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Abstract 58 

Background. Disease models are useful for prospective studies of pathology, for identification of 59 

molecular and cellular mechanisms, for pre-clinical testing of interventions and for validation of 60 

clinical biomarkers. Here we reviewed animal models relevant to vascular cognitive impairment 61 

(VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were 62 

refined by the authors, and subsequently by the scientific committee of a recent conference 63 

(International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited.  64 

Main Body. We included models that mimic VCI-related brain lesions (white matter hypoperfusion 65 

injury, focal ischaemia, cerebral amyloid angiopathy),  or reproduce VCI risk factors (old age, 66 

hypertension, hyperhomocysteinemia, high salt/high fat diet) or reproduce genetic causes of VCI 67 

(CADASIL-causing Notch3 mutations).  68 

Conclusions. We concluded that: 1) translational models may reflect a VCI-relevant pathological 69 

process, while not fully replicating a human disease spectrum; 2) rodent models of VCI are limited 70 

by paucity of white matter; 3) further translational models, and improved cognitive testing 71 

instruments, are required. [162 words] 72 

 73 

Keywords: vascular dementia; vascular cognitive impairment; VCID; experimental models; in vivo 74 

models; translational models 75 

Abbreviations. BCAo: bilateral carotid artery occlusion, BCAS: bilateral carotid artery stenosis, 76 

CAA: cerebral amyloid angiopathy, CBF: cerebral blood flow, CCDS: canine cognitive dysfunction 77 

syndrome, CSST: conceptual Set-Shifting Task, DNMS: delayed non-matching to sample task, 78 

DRST: delayed recognition span task, MCAo: middle cerebral artery occlusion, SHRSP: stroke-79 

prone spontaneously hypertensive rats, SVD: small vessel disease, VCI: vascular cognitive 80 

impairment, WMH: white matter hyperintensities.  81 
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Introduction 82 

 83 

Vascular cognitive impairment (VCI) is a spectrum of clinical disease states [1-4]. These range from 84 

post-stroke mild cognitive impairment or dementia following a large artery stroke, through 85 

“sporadic” small vessel disease, to pure genetic small vessel arteriopathy (CADASIL, CARASIL, 86 

COL4A1/4A2 mutations) [1, 5, 6]. The most common pathology underlying VCI is cerebral small 87 

vessel disease (SVD) which leads to focal lacunar ischaemic infarcts, diffuse white matter lesions, 88 

and small haemorrhages in deep brain areas [3, 4]. These disease states manifest in a spectrum of 89 

cognitive impairments. Further complexity arises, as most clinical dementia in older persons is 90 

likely to be “mixed” as a result of AD combined with vascular pathology [7, 8]. While 91 

characterization of the neuropathological and radiological features of human VCI has improved over 92 

the last two decades (see adjoining articles) the molecular changes that underpin these 93 

characteristics  remain elusive [6].  In VCI we currently lack symptomatic treatment (comparable to 94 

donepezil for AD) and molecular targets (comparable to tau, APP and Aβ).   95 

 96 

Because VCI arises from a spectrum of diseases, no single model will reproduce all pathological and 97 

cognitive features of SVD or VCI [6, 9-12]; see Table 1. Furthermore, as with any animal model for 98 

dementia, the behavioural-cognitive phenotype of any given model can never fully represent human 99 

cognitive deficits. We define a “translational” model as one that impacts on clinical practice [13]. 100 

Therefore, in order to be translational any animal model should reproduce at least one of the 101 

pathological processes in human VCI [6, 12, 14]. A fully translational model would permit: i) 102 

prospective studies of the timescale and the sequence of events, during development of the 103 

pathological process, ii) identification of novel molecular, cellular and physiological mechanisms, 104 

iii) pre-clinical testing of drugs and other interventions, for proof-of-concept studies, iv) pre-clinical 105 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 

6 

 

testing of safety profile of drugs, optimal dosing and time-scale, v) validation of clinical biomarkers 106 

and endpoints, such as radiological or biochemical signatures. Models representing the initiating 107 

factors would allow translation of preventive strategies, whereas models of advanced disease states 108 

allow testing of therapeutic interventions. It is appropriate and timely to seek international accord on 109 

such models [15].  Following a recent NIH-sponsored Alzheimer's Disease-Related Dementias 2016 110 

Summit (https://meetings.ninds.nih.gov/Home/Tab1/11958) recommendation #1 for VCI was to 111 

“Establish new animal models that: (i) reproduce small vessel disease and other key pathogenic 112 

processes thought to result in cognitive impairment; (ii) are easily applicable to both VCID and AD 113 

research for advances in mixed etiology dementias; (iii) address vascular contributions to dementia 114 

via both white matter and grey matter or (iv) include genetic and acquired conditions that are 115 

associated with VCID”.  116 

 117 

Here we review published models relevant to VCI, including rodents and emphasizing larger 118 

species. This review is the result of discussions between experts from 12 laboratories across seven 119 

countries. Relevant systematic reviews are available [10, 12]. 120 

 121 

**** Table 1 near here 122 

 123 

Overview of Experimental Species 124 

Rodents. We have included models of focal ischaemia (middle cerebral artery occlusion, MCAo) 125 

[16-19]  as this is a validated, translational model of cerebrovascular injury. Global hypoperfusion 126 

models include bilateral carotid artery occlusion (BCAo) in rats [20], and bilateral carotid artery 127 

stenosis (BCAS) using wire coils in mice [21, 22]. A refinement of the BCAo protocol employs 128 

constrictor cuffs to give a gradual arterial occlusion over ~1-2 days [20]. These global models 129 
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produce ischaemic white matter lesions, likely reflecting the low baseline perfusion of white matter. 130 

Other pathologies can also occur, including hippocampal cell death, small haemorrhages and 131 

vascular amyloid deposition. Genetic alterations include inbred strains (e.g. SHR, SHRSP) [23-26] 132 

or transgenic manipulations (e.g. Notch3 mutant strains) [27-29]. VCI-relevant animals can also 133 

result from manipulation of risk factors, such as age, hypertension, diabetes mellitus, 134 

hyperhomocysteinemia or high salt-high-fat (“fast food”) diet [14, 25, 26, 30, 31].  135 

 136 

Larger Species. Larger animals have longer natural life span than rodents. Experimental ruminants 137 

(sheep, goats) are predominantly used to simulate acute cerebrovascular pathologies such as 138 

ischaemic stroke [32-34] and cerebral haemorrhage [35]. In domestic dogs, hypercaloric or 139 

unbalanced diet, lack of physical exercise and dyslipidemia are prevalent [36]. As in humans, 140 

hypertension is often observed in older subjects [37] as is cerebral arteriosclerosis [38]. 141 

Consequently, a canine cognitive dysfunction syndrome (CCDS), featuring some clinical aspects of 142 

VCI, has been described, particularly in breeds living long enough (>9 years) to fully develop a 143 

neurological phenotype [39-42]. In cats, less is known about the relation between aging, vascular 144 

pathologies and cognitive decline. Aβ and tau pathologies have been described in cats showing 145 

clinical signs of cognitive decline [43-45]. Hypertension associated with arteriosclerosis, as well as 146 

small, multifocal cerebral haemorrhages, were also reported for felines [46].  147 

 148 

Behavioural paradigms for cognitive assessment in larger species have been reported from specialist 149 

centres for sheep, pigs and cattle [41, 47-51]. The most advanced cognitive abilities are seen in 150 

primates, for which sophisticated cognitive tools have been developed [52, 53]. Dietary 151 

manipulation and hypercaloric diet can decelerate microvascular pathologies and cognitive decline 152 
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in primates [54, 55], without changing lifespan [56]. Nevertheless, physiological aging can take 153 

decades in primates, and studies relevant to VCI may be restricted to specialized colonies [57, 58].  154 

 155 

Large animal models allow clinical neuroimaging without significant limitations in resolution, 156 

acquisition time or data analysis. MRI protocols are now available for dogs [59], cats [60], non-157 

human primates [61-63],  pigs [64, 65] and sheep [66]. MRI (T1, T2, FLAIR) is advantageous for 158 

analysis of tissue volume and lesions [66], as well as for anatomical evaluation of particular brain 159 

areas [67]. Perfusion and diffusion-weighted sequences reveal cerebral blood flow (CBF) dynamics 160 

and vascular permeability [68].  Templates, automatic segmentation and labelling routines for larger 161 

species are essential for studies aiming at quantitative morphometric analysis of MRI and/or PET 162 

images. Automatic labelling and processing routines have been developed for rhesus and 163 

cynomolgus monkeys [61, 69, 70], sheep [67], pigs [71, 72], and dogs [73]. This enables efficient, 164 

observer-independent analysis of grey and white matter regions.   165 

 166 

Method of this review 167 

For each model, expert practitioners used web-based searches and their own expertise to write a 168 

section of the review. All synopses were circulated for editing by all authors, and subsequently by 169 

the scientific committee of an international conference (International Conference on Vascular 170 

Dementia, ICVD2015, Ljubjiana, Slovenia). Only peer-reviewed sources in English were included. 171 

 172 

Ethical statements on animal data presented here. Sheep experiments from which data were derived 173 

(Figure 1) were approved by the responsible authorities for University of Lübeck and University of 174 

Leipzig, Germany (animal protocol numbers TVV33/09, TVV09/11, TVV33/12). Experiments 175 

using monkeys (Figure 2) were approved by the Institutional Animal Care and Use Committee of 176 
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Boston University Medical Center.   All procedures with dogs in Figure 3 were conducted in 177 

accordance with University of Kentucky approved animal protocols (2009-0483) and the NIH 178 

Policy on Humane Care and Use of Laboratory Animals.  179 

 180 

Expert Reviews of Specific Models 181 

 182 

 183 

Large Vessel Ischaemia. Middle Cerebral Artery Occlusion (MCAo) in Rodents  184 

MCAo induces acute focal ischaemia bordered by a partially ischaemic penumbra [74, 75]. While 185 

recovery of sensorimotor function is well-characterised using behavioural tests, there is less 186 

literature on cognitive impairment [76]. Spatial learning, assessed by Y- and T-maze tests, is 187 

hippocampus-dependent but as other regions are also required, including prefrontal cortex and basal 188 

forebrain, these tests are relevant to the MCAo model [77]. Following MCAo, male rats showed 189 

decreased rates of spontaneous alternation compared with sham-operated animals at day 21 post-190 

stroke [78]. At 4 days post-MCAo, male mice spend less time exploring a novel object than sham 191 

animals [79]. Fear-motivated tasks such as passive avoidance have also been used to assess 192 

cognitive impairment after stroke [80]. While passive avoidance is a simple task, it is stressful so 193 

could confound results of other behavioural tests [76]. 194 

 195 

Larger Species: Sheep with Vascular Ischaemic Lesions 196 

Permanent [32] and transient [34] MCAo have been performed in sheep, resulting in well controlled 197 

and reproducible lesion sizes (Figure 1). Histopathological investigations revealed both grey and 198 

white matter changes, including glial scar formation, microglial activation and replacement of the 199 

tissue by new formation of blood vessels and foamy fat cells [33]. Moreover, ovine models have 200 

been successfully employed to test experimental therapeutic paradigms in short term [81] and 201 
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longer-term (up to 7 weeks) approaches [33], during which benefits of single- and multi-mode 202 

imaging protocols became evident.  203 

Figure 1 near here********* 204 

A caveat in this species (and other domestic mammals) is the rete mirabile epidurale rostrale, a 205 

local arborisation within the carotid artery [82]. This often necessitates a transcranial approach for 206 

MCAo. Leaving the trepanation covered only by soft tissue reduces intracranial pressure, which 207 

greatly increases long-term survival. In mild and severe global cerebral ischaemia models in sheep, 208 

it became evident that the basilar artery can contribute a higher proportion of CBF than in humans 209 

[83]. After prior bilateral clamping of both common carotid arteries for 4-30 min, no lesions were 210 

found in brains of sheep subjected to the method for <10 min. Longer duration produced neuronal 211 

changes of several brain regions, similar to those described in other species.  212 

 213 

Primates and Rodents: Chronic Brain Hypoperfusion 214 

With the assumption that reducing CBF is a common feature of VCI [3, 84, 85], the original mouse 215 

BCAS model was developed by placing microcoils on the carotid arteries to induce cerebral 216 

hypoperfusion [86].  While complete ligation of the carotid arteries (i.e. BCAo) substantially 217 

increased mortality, mice can withstand up to 50% BCAS [22, 87].  Monitoring cognitive function 218 

using Y maze, radial arm maze, Barnes maze and Morris water maze has provided robust evidence 219 

that the BCAS model replicates some features of VCI, in particular the deficit of working memory.  220 

In BCAS global CBF drops rather abruptly.  With the same principle as BCAS, ameroid micro-221 

constrictors made of casein (which swells on absorbing water) were placed around the carotid 222 

arteries to provide a more gradual stenosis [20].  Ameroid constrictors have also been applied to 223 

spontaneously hypertensive rats [20].  Further refinements have allowed the development of mice 224 

models which exhibit subcortical infarcts and white matter damage by surgical implantation of an 225 
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ameroid constrictor to the right common carotid artery (CCA) and placement of a microcoil to the 226 

left CCA to induce approximately 50% arterial stenosis.  This is referred to as gradual carotid artery 227 

stenosis (GCAS) [88]. There was gradual reduction of CBF over 28 days, and multiple infarct 228 

damage in right subcortical regions, including the corpus callosum, internal capsule, hippocampal 229 

fimbria, and caudoputamen in 81% of the mice [88, 89].  These hypoperfusion models are discussed 230 

further elsewhere [12].  231 

A baboon (Papio anubis) model evaluates if partial cerebral ischaemia or oligaemia resulting from 232 

reduced blood flow to the brain induces white matter pathology consistent with SVD or AD-like 233 

changes.  The baboon is ideal to relate to AD because it exhibits both amyloid beta and tau 234 

pathology with ageing and carries APOE4 associated with AD pathology.  Adult, male baboons 235 

were subjected to three vessel occlusion (3VO) by complete ligation of the internal carotid arteries 236 

bilaterally, and occlusion of the left vertebral artery.  We have recently reported subcortical and 237 

white matter changes in animals to 28 days after 3VO [90].  This model is useful to evaluate 238 

interventions at various stages and specifically examine the effects of ageing, high fat diet, 239 

hypertension and neuroinflammation.  Ameroid constrictors to replicate a gradual reduction in CBF 240 

may be a future refinement [84, 85]. 241 

 242 

SHRSP with modified diet or hypoperfusion 243 

Hypertensive rat strains can undergo white matter changes [23-26, 91]. SHRSP typically live for 9-244 

12 months before developing ischaemic and haemorrhagic stroke lesions [12, 92]. When a low-245 

protein, high salt diet is given to the SHRSP, lesions and death are accelerated [93].  Starting the diet 246 

after 6 weeks of life leads to haemorrhagic strokes, but delaying the onset of the diet until the 12th 247 

month slows the onset of strokes and allows the damage to the white matter to occur earlier [25]. 248 

The white matter damage results from hypoxic hypoperfusion [94]. In a recent study minocycline, a 249 
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tetracycline derivative with the ability to inhibit matrix metalloproteinases, reduced white matter 250 

damage and reversed the behavioural changes in SHRSP [26]. For more extensive discussion of 251 

SHRSP, see [12, 92]. 252 

 253 

Dietary Induction of Hyperhomocysteinemia 254 

Elevated circulating homocysteine (hyperhomocysteinemia) is caused by a variety of genetic, 255 

physiologic and dietary conditions, which have been extensively studied in rodents [95-98]. These 256 

cause cognitive impairment in ApoE null mice, transgenic mouse models of Alzheimer’s disease, 257 

and wildtype mice and rats [31, 99, 100] with surprisingly little neurodegeneration or inflammation. 258 

Feeding wild type C57BL6J mice a diet deficient in three B-vitamins (folate, B12 and B6) for 10 259 

weeks resulted in hyperhomocysteinemia, microvascular rarefaction and impaired performance in 260 

the Morris water maze [31, 100]. The same dietary regime in APP transgenic mice worsened 261 

cognitive impairment [101], and in combination with excess methionine in dual mutant APP/PS1 262 

mice, the diet induced the redistribution of amyloid from brain parenchyma to the microvasculature 263 

along with micro-haemorrhages, as determined by histology and MRI [30, 102]. In Sprague Dawley 264 

rats, folate-deficiency alone was sufficient to induce homocysteinemia and cognitive impairment, 265 

and to reduce cerebral blood volume and reactivity measured by absolute, non-invasive near infra-266 

red spectroscopy [103-105]. For further discussion of hyperhomocysteinemia models, see [12]. 267 

 268 

Dietary modification can be applied to most species, models and co-morbidities. Caveats are that 269 

dietary models typically have higher variability and more subtle effects than genetic or 270 

pharmacological models. Outcomes are sensitive to dietary formulation and feeding. This 271 

underscores the need for biochemical and metabolic verification of the diet in brain and periphery. 272 

While chronic folate and B12 deficiency in humans causes macrocytic anaemia and 273 
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myeloneuropathy, these outcomes are almost never observed in rodent models. Associations 274 

between microvascular rarefaction and cognitive impairment, in the absence of neurodegenerative 275 

changes, have been observed in other models, including mice fed high fat diet [106], aged rats [107], 276 

and irradiated rats [108].  277 

 278 

Primates with Chronic Hypertension 279 

The basis of this model is the induction of hypertension, by surgical coarctation of thoracic aorta in 280 

the rhesus monkey [52, 109-111]. A segment of the thoracic aorta is mobilized and dissected 281 

without injuring the mediastinal and intercostal branches. The external diameter of the same 282 

segment is measured and then narrowed to luminal diameter of 2.0-2.5 mm (Figure 2).  A pressure 283 

transducer inserted into the femoral artery is advanced through the surgical site. Typically, 284 

systolic/diastolic pressure is 170/100mmHg above the coarctation, and 80/50mmHg (normal for 285 

rhesus monkeys) below.    286 

Given the known effects of chronic hypertension on attention, memory, and executive function in 287 

humans, these domains were assessed in adult primates (5-11 years of age).  The tasks were: (1) 288 

automated task of simple attention: (2) two tasks of memory function, the delayed non-matching to 289 

sample task (DNMS) [112, 113] and the delayed recognition span task (DRST) [114, 115] and (3), a 290 

primate analogue to the Wisconsin Card Sort task, the Conceptual Set-Shifting Task (CSST) [116].  291 

Performance was compared with sham-operated controls that underwent every stage of the surgical 292 

procedures up to, but not including narrowing of the aorta.  Animals with coarctation were grouped 293 

into Borderline (135-150 mmHg) or Hypertensive (>150mmHg). 294 

 295 
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On the task of simple attention in which monkeys are required to select the same target stimulus on 296 

the touch-screen, there was a positive correlation between response time and systolic and mean 297 

blood pressure.  Hypertensive (but not Borderline) animals were significantly impaired relative to 298 

the sham-operated group.  299 

Hypertensive monkeys were impaired on a task that required orienting to, and then responding by 300 

touching, a randomly-presented visual stimulus. Unlike normotensive animals, Hypertensive 301 

monkeys did not benefit from the presentation of a cue that preceded the target stimulus.  The effect 302 

did not appear to be related to motivational state as there was no difference in the number of missed 303 

trials. These findings suggest a reduction in the speed of processing in the stimulus-response chain.  304 

The findings on memory assessment revealed a significant difference among the groups on the 305 

DNMS up to 12 months post-surgery. Hypertensive monkeys re-learned the DNMS task less 306 

efficiently than sham-operated controls (Figure 2). On both the spatial and pattern conditions of the 307 

DRST, the performance of the Hypertensive monkeys was significantly impaired with respect to the 308 

control monkeys suggesting that, in addition to affecting attentional function, hypertension produced 309 

an impairment in “rule learning”.  310 

**** Figure 2 near here 311 

The CSST requires the monkey to establish a cognitive set based on a reward contingency, to 312 

maintain that set for a period of time, and then shift the set as the reward contingency changes. A 313 

subset of Hypertensive monkeys were unimpaired on the initial phase of the CSST (a simple three 314 

choice discrimination). In contrast, Hypertensive monkeys were impaired at abstracting the initial 315 

concept of colour on the CSST and subsequently were impaired when shifted to the concept of 316 

shape, when shifted back to the concept of colour, and again when shifted back to the concept of 317 

shape. The findings from this task suggest that the two groups of monkeys were able to learn a 318 
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stimulus reinforcement contingency at the same rate and that the impairment seen on the CSST is 319 

most likely one of abstraction and cognitive flexibility. 320 

Overall, hypertension significantly influenced higher cognitive function. Blood pressure correlated 321 

with a composite z-score (similar to an I.Q. score), suggesting a direct relationship between BP and 322 

cognition (Figure 2). 323 

Various neuropathologies are seen in this primate model, including tortuous small vessels, 324 

hemosiderin-filled macrophages and, most conspicuously, micro-infarcts in both grey and white 325 

matter [110, 111]. The micro-infarcts are of irregular shape and relatively-uniform size (average 326 

maximum diameter ~ 0.5 mm).  In the grey matter these lesions were characterized by a total loss of 327 

neurons, and in white matter by marked loss of myelinated fibres.  328 

 329 

Larger Species: Aged Canine Model 330 

Aging dogs spontaneously develop cerebrovascular pathology linked to cognitive decline [41, 42] 331 

including cortical atrophy and ventricular enlargement (Figure 3). Cognitive impairment was 332 

evident on measures reflecting learning and memory, and a subset of aged animals became severely 333 

impaired [41, 42]. A strength of the model is that beta-amyloid (Aβ), critically involved with plaque 334 

accumulation and CAA, is very similar in dogs and humans [117-119].  Vascular and perivascular 335 

abnormalities and cerebrovascular Aβ pathology are frequently found in aged dogs [40, 120-124].  336 

Dogs may be a suitable model system in which to examine the consequences of CAA on cognition 337 

[125].  As in humans, canine CAA is associated with cerebral haemorrhage [40, 121],the occipital 338 

cortex being particularly vulnerable [126]. Several environmental manipulations and 339 

pharmacological studies that modify lifestyle factors have been successfully implemented in canine 340 

models, with some showing significant benefits to cognition [41]. Canines have also been used as a 341 
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model for ischaemic stroke. Both FLAIR and T2* (sensitive to hemosiderin) imaging show 342 

significant white matter hyperintensities (WMH) [127]. Loss of white matter integrity may be a 343 

consequence of CAA. For example, dogs ranging from 1-20 years, exhibited a progressive loss of 344 

myelin basic protein, correlated with age and with increasing CAA [128].  345 

Figure 3 near here ******* 346 

The canine brain displays substantial age-associated morphological change [129-131]. Gadolinium-347 

enhanced MRI revealed reduced BBB function with age, as well as reduced cerebrovascular volume 348 

[129]. Characterizing cognitive function in aging dogs requires many months, and treatment studies 349 

may take several years.  In comparison to rodent models, they require significant veterinary care as 350 

they become older.  Radiological outcome measures that reflect in vivo CAA (e.g. SWI scans) have 351 

not yet been published.  352 

 353 

Mouse Models for Monogenic Small Vessel Disease (CADASIL)  354 

CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and 355 

Leukoencephalopathy) is a monogenic archetype for SVD, caused by cysteine-altering missense 356 

mutations in NOTCH3. CADASIL patients develop progressive white matter lesions from early 357 

adulthood, followed by cognitive decline and recurrent subcortical infarctions [132]. Conventional 358 

transgenic murine models, expressing mutant human NOTCH3 from a cDNA construct [133-135] 359 

recapitulate some aspects of CADASIL vascular phenotype (vascular Notch3 accumulation, and 360 

granular osmiophilic material on electron microscopy), see [12, 92]. In only one transgenic model, 361 

with 4-fold overexpression of mutant Notch3, the mice developed disturbed cerebrovascular 362 

reactivity (from 5 months of age), reduced CBF (12 months) and white matter damage (18 months) 363 

[27]. A novel transgenic mouse strain has recently been developed [136], containing genomic 364 
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human NOTCH3. These animals show early-onset vascular Notch3 accumulation (from 6 weeks) 365 

[136]. A knock-in model, made by introducing a mutation in endogenous Notch3, developed a 366 

CADASIL clinical phenotype (20 months of age) [137]. Stroke lesions, microbleeds and motor 367 

deficits were seen only in a minority of mutant mice (5-12%). Despite the fact that cognition has not 368 

yet been characterized in these murine models, they offer a valid patho-genetic representation of 369 

human CADASIL, and may be an important pre-clinical model in which to test VCI therapies for 370 

efficacy. 371 

 372 

 373 

Discussion and Conclusions 374 

 375 
As noted previously [9-11, 14] no experimental model replicates all pathologic and cognitive 376 

aspects of human VCI (see Table 1).  Animal models are useful to reflect a pathological process 377 

(e.g. white matter hypoxia, arterial fibrosis, amyloid accumulation) rather than a human disease. Old 378 

dogs with CCDS, and aged primates (>20 years of age) being possible exceptions, none of the 379 

models discussed here results in a "demented" animal. That said, all the animal models considered 380 

above reproduce at least one of the pathological processes in human VCI. Because the sequence of 381 

events leading from experimental challenge to brain pathology, and so to VCI, can be characterized 382 

in animal models (and interventions imposed), the models may help to identify pathways that lead to 383 

VCI.  As the pathogenesis of SVD, the commonest cause of VCI, remains unknown, a valid model 384 

of SVD-dependent VCI remains a challenge. Making these conceptual and biological limitations 385 

explicit will expedite the development and appropriate use of translational models for VCI.   386 

 387 

There are several general limitations in the extant literature. Most animal studies involve short-term 388 

follow-up (typically, less than 4 weeks). Male animals are generally used, females usually avoided 389 

due to influences of the reproductive cycle.  Few studies have correlated cognitive changes with 390 
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anatomical changes, as seen by pathology or MRI. Most of the available cognitive paradigms are 391 

derived from AD models. Many experimental studies are under-powered (i.e. use a small number of 392 

animals) and few are replicated.  393 

 394 

We have a number of recommendations for the VCI research community. First, it would be 395 

advantageous to increase our knowledge and experience in larger species with more abundant white 396 

matter and gyrencephalic brain anatomy. This is especially important given the central role of white 397 

matter lesions in human VCI. Second, robust neuropsychological methods for assessing VCI in 398 

experimental animals (particularly larger species) would be beneficial. Cognitive impairment (and 399 

recovery) are the most complex aspects of human VCI, and will likely differ between animals and 400 

humans (for example, experimental species lack spoken language). Thus, aspiring to a precise 401 

behavioural replication in an animal may not be possible. Nevertheless, a core toolkit of validated, 402 

reproducible, species-appropriate tests of cognitive phenotype is required. With respect to SVD, 403 

simple behavioural indicators analogous to the key cognitive features of the syndrome in humans 404 

(impaired processing speed, apathy and executive dysfunction) should be welcome. 405 

 406 

Third, progress on translational VCI models will be more rapid if high standards of “Methodological 407 

quality” [15] outlined in ARRIVE guidelines[138] and in previous translational consensus 408 

documents [139, 140] are followed. Specifically, random allocation of animals to experimental 409 

groups and blinded assessment of outcomes was quite rare in earlier studies (pre-2010) [10]. Future 410 

experimental studies should adhere to available guidelines on experimental design, regarding a 411 

priori statistical power calculation, randomization, blinding of observers, and confirmation by at 412 

least two independent laboratories [15, 138-140]. It appears likely that negative outcomes of animal 413 

studies are rarely published. 414 
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 415 

Fourth, as neuroimaging (particularly MRI) has a central role in human VCI, future pre-clinical 416 

studies will be enhanced by brain imaging data. Radiological features (diffuse white matter lesions, 417 

lacunar infarcts) are the main clinical biomarkers of SVD. Hence correlative studies relating MRI to 418 

brain pathology in animals will continue to be informative. 419 

 420 

Experiments using gyrencephalic species may be costly and long in duration, to afford sufficient 421 

statistical power. A possible solution is a step-wise approach that employs rodents to study 422 

fundamental aspects of cerebrovascular disease common to all species, and large animals to study 423 

aspects of VCI that require a large gyrencephalic brain. Extending studies across species will clarify 424 

molecular, cellular and physiological events that lead from vascular disease to neuronal injury and 425 

cognitive dysfunction in humans, and improve the likelihood of achieving new preventive and 426 

therapeutic interventions in VCI. 427 
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 480 

Figure Legends 481 
 482 

Figure 1. Focal ischaemic lesions in ovine brain. 483 

A, adult sheep brain in coronal section. T1-weighted population-averaged brain template (left), 484 

depiction of grey and white matter, as well as cerebrospinal fluid (middle panel, overlay on 485 

template) and surface reconstruction of white (white) and grey matter (yellow) in stereotactic space 486 

(right). Grey and white matter spaces are derived from a priori tissue probability maps.  487 
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B, focal ischaemic lesion, 6h after permanent middle cerebral artery occlusion (MCAO). 488 

Hyperintense area is seen in the left temporal cortex and medulla, in T2-weighted TSE MRI (left-489 

top). In this area, a decreased diffusion in apparent diffusion coefficient maps of diffusion weighted 490 

imaging (DWI-ADC, left-bottom) is visible.  Fractional anisotropy map of diffusion tensor imaging 491 

(DTI-FA, middle panel) reveals a loss of fibre integrity. Following sacrifice and brain removal, the 492 

mitochondrial marker TTC labels living cells (red). The ischaemic lesion is unlabelled by TTC 493 

(right). 494 

 495 

Figure 2. VCI in adult monkeys with surgically-induced chronic hypertension. 496 

A, arteriogram showing surgical coarctation of the thoracic aorta (arrow) in the monkey. 497 

B, delayed non-matching to sample (DNMS) scores for re-acquisition of the basic task. Y-axis: 498 

errors to criterion for Control (sham-operated, black bar) and Hypertensive monkeys (grey bar). 499 

C, delayed recognition span (DRS) test scores. Y-axis: group mean span, for Control (black bars) 500 

and Hypertensive monkeys (grey bars).  501 

D, blood pressure correlates with overall cognitive function. Y-axis: blood pressure (mm Hg). X-502 

axis: cognitive function index. The level of impairment on this index was significantly and linearly 503 

related to both systolic (black symbols, solid line; r=0.80, p<0.005) and diastolic blood pressure 504 

(open symbols, dashed line; r=0.75, p<0.005). Modified from Ref. [52] with permission. 505 

 506 

Figure 3. Structural MRI of canine brains. 507 

Coronal MRI scans (1.5 Tesla) of 4 y, 9 y, and 15 y-old dogs, taken from locations at the level of 508 

thalamus (upper row) and hippocampus (lower row). Older animals show marked increase in 509 

ventricular volume (black arrows) and cortical atrophy, with deep gyri and widened sulci (white 510 

arrows). Three-dimensional images across the whole brain were acquired using a spoiled gradient 511 
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recall (SPGR) sequence to obtain detailed anatomic images. Modified from Ref. [129] with 512 

permission.  513 
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Table 1. Features of VCI, as related to experimental models considered.  

 MCAo 

Rats, mice 

MCAo 

Sheep 

Chronic 

hypo-

perfusion 

Rats, mice 

Chronic 

hypo-

perfusion 

Baboons 

HHCy 

Rats, mice 

Chronic HT: 

SHRSP 

Chronic HT: 

monkeys 

Aged dogs CADASIL 

mice 

Cognitive changes: 

executive function, 

attention, processing 

speed, apathy/reward 

seeking, memory 

decline 

deficits in 

spatial and 

recognition 

memory; 

passive 

avoidance. 

post-stroke 

apathy; 

higher 

cognitive 

function NR 

Working 

memory and 

reference 

memory 

deficits 

NR Impaired 

spatial 

learning, 

working 

memory  

Spatial 

memory 

impaired 

Reduced 

executive 

function, 

attention, 

short-term 

memory 

Executive 

function, 

spatial 

learning and 

memory; 

visuo-

spatial 

function, 

simple 

associative 

learning; 

open field 

activity, 

anxiety, dis-

orientation; 

restlessness 

NR 

Sub-cortical motor 

symptoms: 

Impaired gait, 

balance, posture 

Sensori-

motor 

deficits. 

Severity 

depends on 

lesion size.  

Sensori-

motor 

deficits 

reflecting 

lesion size 

and location 

motor 

deficits on 

rotarod 

(GCAS 

mice). 

No motor 

deficits 

reported for 

NR NA Sensori-

motor 

deficits. 

Severity 

depends on 

lesion type, 

location, 

size 

NA NR Motor 

deficits in 

some aged 

animals   
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BCAS 

Risk factors:  

age, hypertension, 

DM, obesity 

some 

studies: age, 

HT, obesity 

NR HT 

(SHRSP) 

 

NA HHCy 

Co-

morbidities 

e.g. mutant 

APP  

HT, dietary 

risk factors 

(high fat, 

high salt); 

hypo-

perfusion 

HT Age 

(obesity?)  

Notch3 

mutation 

Brain gross 

pathology: atrophy, 

large infarcts.. 

Focal 

ischaemic 

lesion; 

cortical and 

striatal 

Focal 

ischaemic 

lesion; 

atrophy and 

pseudo-cyst 

in chronic 

stage 

NA NA NA Ischaemic 

lesions and 

He; variable 

extent, 

location 

NA Ventricles 

enlarged; 

brain 

atrophy; 

spontaneous 

lesions 

NR  

Brain 

neuropathology: 

Lacunes/micro-Hge, 

micro-bleeds, diffuse 

WML 

Rapid cell 

death in 

ischaemic 

core. 

Leukocyte 

infiltration, 

neuro-

inflammator

y changes. 

Delayed 

damage in 

remote 

areas. 

acute cell 

death in 

core; 

inflammator

y response; 

lepto-

meningeal 

and vascular 

re-

organisation

; delayed 

neuroinflam

matory 

response in 

remote areas 

Diffuse 

WML; 

micro-Hge; 

Impaired 

BBB; 

microglial 

activation; 

Diffuse 

WML; 

microglial 

activation; 

Impaired 

BBB 

Micro-Hge 

in some 

models 

BBB 

changes, 

neuro-

inflammatio

n.  

Diffuse 

WML in 

animals 

with 

UCCAo 

Focal 

micro-

infarcts; No 

diffuse 

WML 

Aβ plaques, 

hippocampa

l neuronal 

loss, gliosis, 

micro-Hge 

WML -  

vacuolisatio

n; focal 

lesions in 

some aged 

animals 
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Small vessel  

changes: 

Arteriolosclerosis, 

BBB dysfunction, 

CAA 

NA NR CAA in 

some 

models 

NA CAA, 

micro-

vascular 

rarefaction; 

BBB 

dysfunction 

in some 

models 

BBB 

dysfunction 

(some 

studies) 

Increased 

tortuosity 

CAA. BBB 

dysfunction 

(on MRI) 

GOM 

deposits, 

impaired 

CVR; BBB 

dysfunction 

(some 

studies) 

 

Clinical and pathological aspects of VCI are summarised in the first column. How selected animal models relate to these is summarised in the succeeding 

columns. 

Abbreviations. BBB: blood-brain-barrier. CVR: cerebrovascular reactivity. GOM: granular osmiophilic material. Hge: haemorrhage. HHCy: 

hyperhomocysteinemia. HT: hypertension. NA: not applicable. NR: not reported. SHRSP: stroke-prone spontaneously hypertensive rats. 

UCCAo: unilateral common carotid artery occlusion. WML: white matter lesions.  

 



Figure 1 Click here to download Figure Hainsworth_Figure 1.tif 

http://www.editorialmanager.com/bmed/download.aspx?id=44017&guid=250e7061-f491-4d52-a5c0-8ec0fc3dec37&scheme=1
http://www.editorialmanager.com/bmed/download.aspx?id=44017&guid=250e7061-f491-4d52-a5c0-8ec0fc3dec37&scheme=1


Figure 2 Click here to download Figure Hainsworth Figure 2.tif 

http://www.editorialmanager.com/bmed/download.aspx?id=44018&guid=cdfc81a5-e64b-41cb-9ffe-db4aa9d8bae2&scheme=1
http://www.editorialmanager.com/bmed/download.aspx?id=44018&guid=cdfc81a5-e64b-41cb-9ffe-db4aa9d8bae2&scheme=1


Figure3 Click here to download Figure Hainsworth Figure 3.tif 

http://www.editorialmanager.com/bmed/download.aspx?id=44019&guid=10aa94e6-064f-4da0-bb77-d5871ff0f441&scheme=1
http://www.editorialmanager.com/bmed/download.aspx?id=44019&guid=10aa94e6-064f-4da0-bb77-d5871ff0f441&scheme=1

