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Abstract

Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon 

nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy 

fabrication route allows deposition of semiconductors or conducting polymers to comprise the 

transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity 

toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to 

give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical 

constituents in the microenvironment of living cells; we monitor their real-time changes in relation 
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to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high 

aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-

FET sensors can detect concentration gradients in three-dimensional space, identify biochemical 

properties of a single living cell, and after cell membrane penetration perform intracellular 

measurements.
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As nanotechnology advances, nanomaterial-based field-effect transistor (FET) sensors 

ensure current amplification while maintaining a high signal-to-noise ratio.1–3 Assembly 

and interfacing of the sensing nanomaterials rely on elaborate nanofabrication protocols.4 

FET biosensors based on conducting polymers, especially poly pyrrole (PPy) sensors are 

advantageous because of the ease of electropolymerization and functionalization,5,6 good 

biocompatibility, and chemical stability.7,8 However, these sensors are restricted by their 

chip-like design exhibiting relatively large (several micrometer) electrode dimensions. These 

have limited their ability to perform highly localized measurements in small volumes, 

especially in biological samples such as individual cells.1,9–11

Carbon-based electrodes showed excellent properties in detecting the characteristics of 

single cells,12 in detection of single nucleotide polymorphisms of DNA, and early diagnosis 

of cancers.13 To reduce the sensor size, our group has recently developed a method to 

rapidly and reliably fabricate nanometer-size dual carbon electrodes (DCEs) by depositing 

pyrolytic carbon into a quartz Θ-nanopipette.14,15 These DCEs can be functionalized and 

combined with SICM control for high resolution chemical sensing and topographical 

imaging of living cells.16–19 However, the weak amperometric signal generated by the 

small analyte volume of these nanometric DCEs is limited by the electronic capabilities of 

commercial current amplifiers. To overcome this weakness, we present a highly sensitive 

PPy FET on the nanometer-scaled tip of the spear-shape DCEs.

Normal cell survival requires the maintenance of a relatively constant extracellular 

microenvironment with a pH value of around 7.4. In contrast, cancer cells function at a 

lower pH level consequent on their intensive respiratory CO2 and lactic acid production.20 

Such extracellular acidity has emerged as a hallmark of cancer cells, which can dramatically 

influence cell proliferation, growth, and apoptosis.21,22 Our newly developed 

nanobiosensors exhibit high sensitivity toward local variations in the pH value and can be 

used to detect the extracellular acidosis of cancer cells.

In response to physiological stimuli cells can release adenosine triphosphate (ATP) in an 

autocrine/paracrine manner. This can interact with a variety of membrane ionotropic P2X or 

G-protein-coupled metabotropic P2Y receptors to affect downstream signaling cascades.23–

25 Given the importance of different P2 receptors sensing changes in local concentrations of 

ATP, detecting ATP gradients in close proximity to the cell surface might enable the 

discovery of previously unrecognized purinergic signaling mechanisms.26 Previous sensing 

approaches relying on liquid chromatography, luciferase assays,25,27–29 amperometry,
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30,31 FET devices32 or the response of cells to ATP itself33 have revealed that cells secrete 

up to micromolar concentrations of ATP. However, neither sensitivity nor spatial resolution 

allows these available sensors either to be accurately positioned or to measure nanomolar 

range changes in the gradient of extracellular ATP locally.

It is well-known that hexokinase catalyzes the addition of phosphate from ATP to glucose, 

which releases one proton per molecule ATP in the glycolysis reaction and can be detected 

by biosensors.34 On the basis of our pH-sensitive PPy-FET, and by modification of the PPy 

channel with hexokinase we present a sensitive ATP nanosensor which due to its spear-shape 

enables the measurement of the extracellular ATP gradient in three dimensions around single 

living cells.

Results

A laser-pulled quartz Θ-capillary simply fabricates a doublebarrel nanopipette. Then, 

pyrolytic decomposition of butane deposits conductive carbon, and produces two 

individually addressable carbon nanoelectrodes, separated by a few nanometer thin glass 

wall14 (Figure 1, Figure 2). Raman spectroscopy is particularly well suited for the 

characterization of carbon materials. The Raman spectrum of our carbon electrodes shows 

the D and G band at 1367 and 1576 cm−1, respectively. This, together with the absence of 

the G′ band indicates that the carbon material is largely graphitic but shows some defects.16 

Our previous study has demonstrated that the geometry of nanoscale dual carbon electrodes 

can be determined precisely by SEM, and their size and working surface can also be 

characterized based on the steady-state limiting current in electrochemical measurements.15 

To generate a field-effect transistor (FET), a semiconducting material is deposited on the 

dual carbon electrode to comprise the channel of the transistor. Then, to create a specific 

FET sensor, biological receptor molecules that recognize or catalytically convert a target 

analyte with high selectivity are immobilized to the sensing transistor channel. We show the 

deposition of PPy, which is anodically electropolymerized by applying a potential sweep up 

to +0.6 V vs Ag/AgCl to both electrodes simultaneously. PPy is deposited as a thin film 

exclusively on the apex of the dual carbon nanoelectrode, as shown by electron microscopy 

(Figure 2). The formed PPy transistor channel has a diameter of about 200 nm.

After electrodeposition of PPy the nanoelectrode tip comprises a fully functional FET with 

the two carbon nanoelectrodes acting as drain and source and the PPy nanojunction as the 

channel (Figure 3). The drain–source current is linearly dependent on the applied drain–

source voltage (typically held at 5 mV) (Supplementary Figure 2a) and can be reversibly 

switched by applying different gate voltages with respect to an external Ag/AgCl electrode 

(Figure 3b).

When the potential is below −0.2 V, the PPy is reduced, and hence the junction becomes 

insulating and the source–drain current vanishes. Upon applying more anodic potential the 

PPy channel is oxidized and becomes conductive due to the insertion of positive charge 

carriers into the polymer backbone. The small faradaic “leakage” current passed into the 

transistor gate to oxidize/reduce the PPy is negligibly small compared to the drain–source 

current passing through the PPy channel (Supplementary Figure 2b,c). The large and robust 

Zhang et al. Page 3

ACS Nano. Author manuscript; available in PMC 2016 July 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



drain–source current signal ensures a high signal-to-noise ratio. Moreover, the drain–source 

current is strongly dependent on the pH value, turning the PPy nano-FET into a sensitive pH 

sensor.

As described earlier,35 the protonation of pyrrolic nitrogen in the PPy nanojunction has two 

effects: First, a general increase of conductance is observed which leads to higher drain–

source currents. Second, a shift in the I–VG curve is observed due to the electrical potential 

change induced by proton accumulation/depletion at different pH values that adds to the 

externally applied gate voltage (Figure 3b–d). Current–voltage curves normalized by the 

peak current show a voltage shift of 51 mV per pH unit, close to the value of 59 mV 

predicted for Nernstian behavior (Figure 3d). Alternatively, pH measurements can be 

performed reliably by extracting either IDS at the current peak or IDS averaged over the full 

I–VG curve. The calibration curves of either the average or the peak value of drain–source 

currents exhibit linear sensitivity toward the proton concentration (Figure 3c). Instead of 

continuously sweeping the gate voltage, the PPy nano-FET can also be employed at a 

constant gate voltage; however, with slightly nonlinear distortions of the calibration curve 

(Supplementary Figure 3).

pH-sensitive probes are fabricated with a high success rate of about 90% including the initial 

pulling step. Because of the probes’ high sensitivity and small tip dimensions it becomes 

possible to follow small pH changes (≈ 0.1 pH units) when investigating the local pH around 

cancer cells and in tumor tissue. The corresponding pH calibration shows a linear 

dependence of the drain–source current on the pH value in the physiologically relevant range 

from pH 5 to pH 7.5 (Figure 3f). The sensitivity toward protons, expressed as 1/G0·ΔG/ΔpH, 

with the conductance G = IDS/VDS and G0 the conductance at pH 7 amounts to −0.5 ± 0.1 

pH−1 in the linear range. The sensor has a response time of a few seconds which is 

sufficiently fast to track pH changes when moved in the vicinity of cells. When the FET 

probe approaches a sample of breast tumor tissue, it monitors pH changes in real-time 

(Figure 3g). The measured value of pH is 6.2 when the sensor is inserted into the tissue, 

compared to pH 6.7 measured outside of the tissue. This difference reflects the acidification 

characteristic of tumors.20

Melanocytes are pigment-producing cells in human skin and also the cells that become 

cancerous in malignant melanoma. Early detection of melanoma is critical to avoid 

disfiguring, function impairing, or life threatening consequences. Compared to normal 

melanocytes, melanoma cells can acidify their extracellular environment because of high 

glucose uptake rates, increased glycolysis, and the accumulation of lactic acid.36,37 As 

expected, a pH decrease in the microenvironment of cells was only detected in a cluster of 

cultured melanoma cells (Figure 3h) but not in normal melanocytes (Supplementary Figure 

4a). In the confined space of the melanoma cluster a pH change from 7.0 to 6.3 is detected. 

In these experiments, prior to insertion of the sensor into the cluster, the cluster was formed 

by moving and gathering cells using the FET probe as a manipulation tool. In contrast, there 

is no noticeable sensor response when the probe approaches a single isolated melanoma cell 

(Figure 3i). Presumably, significant amounts of extracellular protons are only accumulated if 

cells are located in a confined space obstructing the rapid diffusion of protons away from 

their source.38
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The pH-sensitivity of the PPy-gated FET can be exploited for numerous detection schemes 

to detect analytes other than protons if a chemical conversion of the analyte is translated into 

a pH change. As an example, the assembly of a glucose nanobiosensor exploiting the pH 

change via biocatalytically generated gluconic acid from glucose oxidase8 is provided in 

Supplementary Figure 7.

To demonstrate the possibility of making a sensor for ATP, hexokinase is added to the 

solution and the pH-sensitive PPy nano-FET responds to changes in the concentration of 

ATP (Supplementary Figure 5). Hexokinase cleaves ATP by transferring a phosphate group 

to its substrate glucose and releases stoichiometric amounts of protons (Figure 4a). When 

the nano-FET is placed in a Petri dish containing melanoma cells and hexokinase is added, 

ATP released from the cells is detected exploiting the pH change caused by hexokinase 

activity (Supplementary Figure 5b,c). The ATP concentration found in the cell dish amounts 

to approximately 10 µM. To avoid global pH changes generated by ATP cleavage in the bulk 

solution that might affect cell viability, the enzyme is locally attached to the tip of the nano-

FET sensor (Figure 4a). After treating the PPy-modified probe with glutaraldehyde to 

facilitate protein immobilization, the pipet is immersed into a solution of hexokinase. The 

success rate for immobilization of hexokinase is about 80%, rendering an overall efficiency 

of about 70% to yield highly ATP-sensitive FETs from the initial nanopipettes. The 

hexokinase-modified nano-FET shows high sensitivity toward the presence of ATP (Figure 4 

b). As expected, the drain–source current increases with increasing ATP concentration due to 

the local production of protons by hexokinase. The probe is capable of detecting ATP 

concentrations down to a limit of detection (LOD) of 10 nM (i.e., the signal at 10 nM is 

larger than the blank signal + 3 standard deviations). The drain–source current linearly 

changes with the logarithm of ATP concentration with a sensitivity 1/G0·ΔG/Δ log cATP, of 

0.3 ± 0.2 per decade of ATP concentration, with G0 being the conductance in the absence of 

ATP. For concentrations higher than 10 µM, the calibration deviates from the linear trend 

(Figure 4b, bottom panel). The hexokinase-modified nano-FET sensor is a powerful tool to 

both measure the released ATP gradients from cells and also follow their temporal changes. 

When the sensor is immersed into a dish containing melanoma cells, the drain-source 

current rapidly rises due to the release of ATP from the cells into the solution (Figure 4c). A 

bare PPy nano-FET probe not modified with hexokinase on the other hand does not record 

any changes in drain–source current and thus indicates that the pH value in the solution is 

constant. The ATP sensor is then placed intermittently over a group of melanoma cells and 

over a spot which is not populated by cells and the probe is quickly moved laterally back and 

forth between the two positions. The corresponding trace of drain–source current shows two 

distinct slopes of the increase of ATP concentration. Closer to the source of ATP, that is, 

over the group of cells the rise rate of the ATP concentration is approximately six times 

faster than over the empty spot, illustrating that the nano-FET permits the identification of 

sources of local ATP release.

Moreover, a nano-FET probe vertically approached to a single melanoma cell is capable of 

detecting ATP concentration gradients in space (Figure 4d). It is important to note that the 

bare PPy probe without hexokinase detected no pH change while approaching the cell 

(Figure 4c and Supplementary Figure 4). Also, no interference by any other constituent of 

the complex biological matrix surrounding the cells is observed. The drain-source current 
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signal attributed to the ATP concentration on the other hand precisely mirrors the 

movements of the probe toward the melanoma cell and its retraction (Supplementary Figure 

6). Elevated ATP concentrations are found in close proximity of the melanoma cell while in 

the bulk solution less ATP is present. In addition to the spatial variations, the sensor records 

a gradual increase of ATP concentration in time on account of the continuous release of ATP 

from the melanoma cells in the dish. Even though the sensor was approached to an isolated 

single melanoma cell, the elevated ATP level remote from the cell is assumed to be partially 

caused as well by neighboring cells whose diffusion layers overlap after extended periods of 

time. Finally, the ATP concentration reaches more than 10 µM over a large distance and 

several tens of µM in proximity to the melanoma cell (Figure 4d).

In a similar fashion the spearhead nano-FET is used to determine the ATP gradient 

originating from a single cardiomyocyte (Figure 4e). Here, submicromolar levels are found 

in the distance, and several µM are recorded close to the cardiomyocyte. Again, it is 

important to note that no pH change or other interference was detected with the nano-FET 

probe not modified with hexokinase (Supplementary Figure 4). Additionally, the probe 

proves to be a valuable tool to monitor ATP release as a response to cell stress caused by 

mechanical stimulation or hypo-osmolarity in the surrounding medium (Figure 4f). Upon 

touching the cell with the probe and decreasing the osmolarity by 20% distinct elevated 

levels of locally released ATP are detected instantaneously. Owing to its small dimensions, 

the FET probe may finally be used for intracellular measurements (Figure 4g). Inserting the 

sensor into a cardiomyocyte results in a jump of drain–source current by virtue of the sudden 

shift in potential applied to the PPy channel when the probe faces the additional negative 

contribution of the membrane potential. Shortly after, an increase in drain–source current is 

recorded, presumably as a result of the high intracellular ATP level.

Discussion

Compared to amperometric nanoelectrodes, FET nanodevices allow real-time monitoring of 

physiological information with higher sensitivity due to their intrinsic amplification 

capabilities and high signal-to-noise ratio. However, their fabrication requires complex 

protocols to place the sensing nanomaterial between the source and drain contacts. To reduce 

electro-chemical noise, these contacts then have to be well isolated. Moreover, the large 

electrode size makes their local access to biological samples such as a single cell a 

continuing challenge.11,38,42 Table 1 summarizes current strategies employing FET-based 

devices to obtain physiological information from single cells. Nanometric DCEs with two 

individually addressable electrodes have been readily manufactured by our group at low 

cost.18 These provide an effective platform with which to create novel FET nanobiosensors 

by generating a semiconductor link between two adjacent electrodes exposed at the tip of the 

spear-shaped nanopipette.

To demonstrate these capabilities we have used PPy, a conducting polymer that exhibits 

outstanding performance as a nanomaterial in a wide variety of sensing applications.5,6,35 

Functional and sensitive PPy-FETs are obtained with a high success rate. The sensors have a 

sensitivity of 51 mV/pH, a linear working range from pH 2.4 to pH 7.5 and an average 

response time of a few seconds, which are typical values for polymer-based pH sensors.43 
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The high aspect ratio of these sensors allows accurate positioning in pericellular 

microenvironments and performing local measurements with minimal disruption to the 

biological milieu.1,9,10

An inverted pH gradient across the cell membrane is a typical feature of cancer cells which 

are characterized by extracellular acidosis that favors tumor progression and metastasis.

21,22 For example, early detection of melanoma is critical to avoid disfiguring, function 

impairing, or life threatening consequences. Compared with normal melanocytes, melanoma 

cells adapted to grow under hypoxic conditions and shared a common phenotype by 

acidification of their extracellular milieu,36,37 which can be distinguished by our 

nanobiosensor. Moreover, tumors are heterogeneous and monitoring pH within a tumor is 

likely to be of value in the early diagnosis and identification of appropriate treatments.44 

Our nanobiosensor is proved as an accurate pH sensor and allows real-time monitoring of 

extracellular acidity in the microenvironment of cancer cells and tissues, which can be 

applied in early detection and treatment of cancers.

The extracellular ATP concentration is a key biochemical constituent of the 

microenvironment of both tumors and cardiac cells. It is well-known that hypoxia causes 

ATP release acting via purinoceptors.23,45 Cardiac myocytes, melanoma and many other 

cells have also been reported to release ATP in response to mechanical disturbance and 

osmotic stress.23,26,33 Our PPy-FET probes can be easily functionalized to make an ATP 

nanobiosensor through binding hexokinase to the PPy channel. The resulting nano-FET 

probe is capable of detecting ATP concentrations down to 10 nM. The sensitivity may be 

even further increased by optimizing the binding efficiency and activity of the ATP-detecting 

enzyme.46 Because of its small dimensions and its spear-like design the nanobiosensor can 

identify micrometric hotspots of ATP secretion and even measure the release of ATP from a 

single cardiomyocyte in response to mechanical and osmotic stress. The measurement is not 

affected by any interferents in the complex biological environment. Moreover, the 

nanobiosensor is capable of measuring the ATP concentration gradient of different 

pericellular spaces where ATP levels easily reach tens of micromolars. Similar extracellular 

ATP concentrations have been observed previously from neonatal cardiac myocytes.33 Even 

higher levels, in the hundred micromolar range, have been found in the human melanoma 

microenvironment.27

In localized measurements, the distance of the detecting device to the probed cells is closely 

related to the measured analyte concentration. To achieve absolute measurements, precise 

distance control is necessary. We envisage the use of multiple-barrel nanopipettes47 to 

approach the nanobiosensor to about 100 nm from the cell surface under the feedback 

control of SICM. ATP release can be measured in close proximity to the cell without 

disturbance and with subcellular resolution enabling high resolution chemical imaging. 

However, yet the response time of a few seconds precludes the use of the sensors in fast 

scanning probe protocols and thus needs further optimization. Such real-time local detection 

of ATP release and its gradient at the single-cell level could be beneficial in the 

understanding of cancer cell metabolism in heterogeneous tumor populations. Efforts to 

employ others of the myriad of nanomaterials exhibiting semiconducting properties that give 

rise to viable FET sensors3–5 are currently ongoing in our laboratories. Additionally, we 

Zhang et al. Page 7

ACS Nano. Author manuscript; available in PMC 2016 July 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



show the possibility to insert the nanometric FET device into a cell for performing 

intracellular measurements. In the future, after carefully assessing possible interferences in 

the complex cytosolic matrix, applications may be expanded to the detection of substances 

whose presence is restricted to the intracellular space. Overall, we expect that the small 

dimensions of the probe combined with high sensitivity and selectivity will allow spearhead 

FETs to become powerful tools for the analysis of the pericellular and intracellular 

environment of living cells.

Methods

Chemical Reagents

All chemicals used were of analytical grade.

Fabrication of Nanopipettes

Nanopipettes were fabricated as previously published by our laboratory.16,19 Briefly, 

double barrel quartz theta (o.d., 1.2 mm, i.d., 0.9 mm, Intracell) capillaries were pulled with 

a P-2000 laser puller (Sutter Instrument) using the following parameters for approximately 

30 nm apparent radius nanoelectrodes: heat 790, filament 3, velocity 45, delay 130, and pull 

90. As described previously,14,15,18 the nanopipettes were filled with propane/butane and 

heated under inert atmosphere in a butane flame to decompose the carbon gas and yield 

pyrolytic carbon inside the nanopipettes. The entire fabrication process takes about 1 min 

per electrode. The size and quality of nanoelectrodes was assessed from the steady-state 

current during a CV in 1 mM ferrocenemethanol (Sigma-Aldrich) and 0.1 M KCl 

(Supplementary Figure 1). Only electrodes exhibiting a steady-state current smaller than 30 

pA were used.

Electrical/Electrochemical Measurements

Two wires were inserted into each barrel to make a connection with the carbon and thus 

connect the drain and source electrode. A Ag/AgCl electrode was placed in solution acting 

as a pseudoreference electrode. All electrochemical potentials and gate voltages are quoted 

against this electrode in the corresponding solution. Both electrodes were connected to an 

Axopatch 700B amplifier with the DigiData 1322A digitizer (Molecular Devices), and a PC 

equipped with pClamp10 software (Molecular Devices). For measurements on the FET, 

voltages of a few millivolts, typically 5 mV, were applied between drain and source. For all 

measurements on cells and the associated calibrations the gate voltage was swept between 

−0.3 and 0.3 V and drain–source current was continuously measured. To extract single 

drain–source current values those i–V curves were averaged and each value represents one 

cycle. pH calibrations were made by adding small amounts from a 0.1 M HCl stock to a 

solution of 120 mM NaCl, 5 mM KCl, 5 mM MgCl2, and 12 mM phosphate buffer pH 7.4. 

The maximal concentration of added Cl− did not exceed 20 mM, which has only a negligible 

effect on the behavior of the nano-PPy-FET (Supplementary Figure 2d). When moving from 

135 mM to 155 mM Cl−, the shift of the electrode potential of the Ag/AgCl pseudoreference 

according to the Nernst equation is less than 4 mV and thus has no significant effect on the 

gate voltage.
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Fabrication of Nanopipette FETs

Pyrrole was used as received and stored under argon atmosphere. Polypyrrole was deposited 

by sweeping the potential of both carbon electrodes between −0.3 and 0.6 V vs Ag/AgCl in 

a deaerated solution of 0.5 M pyrrole (Sigma-Aldrich), 0.2 M lithium perchlorate (Sigma-

Aldrich), and 0.1 M perchloric acid (Sigma-Aldrich) in water. Electrochemical current was 

continuously measured during the electrodeposition in order to monitor the growth of PPy 

on each electrode. To detect the formation of a bridge between the two carbon electrodes a 

small drain–source voltage was already applied and as soon as a significant drain–source 

current occurred the deposition was stopped. Before usage all FET sensors were cycled 

between −0.3 and 0.3 V in 0.1 M HCl until a stable I–V curve was obtained. Every sensor 

was calibrated for pH in phosphate buffered solutions.

Focused Ion Beam Milling and SEM Imaging

FETs were cut to a desired length, mounted on sample stubs and coated with 10 nm of 

chromium in a sputter coater on all sides (Q150T S Quorum). Transistors were imaged using 

a FIB-SEM (Cross Beam Workstation Auriga, Carl Zeiss). Tips of transistors were located 

using secondary electron imaging with an accelerating voltage of 5 keV. The FET tip was 

milled using a milling current of 200 pA at a working distance of 5 mm. Sections of 10 nm 

were ion milled and imaged by SEM with a 5 keV acceleration, using a secondary electron 

in-lens detector.

Attachment of Hexokinase

Nano-FETs were immersed into a solution of 25% glutaraldehyde in water (Sigma-Aldrich) 

for at least 30 min while continuously sweeping the gate voltage and monitoring drain–

source current. Afterward, also monitoring transistor performance, the probe was dipped into 

a solution of 500 U/mL hexokinase and glucose-6-phosphate dehydrogenase from S. 
cerevisiae (Sigma-Aldrich) for at least 30 min.

Measurements on Living Cells

pH and ATP measurements to investigate cells/tissues were performed in unbuffered media 

containing 120 mM NaCl, 5 mM KCl, 5 mM MgCl2, and 20 mM glucose in the case of ATP 

measurements. Prior to cell measurements, each ATP sensor was calibrated using a pH 

adjusted solution of adenosine 5′-triphosphate disodium salt hydrate (Sigma-Aldrich) in the 

same medium used for ATP measurements on cells. The SICM setup used for positioning of 

the nanobiosensor was described elsewhere.18 Movements of the sensors with respect to cell 

specimens were performed using stepper motors. The measured distance from cells is the 

position of the motor with respect to the point of closest approach shortly before touching 

the cell with the probe.

Cell Culture

The human malignant melanoma cell line A375 M and human immortal melanocyte cell line 

Hermes 3A were all obtained from the Wellcome Trust Functional Genomics Cell Bank (St 

George’s, University of London, UK). Cell culture medium and reagents were purchased 

from Sigma-Aldrich. Melanoma cells were grown in RPMI 1640 medium with 10% fetal 

Zhang et al. Page 9

ACS Nano. Author manuscript; available in PMC 2016 July 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



calf serum and supplemented with L-glutamine (2 mM), penicillin (100 U per mL), and 

streptomycin (100 µg per mL). Melanocytes were grown in RPMI 1640 medium 

supplemented with fetal calf serum (10%), 12-0-tetradecanoyl phorbol acetate (200 nM), 

cholera toxin (200 pM), human stem cell factor (10 ng/mL) and endothelin 1 (10 nM). Cells 

were kept in a 10% CO2 incubator at 37 °C and were subcultured at 75% confluence.

Isolation of Rat Ventricular Myocyte

The investigation conforms to the Guide for the Care and Use of Laboratory Animals 

published by the US National Institutes of Health (NIH Publication No. 85-23, revised 

1996). Cardiac myocytes from adult rats were isolated as previously described.48 Briefly, 

male Sprague–Dawley rats were heparinized, killed by cervical dislocation, and the heart 

was rapidly excised and placed in ice-cold Krebs–Henseleit (KH) solution of composition 

(mM): NaCl, 119; KCl, 4.7; MgSO4, 0.94; KH2PO4, 1.2; NaHCO3, 25; glucose, 11.5; 

CaCl2, 1; and equilibrated to pH 7.4 with 95% O2/5% CO2. A Langendorff perfusion 

method was used and the interventricular septum with the left ventricle was cut and shaken 

in 100% O2 enzyme-containing solution for 5 min. The supernatant was centrifuged at 400 g 

for 1 min at room temperature. Cells were washed and resuspended in the solution with 200 

µmol/L calcium.

Breast Cancer Tissue Sample Preparation

The samples were retrieved from patients undergoing mastectomy for primary breast cancer. 

All patients had consented under the Imperial College Tissue Bank Ethics 12/WA/0996 

using the Imperial College Tissue Bank and Imperial College Healthcare NHS Trust Consent 

Form, following consultation with a health professional and being given the opportunity to 

read the Imperial College Tissue Bank Patient Information Sheet for the Use of Left Over 

Tissue. The samples were cut from the fresh specimen of tumor by the histopathologist and 

immediately placed in Eagle’s medium and kept at 4 ° C until the experiment was ready to 

be performed.

Supporting Information

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A nanometer-scale field-effect-transistor is created by depositing a thin layer of 
semiconductor material on the tip of spear-shaped dual carbon nanoelectrodes fabricated by 
pyrolytic decomposition of butane inside Θ-nanopipettes. The two individually addressable 
electrodes serve as drain and source. Immobilising suitable recognition biomolecules on the 
semiconductor transistor channel yields selective FET biosensors.
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Figure 2. PPy forms the transistor channel of a spearhead nano-FET on dual carbon electrodes. 
SEM images of spearhead FETs in different magnification (a–c). Series of cross-section images 
taken at different stages during FIB milling to assess the thickness of the PPy deposit (d).
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Figure 3. A spearhead nano-FET made by deposition of polypyrrole to comprise the channel (a) 
works as a highly sensitive pH biosensor. From I–VG curves (b) changes in pH value can be 
measured as change of average drain–source current or drain–source peak currents (c) as well as 
shift in gate voltage (d). The pH-sensitive PPy nano-FET is applied to measure the local pH in 
the microenvironment of cell samples (e). Prior to cell measurements the PPy nano-FET is 
calibrated with physiological pH variations from 5 to 7.5 (f). Local pH measurements by 
alternating vertical approach and withdrawal of the PPy nano-FET probe to breast cancer tissue 
(g), a cluster of melanoma cells (h), and a single melanoma cell (i).
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Figure 4. PPy nano-FET probe detects pH changes caused by hexokinase to perform highly 
localized ATP measurements for cell analysis. Immobilizing hexokinase to the tip of the probe 
creates a highly sensitive biosensor (a). Calibration curves are shown for two individual sensors, 
black-dot traces show the control experiment of a nano-FET not modified with hexokinase (b). 
Real-time ATP measurements over a nonpopulated spot and a group of melanoma cells 
demonstrate the high rate of ATP release from the cells (c). ATP gradients released from an 
isolated melanoma cell are measured by vertical approach of the sensor (d). Localized ATP 
measurements are also performed on a single cardiomyocyte (e–g). The cardiomyocyte produces 
a vertical gradient from its proximate microenvironment into the bulk solution (e). Additional 
ATP release is induced by touching the cell with the sensor and adding water to the solution to 
create osmotic stress (f). The probe allows for penetration into the cardiomyocyte (g).
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Table 1
Current FET Sensor Technologies for Physiological Parameter Measurements at Single 
Cells

FET design measured quantities nanometric FET

used for 
intracellular 

measurements

used for 
extracellular 

analyte mapping ref

flat Si channel electric potential no no no 39

free-standing kinked Si 
nanowire

electric potential yes yes no 1

upright SiO2 nanotube branch 
on top of a nanoscale FET

electric potential yes yes no 40

gold-coated pipet with carbon 
nanotube network as channel

Ca2+ concentration (range 100 
pM–1 mM)

yes yes no 41

PPy on dual carbon 
nanoelectrode

pH (range 1–7.5) ATP 
concentration (range 10 nM–1 
mM)

yes yes yes this work
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