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Abstract

Reactive oxygen species (ROS) and oxidative stress have long been linked to aging and diseases 

prominent in the elderly such as hypertension, atherosclerosis, diabetes and atrial fibrillation (AF). 

NADPH oxidases (Nox) are a major source of ROS in the vasculature and are key players in 

mediating redox signalling under physiological and pathophysiological conditions. In this review, 

we focus on the Nox-mediated ROS signalling pathways involved in the regulation of ‘longevity 

genes’ and recapitulate their role in age-associated vascular changes and in the development of 

age-related cardiovascular diseases (CVDs). This review is predicated on burgeoning knowledge 

that Nox-derived ROS propagate tightly regulated yet varied signalling pathways, which, at the 

cellular level, may lead to diminished repair, the aging process and predisposition to CVDs. In 

addition, we briefly describe emerging Nox therapies and their potential in improving the health of 

the elderly population.
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INTRODUCTION

Aging is the predominant risk factor in cardiovascular diseases (CVDs) [1] and the latest 

statistics show that of the 83.6 million American adults with some form of CVD, 42.2 

million are estimated to be ≥60 years of age [2]. Currently, CVD is the leading cause of 

death in the U.S.A.; approximately 66 % of CVDs occurring in people 75 years of age or 

more [2]. It is projected that by 2030 nearly 40.5 % of the U.S.A. population will have more 

than one type of CVD [3]. With increasing age, clinical manifestations and prognosis of 

vascular diseases worsen as a result of molecular changes associated with the aging process, 

often similar to specific pathophysiological changes observed in disease. Moreover, aging is 

a cumulative multifactorial process and not linked to a single cause. To date, multiple 

theories of biological aging are discussed within the literature, e.g. the ‘wear and tear’ 

theory, auto-immunity theory, programmed cellular theory, somatic mutation theory or 
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homoeostatic theory have been discussed previously [4,5]. However, many of these 

viewpoints share ‘oxidative stress’ as the common denominator in aging. The free radical 

theory of aging suggests that accumulated damage caused by free radicals and reactive 

oxygen species (ROS) accelerates the aging process [6]. Although there is still considerable 

debate that a single theory can explain the aetiology of aging, the free radical theory of aging 

still draws considerable attention and intrigue. It is now generally accepted that superoxide 

anion and other ROS can exert beneficial/protective effects under normal conditions, via the 

promotion of antioxidant enzyme expression and through adaptive cellular signalling 

responses. Harmful effects, on the other hand, are the result of aberrant redox signalling and 

direct damage to biologically sensitive targets. Typically, this oxidative damage results in a 

pro-senescent phenotype, which is one mechanism explaining biological aging [7,8]. 

Although senescence can be triggered by telomere attrition, mitogen-mediated extracellular 

signalling or decreased replicative capacity, oxidative stress remains a prominent instigator 

of this phenotype [9–11]. While associated, biological aging, senescence and longevity are 

distinct processes. Therefore, an improved understanding of the biology governing age-

related decline of cellular function and homoeostasis is imperative.

Furthermore, although differences in cardiovascular function between young and old have 

been extensively described in the literature, the majority of the in vivo studies related to 

CVD have been performed in young animals. Hence, it is important to understand how ROS 

contributes to aging and is, in turn, a critical contributor to age-related diseases. Perspectives 

on the role of NADPH oxidase (Nox)-derived ROS in aging and the potential signalling 

mechanisms that underlie these age-related changes as well as how they relate to CVD in 

older population are the focus of the present review. The potential for currently available 

Nox therapeutic strategies to intervene in the cellular aging process and thereby slow the 

onset of age-related CVD are also discussed.

OXIDATIVE STRESS THEORY, AGING AND NADPH OXIDASES

The free radical theory of aging, when first proposed by Harman [6], suggested that 

longevity is governed by the production of endogenous oxygen radicals in cells, resulting in 

a pattern of cumulative damage in a random and indiscriminate manner. This theory, 

therefore, implied that an overall reduction in oxidative stress, either by reducing the pro-

oxidant load or by increasing antioxidant defences or both, protects against aging and 

increases lifespan.

Although cellular defences [including catalase, Cu/Zn superoxide dismutase (SOD1) and 

glutathione peroxidases (Gpxs)] combating oxidative damage are normally plentiful, they 

are not entirely effective, as oxidatively damaged macromolecules still accumulate with 

biological aging [12]. There is supporting evidence from studies in Caenorhabditis elegans 
and Drosophila, two well-established models to study aging, which revealed that decreased 

ROS production may improve resistance to oxidative stress and therefore increase lifespan 

[13,14]. In mammals, however, studies are largely correlative, based on findings of increased 

oxidatively damage DNA and/or proteins in aged individuals [15]. Moreover, studies 

performed in vertebrate animals using transgenic and knockout mouse models [e.g. SOD, 

Gpx, thioredoxin 2 (Trx2) and catalase] provide conflicting evidence regarding effects on 
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lifespan or longevity [16–24]. It is worth noting that antioxidant enzyme systems are not the 

only factors involved in cellular homoeostasis. Other enzymes, such as Noxs and 

myeloperoxidase (MPO), historically assumed to generate ROS for destructive purposes (i.e. 

in host defence), are now known to serve as important signal-transducing enzymes. Their 

activation is elicited in response to a variety of growth factors, cytokines and G-protein-

coupled receptors [25–30]. ROS are also produced via a variety of other enzyme systems 

including xanthine oxidase (XO), cytochrome P450 and by uncoupling of nitric oxide (NO) 

synthase (NOS), yet Noxs appear to predominate in cellular ROS production. ROS have also 

emerged as locally produced in multiple cellular compartments including at the plasma 

membrane and within the mitochondrion, peroxisomes and the cytoplasm. Furthermore, 

basal ROS mediate important biological functions by regulating the activity of diverse 

intracellular signalling pathways involved in growth, apoptosis, survival, metabolism and 

migration [26–28,31–34]. It stands to reason therefore that specific signal transduction by 

any one Nox in a particular cell is a consequence of its co-localization with upstream and 

downstream effectors of each pathway. A protective role for ROS nothwith-standing, a wide 

array of studies suggests that ROS participate in biological aging and age-related CVDs such 

as atherosclerosis, hypertension, stroke and atrial fibrillation (AF) [35–51].

Despite evidence suggesting a causal link between aging and disease, little is known 

regarding the molecular mechanisms that dictate age-related processes and their association 

with diseases. A number of studies, at both the cellular and the organismal levels, have 

reported increased lifespan with increased resistance to oxidative stress. However, whether 

this may be attributed to a common signal transduction pathway that regulates aging and 

response to oxidative stress or a variety of pathways is yet to be determined. Logic informs 

us that multiple pathways are most likely involved. Figure 1 illustrates a few of the 

important signalling pathways implicated in the process of aging. Indeed, one mechanistic 

link between aging and oxidants comes from studies showing that mice lacking p66Shc have 

a ~30 % increase in lifespan, which is correlated to reduced intracellular ROS. These studies 

also showed that oxidative regulation of p53 and FKHRL1 [forkhead-box protein O3 

(FOXO3)] is mediated by p66Shc [52–55]. Other proteins and pathways linked to aging are 

SIRT1 (sirtuin 1; mammalian homologue of Sir2 protein found in lower organisms) [56–59], 

Klotho [60–62], AMP-activated protein kinase (AMPK) [63], protein skinhead 1 (SKN-1) 

[homologue of nuclear respiratory factor 1] [64], Clock 1 (clk-1) [65,66], insulin/insulin-like 

growth factor (IGF)-1 signalling [67] and mammalian target of rapamycin (mTOR) 

signalling [68,69].

Mammalian NADPH oxidase

The NADPH oxidase family of enzymes are considered the ‘professional’ enzymatic source 

of ROS in vascular cells and are therefore known to be a major contributor to vascular 

dysfunction and disease [43,44,47,48,70–76]. In this regard, Nox isozymes plausibly play a 

prominent role in age-related susceptibility to vascular occlusive diseases such as coronary 

artery disease (CAD) and peripheral artery disease (PAD), hypertension and diabetes, 

through redox signalling pathway activation [29,30,45,46,49,50,77–86]. The structure and 

function of Nox isozymes are complex and more thoroughly reviewed elsewhere 

[43,44,47,48,74,87]. It is the aim of the current review to outline their role in ROS 
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production and their ability to contribute to the aging process. In brief, the Nox family 

consists of seven isoforms [Nox1–5 and Duox1–2 (dual oxidase 1–2)], of which Nox1, 

Nox2, Nox4 and Nox5 are known to be expressed in human vascular tissue [88]. Moreover, 

Nox enzymes are varied in their cellular expression and are identified by their catalytic core, 

and extensive evidence demonstrates their contribution to vascular dysfunction [77]. 

Importantly, Nox1, Nox2 and Nox4 isoforms, but not Nox5, require the smaller membrane-

bound p22phox component for membrane stabilization and activity [89]. Nox1 and Nox2 are 

regulated by sometimes distinct, otherwise interchangeable, cytosolic components loosely 

termed as activators or organizers, which are generally recruited to the membrane 

components following cellular stimuli to assemble an active Nox [90–92]. To date, Nox2 

remains the most extensively studied family member in a variety of physiological and 

pathophysiological signalling pathways. The active Nox2 enzyme complex comprises the 

catalytic Nox2 subunit in association with p22phox to form the cytochrome B558 complex, 

p47phox (organizer), p67phox (activator), p40phox and the small Rho-family GTP-binding 

protein Rac1/2 [30]. Arguably, Nox2 is the most widely distributed of the isoforms, present 

in phagocytes, heart, lung and the vasculature, among multiple other tissues, and is 

suggested to be increased in aging vascular cells [93]. Similarly, the active Nox1 system is 

composed of the Nox1 catalytic subunit, p22phox and in its canonical subunits NoxO1 

(p47phox homologue), NoxA1 (p67phox homologue) and Rac1/2 [94]. Nox1 is highly 

expressed in the colon, but is currently also known to be present in the heart, lungs and 

blood vessels. In contrast, the Nox4 system is composed of the Nox4 catalytic subunit and 

p22phox, with the only other known associated protein described for its activity being 

Poldip2 [95]. It is widely held that Nox4’s activity is regulated transcriptionally, and, 

interestingly, it is up-regulated in aging VSMCs (vascular smooth muscle cells) [96]. 

Incidentally, Nox4 is expressed in all three main vascular cell types: the endothelial cell, 

smooth muscle cell and fibroblast. Another distinct feature of Nox4 compared with other 

Nox is that it is constitutively active and appears to preferentially produce H2O2 over 

superoxide anion. It has been suggested that Nox4 may act as an oxygen sensor [97]. 

Finally, Nox5, which does not require p22phox for membrane stabilization, is regulated by 

calcium binding through EF-hand motifs [98]. Although Nox enzymes have been implicated 

to play a crucial role in several signalling pathways, a lack of crystal structure for Nox 

isoenzymes as well as structural similarities among Nox family members have confounded 

progress towards the generation of specific antibodies and small-molecule inhibitors. 

Therefore, when implicating Nox isoenzymes in any study, it is critical that key positive 

controls are used to account for antibody limitations, as is discussed by Baniulis et al. [99]; 

namely neutrophil homogenates for Nox2, colon homogenates for Nox1, kidney 

homogenates for Nox4 or heterologous overexpression cell systems. In addition, mRNA 

analyses [78,100,101] are highly recommended to corroborate changes detected at the 

protein level.

ROS production by activated NADPH oxidase is mediated by a wide variety of factors 

including mechanical forces, environmental factors (e.g. hypoxia) and cytokines and 

hormones such as angiotensin II (AngII), aldosterone, endothelin-1 (ET-1), platelet-derived 

growth factor (PDGF), TGFβ (transforming growth factor β) and TNFα (tumour necrosis 

factor α) [71,75,82,102–106]. In the light of this broad and often deleterious role for Nox, 
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the quest for efficacious and isoform-selective Nox inhibitors is expected to come into even 

greater focus in Nox-related disease research, i.e. advances in biochemical characterization 

and ROS detection agents are anticipated to facilitate viable therapy development [107–110]. 

As Nox-derived ROS are an important culprit in the free radical theory of aging, selective 

inhibition is anticipated to be a viable therapeutic strategy in age-related disease, and the 

roles of Nox in the aging process are expected to be explored in further depth in the coming 

years as a consequence of an increasingly aging population in the developed world.

ROLE OF ROS SIGNALLING IN PROTEINS INVOLVED IN AGING

p66Shc adaptor protein

p66Shc protein is one of the three isoforms encoded by the mammalian Shc locus. Shc 

proteins (p66Shc, p52Shc and p46Shc) are cytoplasmic signal transducers involved in the 

transmission of mitogenic signals from activated receptors to Ras proteins. Although the 

three splice variants carry similar structural domains, p66Shc contains an additional collagen-

homology region in the N-terminus, allowing p66Shc to function in intracellular pathway(s) 

that regulate ROS metabolism and apoptosis [52,111]. Whereas activation with growth 

factors (such as epidermal growth factor receptor, EGF) induce tyrosine phosphorylation and 

Ras activation, environmental stress factors, such as H2O2 or UV irradiation, induce serine 

phosphorylation on p66Shc through protein kinase Cβ (PKCβ) [112] and JNK [113], causing 

increased apoptosis. Deletion of p66Shc protein was shown to reduce oxidative stress and 

high-fat-induced atherogenesis and increase cellular resistance to apoptosis as well as life 

expectancy by 30 % [52,53]. Since that study, several others have reported a link between 

the redox regulation of p66Shc protein and downstream signalling via p53/p21cip and 

FOXO3 to mechanisms that modulate longevity [54,55]. Increasing evidence supports that 

oxidative stress-induced serine phosphorylation of p66Shc leads to mitochondrial 

accumulation of p66Shc, where it binds to cytochrome c via the CH2–PTB domain. This, in 

turn, leads to redox activation and the transfer of electrons to O2, leading to generation of 

mitochondrial H2O2. Increased mitochondrial H2O2 results in opening of permeability 

transition pore (PTP) leading to increased swelling and apoptosis [112,114]. Pinton et al. 

[112] showed that oxidative-stress-mediated activation of PKCβ leads to phosphorylation of 

p66Shc, which effects translocation of p66Shc to the mitochondrial membrane. This process 

is mediated by prolyl isomerase 1 (Pin1). Another study describing a mechanistic pathway 

underlying the apoptogenic effect of p66Shc suggested that UV-irradiation-induced 

dissociation of p66Shc and mitochondrial heat-shock protein (Hsp) 70 results in decreased 

membrane potential and increased trans-mitochondrial permeability, leading to apoptosis 

and decreased lifespan [115]. Many other studies strengthen the link between p66Shc, 

mitochondrial oxidative damage and aging by providing evidence of phosphorylation of 

protein kinase B/Akt, up-regulation of p53-dependent apoptosis, inactivation of FOXO3a 

and suppression of MnSOD [54,55,116,117]. Most of those studies have linked 

mitochondrial ROS as a causal source of p66shc-mediated oxidative damage. Only one 

previous study showed that NADPH oxidase-dependent superoxide production in 

macrophages of p66Shc-knockout mice was attenuated by 40 % [118]. In that study, Tomilov 

et al. [118] demonstrated that the deficit in NADPH oxidase-dependent ROS production was 

independent of expression levels of Nox2 subunits (i.e. Rac1/2, p40phox, p47phox, p67phox, 
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p22phox and gp91phox), but rather governed by reduced phosphorylation and membrane 

translocation of p47phox (organizing subunit of Nox2 complex) in macrophages isolated 

from p66Shc-knockout mice, as well as in p66Shc siRNA-transfected RAW264.7 

macrophages. The authors also observed decreased activation of PKCδ, Akt and 

extracellular-signal-regulated kinase (ERK) in the p66Shc mutants, suggesting that a Shc-

dependent defect in signalling via PKCδ, Akt and ERK activation contributed to the defect 

in p47phox phosphorylation and Nox2-dependent superoxide production. With that said, 

these studies, taken together, suggest the potential for p66Shc/Nox2 signalling pathways in 

oxidative-stress-mediated effects on inflammation, atherosclerosis and longevity.

p53/p21 pathway

The redox-sensitive transcription factor p53 functions as a longevity-associated gene due to 

its strong tumour-suppressor activity [119]. In unstressed mammalian cells, p53 has a short 

half-life and is maintained at low levels by ubiquitination catalysed by Mdm2 [120,121], 

COP1 (constitutively photomorphogenic 1) [122] and Pirh2 (p53-induced protein with a 

RING-H2 domain) [123]. The stability and activity of p53 are subject to diverse covalent 

post-translational modifications such as ubiquitination [124,125], phosphorylation [126], 

acetylation [127], NEDDylation [128], SUMOylation [129] and methylation [130]. Among 

these post-translational modifications, ROS have been implicated in the phosphorylation of 

p53 mediated through p38α MAPK (mitogen-activated protein kinase) [131,132] and Polo-

like kinase 3 (Plk3) [133]. Moreover, p53 itself is redox-active due to the presence of 

cysteines that contain redox-sensitive thiol groups [134]. In human p53, two clusters of 

cysteines in the DNA-binding domain exist and these are essential for the specific binding of 

p53 to its consensus sequence for transcription of p53-dependent genes [135,136]. 

Importantly, the role of p53 in premature aging is evident from several mouse studies where 

persistent low-level activation and increased expression, by ROS signalling, telomere 

erosion or DNA damage, promotes senescence or irreversible cell cycle arrest [137–139]. In 

turn, vascular cell senescence is one proposed mechanism surrounding unstable 

atherosclerotic plaque progression [140]. The ability for p53 to control senescence is 

consistent with its function to restrain vascularized tumour development, but the precise role 

for maintenance of longevity requires further investigation [141]. Whereas ROS are 

demonstrated to promote p53 activation, p53 has also been shown to enhance ROS 

signalling, presumably via up-regulation of the p67phox subunit as identified previously 

[142]. However, p53 is also known to participate in the induction of vascular cell apoptosis, 

which could enhance disease progression [34,143]. But, as p53 also promotes the expression 

of a number of antioxidant genes, it remains to be clearly demonstrated whether this could 

account for p53’s ability to control oxidative stress and therefore dictate whether a cell 

becomes apoptotic or senescent [144,145]. Induction of senescence by p53 is associated 

with the regulation of p53-dependent genes which participate in cell cycle arrest. Of these, 

p21cip was identified as the key factor governing the switch to a senescent phenotype. p21cip 

or cyclin-dependent kinase inhibitor 1, functions to inhibit cell cycle progression by placing 

a block on the G1- to S-phase transition of the cell cycle [146,147]. Therefore, activation of 

p53 by ROS and downstream up-regulation of p21cip appears to play a key role in the 

adaptive response of the vasculature in disease. This is evident in a nutrient deprivation 

model in vitro where serum-starved human endothelial cells underwent p53/p21cip-
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dependent cell cycle arrest via Nox2-derived superoxide anion [148]. Furthermore, Nox1- 

and Nox4-derived ROS were demonstrated to play a role in lung fibroblast senescence via 

p53-dependent p21cip up-regulation following matricellular CCN1 exposure [149]. 

Moreover, Kodoma et al. [150] support these findings wherein Nox1- and Nox4-derived 

ROS play central roles in p53 activation, leading to premature fibroblast senescence. In that 

study, siRNA against Nox1 and/or Nox4 inhibited Ras-induced premature senescence. This 

was the first piece of evidence that suppression of selective Nox isoforms could be 

instrumental in the maintenance of vascular longevity. Finally, redox activation of p53/p21cip 

signalling leading to senescence is evident in murine models of hypertension [151,152], 

diabetes [153,154], atherosclerosis [155,156] and pulmonary hypertension [121,157].

Klotho

The Klotho gene was first identified by Kuro-o et al. [60] in 1997, as a putative anti-aging 

gene, since Klotho-null mice displayed phenotypes resembling premature human aging, 

including vascular calcification, pulmonary emphysema, skin atrophy, muscle atrophy, 

osteoporosis, arteriosclerosis and cognitive impairment, among others [60,158]. Several 

studies have linked Klotho’s influences to intracellular signalling pathways involved in 

oxidative stress responses and aging via inhibition of IGF-1 [61,62,159] and p53/p21cip 

[160] and activation of FOXO3 [62]. Klotho is a transmembrane protein that functions as a 

FGF23 co-receptor with FGFR and is critical in maintaining proper calcium, phosphate and 

vitamin haemostasis [60]. Although the Klotho gene is mainly expressed in kidneys and the 

choroid plexus of the brain, the secreted soluble form may cause paracrine effects in distant 

organs. Recent studies show that Klotho exerts a protective effect against oxidative damage 

associated with age-related and retinal and neurodegenerative disorders, such as age-related 

macular degeneration (AMD) and Alzheimer’s disease [161,162]. These studies suggest that 

binding of the secreted Klotho protein to the membrane results in phosphorylation and 

translocation of FOXO3a to the nucleus, leading to transcriptional activation of MnSOD and 

peroxiredoxin-2 (Prx2), and thereby increasing resistance to oxidative stress [62]. Klotho is 

also shown to be protective of arterial calcification by preventing differentiation of VSMCs 

to an osteoblast-like phenotype and by restoring FGF23 signalling [163,164]. Another study 

by Saito et al. [165] showed the involvement of ROS and iron metabolism in AngII-

mediated down-regulation of renal Klotho expression. Although Klotho is not known to be 

expressed in blood vessels but is a circulating hormone, it reportedly protects against 

endothelial dysfunction in age-associated disorders through endothelium-derived NO 

production [166–169]. The role of Klotho in age-related CVD was initially based on the 

development of atherosclerosis in Klotho-deficient mice [60]. Since then it has been 

suggested that Klotho may have a protective role in the cardiovascular system through 

endothelium-derived NO production and regulation of angiogenesis [166–168]. Subsequent 

population-based studies in humans have identified a functional variant of Klotho, i.e. KL-

VS, which is associated with the early-onset occult CAD [170] and cardiovascular risk 

factors such as high-density lipoprotein cholesterol, high blood pressure and stroke [171]. 

Although a number of studies show that Klotho protein is protective under oxidative stress, 

the precise mechanisms underlying these phenomena are not completely understood [172]. 

A study recently showed that the protective effect of Klotho against oxidative damage is a 

consequence of increased endogenous antioxidant capacity (increased SOD2 and 
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thioredoxin) via increased nuclear factor erythroid-derived 2-related factors 1 and 2 (Nrf1/2) 

transcriptional activity [173,174]. In a study, Wang et al. [175] showed that direct delivery of 

Klotho suppresses AngII-induced Nox2-derived superoxide anion production and oxidative 

damage and attenuates apoptosis via the cAMP/PKA pathway in rat aortic smooth muscle 

cells (RASMCs). This study suggests the potential cross-talk between Klotho and Nox2 

signalling pathways in oxidative-stress-mediated effects on endothelial dysfunction, 

hypertension, atherosclerosis and lifespan.

IGF-1 pathway

The C. elegans homologue of IGF-1, daf-2, was one the early genes to be identified as a 

longevity-related gene [67]. IGF-1 is synthesized by almost all tissues and is involved in cell 

growth, differentiation and transformation processes. It is also well known that IGF-1 exerts 

pleiotropic effects by virtue of its binding to both IGF-1 receptor (IGF-1R) and insulin–

IGF-1 hybrid receptors [176]. Several studies have shown that oxidative stress such as that 

caused by H2O2 and AngII stimulates IGF-1 and IGF-1R, which is mediated by a tyrosine 

kinase-dependent redox-sensitive mechanism [177,178]. A number of studies in C. elegans, 

since the discovery of IGF-1 as a longevity-related gene, have shown that attenuation of 

IGF-1 signalling increases lifespan. This involves cross-talk with several other genes/

pathway(s) implicated in aging, such as FOXO transcription factor (daf-16) [179], heat-

shock transcription factor (HSF)-1 [180], SKN-1, an Nrf-like xenobiotic factor [64] and 

mTOR pathway. These transcription factors, in turn, modulate a diverse set of genes that act 

cumulatively to produce large beneficial effects on the lifespan of C. elegans. Indeed, 

mutations known to impair IGF-1R in several centenarian human cohorts strengthen the case 

that insulin/IGF-1 signalling is negatively associated with lifespan [181,182]. On the other 

hand, studies in rodents and humans have raised reservations regarding the role IGF-1 plays 

in aging. Studies show that mice deficient in IGF-1 die shortly after birth, whereas some that 

live to adulthood have retarded growth [183]. In humans, an age-related decline in endocrine 

IGF-1 levels is reported, and a large body of evidence suggests that IGF-1 improves 

cardiovascular function and is atheroprotective [184–187]. IGF-1 overexpression in the heart 

prevented myocardial cell death after infarction and reduced ventricular dilation, 

hypertrophy and diabetic cardiomyopathy via attenuation of p53 activation and AngII 

production, thereby leading to reduced ROS and cellular damage [188–191]. Another study 

showed that anti-atherogenic effects of IGF-1 infusion in the pro-atherogenic ApoE-

knockout mouse model occur via suppression of oxidative stress and up-regulation of 

vascular eNOS expression leading to increased NO bioavailability [187]. Csiszar et al. [192] 

reported that in Ames dwarf long-lived mice, low IGF-1 serum concentrations were 

associated with high oxidative stress in the vasculature and reduced eNOS expression, 

leading to endothelial dysfunction. More importantly, exogenous IGF-1 enhanced expression 

of antioxidant enzymes such as MnSOD, Cu/ZnSOD, Gpx1 in explants of mouse aortas and 

human coronary arterial endothelial cells [192]. In a study, Bailey-Downs et al. [193] 

showed that IGF-1-deficient mice were also lacking in Nrf-2 and Nrf-2-driven antioxidant 

genes, NAD(P)H:quinone oxidoreductase1 (NQO1) and heme oxygenase-1 (HMOX-1), 

thereby impairing the ability of vascular cells to respond to oxidative stress caused by high 

glucose, oxidized LDL (low-density lipoprotein) and/or H2O2. Endocrine IGF-1 deficiency 

in the vasculature promotes adverse vascular phenotype under disease states and results in 
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accelerated vascular impairments in aging [193]. Altogether, these studies suggest that 

IGF-1 has antioxidant-like effects.

Thus, it appears important to note that opposing effects of IGF-1 signalling are at work in 

different phases of the human life cycle. This disparity in IGF-1-mediated effects is probably 

a result of the difference between autocrine and paracrine effects of IGF-1. Interestingly, Li 

et al. [194] used the LID (liver IGF-1-deficiency) mouse model to examine the mechanism 

involved in IGF-1-deficiency-induced effect on cardiac aging. They showed that severe 

IGF-1 deficiency reduced aging-associated cardiac contractile dysfunction, prolonged 

relaxation and ablated intracellular Ca2+ dysfunction. Moreover, the IGF-1-deficiency-

elicited effects on cardiac aging were correlated with antagonism against aging-induced 

reduction in Akt, AMPK phosphorylation, Klotho and up-regulated p53 [194]. A similar 

study involving the response to a challenge with pro-oxidant paraquat in LID mice 

demonstrated that IGF-1 deficiency effectively enhanced resistance to oxidative-stress-

induced cardiac dysfunction, attenuated ROS and carbonyl production, ultimately resulting 

in improved survival rate against paraquat-induced mortality [195]. In experimental aortic 

abdominal constriction (AAC) studies in mice, liver-specific IGF-1 deficiency mitigated 

AAC-induced cardiac hypertrophy and contractile changes via attenuating AAC-induced 

Akt phosphorylation and glucose transporter 4 (GLUT4) up-regulation and rescuing down-

regulated miR-1 and miR-133a levels [196]. Therefore, whether reduced IGF-1 levels are 

negatively or positively correlated to age-associated decline in cardiovascular physiological 

functions is yet to be fully elucidated.

NOX IN AGING

Progressive anatomical, mechanical and biochemical changes occur in the heart as an 

adaptive response with increasing age. Aging is accompanied by an increase in arterial 

systolic pressure, reduced or maintained diastolic pressure, increased pulse pressure, aortic 

dilatation and wall thickening [197]. However, one of the major caveats in the study of aging 

and its effect on CVDs is that multifactorial changes that occur during the aging process are 

indistinguishable from vascular phenotypes such as endothelial dysfunction, increased 

collagen deposition, fibrosis and vessel remodelling presented in CVDs. In one of the early 

studies carried out in individuals who died from causes other than CVDs, it was reported 

that aging human hearts are characterized by an increase in the volume fraction of myocytes, 

myocyte loss, cellular hypertrophy and reduction in the ventricular mass. These cellular 

processes represent underlying causes for the onset of myocardial dysfunction and failure in 

the aging population [198]. Wang et al. [199] examined the involvement of Nox in age-

associated cardiac remodelling in a rodent model of aging and found that age-dependent 

increases in blood pressure, cardiomyocyte hypertrophy, coronary artery remodelling and 

cardiac fibrosis were associated with increased myocardial Nox2 activity. The increase in 

Nox2-dependent ROS were accompanied by increased renin–angiotensin–aldosterone 

system (RAAS) activation in the myocardium, increased expression of connective tissue 

growth factor (CTGF) and TGFβ1 and a significant activation of matrix metalloproteinase 

(MMP)-2 and membrane type-1 (MT1)-MMP, leading to age-associated cardiac remodelling 

[199]. It is widely acknowledged that Nox4 is localized to the mitochondria of many 

different cell types and that mitochondrial oxidative stress promotes aging. In this regard, 
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Ago et al. [200] reviewed the role of mitochondrial Nox4 in the aging process of the heart. It 

was speculated that oxidant stress in mitochondria builds when antioxidants are unable to 

counteract the ROS produced by Nox4, triggering the aging process of the heart. It is 

tempting, therefore, to speculate that Nox4 may be the initiator of mitochondrial ‘stress’ and 

oxidant production or vice versa. However, Nox4 has been identified to be beneficial against 

disease-induced cardiac dysfunction and hypertrophy and is therefore assumed to be 

‘protective’ [44]. Whatever the relationship, it appears that these two very important sources 

of ROS could be linear in their role. Taken together, these studies suggest that NADPH 

oxidase-derived ROS play a pivotal role in the process of aging and age-related 

cardiovascular changes, whether these are in conjunction with or independent of the 

mitochondrion. However, despite their importance in vascular function and disease, very few 

studies provide mechanistic insight into the role of Nox in the aging process. Figure 2 

depicts the proposed effects of Nox-derived ROS on redox-sensitive longevity signalling in 

the vessel wall.

NOX IN AGE-ASSOCIATED CVD

Atherosclerosis

Age is an important independent risk factor for the development of atherosclerosis, which 

persists even when other risk factors such as hypertension, diabetes, smoking and LDL 

cholesterol levels are controlled. This may be attributable to characteristic features of aging 

vessels, including reduced medial VSMC number, increased collagen deposition and 

breakdown of the elastic lamellae, which collectively can lead to medial thickening and 

vessel remodelling. These changes are likely to further promote increased extracellular 

matrix and vascular stiffness, subsequently leading to systolic hypertension. Adhesion and 

recruitment of pro-inflammatory molecules, also a result of luminal and lamellae damage, 

logically result in lipid accumulation and foam cell formation following monocyte 

infiltration [201–204]. As a consequence, the effects of atherosclerosis are superimposed on 

normal aging of the underlying vessel and therefore it is of utmost importance to unravel the 

molecular mechanisms involved. Towards that end, it is now generally agreed that elevated 

vascular ROS triggers an atherosclerotic process by oxidatively modifying lipoproteins 

causing activation of pro-inflammatory signalling and endothelial dysfunction resulting in 

further elevated oxidative stress. Pro-oxidant stimuli further result in reduced cell 

proliferation, irreversible growth arrest and apoptosis, elevated DNA damage, epigenetic 

modifications and telomere shortening, all of which are distinguishing features of cellular 

senescence as well as accelerated vascular aging associated with atherosclerosis [205]. Many 

of these cellular events are modulated by ROS-mediated signal transduction catalysed by 

Nox [74,206]. Because all cells comprising the lining and vessel wall harbour one or the 

other isoform of Nox, singularly or collectively they provide a mechanism of localized or 

paracrine release of ROS, which can influence redox-sensitive signalling pathways with 

fundamental effects on atherogenesis. One of the first points of evidence for NADPH 

oxidase-derived superoxide anion as a clinical risk factor for atherosclerosis was reported by 

Guzik et al. [71]. This study, based on clinical samples, showed that NADPH oxidase is the 

main source of superoxide production in human saphenous veins, which is associated with 

impaired NO-mediated endothelial function and increased atherosclerotic risk factors. Two 
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other studies identified the cellular sources of intracellular superoxide anion production 

within atherosclerotic and non-atherosclerotic human coronary arteries and found increased 

expression of p22phox, Nox2 (gp91phox) and Nox4 in the shoulder regions of the plaque, 

whereas expression of Nox1 was reduced [72,78,207]. Interestingly, Sorescu et al. [78] 

noted a strong association of Nox2 to plaque macrophage content and Nox4 to SMCs and 

advanced fibrocellular plaques, but not in more advanced atherosclerotic lesions [78]. More 

importantly, intense ROS in the plaque regions corresponded to increased expression of 

p22phox and Nox2, implicating NADPH oxidase-derived ROS in plaque rupture [78]. 

Further, Barry-Lane et al. [79] demonstrated the role of p47phox subunit in the development 

of atherosclerosis and showed that p47phox−/−/ApoE−/− mice have significantly lower aortic 

superoxide production, decreased proliferative response to growth factors and lesion 

formation compared with ApoE−/− mice. A later study by the same group showed that the 

atheroprotective effect of p47phox deficiency in ApoE-null mice was a result of a decrease in 

Nox2-derived ROS from monocytes/macrophages that reduced levels of oxidized LDL as 

well as from that of vessel wall cells, which attenuated the expression of cellular adhesion 

molecules [208]. Several studies further strengthen the involvement of Nox2 in 

atherogenesis. Judkins et al. [209] demonstrated that Nox2 expression was up-regulated in 

the aortic endothelium of ApoE−/− mice, before the appearance of lesions. They also showed 

that the absence of Nox2 in Nox2−/y/ApoE−/− mice was manifested by a reduced lesion area 

in the descending aorta by 50 % and was associated with decreased aortic ROS and 

increased NO bioavailability [209]. These studies provide a strong rationale for Nox-

dependent ROS as potential players contributing to premature aging of the vasculature via 

propagation of atherosclerosis.

Previously, it was reported that an endothelium-specific increase in Nox2-derived superoxide 

anion production is sufficient to increase macrophage recruitment and endothelial cell 

activation, leading to an increased atherosclerotic plaque initiation. However, this early event 

does not alter the progression of atherosclerosis [210]. Sheehan et al. [80] investigated the 

role of Nox1-smooth muscle cell component in atherogenesis and demonstrated that deletion 

of Nox1 reduced diet-induced lesion formation by 28 %, decreased macrophage infiltration 

and ROS levels compared with ApoE−/− mice. They showed that loss of Nox1 attenuated 

cell proliferation and increased collagen content within the neointima following carotid 

ligation. A greater reduction in lesion formation in ApoE/Nox2 double null mice observed in 

previous studies compared with Nox1−/y/ApoE−/− was explained by the absence of Nox1 in 

circulating cells [80]. These studies linked the increased expression of NADPH oxidase and 

intracellular superoxide anion production to oxidative modification of LDL and plaque 

instability via superoxide anion-induced expression of matrix-degrading proteases, such as 

MMP-2 and MMP-9 as well as associated SMCs and endothelial dysfunction. Additional 

evidence comes from a study showing the involvement of Nox1-derived ROS in diabetes 

mellitus-induced atherosclerosis. That study demonstrated that deletion of Nox1 reduced the 

development of aortic atherosclerosis in the diabetic ApoE−/− mice. This decrease in 

atherosclerosis was associated with reduced ROS formation, attenuation of chemokine 

expression, vascular adhesion of leucocytes, macrophage infiltration and reduced expression 

of pro-inflammatory and profibrotic markers [211].
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Not much is known regarding the role of Nox5 in atherosclerosis, primarily because of the 

limitation posed by Nox5’s absence in rats and mice. However, Guzik et al. [81] showed that 

expression of Nox5 is dramatically increased in atherosclerotic human coronary artery 

vessel wall which was associated with a 7-fold increase in calcium-dependent NADPH 

oxidase activity. Interestingly, Nox5 was localized to the endothelial cells in the early lesions 

and in the smooth muscle layer in advanced lesions [81]. Supporting evidence comes from a 

study showing that endothelial Nox5 is activated by AngII and ET-1 through Ca2+/

calmodulin-dependent and Rac-1-independent mechanisms, leading to increased ROS 

generation and ERK1/2-regulated growth and inflammatory signal transduction associated 

with endothelial dysfunction and vascular pathologies [212]. Nevertheless, the affected 

signal transduction pathways intertwining vascular aging and atherogenesis are poorly 

understood and are largely derived from studies on cellular senescence. ROS-mediated 

oxidative DNA damage is known to promote cellular senescence, which occurs both in the 

mitochondrial DNA and in the nuclear DNA, as well in both telomeric and non-telomeric 

regions of VSMC and macrophages in plaques [73,213]. Other than directly causing DNA 

damage, ROS-induced activation of p53 has been shown to promote DDR (DNA damage 

recognition and repair) and reduce the expression of the IGF-1R in VSMCs as well as the 

subsequent Akt survival signals [214]. Since both p53 and IGF-1 have been associated with 

longevity, signal transduction by these molecules might be responsible for NADPH oxidase-

mediated damage in atherosclerosis.

Hypertension

Hypertension is one of the most common diseases in the elderly. The prevalence of 

hypertension increases markedly with advancing age, primarily a result of elevations in 

blood pressure attributed to alterations in the structure, function and rigidity of vessel wall 

[215], as well as from a shift in control by the autonomic nervous system [216]. Several 

studies have shown that aging and hypertension are associated with the impairment of 

endothelium-dependent vascular relaxation and endothelial dysfunction. Both are known to 

increase the risk of cardiovascular and cerebrovascular diseases [71,75,217,218]. Oxidative 

stress is well established as a key regulator of age-induced endothelial dysfunction and 

RAAS. These influence the sympathetic and parasympathetic arms of the autonomic nervous 

system and promote hypertension. Moreover, it is well known that RAAS activation may 

itself potentiate oxidative stress [29,70]. Several clinical and animal model studies of 

hypertension have shown that increased NADPH oxidase-derived ROS is associated with 

endothelial dysfunction [76,102,103,105]. Zalba et al. [102] showed that endothelium-

dependent relaxation in response to acetylcholine was significantly attenuated in 30-week-

old compared with 16-week-old hypertensive rats. This impaired NO-dependent relaxation 

in AngII-mediated hypertension was linked to increased NADPH oxidase activity and 

expression of p22phox mRNA [102]. Another study of aging in a spontaneously hypertensive 

rat (SHR) model showed that RAAS attenuation in vivo by temocaprilat, hydralazine and 

olmesartan reversed age-related advanced cardiac hypertrophy due to suppression of cardiac 

oxidative stress by attenuating the expression of Nox2 oxidase components, p22phox, 

p47phox and Nox2 [219]. Another study demonstrated the role of MAPK-activated protein 

kinase 2 (MK2) in AngII-induced hypertension. Ebrahimian et al. [82] showed that MK2, 

which is a direct downstream target of p38 MAPK, mediates an AngII-induced increase in 
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Nox2-dependent superoxide production and activation of pro-inflammatory molecules 

through up-regulation of the p47phox subunit of NADPH oxidase and suppressed antioxidant 

enzyme catalase. The AngII-mediated up-regulation of MK2 resulted in a vicious cycle that 

potentiated inflammatory responses to AngII and led to increased VSMC proliferation [82]. 

Other than Nox2, several studies have demonstrated a role for Nox1 in systemic 

hypertension. Using transgenic mice overexpressing Nox1 in the smooth muscle cells, 

Dikalova et al. [220] provided a causal link between Nox1-derived superoxide production 

and increased systolic blood pressure and aortic hypertrophy in response to AngII. Matsuno 

et al. [83] generated Nox1−/y mice and showed that Nox1 in AngII-mediated hypertension 

underlies the pressor response. Similar studies showed that lack of Nox1 attenuated AngII-

induced ROS generation and Ca2+ signalling in VSMCs and Nox1-derived ROS regulated 

cell-surface expression of AT1R (AngII type 1 receptor) through mechanisms involving 

caveolin phosphorylation [221]. Although all the above studies suggest that hypertension, 

NADPH oxidase-derived ROS and oxidative stress are linked, none of them specifically 

examine the so-named longevity genes in hypertension. Wang and Sun [222] studied the role 

of Klotho in the pathogenesis of hypertension. In this study, they showed that Klotho gene 

delivery decreased aortic Nox2 expression and NADPH oxidase activity in SHRs, whereas 

renal expression of NOS, Nox1 and Nox4 remained unaltered. Further mechanistic studies 

delving into signalling that confer specificity of Nox inhibition by Klotho in systemic 

hypertension are warranted. Similarly, the role of Nox in redox signalling with age-related 

hypertension-linked vessel remodelling remains to be investigated.

One of the common forms of hypertension that is increasingly being diagnosed in elderly 

population is cor pulmonale or pulmonary arterial hypertension (PAH) [223–225]. PAH is a 

haemodynamic and pathophysiological condition defined by an increase in mean pulmonary 

artery pressure (mPAP) ≥25 mmHg at rest. It is the consequence of an increasing pulmonary 

vascular resistance (PVR) that leads to right ventricular (RV) overload, hypertrophy, 

reduction in cardiac output and eventually RV failure and death [226]. It is characterized by 

an intense and characteristic remodelling of small pulmonary arteries, due to structural and 

functional changes in endothelial, smooth muscle and adventitial fibroblast layers of the 

vessel wall [227]. One of the key environmental factors that cause extensive irreversible 

medial and adventitial thickening of vessel wall and muscularization of previously non-

muscularized distal vessels is chronic hypoxia (CH). Several studies have implicated ROS in 

acute hypoxic vasoconstriction and vascular remodelling associated with CH and a pivotal 

role of NADPH oxidase-derived ROS in this process is now well established. In one of the 

initial studies, Liu et al. [84] showed that CH-induced increase in superoxide anion 

production was attenuated in Nox2-null mice. This was associated with a decrease in 

pathological changes seen in CH-induced vascular remodelling such as mean RV pressure, 

medial wall thickening of small pulmonary arteries and right heart hypertrophy. They also 

linked increased ROS production to increased p47phox expression and activity, rather than 

increased mRNA expression levels of NADPH oxidase subunits, Nox2, p22phox, p40phox, 

Rac1 and Rac2 [84]. Later studies demonstrated that in the lung vasculature, Nox4-derived 

ROS play a crucial role in mediating PASMC and fibroblast proliferation-associated vascular 

remodelling in PAH. This was linked to increased Nox4 mRNA and protein expression 

[85,228–230]. It was suggested that the difference in localization of Nox2 and Nox4, to the 
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endothelial and smooth muscle cell layers respectively, is responsible for the differential role 

of Nox2 and Nox4 in hypoxia-induced pulmonary hypertension. Although it is known that 

RV function is the critical determinant of lifespan in patients with PAH, not much is known 

about the role Nox isoforms play in causing RV failure independent of an elevated 

pulmonary artery pressure. Using a pulmonary artery banding (PAB) model in mice, which 

is a surgical model of chronic progressive RV pressure overload not associated with 

structural alterations of the lung circulation, we recently showed PAB results in an increase 

in Nox4-derived ROS production, which is responsible for cardiac dysfunction and RV 

failure. We also showed that expression of antioxidant enzymes, SOD, catalase and Gpx did 

not change [45]. All of these studies elegantly link Nox-derived ROS to structural changes 

associated with PAH and subsequent RV failure, comparative studies in young and old 

animals are necessary to understand how these processes are modulated in aging heart.

Atrial fibrillation

AF is the most common type of cardiac arrhythmia. AF refers to abnormal rhythm of the 

heartbeat caused by perturbed electrophysiology of the myocardium. The incidence of AF 

increases quite dramatically with age (1.5 % at 50–59 years to 23.5 % at 80–89 years) [231] 

and even more so with prior history of cardiac surgery and cardiopulmonary diseases [232–

235]. A number of studies have shown that oxidative stress plays a vital role in the 

pathogenesis of AF [236–239]. It is also noteworthy that oxidative stress is also involved in 

the pathogenesis of several predisposing factors and conditions associated with AF. These 

include hypertension, CHD (chronic heart disease), obesity and diabetes, among many 

others. There is a large body of evidence showing the role that the NADPH oxidase family 

of enzymes plays in the development of AF. Both myocardial Nox2 and myocardial Nox4 

have been shown to participate in ROS-mediated effects in AF [38,39,86,240,241]. Initial 

studies in animal models suggested a Rac1-dependent effect of Nox-derived ROS leading to 

AF [86,242], which were supported by a number of clinical studies showing a correlation 

among Nox2 up-regulation, oxidative stress and AF [38,39,243]. Kim et al. [38] suggested 

that NADPH oxidase-derived ROS play an important role in the atrial oxidative injury 

associated with AF. In this study, they reported up-regulation of NADPH oxidase subunits 

p22phox, p47phox p67phox and Nox2, but not of Nox1 or Nox4, in tissue homogenates and 

isolated atrial myocytes from the right atrial appendage of patients undergoing cardiac 

surgery [38]. Importantly, Reilly et al. [241] suggested that an initial insult caused by Nox 

activation probably accounts for early development of AF, whereas ROS derived from 

mitochondria and uncoupled eNOS are involved in long-term AF. The change in the sources 

of ROS with atrial remodelling therefore could explain why statins are effective in the 

primary prevention of AF, but not in its management [241]. In vitro studies using HL-1 atrial 

myocytes have implicated Nox2 and Nox4 in TGFβ1-mediated myofibril degradation via 

calpain activation leading to calcium overload. Collectively, these were shown to elicit 

electrical and structural remodelling of cardiac tissue in AF [240,244]. Although these 

studies suggest a causal link between oxidative stress, the role of Nox and AF, the 

downstream signalling cascade by which atrial structural remodelling contributes to the 

pathogenesis of AF has not yet been described. A study by Adam et al. [245] demonstrated a 

marked up-regulation of CTGF, which is associated with increased fibrosis and tissue AngII 

concentration. With regard to an underlying mechanism, this study suggested that AngII up-
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regulated CTGF via activation of Rac1 and NADPH oxidase, leading to up-regulation of N-

cadherin and connexin43 (Cx43) and therefore contributing to structural remodelling 

associated with AF [245].

Nox therapeutics in treatment of CVDs

From the aforementioned studies, it is apparent that NADPH oxidase-derived ROS play a 

pivotal role in age-associated cardiovascular changes and CVDs. Therefore, Nox could be 

important drug targets for the treatment of atherosclerosis, hypertension, stroke, AF, diabetes 

and many other diseases of the elderly. The role of Nox as drug targets in CVDs has been 

extensively reviewed [246,247]. Despite a large armamentarium of drugs currently approved 

for specific therapy such as AngII receptor antagonists (azilsartan and benicar), renin 

inhibitor (aliskiren), calcium channel blockers (amlodipine), synthetic prostacyclin and its 

analogues (epoprostenol, treprostinil, beraprost, iloprost and selexipag), ET-1 receptor 

antagonists (bosentan, ambrisentan and macinentan) and type 5 phosphodiesterase (PDE5) 

inhibitors (sildenafil, tadalafil, vardenafil and riociguat) for PAH, blood thinners (aspirin, 

warfarin, dabigatran, rivaroxaban and apixaban) and dofetilide and dronedarone for AF, 

CVDs still contribute to a high level of mortality in the elderly. The beneficial effects of 

these drugs may, in part, come from their ability to reduce oxidative stress, either directly via 

attenuating the NADPH oxidase-derived ROS or indirectly by improving NO bioavailability 

[248,249]. Although antioxidants such as vitamins A, E and C, polyphenols and flavonoids 

have been used as therapeutic agents with some success to reduce oxidant stress and blood 

pressure [250], most of the large clinical trials have failed to demonstrate a beneficial 

cardiovascular effect [251,252]. Compared with the antioxidants, which degrade free radical 

intermediates and prevent further oxidation of molecules, inhibitors of Nox isoforms 

decrease the rate of enzymatic ROS formation. These inhibitors either modify Nox 

expression or target assembly and activation of Nox complexes, thereby reducing the 

immediate oxidant environment and suppressing ROS-induced signalling cascades.

Although some classical Nox inhibitors (AEBSF, apocynin, PR-39 and S17834) and two 

commonly used drugs, HMG-CoA reductase inhibitors (statins) and angiotensin receptor 

antagonists [ARBs (angiotensin II receptor blockers) and ACE (angiotensin-converting 

enzyme) inhibitors], are regularly being used in animal models and treatment therapy 

respectively, most of the currently available Nox inhibitors including the above-mentioned 

are not isoform-specific and may potentially affect both physiological and 

pathophysiological signalling pathways. Therefore, the development of selective and 

isoform-specific Nox inhibitors that preferably target only pathological Nox signalling has 

become a foremost objective for both academia and pharmaceutical companies. A number of 

different small-molecule inhibitors have become available that could become useful in their 

own right or by way of their derivatives [253–263]. Nox1/4 inhibitor GKT 136901 was 

reported to inhibit NADPH oxidase-dependent aortic ROS formation, attenuate CD44- and 

HA-dependent inflammatory cell recruitment and aortic lesion area in atherosclerotic lesions 

of ApoE−/− mice [264]. Similarly, GKT137831 inhibited ROS production and attenuated 

diabetes-induced macrophage infiltration, inflammation and fibrosis associated with 

atherosclerotic plaque formation in ApoE−/− mice as well as attenuated hypoxia-induced 

H2O2 release and improved indices of ventricular remodelling and pulmonary artery wall 
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thickening in a mouse hypoxia model of PAH [211,265]. Like the first-generation GKT 

inhibitor, issues of Nox specificity are still a concern with regard to untoward and off-target 

effects of these drugs. Novel approaches and rational drug design strategies have yielded 

isoform selectivity for Nox2 and been discussed in greater detail [107,108,247,258,266]. 

Assuredly with these innovative approaches, new isoform-specific Nox therapeutics are 

expected to gain greater traction. That said, peptidic inhibitors still appear to offer the 

greatest level of Nox selectivity [267–270] and have exhibited high levels of potency in cell-

free and whole-cell assays. For this reason, they have been widely employed in animal 

studies. Admittedly, an inherent concern in the pharmaceutical industry regarding oral 

bioavailability of these potential therapeutics has stunted development, in spite of the 

potential for alternative modes of delivery and stabilization to increase clinical application 

[107,271].

CONCLUSIONS AND PERSPECTIVES

A higher level of care, treatment options and better socioeconomic conditions have resulted 

in a dramatic increase in the quality and lifespan of the elderly population with 

cardiovascular complications over the last half-century. Since the free radical theory of aging 

was first proposed, tremendous progress has been made to identify and understand the 

molecular mechanisms involved in aging and age-related CVDs. A seminal role of Nox in 

CVD is quite evident. Despite these advances, manifestation of combined aetiologies (co-

morbidities) together with age-related changes further complicates our understanding of the 

pathophysiological and pathobiological factors contributing to decline in the older patient. 

Indeed, much more work needs to be done to determine whether there is a unified effect of 

ROS on longevity and CVD. That is, whether specific Nox isoforms are responsible for 

modulating CVD and the biology of the aging process and whether these are both modulated 

by a common gene or set of longevity genes are yet to be fully appreciated. Furthermore, 

with Nox-targeted therapies showing promising results in animal models and pre-clinical 

trials, it is possible that, in the near future, we may be able to adapt these interventions to 

further improving cardiovascular health and/or slow the aging process.
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Abbreviations

AAC aortic abdominal constriction

AEBSF 4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride

AF atrial fibrillation

AKT synonym for Protein kinase B
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AngII angiotensin II

ApoE apolipoprotein E

CAD coronary artery disease

CCN1 or CYR61 cysteine-rich angiogenic inducer 61

FGF fibroblast growth factor

CD44 cluster of differentiation 44

CH chronic hypoxia

CTGF connective tissue growth factor

CVD cardiovascular disease

DUOX dual oxidase

eNOS endothelial nitric oxide synthase

ERK extracellular-signal-regulated kinase

ET-1 endothelin-1

FGF-R fibroblast growth factor receptor

FOXO3 forkhead-box protein O3

GKT GenKyotex

Gpx glutathione peroxidase

HA hyaluronic acid

HMG-coA 3-hydroxy-3-methyl-glutaryl-coenzyme A

IGF-1 insulin-like growth factor

IGF-1R IGF-1 receptor

JNK c-Jun N-terminal kinases

KL-VS variant of Klotho

LDL low-density lipoprotein

LID liver IGF-1-deficiency

MAPK mitogen-activated protein kinase

Mdm2 mouse double minute 2 homolog

MK2 mitogen-activated protein kinase-activated protein kinase 2

MMP matrix metalloproteinase

mTOR mammalian target of rapamycin

NOS nitric oxide synthase

Nox NADPH oxidase(s)
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Nrf nuclear factor erythroid-derived 2-related factor

PAB pulmonary artery banding

PAH pulmonary arterial hypertension

PASMC pulmonary artery smooth muscle cell

Pin1 prolyl isomerase 1

PKA protein kinase A

PKC protein kinase C

PKCδ Protein Kinase C delta

Poldip2 polymerase (DNA-directed), delta interacting protein 2

Shc src homology 2 domain containing

PR-39 proline-arginine (PR)-rich antibacterial peptide

PTB phospho tyrosine binding

RAAS renin–angiotensin–aldosterone system

Ras Rat sarcoma

RING Really Interesting New Gene

ROS reactive oxygen species

RV right ventricular

S17834 1,4-dimethyl-2,3,5,6-tetraiodobenzene

SHR spontaneously hypertensive rats

Sir2 silent information regulator 2

SKN-1 protein skinhead 1

SMC smooth muscle cell

SOD superoxide dismutase

TGFβ transforming growth factor β

Trx2 Thioredoxin2

VSMC vascular smooth muscle cell
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Figure 1. Prominent redox-sensitive signalling pathways involved in aging
Schematic representation of known redox-sensitive signalling pathways which regulate 

cellular aging and age-related CVDs. Arrows denote positive activation of downstream 

targets. Blunt-ended arrow denotes inhibitory effects. Dashed arrow denotes cross-talk 

between pathways. Secreted Klotho prolongs lifespan by increasing the expression of 

antioxidant genes via Nrf-1/2 or by inhibiting IGF-1 signalling. Binding of growth 

hormones, such as IGF-1 to their respective receptors or oxidative stress leads to 

autophosphorylation of β-subunits on the IGF-1R, leading to subsequent activation of 

PI3K/Akt pathway. Akt-mediated phosphorylation of FOXO3 results in nuclear exclusion 

and inhibition of FOXO3-mediated transcription of target antioxidants, such as MnSOD and 

Gpx. Oxidative stress induces phosphorylation and translocation of p66Shc via PKCβ and 

Pin1 to the mitochondrial inner membrane leading to cytochrome c-mediated apoptosis. 

ROS also causes post-translational modification of p53 resulting in its activation triggering 

p21cip-mediated cell senescence. Akt activation or p53-induced transcriptional activation of 

Mdm2 leads to ubiquitination-dependent degradation of FOXO3. Abbreviations: PI3K, 

phosphoinositide 3-kinase; s-Klotho, secreted Klotho.
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Figure 2. Effects of Nox-derived ROS on redox-sensitive longevity signalling in the vessel wall
Summary of the effects of hypertension, atherosclerosis and PAH on age-related redox-

sensitive signalling pathways linked to the different vascular cells comprising the vessel wall 

(intima: endothelial cells; media: VSMCs; adventitia: fibroblasts/myofibroblasts) as a 

consequence of Nox-derived ROS. Arrows depict either increased or decreased protein 

expression or signalling pathway activation. A question mark (?) depicts a potential effect 

wherein more conclusive evidence is required to fully support the observations in the 

literature.
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