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Abstract

Diffusion tensor magnetic resonance imaging (DT-MRI) allows a unique insight

into the microstructure of highly-directional tissues. The selection of the most

proper distance function for the space of diffusion tensors is crucial in enhanc-

ing the clinical application of this imaging modality. Both linear and nonlinear

metrics have been proposed in the literature over the years. The debate on the

most appropriate DT-MRI distance function is still ongoing. In this paper, we pre-

sented a framework to compare the Euclidean, affine-invariant Riemannian and

log-Euclidean metrics using actual high-resolution DT-MRI rat heart data. We em-

ployed temporal averaging at the diffusion tensor level of three consecutive and

identically-acquired DT-MRI datasets from each of five rat hearts as a means to

rectify the background noise-induced loss of myocyte directional regularity. This

procedure is applied here for the first time in the context of tensor distance function

selection. When compared with previous studies that used a different concrete ap-

plication to juxtapose the various DT-MRI distance functions, this work is unique

in that it combined the following: (i) Metrics were judged by quantitative –rather

than qualitative– criteria, (ii) the comparison tools were non-biased, (iii) a lon-

gitudinal comparison operation was used on a same-voxel basis. The statistical

analyses of the comparison showed that the three DT-MRI distance functions tend

to provide equivalent results. Hence, we came to the conclusion that the tensor

manifold for cardiac DT-MRI studies is a curved space of almost zero curvature.
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The signal to noise ratio dependence of the operations was investigated through

simulations. Finally, the “swelling effect” occurrence following Euclidean averag-

ing was found to be too unimportant to be worth consideration.

Keywords: Diffusion tensor magnetic resonance imaging, distance function,

geodesics, six-dimensional manifolds, tensor averaging, myocardium

microstructure, primary cardiomyocyte orientation.

1. Introduction

1.1. Subject Description

Diffusion tensor magnetic resonance imaging (DT-MRI) has emerged (Basser

et al., 1994) as a powerful tool for inferring the microstructure of anisotropic tis-

sues. To do so, it elegantly relates the self-diffusion of water molecules that un-

dergo Brownian motion to proton spin relaxation magnetic resonance (MR) sig-

nals. The clinical significance of DT-MRI derives from the fact that it provides

such information in a noninvasive, nondestructive fashion. Therefore, it paves the

way for whole-organ longitudinal in vivo studies needed to evaluate disease-related

tissue microstructural changes.

Ever since the advent of this imaging modality, there has been a substantial

interest in the development of a consistent and complete framework that would

allow the various manipulations of the whole diffusion tensors (and not only the

analysis of some scalar or vector tensor-derived parameters). This interest has

increased significantly nowadays following the initial success that DT-MRI has

seen in elucidating the composition and connectivity of various anisotropic tissues

including brain (Pierpaoli et al., 1996), and myocardium (Rohmer et al., 2007).

The selection of a tensor distance function (or metric) resides in the foundation

of the tensor-variate framework. This selection is in essence equivalent to choosing

a geodesic curve (i.e. the shortest path joining two tensors in their space). The cru-

ciality of this selection lies in the fact that it dictates many operations such as mean

estimation, anisotropy estimation, interpolation, regularization, segmentation, reg-

istration, and principal component analysis to name a few. This may be easily

seen by looking at the definitions of the above operations: The averaging proce-

dure is a tensor distance dispersion minimization problem; anisotropy estimation

refers to the calculation of the distance to the isotropic tensor; the interpolation

task is a weighted computation where the weights depend on tensor distances; reg-

ularization is a minimization estimation problem that aims at reducing the amount

of spatial variation by taking into account the distances between neighboring ten-

sors; segmentation algorithms involve choosing a distance function which should
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be small between tensors belonging to the same structure and large between ten-

sors belonging to different structures; registration techniques rely on distance met-

rics to match tensors between regions of different datasets; in principal component

analysis, the computed modes of variation are represented as flows along paths of

minimum tensor distance. In general, the use of an appropriate distance function

for diffusion tensors provides the following twofold benefit: one may fully exploit

the potential of DT-MRI by endowing the diffusion tensor space with a reliable

manifold structure, while, at the same time, interpretation pitfalls are avoided.

1.2. Previous Studies & Current Situation in the Literature

With the view to satisfying the demand for a proper distance function for dif-

fusion tensors and accordingly assisting in the development of a consistent tensor-

variate framework, various metrics have been proposed in the literature over the

years. To start with, the Euclidean distance function was introduced (Alexander

et al., 1999; Jones et al., 2002; Basser and Pajevic, 2003; Pajevic and Basser, 2003;

Pasternak et al., 2008, 2010, 2012) as a generalization of the classical scalar dis-

tance to tensors or, simply, on empirical grounds (that is to say evidence acquired

by concurrently analyzing: (i) Physical properties of the measured quantities, (ii)

properties of the several different candidate metrics, and (iii) the accumulative ef-

fect of the miscellaneous sources that cause variability to the measurements). As

per this conventional approach, the –quantification of the distance between two

tensors– operation is applied linearly to the matrix elements. Next, the affine-

invariant Riemannian (AIR) distance function was put forward (Moakher, 2005;

Batchelor et al., 2005; Pennec et al., 2006; Lenglet et al., 2006; Fletcher and Joshi,

2007) for DTMRI analysis based on differential geometry considerations. In par-

ticular, it was identified that the data in hand are sample covariance matrices of nor-

mally distributed random variables and, as such, they represent points in the space

of real symmetric positive-definite matrices. This distance function brings about

nonlinear calculations. Finally, in light of the high computational burden imposed

by the AIR metric, the similitude-invariant log-Euclidean metric, that deals with

the matrix logarithms of the diffusion tensors, was also proposed (Arsigny et al.,

2006). Its computational efficiency lies in the fact that the high complexity calcu-

lations are converted into simple Euclidean ones, once tensors are transformed into

their matrix logarithms.1

1Numerous other DT-MRI distance functions have been introduced such as Cholesky (Wang et al.,

2004), matrix square root (Dryden et al., 2009), Procrustes (Dryden et al., 2009), square-root of

the J-divergence (Wang and Vemuri, 2005), geodesic loxodromes-based (Kindlmann et al., 2007),

weighted component-based (Gahm et al., 2013), and the chordal metric in the space of quaternions

(Collard et al., 2014) to name a few. However, in this study we deal only with the three distance
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Following the admission of the various DT-MRI distance functions, a mul-

tifaceted dispute broke out between the researchers who support the Euclidean

metric and those who are in favor of the nonlinear ones. On the one hand, the non-

Euclidean side (Moakher, 2005; Batchelor et al., 2005; Pennec et al., 2006; Lenglet

et al., 2006; Fletcher and Joshi, 2007; Arsigny et al., 2006), driven chiefly by

mathematical considerations, argue: (i) Since the space of the symmetric positive-

definite matrices constitutes a curved subset (namely, the interior of a convex

half-cone) in the vector space of symmetric 3×3 matrices, the AIR metric, that

takes this space topology (curvature) into account, is a more natural solution. (ii)

By using tools for DT-MRI, that are obtained by generalizing tools for scalar-

to matrix-valued data, the natural properties of the diffusion tensors are not pre-

served leading to nonphysical complications. For instance, by relying on the Eu-

clidean metric to perform non-convex operations (like regularization or second-

order statistics), the positive-definiteness is not always preserved. However, dif-

fusion tensors with negative eigenvalues lack substance. By the same token, the

linear averaging/interpolation may not preserve the determinant, resulting in a

mean/interpolated tensor that has a determinant (or, equivalently, volume) that is

larger than the determinants (volumes) of the individual tensors. This “swelling ef-

fect” occurrence suggests that the averaging/interpolating procedure by itself intro-

duces additional diffusion which is intangible. The two limitations described above

are remedied by employing a nonlinear metric, which diminishes the “swelling ef-

fect” and places tensors with null or negative eigenvalues at an infinite distance

from any symmetric positive-definite matrix. (iii) Non-Euclidean distance func-

tions should be preferred as they offer a better contrast when transitioning from a

highly anisotropic region to a more isotropic one (Fletcher and Joshi, 2007).

On the other side of the fence, the Euclidean approach investigators (Alexan-

der et al., 1999; Jones et al., 2002; Basser and Pajevic, 2003; Pajevic and Basser,

2003; Pasternak et al., 2008, 2010, 2012) put forth the following arguments: (i)

The selection of a metric should not be prompted by mathematical considerations

alone. Practical and physical considerations must also be appraised. (ii) Affine-

invariance is not a desirable property for a metric that deals with diffusion tensors

because it leads to a substantial bias in the calculations (especially when dealing

with a highly anisotropic tissue). This property would be suitable for a metric that

measures the distance between arbitrarily scaled quantities. (iii) The Euclidean

distance function is consistent with the expected statistical properties of the diffu-

sion tensor distribution. (iv) If one wants to perform statistical inference through

hypothesis testing for tensor-valued data, it is preferred to do so by relying on the

functions that have been most often adopted by the DT-MRI community.
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Euclidean distance (Whitcher et al., 2007). Moreover, statistical tests that are based

on non-Euclidean distances may easily lead to wrong conclusions (Pasternak et al.,

2010). (v) With regard to the preservation of natural properties: The topic of nega-

tive eigenvalues may be remedied by excluding tensors with negative eigenvalues,

or correcting tensors with negative eigenvalues through averaging, or estimating

the nearest positive-definite tensor of each tensor with negative eigenvalues. As

to preserving the determinant, there is no physical reason to do so. Changes in

the determinant are perfectly predicted by the background noise that introduces

variability in the orientations and lengths of the diffusion ellipsoid axes. Instead,

preservation of the trace (which is proportional to the orientationally averaged dif-

fusivity) might be more desired, and the Euclidean distance function (as well as

the nonlinear functions) preserves the trace. (vi) The anisotropy indices based on

a nonlinear distance function are inappropriate for DT-MRI analysis because they

consistently and unrealistically increase the difference between highly anisotropic

tensors and other more isotropic ones (Pasternak et al., 2010). (vii) Another draw-

back of Riemannian metrics is their sensitivity to small shape changes close to the

degenerate cases. Because of this, small shape variations (due to noise) of two such

tensors may result in an infinite distance between them (Peeters et al., 2009; Zhou

et al., 2015).

The debate on the most appropriate DT-MRI distance function is still ongoing

as suggested by more recent publications (Bouchon et al., 2015). To make things

worse, the situation in the related literature is inconsistent as papers that advocated

the non-Euclidean framework, they employed, at the same time, tools that are based

on the Euclidean distance to evaluate their analysis results. As an illustration, Ar-

signy et al. (2006), and Fillard et al. (2007) used plots of a Euclidean distance-based

tool to demonstrate the performance of the proposed non-Euclidean regularization.

Similarly, Corouge et al. (2006) claimed that it is inappropriate to perform tensor

calculations by relying on the Euclidean distance; nevertheless they employed plots

of a Euclidean distance-based tool to test the feasibility of their fiber-tract-oriented

approach. Finally, Verma et al. (2007) relied on Euclidean distance-based maps

to simulate pathology, even though they stated that differences between diffusion

tensors need to be measured by nonlinear metrics. The observations outlined in

this paragraph served as the main motivation for this paper.

1.3. Our Contribution

In this work we use actual high-resolution DT-MRI rat heart data to compare

the Euclidean, AIR and log-Euclidean distance functions. We look at temporal av-

eraging as a means to rectify the background noise-induced loss of myocyte direc-

tional regularity through realigning post-diagonalization diffusion tensor primary
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eigenvectors2 with atypical directions. This simple and effective noise compen-

sation method is based upon the following reasonable assumptions: (i) The tissue

has constant true diffusion properties over time (Pasternak et al., 2010). (ii) The

background noise processes of repetitive and identically-acquired scans are not di-

rectionally correlated (Sun et al., 2001). (iii) The cardiac wall has a well-ordered

and highly coherent microstructure (Streeter and Bassett, 1966). By performing av-

eraging at the diffusion tensor level of three consecutive and identically-acquired

DT-MRI datasets from each of five rat hearts and by using the Euclidean, AIR, and

log-Euclidean distance functions, the objective of this study is to shed more light

on the problem of choosing the most appropriate tensor distance function. To this

end, we seek to ascertain in a quantitative manner the metric that (drives the aver-

aging method that) achieves the greatest restoration of microstructural organization

(when compared with the organization of the individual datasets before averaging)

or, equivalently, the most effective outlier realignment. In other words, we set out

to find the distance function that yields the most accurate representation of the re-

ality. Then, this will be identified as the preferable metric upon which a consistent

tensor-variate framework may be built.

Even though the compensation of directional coherence loss through the time

averaging procedure is applied here for the first time in the context of tensor dis-

tance function selection, a number of previous studies also presented an application-

oriented comparison of the several different DT-MRI distance functions. For ex-

ample, in Fletcher and Joshi (2007), and Dryden et al. (2009) the comparison of

metrics was carried out with respect to the anisotropy estimation performance, in

Pennec et al. (2006), Arsigny et al. (2006), and Frindel et al. (2009) the various

distance functions were rated according to their regularization efficiency, while in

Arsigny et al. (2006), Gahm et al. (2011) and Yang et al. (2012) the metric that best

characterizes the distance between diffusion tensors was decided by the interpola-

tion performance.

Our work is unique in that it combines the following: (i) The majority of the

previous tensor distance function comparison studies, that were based on actual

DT-MRI data, were qualitative. In order to validate their results, the authors of

these papers relied on optical inspection of the volume size and color uniformity

of neighboring elllipsoids3 (or other visually appealing structural renderings) com-

bined with micro-anatomical knowledge. For instance, they labelled as the most

2The primary eigenvectors of the diffusion tensors are generally taken (Hsu et al., 1998) to coin-

cide with the local primary cardiomyocyte orientation.
3It is common to use ellispoids to describe diffusion tensors, where the three principal axes of the

ellipsoid point at the diffusion tensor eigenvectors’ directions and each axis length is proportional to

the corresponding eigenvalue.
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proper DT-MRI distance function the one that appeared to suppress the outliers to

the greatest extent (Pennec et al., 2006; Frindel et al., 2009), or the one that seemed

to yield the best contrast (Fletcher and Joshi, 2007; Dryden et al., 2009), or the one

that manifested the lowest degree of blurring (Arsigny et al., 2006), or the one

that presented the highest color (orientation) and size uniformity among neighbor-

ing ellipsoid volumes (Yang et al., 2012). In contrast to these comparison studies

that were judged by unquantifiable criteria, our work provides quantification of the

relative performance of each distance function. To this end, we relied on the inter-

voxel diffusion coherence (IVDC) index (Wang et al., 2008). The validity of the

specific eigenvector homogeneity criterion for assessing the perturbation of cardiac

tissue directional regularity due to disease has been tested elsewhere (Giannakidis

et al., 2012). (ii) There exist few studies (Frindel et al., 2009; Yang et al., 2012;

Collard et al., 2014; Zhou et al., 2015) that used fractional anisotropy (FA) to com-

pare the various diffusion tensor distance functions. However, such a criterion is

unfairly prejudiced, as it represents the Euclidean distance of each tensor from the

fully isotropic tensor. Unlike these studies, our comparison tool is not biased. (iii)

In contrast to all previous studies, where the operation (that yielded the compari-

son results) was performed in the neighborhood of the examined voxel, our study

involves a longitudinal comparison operation that is carried out on the individual

voxel. In the final analysis, this difference in the comparison circumstances might

play a role in the conclusive choice according to the idea proposed in Pasternak

et al. (2008) about context-dependent DT-MRI metrics.

2. Methods

2.1. Research Animal Model & Heart Preparation

We performed ex vivo4 studies of five Wistar Kyoto (WKY) rats bought from

the Charles River Laboratories International, Inc, Wilmington, MA, USA. WKY

rat is a well-established animal model of normal nonpathologic cardiac behav-

ior. Under deep isoflurane-inhalation anaesthesia, each intact heart was rapidly

removed from the chest and flushed with warmed isotonic saline. Once the heart

was rinsed, it was weighed and instantaneously placed in 60cc of 10% buffered

formalin for fixation. The age of the rats during the heart excision was one month

old. The time period between excision and imaging was approximately one week.

4The large (compared to the diffusion-induced displacement length) movement of a pumping

heart poses a significant challenge to in vivo cardiac DT-MRI (Hsu et al., 2010). As a result, at

present, cardiac DT-MRI is mainly conducted ex vivo using excised fixed hearts, especially when

three-dimensional (3D) high spatial resolution images are required.
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All animal procedures conformed to the guidelines set forth by the Animal Welfare

and Research Committee of Lawrence Berkeley National Laboratory.

2.2. Imaging & DT-MRI Post-processing

Three back-to-back DT-MRI acquisitions of each of the five rat hearts were

carried out at the UCSF Imaging Center at China Basin using a 7 T (310 mm bore

size) superconducting magnet equipped with actively shielded imaging gradients

(400 mT/m maximum gradient strength, 120 mm inner bore size) (Agilent Tech-

nologies, Palo Alto, CA, USA). A 20 mm inner diameter linear 1H birdcage res-

onator was used for radio frequency pulse transmission and signal reception. For

the imaging, the excised rat hearts were suspended in a 15 mm diameter cylinder

filled with Fomblin (Sigma Aldrich Corp., St. Louis, MO, USA). Fomblin does not

have a visible proton MR signal and reduces susceptibility artifacts near the bound-

ary of the heart. Hearts were secured inside the containers using gauze to prevent

the specimen from floating in the container. We did not observe any effects from

movement or vibrations. The long axis of the heart was aligned with the direction

of the main magnetic field (z-axis). The field of view (FOV) for the DT-MRI se-

quence was placed to cover the full short axis and the central part (mid-ventricular

region) of the long axis of the heart. The DT-MRI imaging protocol parameters

(that were common for all acquisitions) are summarized in Table 1.

Table 1: The imaging parameters used for each scan.

Sequence type 3D spin echo

Repetition time (TR) 500ms

Echo time (TE) 20ms

Field of view 20.5 × 20.5 × 5.1mm3

Matrix 128 × 128× 32

Resolution 0.160mm (isotropic)

Diffusion gradient duration (δ) 4ms

Diffusion gradient separation (∆) 10ms

Receiver bandwidth 30.5 Hz

Number of gradient directions and b-value 12 at b=1000 s
mm2 , 1 at b=0 s

mm2 (Papadakis et al., 1999)

Number of averages 1

Total scan time 7.4h

The signal to noise ratio (SNR) of each dataset was measured as the mean

signal of the myocardium in the central slice of the dataset divided by the standard
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deviation of the noise (measured outside the myocardium), multiplied by the factor

0.655

SNR(b=0) = 0.655 ∗ Mean(Myocardium)

StandardDeviation(BackgroundNoise)
(1)

where the factor 0.655 comes from the fact that the SNR was estimated on the

magnitude data and the mean of the noise is not 0 (Rician Noise) (Henkelman,

1985).

For DT-MRI analysis, the raw diffusion weighted datasets were loaded into

the FSL software package. The diffusion tensor fitting and the calculations of

eigenvectors, eigenvalues and FA were performed using the FSL diffusion toolbox

(FDT) (Behrens et al., 2003).

2.3. Regions of Interest - Segmentation

We analyzed the lateral wall (Fig. 1) from the short-axis slice with the largest

area (in the mid left ventricular region) for each heart of this study. The region

of interest (ROI) was segmented semi-automatically in the B0 image using cubic

splines (de Boor, 1978). The papillary muscles of the heart were excluded from

our analysis. In addition, any voxel, at which the diffusion tensor was estimated to

have at least one negative eigenvalue, was excluded on thermodynamic grounds.

Figure 1: The region of interest (in yellow color) for the current comparison study.

2.4. From Geodesic Curves to Averaging

Consider that we have a set of N (N ≥ 2) symmetric positive-definite 3 × 3
matrices D1, . . . ,DN each of them representing a diffusion tensor. Below we
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briefly outline the definitions and properties of the metrics for the three studied

frameworks. We also provide the mean estimators.

2.4.1. The Euclidean Tensor-Variate Framework

By placing the set of N tensors in a Euclidean space, the geodesic (i.e. curve

of minimum length) γE(t) going from D1 (at t = 0) to D2 (at t = 1) is a straight

line given by:

γE(t) = (1− t)D1 + tD2 (2)

The distance between tensors D1 and D2 is

distE = ‖D1 −D2‖F (3)

where ‖ · ‖F denotes the Frobenius norm, and ‖D‖F =
√

tr(DTD) where “tr” is

the matrix trace. The metric of Eq. (3) is reflection and rotation invariant5, and is

defined over the entire space of symmetric matrices. The average of the set of N

tensors that is associated with the Euclidean distance function is unique (Dryden

et al., 2009) given by:

µE(D1, . . . ,DN ) ≡ argmin
D

N
∑

i=1

‖Di −D‖2F =
1

N

N
∑

i=1

Di (4)

2.4.2. The Affine-Invariant Riemannian (AIR) Tensor-Variate Framework

By placing the set of N tensors in an AIR manifold, the geodesic γAIR(t)
going from D1 (at t = 0) to D2 at (t = 1) is given (Arsigny et al., 2006) by

γAIR(t) = D
1

2

1 exp

(

t log

(

D
−

1

2

1 D2D
−

1

2

1

))

D
1

2

1 (5)

where D
−

1

2

1 D2D
−

1

2

1 belongs to the space of real symmetric positive-definite ma-

trices (Lenglet et al., 2006), and the square root, the exponential and the logarithm

of a matrix are defined in Appendix B. The distance between these two tensors is

represented by

distAIR = ‖ log(D−1
1 D2)‖F =

√

tr(log2(D−1
1 D2)) =

√

√

√

√

3
∑

i=1

log2 ηi (6)

5The invariance properties of the DT-MRI distance functions are explained in Appendix A.
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where ηi {i = 1, 2, 3} are the three real positive eigenvalues of matrix D−1
1 D2

(Moakher, 2005). The metric of Eq. (6) is affine (i.e. reflection, rotation, scale,

shear, and inversion) invariant and pertains only to symmetric positive-definite ma-

trices. The mean estimator in the AIR sense of the N tensors is obtained by solving

the following nonlinear minimization problem:

µAIR ≡ argmin
D

N
∑

i=1

‖ log(D−1
i D)‖2F (7)

Even though this problem always has a unique solution (given the negative cur-

vature of the space of symmetric positive-definite matrices (Dryden et al., 2009)),

there is a closed-form solution only for the case of N = 2. In this case, the average

estimator is given explicitly (Moakher, 2005) by:

µAIR = D1(D
−1
1 D2)

1

2 (8)

For the general case of N ≥ 3 tensors, there is no closed-form solution and one

may obtain the mean via an unconstrained optimization algorithm. In our study

(where N = 3), µAIR was estimated using the well-known quasi-Newton method

(in particular the BFGS algorithm) (Nocedal and Wright, 2006). Some of the ad-

vantages of the particular quasi-Newton method are: (i) It achieves rapid superlin-

ear convergence. (ii) Unlike other Newton methods, it is designed to prevent the

analytical calculation of the Hessian matrix or its inverse at each iteration. (iii) Due

to the efficiency of the quasi-Newton methods, it facilitates the realistic develop-

ment and solution of large-scale optimization problems.

2.4.3. The Log-Euclidean Tensor-Variate Framework

In the log-Euclidean case, the geodesic γLE(t) going from D1 (at t = 0) to

D2 (at t = 1) is a straight line in the domain of matrix logarithms described by the

following equation:

γLE(t) = exp((1− t) log(D1) + t log(D2)) (9)

In an analogous manner to the Euclidean space, the distance between D1 and D2

is given by:

distLE = ‖ log(D1)− log(D2)‖F (10)

The metric of Eq. (10) is reflection, rotation, scale, and inversion invariant. The

mean estimator of the set of N tensors that is associated with the log-Euclidean

distance function is given (Dryden et al., 2009) by:

µLE ≡ argmin
D

N
∑

i=1

‖ log(Di)− log(D)‖2F =
1

N
exp

(

N
∑

i=1

log(Di)

)

(11)
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2.5. Metric Comparison Tool Based on Microstructural Orientation Coherence

After performing averaging at the diffusion tensor level by relying on the Eu-

clidean, AIR and log-Euclidean distance functions (as detailed in Section 2.4), the

goal was to juxtapose the primary cardiomyocyte orientation coherence restoration

performance of the three metrics. To gauge the performance of each distance func-

tion, it was necessary to quantify the primary cardiomyocyte orientation coherence

before and after each type of averaging. To quantitatively map the orientation in-

tegrity of the principal water diffusion eigenvectors within a given voxel neighbor-

hood, we relied on the intervoxel diffusion coherence (IVDC) index (Wang et al.,

2008). IVDC offers a quantitative assessment and allows a more objective direc-

tional analyses than the visually appealing red-green-blue (RGB) color maps (Pa-

jevic and Pierpaoli, 1999) and cardiac tractography methods (Rohmer et al., 2007).

In addition and unlike other measures of primary eigenvector dispersion applied in

the DT-MRI literature such as the coherence index (CI) (Klingberg et al., 1999),

IVDC has the supplementary favorable quality that it is insensitive to the inherent

eigenvector sign ambiguity (Beg et al., 2007). Below the definition of the IVDC

index is briefly provided.

IVDC is a scatter matrix-based tool (Wang et al., 2008), so let us first recall

what is a scatter matrix. Consider an arbitrary voxel (i, j, k), of the cardiac wall,

and a local ROI that consists of that voxel and its 26 nearest neighbors that span in

the same short-axis slice and the adjacent slices above and below. Then, the scatter

matrix T (i, j, k) (with respect to the primary diffusion eigenvectors) at this voxel

and for this ROI is a symmetric positive semidefinite second-order dyadic tensor

of size 3×3 given by

T (i, j, k) ≡ 1

27

i+1
∑

l=i−1

i+1
∑

m=i−1

i+1
∑

n=i−1

ǫ1(l,m, n)ǫT1 (l,m, n) (12)

where ǫ1(l,m, n) is the major eigenvector at the (l,m, n) voxel. Finally, the IVDC

index is given by

IVDC(i, j, k) ≡
√

(t1 − t)2 + (t2 − t)2 + (t3 − t)2

t
√
6

(13)

where t1 ≡ t1(i, j, k), t2 ≡ t2(i, j, k), t3 ≡ t3(i, j, k) are the eigenvalues of

T (i, j, k) and t ≡ t(i, j, k) is the mean of these eigenvalues. IVDC is normalized

between 0 and 1. A large value of this index at a specific voxel indicates that there

is uniform primary cardiomyocyte orientation distribution in this voxel’s neighbor-

hood (that is the case in tissues with highly coherent cardiomyocyte organization

such as the myocardium). On the other hand, smaller values of IVDC reflect the
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regional loss of primary cardiomyocyte orientation integrity [that could be due to

the presence of noise-induced outliers or disease (disarray)]. The foundation work

for the IVDC definition as a measure of vector angular uniformity may be found in

Bingham (1974).

To assess the extent of the directional regularity restoration achieved by each

distance function, we estimated the relative IVDC changes before and after each of

the three types of averaging.

2.6. Signal to Noise Ratio Dependence of the Operations

We performed simulations to investigate the SNR dependence of the opera-

tions. We synthesized noisy replicates of the original datasets through adding noise

of Rician distribution in the magnitude images (Henkelman, 1985). Four simulated

realizations of various levels of noise were used. We performed the comparison of

the three tensor distance functions for each noisy realization.

2.7. Preservation of Diffusion Tensor Natural Properties by Euclidean Averaging

Linear algebra-based tensor averaging might not preserve the determinant giv-

ing rise to a mean diffusion tensor that: (i) Has a determinant larger than the deter-

minants of the individual tensors (Corouge et al., 2006), and (ii) is substantially

more isotropic than the nonlinear average tensors (Arsigny et al., 2006). This

“swelling-effect” occurs because (contrary to the vector-case, where the linear

averaging of a set of vectors gives the mean event) the linear averaging of a set

of tensors provides both the mean event and the range of present events (Westin

et al., 2002). Even though the determinant preservation requirement is in question

(Pasternak et al., 2010), the extensive discussions about this topic provided us with

a reason to calculate the “swelling-effect” occurrence as it was observed in the

averaging procedure of our real cardiac DT-MRI data.

In addition, it has been argued that by relying on the Euclidean metric to per-

form operations, the positive-definiteness is not always preserved. Motivated by

this statement, we also calculated the number of voxels for which the Euclidean

averaging operation generated negative eigenvalues.

2.8. Statistical Analysis

To test the statistical significance of the differences in the primary cardiomy-

ocyte orientation coherence recovery performance (as well as determinant and de-

gree of isotropy) among the three studied distance functions, we employed the

nonparametric Kruskal-Wallis test (Breslow, 1970). A value of p < 0.05 was con-

sidered to be statistically significant.

All computations described in Section 2 were performed using in-house code

written in Matlab (Mathworks, Natick, MA, USA).

13
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3. Results

The measured SNR values for the datasets of this study are provided in Table 2.

To visualize the extent of the directional regularity restoration achieved by each

distance function, we plotted the logarithmic relative change in IVDC before and

after each of the three types of averaging (Fig. 2 - top). This plot shows that the

three different DT-MRI distance functions tend to provide equivalent results.

Table 2: The measured signal to noise ratio (SNR) values for the datasets of our study.

SNR value

Rat heart 1 80

Rat heart 2 75

Rat heart 3 78

Rat heart 4 85

Rat heart 5 84

To determine whether the primary cardiomyocyte orientation coherence re-

covery performance is indeed the same for the three metrics, we performed the

Kruskal-Wallis test for the IVDC-based comparison results. The outcomes of this

nonparametric test are summarized in the table shown at the bottom of Fig. 2.

This table has columns for the sum of squares (SS), degrees of freedom (df), mean

squares (MS=SS/df), chi-square statistic, and p-value. It is this chi-square statistic

that was actually used to test the null hypothesis that all three metrics perform the

same. The extremely high p-value that was obtained consists a strong indication

that we cannot reject the null hypothesis. Hence, there is no important statistical

difference in the three studied metrics.

To assess whether the results are sensitive to the cardiac wall region, we com-

pared the performance of the Euclidean, AIR, and log-Euclidean tensor distance

functions on 20 short-axis slices of one rat heart of this study. The 20 slices spanned

the whole 3D acquisition volume. The comparison results, shown in Fig. 3, indi-

cate that the three distance functions tend to provide equivalent results, irrespective

of cardiac region.

Regarding the SNR dpendence investigation, and taking into account that the

SNR of the acquired datasets was found to be approximately 80, the synthesized

noisy replicates corresponded to SNR values of 28, 41, 54, and 67. The results

(p-values) of the tensor distance function comparison for each noisy realization are

given in Table 3. It is obvious from these results that the three distance functions

tend to provide equivalent results, irrespective of the noise level.

14
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Figure 2: Top: The directional regularity restoration performance of the Euclidean, log-Euclidean

and AIR distance functions as assessed by the logarithmic relative change in the IVDC index before

and after averaging for the five hearts. Bottom: The results of the Kruskal-Wallis test for the null

hypothesis that the primary cardiomyocyte orientation coherence recovery performance, as assessed

by relying on the IVDC index, is the same for the three distance functions.

Table 3: The results (p-values) of the tensor distance function comparison for each noisy realization.

SNR value p-value

28 0.8781

41 0.8106

54 0.8781

67 0.8781
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Figure 3: The directional regularity restoration performance of the Euclidean (Eucl), log-Euclidean

(logEucl) and affine-incvariant Riemannian (AIR) distance functions as assessed by the logarithmic

relative change in the IVDC index before and after averaging for the five hearts. Results are presented

over 20 short-axis slices of one rat heart of this study. The 20 slices spanned the whole 3D acquisition

volume.

The results of our investigation about the preservation of diffusion tensor nat-

ural properties by Euclidean averaging are described in Table 4, and Figs. 4, 5.

It may be seen there that: (i) Euclidean averaging did not generate any negative

eigenvalues (Table 4). (ii) The percentage of ROI voxels that did not preserve the

determinant of the Euclidean mean ranged between 7.47% and 33.33% for the five

hearts (Table 4). (iii) The determinant of the Euclidean mean at a voxel was almost

always (>99.9%) larger than the determinant of the other two nonlinear means at

the same voxel (Table 4). (iv) The differences in the average determinant among

the three resultant tensor average datasets was insignificant (p=0.7788) (Fig. 4). (v)

The differences in the degree of isotropy among the three resultant tensor average

datasets was insignificant (p=0.5117) (Fig. 5). (vi) The increased determinant of

the Euclidean mean tensor (when compared with the determinants of the two non-

linear mean tensors) at a voxel did not always translate to a more isotropic tensor,

though it happened more often than not (>72%) (Table 4).

4. Discussion

4.1. The Comparison Results

We presented a framework to compare the Euclidean, AIR and log-Euclidean

distance functions using actual high-resolution DT-MRI rat heart data. By per-

forming averaging (which is an operation that is dictated by the distance function)

at the diffusion tensor level of three DT-MRI datasets (that were back-to-back and

identically acquired) from each of five excised and fixed rat hearts, and by apply-

ing the three distance functions, this study sought to shed some more light on the
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Table 4: The results of our investigation about the preservation of diffusion tensor natural properties

by Euclidean averaging.

Heart 1 Heart 2 Heart 3 Heart 4 Heart 5

Number of voxels

where the Euclidean

averaging operation

generated negative

eigenvalues

0 0 0 0 0

Percentage (%) of

voxels at which

detEucl mean was

not preserved

8.83 7.47 2.20 18.97 33.33

Percentage (%) of

voxels at which

detEucl mean >

detAIR mean

99.90 100 100 100 100

Percentage (%) of

voxels at which

detEucl mean >

detLogEucl mean

99.90 100 100 100 100

Percentage (%) of

voxels at which

FAEucl mean <

FAAIR mean

91.78 72.51 97.09 97.38 81.19

Percentage (%) of

voxels at which

FAEucl mean <

FALogEucl mean

92.89 75.97 97.60 98.15 84.05

selection of the most appropriate tensor distance function. To this end, we sought

to ascertain in a quantitative manner the metric that achieved the greatest rectifi-

cation of background noise-induced misaligned principal diffusion eigenvectors.

Primary orientation is a piece of central information carried by the diffusion tensor

data, as well as a main measure affected by disease (Giannakidis et al., 2012). The

comparison performed in this paper showed that the linear and non-linear DT-MRI

functions tend to provide equivalent results (Fig. 2). Hence, we conclude that the

diffusion tensor manifold for cardiac studies is a curved space of almost zero curva-
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Figure 4: Top: The determinant of the Euclidean (left), log-Euclidean (middle) and AIR (right)

resultant tensor average datasets for the five hearts. ROI averages for each heart appear as symmetric

error bars that are centered in the mean value and two standard deviations long. Bottom: The results

of the Kruskal-Wallis test for the null hypothesis that the average determinant is the same for the

three ways of tensor averaging.

ture (Kay, 1988). The results of our study are different from the findings of several

works in the related literature that suggest the superiority of one of the three met-

rics. Moreover, it is worth noting that despite the solid mathematics that underlie

the Riemannian framework, its superiority over the uncomplicated Euclidean and

log-Euclidean frameworks could not be demonstrated here. For equivalent perfor-

mances, the Euclidean and log-Euclidean frameworks offer the advantage of being

much more (∼ 13 times here) computationally inexpensive.

When compared with previous DT-MRI metric comparison studies that used

a different concrete application to assess suitability, this work is unique in that it

combines the following: (i) We provide quantification (by using IVDC) of the rel-

ative performance of each distance function. Thus, our strict formalism allows the

objective comparison of metrics instead of subjective assessment of displays. (ii)

Our comparison tool (IVDC) is not biased. (iii) Our study involved a longitudinal

comparison operation that was carried out on a same-voxel-basis.
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Figure 5: Top: The fractional anisotropy (FA) of the Euclidean (left), log-Euclidean (middle) and

AIR (right) resultant tensor average datasets for the five hearts. ROI averages for each heart appear

as symmetric error bars that are centered in the mean value and two standard deviations long. Bottom:

The results of the Kruskal-Wallis test for the null hypothesis that FA is the same for the three ways

of tensor averaging.

There has been a lot of discussion in the literature about the “swelling effect”

occurrence when performing linear averaging. In this paper, we investigated the

relevance of the Euclidean metric in terms of stability. We found that maybe this

topic is more an academic rather than a practical one (Table 4, Fig. 4, Fig. 5). Also

it is worth noting that the increased determinants of the Euclidean mean tensor

dataset (when compared with the determinants of the log-Euclidean and AIR mean

tensor datasets) did not always translate to a more isotropic tensor distribution,

though it happened more often than not (>72%) (Table 4). It would be reasonable
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to accept that the “swelling effect” occurrence will be more substantial when aver-

aging: (i) Tensors that are different realizations of a tensor in the same voxel and the

individual datasets were obtained at experiments of great variability (for example,

in the imaging parameters). (ii) Tensors that belong to areas of significantly differ-

ent degree of anisotropy. However, great caution should be exerted relative to both

cases described above: (i) One should be very careful when interrelating tensors

obtained at various experiments with different imaging parameters. (ii) One should

avoid performing operations between regions of very different anisotropy degree.

For example, Arsigny et al. (2006) should have refrained from the interpolation

between tensors that belong to the corpus callosum and the adjacent ventricles. It

would be more prudent to apply some pre-segmentation.

This paper did not investigate the effect of experimental parameters such as

the number of diffusion gradients. Instead, we used the gradient scheme proposed

by Papadakis et al. (1999). Papadakis et al. (1999) performed a comparison of

gradient schemes, and the scheme used in our work was that selected as optimal in

the comparison. While there is still some debate (Lebel et al., 2012) as to whether

it is more beneficial to use imaging time to acquire more diffusion directions or

signal averages, we do not believe that the parameter selection would have a large

effect on the relative performance of the tensor distance metrics. In fact, the error

caused by the limited number of gradients is not pertinent to this study, as it is

systematic error (Hsu et al., 2010); the implemented temporal averaging has an

impact only on non-systematic errors, such as the one caused by the background

noise.

In this paper, averaging was performed at the level of diffusion tensors. The

mean estimation procedure may be also applied at the level of diffusion weighted

images, in k-space data, or at the level of diffusion eigenvector fields. However, the

subject of this paper is to compare metrics/distance functions for the 6-dimensional

space of diffusion tensors; the scalar/vector averaging topic and the error propaga-

tion study (Koay et al., 2007) are beyond the scope of this work.

4.2. The Comparison Method

To ensure the proper quantitative comparison of the performances of the three

DT-MRI distance functions, through the results obtained by a primary cardiomy-

ocyte orientation coherence restoration study, a noise-free “gold standard” was

needed. As a rule, it is difficult for one to have the objective reality of the sit-

uation when dealing with real tissue samples. Traditionally, non-destructive DT-

MRI has been validated against histologically reconstructed cardiomyocyte orien-

tations (Hsu et al., 1998), and high resolution non-destructive 3D fast low angle

shot (FLASH) MRI (Bernus et al., 2015). However, the histological validation is

difficult and imperfect. It requires cutting and mounting the histological sections
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which can easily distort the tissue. Subsequent registration of the DT-MRI and

histological data is also difficult. FLASH MRI is also a surrogate measure of car-

diomyocyte orientation. In fact, it can only infer the cardiomyocyte orientation

based on the direction of minimal change in image gradient. Therefore, the ground

truth for this study was accommodated by the related literature. In particular, inva-

sive morphological studies at the cellular level showed (Streeter and Bassett, 1966)

that myocardium is a well-ordered and highly coherent medium. As a matter of

fact, by examining locally the myocardium composition, it was found by Streeter

and Bassett (1966) that the long axes of the myocytes are parallel, thus providing a

systematic and relatively homogeneous primary structure for the aggregates. In ad-

dition, it was revealed by Streeter and Bassett (1966) that the rate, with which the

cardiomyocyte inclination angles change as a function of transmural location, is

continuous and smooth. The conformation of the heart wall cells described above

is a key determinant of the cardiac electromechanics (Roberts et al., 1979).

In this paper, we analyzed the mid-lateral cardiac wall of five rats which were

at an early stage of their life when the heart excision took place. By staying clear

of the posterior and anterior junction areas of the left ventricle wall and the right

ventricle free wall (where cardiomyocyte disarray has been reported (Kuribayashi,

1987)) and also by avoiding noncollinearities in the cardiomyocyte distribution due

to aging (Kuribayashi, 1987), this further enhances the truthfulness of our expecta-

tion that the noise-free “gold-standard” of the studied tissue orientation distribution

is a collinear one.

DT-MRI is highly susceptible to noise with the background signal of the dif-

fusion weighted volumes being the main interference component (Chen and Hsu,

2005; Bao et al., 2009; Hsu et al., 2010).6 The manifestation of this background

signal has its roots in the signal attenuation nature of the diffusion encoding and

the prolonged data acquisition requirement (i.e. a minimum of seven MRI read-

ings is needed) (Chen and Hsu, 2005; Hsu et al., 2010). If one attempts to improve

the spatial resolution (which is equivalent to obtaining larger datasets), this gives a

further boost to the background noise effects due to the unfortunate trade-off (that

DT-MRI is subject to) between spatial resolution and signal to noise ratio (SNR).

The diffusion tensor at each voxel (which is derived by the noisy diffusion weighted

volumes) is typically diagonalized to yield eigenvectors (that indicate the principal

directions of diffusion) and eigenvalues (that are measures of the amount of dif-

fusion along the directions pointed by the respective eigenvectors). Therefore, it

6Other stochasticity sources in DT-MRI entail: (i) The eddy currents following the high demands

placed on the gradient system, and (ii) other sources of systematic error such as deficiencies in the

diffusion encoding scheme and poor diffusion modeling.
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is quite justifiable that the presence of the background noise discussed above has

been accounted (Bao et al., 2009; Basser and Pajevic, 2000; Martin et al., 1999)

for the miscalculation of the eigenvector directions and the magnitude (or, even

worse, the sorting) of the eigenvalues. With respect to the primary eigenvectors

(that are of particular interest in this study), the background noise in the diffusion

weighted volumes causes some of them to have atypical directions. In the case

of cardiac DT-MRI, the background signal results in the microstructure of a few

myocardium regions erroneously appearing as discontinuous (Yang et al., 2011;

Frindel et al., 2009). In fact, there have been proposed few DT-MRI regularization

methods (Frindel et al., 2009; Zhou et al., 2015) that used priors to favor smooth-

ness of local diffusion in highly homogeneous tissues.

In our study, averaging of repetitive DT-MRI acquisitions was employed with a

view to correcting misaligned principal diffusion eigenvectors. In fact, it has been

a common practice (Haacke et al., 1999) (due to simplicity and effectiveness) in

diffusion imaging to increase the accuracy of the estimation of various parame-

ters by performing multiple measurements and then averaging. As an illustration,

averaging of consecutive (and identically acquired) scans was carried out in Sun

et al. (2001), and Skare et al. (2000) with a view to reducing the background noise

influence in the estimation of anisotropy indices.

4.3. Quantitation of Averaging Impact on Tissue Orientation Integrity

We would like to emphasize that the rectification of misaligned (due to noise)

primary eigenvectors in DT-MRI is a topic that has been researched at a fair extent

in the past. A number of sophisticated (and much more time efficient than aver-

aging) techniques based, for example, on partial differential equation anisotropic

filtering (Chen and Hsu, 2005), sparse representation (Bao et al., 2009), and the

variational method (Coulon et al., 2004) have been proposed. In this work, we do

not propose averaging as a means to carry out denoising. We only bring this topic

in the context of DT-MRI distance function selection. However, it has caught the

authors’ attention the fact that while, on one hand, the time averaging for DT-MRI

background noise removal is a task that is carried out heavily by researchers and

scanners (Haacke et al., 1999), on the other hand, the quantitative impact of this

task in specific characteristics (such as tissue orientation integrity) remains largely

uncharacterized. Motivated by this observation, a supplementary contribution of

this paper is the quantification (see Table 5) of the improvement in cardiomyocyte

direction coherence (amongst adjacent voxels) that is achieved by averaging three

(and/or two) back-to-back DT-MRI scans of a rat heart over the individual scans.

From this table it is clear that the IVDC value increases with the number of aver-

ages. A main reason why the averaging impact on primary cardiomyocyte orien-

tation coherence is not larger is that averaging cannot correct systematic errors
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(Haacke et al., 1999). One such source of systematic error is the fact that, in

some voxels, the single tensor model provides a poor modeling for the diffusion

process. To get a better insight into the averaging impact on primary cardiomy-

ocyte orientation coherence discussed above, we also provide images (see Fig. 6)

of the primary eigenvector field. These pinpoint in great detail the realignment of

post-diagonalization diffusion tensor primary eigenvectors with atypical directions

following tensor averaging.

Table 5: Quantification of the averaging impact on the primary cardiomyocyte orientation coherence

as assessed by the IVDC index for one heart of this study. Results are shown when the Log-Euclidean

distance function was used for tensor averaging. Similar results were obtained for the other two

studied distance functions.

IVDC

1st acquisition 0.9585

2nd acquisition 0.9196

3rd acquisition 0.9288

Mean of 1st and 2nd acquisitions 0.9602

Mean of 1st and 3rd acquisitions 0.9617

Mean of 2nd and 3rd acquisitions 0.9463

Mean of all three acquisitions 0.9649

Finally, IVDC could prove a useful quantitative tool for other DT-MRI appli-

cations, where structure-sensitive functions (derived from local orientation similar-

ity) are needed. Such applications are, for example, segmentation (Lenglet et al.,

2006), and interpolation comparison (Yang et al., 2011).

5. Conclusion

The comparison performed in this paper showed that the Euclidean, AIR and

log-Euclidean tensor distance functions tend to provide equivalent results in terms

of primary cardiomyocyte orientation coherence restoration performance. The ten-

sor manifold for cardiac DT-MRI studies is a curved space of almost zero curva-

ture. The results of our study are different from the findings of several works in the

related literature that suggest the superiority of one of the three metrics. Moreover,

it is worth noting that despite the solid mathematics that underlie the Riemannian

framework, its superiority over the uncomplicated Euclidean and log-Euclidean

frameworks could not be demonstrated here. For equivalent performances, the Eu-

clidean and log-Euclidean frameworks offer the advantage of being much more (∼
13 times here) computationally inexpensive.
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Figure 6: (a) Helix angle map, where helix angle is defined (Streeter et al., 1969) as the angle between

the cardiac short-axis plane and the projection of the primary eigenvector onto the epicardial tangent

plane. (b)-(i) Images of the primary eigenvector field, color encoded to the absolute local helix

angle. (b) The whole equatorial short-axis slice. The red sector indicates the zoom-in area (lateral

wall). Remaining images are close-ups that refer to the 1st acquisition (c), 2nd acquisition (d), 3rd

acquisition (e), mean of the 1st and 2nd acquisitions (f), mean of the 1st and 3nd acquisitions (g),

mean of the 2nd and 3rd acquisitions (h), mean of all three acquisitions (i). The tensor averaging

impact is the realignment of some primary eignvectors that had atypical directions due to noise.

Results are shown when the Log-Euclidean distance function was used for tensor averaging. Similar

results were obtained for the other two studied distance functions.
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Finally, the “swelling effect” occurrence following Euclidean averaging was

found to be too unimportant to be worth consideration. Hence, this topic is maybe

more an academic rather than a practical one.

Appendix A. Invariance Properties of the Various Distance Functions

Assume d is a function used to measure distance between two diffusion tensors,

P and Q. Then:

• d is invariant under reflection (or, else, re-ordering) if d(P ,Q) = d(Q,P ).

• d is invariant under rotation if d(P ,Q) = d(STPS,STQS), where S any

orthogonal matrix.

• d is scale invariant if d(P ,Q) = d(βP , βQ), for all β > 0.

• d is invariant under inversion if d(P ,Q) = d(P−1,Q−1).

• d is affine invariant, if d(P ,Q) = d(GTPG,GTQG), where G a general

full rank matrix.

Appendix B. Definition of Matrix Logarithm, Exponential of a Matrix, and

Square Root of a Matrix

Assume W = UDUT is the spectral decomposition of a symmetric positive-

definite matrix W , where U is the orthonormal matrix the columns of which are

the eigenvectors of W , and D = diag(di) is the diagonal matrix of the strictly

positive eigenvalues di of W . Then:

• The exponential of W is exp(W ) ≡
∑

∞

k=0
W

k

k! = Udiag(exp(di))U
T .

• The matrix logarithm is represented by: log(W ) ≡ −
∑

∞

k=1
(I−A)k

k
=

= Udiag(log(di))U
T where I denotes the identity matrix.

• The formula for the square root of W is: W
1

2 ≡ exp
(

1
2 log(W )

)

.
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