 
signaling induces the expression of type I interferons (IFNs) and several proinflammatory cytokines, which all play key roles in dendritic cell (DC) maturation and 352 
the regulation of adaptive immunity. DVGs enhance the ability of DCs to activate naïve T cells, increase antibody production and direct the immune response 353 
toward type 1 T helper (Th1) immunity, a process requiring type I IFN signaling. DIPs can initiate innate immune responses in many cell types, including epithelial 354 
cells at the site of infection and antigen-presenting cells, such as DCs. Abbreviations: TNF-α, tumor necrosis factor-alpha; IL-6, interleukin 6; IL-12, interleukin 12; 355 
MHC, major histocompatibility complex. 356 
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Considering that DVGs of negative-sense RNA viruses are good activators of RLR signaling, it 357 
is not surprising that DIPs containing these DVGs are also potent inducers of IFNs in cell culture 358 
[90-92] and in vivo [75, 80]. Indeed, current evidence suggests that DIPs are primarily responsible for 359 
initiating innate immune responses during paramyxovirus replication. Specifically, SeV DVGs are 360 
formed in the lungs of mice when virus replication peaks, and the presence of these genomes 361 
coincides with the induction of type I IFNs [80]. It has also been demonstrated that a recombinant 362 
PIV5 that lacks a functional V protein (termed PIV5-VΔC), which is the viral IFN antagonist, weakly 363 
activates the cellular IFN response, whereas a DIP-rich preparation of PIV5-VΔC strongly activates 364 
the induction of type I IFNs [92, 93]. A recent study has reported that DVGs are the major activators 365 
of antiviral responses in human lungs during RSV infection, signifying the first evidence of an 366 
important biological role for naturally occurring DVGs during paramyxovirus infections in humans 367 
[75]. In some cases, the antiviral activity of DIPs appears to be highly dependent on the IFN system. 368 
For instance, the broad-spectrum antiviral activity of an influenza A DI virus (244 DI virus) is 369 
nearly abolished in the absence of the type I IFN system [94]. Specifically, preclinical studies have 370 
demonstrated that the ability of 244 DI virus to protect mice from non-influenza A respiratory 371 
viruses (e.g, pneumonia virus of mice and influenza B virus) requires type I IFNs as mice lacking 372 
type I IFN receptor were only poorly protected by the challenge viruses [95, 96]. Although type I 373 
IFN plays a key role for the 244 DI virus-mediated antiviral activity against non-related viruses, 374 
protection from influenza A viruses does not entirely depend on type I IFNs, although type I IFNs 375 
may contribute to this protection [95, 96]. 376 

The ability of DVGs of negative-strand viruses to trigger the IFN-induction cascade is not 377 
dependent on virus replication because the DVGs of several paramyxoviruses, including PIV5 and 378 
mumps virus, can induce type I IFNs in the absence of protein synthesis and consequently in the 379 
absence of infectious virus, since protein synthesis is an absolute requirement for paramyxovirus 380 
genome replication [92]. It is, however, possible that the immunostimulatory activity of DVGs 381 
requires RNA synthesis. In this regard, it is notable that it was demonstrated early on that 382 
UV-inactivated Newcastle disease virus (NDV), which had lost infectivity but retained the capacity 383 
to induce IFN, also had the ability to synthesize RNA, while exposure to larger doses of UV 384 
radiation abolished the ability of the virus to either synthesize RNA or induce IFN [97]. These early 385 
findings suggest that the virus-mediated activation of the IFN response requires RNA synthesis, 386 
perhaps because newly synthesized viral RNA serves as a template for the formation of highly 387 
immunogenic dsRNA species. Taken together, the previous studies support the notion that DVGs 388 
have an outstanding ability to stimulate an antiviral response in the presence of highly specific viral 389 
antagonists independently of type I IFNs or virus replication, highlighting that negative-sense RNA 390 
virus DIPs are critical determinants of the outcome of an infection.  391 

DIPs not only activate the cellular IFN response but also stimulate additional aspects of host 392 
immune defense (Figure 3). For instance, DIP-rich SeV preparations can effectively induce the 393 
maturation of mouse and human DCs as measured by the up-regulation of TNF-α, IL-6 and IL-12p40 394 
cytokines, which are indicative of DC maturation [81]. This mechanism is IFN- and 395 
TLR-independent but requires signaling through RIG-I and MDA-5, underscoring the importance of 396 
RLR signaling for DIP immunogenicity [79, 81]. SeV DIPs also promote T cell activation by 397 
up-regulating the expression of cluster of differentiation 86 (CD86) and major histocompatibility 398 
complex (MHC) II molecules on the surface of DCs [79, 84]. Moreover, an SeV-derived RIG-I agonist 399 
(DVG-324) enhances the ability of DCs to activate specific adaptive immune responses in vivo by 400 
stimulating the activation of IFNγ-producing CD8+ T cells and increasing antibody production [83]. 401 
As a result, immunostimulatory DI RNAs can be successfully used as tools to convert viruses with 402 
weak DC maturation abilities into potent DC stimulators [81, 84]. Collectively, DIPs trigger the 403 
maturation of DCs and successfully increase antigen-specific immunity to pathogen-associated 404 
antigens.  405 

The adjuvanticity of naturally occurring defective genomes, such as those isolated from SeV 406 
infections, has been investigated both in vitro and in vivo. Specifically, DI RNAs have exhibited 407 
promising adjuvant activity as illustrated by their ability to enhance antibody production and to also 408 
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induce Th1 immunity when administered with inactivated vaccines or recombinant antigens [83, 84, 409 
98]. Notably, an SeV-derived RNA agonist of RIG-I (IVT DI; in vitro-transcribed SeV DI) was found 410 
to induce a Th1-type response, enhancing the immunogenicity of an inactivated H1N1 2009 411 
pandemic vaccine when delivered to mice [84]. Interestingly, recombinant SeV RNAs are naked 412 
RNAs yet still immunostimulatory with an unknown route to RIG-I, an interaction which needs to 413 
be explored further. The positive results obtained from these studies indicate that natural RIG-I 414 
agonists are promising candidate adjuvant molecules that are expected to be further explored to 415 
verify their adjuvant activity in humans.  416 

4. Further applications of DIPs in vaccine adjuvantation  417 

Even though DIPs are powerful initiators of innate immunity, synthetic dsRNAs, including 418 
sequences derived from DVGs of negative-sense RNA viruses, have received greater attention as 419 
vaccine adjuvants, perhaps because these molecules can be easily isolated as non-infectious RNA 420 
moieties. However, large amounts of DIPs have been found in currently used live-attenuated 421 
vaccines of poliovirus, measles virus and current flu vaccines [99-101], suggesting that the efficacy of 422 
these vaccines is related to existing DIPs. Shedding more light on the role of these naturally 423 
occurring DI RNAs in vaccine immunogenicity will evaluate their adjuvant activity and perhaps 424 
allow their further development as chemically defined vaccine adjuvants. The major challenge that 425 
arises from supplementing killed/non-replicating vaccines with DIPs is that DIPs preferably should 426 
not be contaminated with parental/infectious virus. One way to achieve this is by propagating DIPs 427 
in complementing cell lines that express the missing viral gene product(s) to support DIP formation 428 
and replication in the absence of infectious virus. In normal cells, these mutant DIPs will be 429 
deficient for replication because their defective genomes will be released in the infected cell without 430 
the ability to copy themselves and generate progeny virus particles [102]. Such recombinant DIPs 431 
would be non-infectious and would have several advantages over currently identified natural or 432 
synthetic dsRNAs. First, DIPs contain all the necessary viral components to naturally penetrate cells, 433 
which internalize the defective genomes and subsequently activate innate immunity through PRR 434 
signaling. DIPs essentially combine immunostimulatory activity and the efficiency of carrier 435 
systems. In fact, even low numbers of PIV5 copy-back DVGs were found to be capable of strongly 436 
activating innate immunity in host cell [93], denoting that DIPs are highly immunogenic. Second, 437 
DIPs combine the safety of killed vaccines and the immunogenicity of live virus vaccines and can be 438 
genetically engineered to trigger the desired immune response against a targeted pathogen. Third, 439 
DIPs are still capable of encapsidating their defective genomes to form highly stable structures. 440 
Furthermore, recombinant DIPs would have one major advantage over currently identified TLR 441 
agonists; DIPs (specifically those generated by -ssRNA viruses) are recognized by RLRs, which are 442 
expressed by almost every cell type [103]. In contrast, human TLRs are ubiquitously expressed in 443 
immune cells but less widespread in cells of non-hematopoietic origin [104]. Consequently, DIPs can 444 
be recognized as PAMPs in every cell they infect and are, therefore, more likely to potentiate high 445 
immune responses via different routes of immunization.  446 

Although DIPs have a viral origin, their applications in vaccine development are not limited to 447 
combating viral diseases. DIPs can be used as immunostimulators in vaccines designed against 448 
other infectious pathogens (such as bacteria and parasites) and potentially diseases such as cancer. 449 
Moreover, given that all viruses, regardless of their genome type (e.g., RNA or DNA, single- or 450 
double-stranded, positive- or negative-sense), are capable of generating DIPs, it is possible that 451 
different DIPs may trigger different types of PRRs depending on DIPs’ viral origin. In this regard, it 452 
is interesting to note that PAMPs generated by DNA viruses, such as the 2’3’- cyclic guanosine 453 
monophosphate-adenosine monophosphate (cGAMP), which is produced by cyclic guanosine 454 
monophosphate adenosine monophosphate synthase (cGAS) in response to the intracellular 455 
recognition of DNA, showed great potential as an adjuvant for cutaneous vaccination in preclinical 456 
studies [105]. Briefly, cGAMP binds the stimulator of interferon genes (STING), which subsequently 457 
activates innate immune responses including the production of type I IFNs [106]. This implies that 458 
DIPs could perhaps activate different aspects of innate immunity, increasing the likelihood of 459 
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activating the desired immune responses to a given pathogen. However, this is an area to be 460 
explored further. In conclusion, current evidence supports that DIPs are potent activators of innate 461 
immunity and, therefore, DIPs represent promising immunostimulatory molecules to be further 462 
investigated as a novel class of adjuvant candidates.  463 

5. Conclusions 464 

For a variety of reasons modern vaccinology has increasingly focused on non-living vaccines 465 
that often require the addition of adjuvants to provide stimulatory signals to activate innate immune 466 
responses. However, there is no single set of characteristics that describes an ideal vaccine adjuvant 467 
for all situations. Indeed, vaccine studies using live-attenuated pathogens support the hypothesis 468 
that activating multiple innate receptors is better than activating only one receptor, indicating that 469 
adjuvant combinations may achieve a better effect. Several preclinical and clinical studies are 470 
currently investigating the efficiency of different adjuvant combinations, supporting the view that 471 
multiadjuvanted vaccines could represent the way forward for the design of new vaccine 472 
formulations. Expanding the repertoire of adjuvants enables the use of different molecular 473 
combinations to activate the desired arms of the immune system and adapt the adjuvant to a given 474 
target pathogen and/or population.  475 

Enhancing vaccine immunogenicity by using appropriate adjuvants will also reduce the 476 
amount of immunogen required to induce protective immunity, potentially increasing the amount 477 
of vaccine that can be manufactured, having important implications for the global vaccine supply, 478 
and thereby reducing the morbidity and mortality of vaccine-preventable diseases (VPDs). In fact, 479 
the first aim of the CDC’s strategic framework for global vaccination for 2016-2020 is to control, 480 
eliminate or eradicate VPDs to reduce death and disability globally [107]. The achievement of this 481 
goal will lead to a world free of polio, the elimination of measles and rubella/congenital rubella 482 
syndrome, the control of other VPDs by vaccine introduction and the development of new 483 
vaccination strategies, including new adjuvant approaches. There is also an important need to 484 
develop vaccines with a more defined composition to improve vaccine acceptance by the public. The 485 
lack of trust in vaccines is a growing threat to the success of global vaccination programs. Vaccine 486 
hesitancy, as defined by a delay in the acceptance or the refusal of vaccines, is held responsible for 487 
reducing global immunization coverage and increasing the risk of VPD outbreaks and epidemics. In 488 
this regard, newly designed adjuvants, including potentially DIPs, with well-defined 489 
immunostimulatory activity will accelerate our efforts to develop a new generation of vaccines with 490 
a lower risk-to-benefit ratio. 491 
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