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KLB is associated with alcohol drinking, and its gene product β-klotho is 

necessary for FGF21 regulation of alcohol preference
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Alcohol drinking is a major public health problem worldwide. We conducted a genome-

wide association meta-analysis and replication study among 105,898 individuals of European

ancestry, and identify a novel locus associated with alcohol consumption in β-Klotho (KLB)

(rs11940694; P=9.2x10-12), a component of Fibroblast-Growth-Factor-Receptors for

FGF19/21. We show genotype-dependent alcohol preference in klb brain-specific knock-out

mice compared with controls, and demonstrate that the effect of FGF21 on alcohol drinking

depends on β-Klotho.  

Alcohol drinking is a major public health problem worldwide causing an estimated 3.3 million

deaths in 20121. Much of the behavioral research associated with alcohol has focused on dependent

patients. However, the burden of alcohol associated disease largely reflects the amount of alcohol

consumption in a population, not alcohol dependence2; it has long been recognized that small shifts

in the mean of a continuously distributed behavior such as alcohol drinking can have major public

health benefits3. For example, a shift from heavy to moderate drinking could have beneficial effects

on cardiovascular disease risk4.

Alcohol drinking is a heritable complex trait5. Genetic variants in the alcohol and aldehyde-

dehydrogenase gene family (ADH/ALDH) can result in alcohol intolerance mediated by peripheral

metabolism of alcohol. However, genetic influences on brain functions affecting drinking behavior

have been more difficult to detect because, like for many complex traits, the effect of individual

genes is small, so large sample sizes are required to detect the genetic signal6. Here we report a

genome-wide association (GWAS) and replication study of over 100,000 individuals of European
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descent and functional characterization in a mouse knock-out. We identify a variant in a novel

gene in a pathway previously described to regulate macronutrient preference. We then functionally

characterize this pathway in a knock-out mouse model.

We carried out GWAS of quantitative data on alcohol intake among up to 70,460 individuals

(60.9% women) of European descent from 30 cohorts. We followed up the most significantly

associated SNPs (6 sentinel SNPs P<1.0x10-6 from independent regions) among up to 35,438

individuals from 14 additional cohorts (see Supplementary Note and Supplementary Table 1). We

analyzed both continuous data on daily alcohol intake in drinkers (g/day, log transformed) and a

dichotomous variable of heavy vs light or no drinking (see Online Methods and Supplementary

Table 1). Average alcohol intake in drinkers across the samples was 14.0 g/day in males and 6.0

g/day in females. We performed per cohort sex-specific and combined-sex single SNP regression

analyses under an additive genetic model, and conducted meta-analysis across the sex-specific

strata and cohorts using an inverse variance weighted fixed effects model.

Results of the primary GWAS for log g/day alcohol are shown in Table 1, Supplementary

Figure 1, and Supplementary Table 2A. We identified five SNPs for replication at P<1x10-6

(Supplementary Table 2A). In addition to rs10950202 in AUTS2 (P=2.9x10-7), we took forward

SNP rs6943555 in AUTS2 (P=1.4x10-4) which was previously reported in relation to alcohol

drinking6. Combining discovery and replication data, we report genome-wide significance for SNP

rs11940694 (A/G) in KLB (P=9.2x10-12) (Table1, Supplementary Figure 2), for which the minor

allele A was associated with reduced drinking. In the dichotomous analysis primary GWAS
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(Supplementary Table 2B), we took forward two SNPs for replication, but neither replicated

(Supplementary Table 3).

KLB is localized on human chromosome 4p14 and encodes a transmembrane protein,

 lotho, which is an essential component of oligomeric receptors for FGF19 and FGF217,8.

 lotho is abundantly expressed in liver and adipose tissue, and is also expressed in discrete

regions of the brain9. In mice FGF15 (homologue of FGF19) is expressed at high levels in the

brain during embryogenesis and has been shown to promote neurogenesis and early brain structural

development10,11. In adult mice, FGF21 is secreted from the liver in response to nutritional stress

such as starvation and high-carbohydrate diets and acts co-ordinately on multiple tissues, including

the brain, to regulate metabolism and related behaviors7,8. Among its actions, FGF21 suppresses

sweet preference by acting on the brain12,13. FGF21 has been associated with macronutrient

preference in man14.

SNP rs11940694 is localized in intron 1 of the KLB gene. We found no association of

rs11940694 with gene expression in peripheral blood of 5,236 participants of the Framingham

study15 (Supplementary Table 4).

To examine whether β-Klotho affects alcohol drinking in mice, and whether it does so through 

actions in the brain, we measured alcohol intake and the alcohol preference ratio of brain-specific β-

Klotho-knockout (KlbCamk2a) mice and control floxed Klb (Klbfl/fl) mice. We used a voluntary two-

bottle drinking assay performed with water and alcohol. Since we previously showed that FGF21-

transgenic mice, which express FGF21 at pharmacologic levels, have a reduced alcohol preference12,
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we performed these studies while administering either recombinant FGF21 or vehicle by osmotic

minipump. Alcohol preference vs. water was significantly increased in vehicle-treated KlbCamk2a

compared to Klbfl/fl mice at 16 vol. % alcohol (Figure 1A). FGF21 suppressed alcohol preference

in Klbfl/fl mice, but not in KlbCamk2a demonstrating that the effect of FGF21 on alcohol drinking

depends on β-Klotho expressed in the brain (Figure 1A). There was a corresponding decrease in 

plasma alcohol levels immediately after 16 vol. % alcohol drinking, which reflects the modulation

of the drinking behavior (Figure 1B). However, plasma FGF21 levels were comparable in Klbfl/fl

and KlbCamk2a mice administered recombinant FGF21 at the end of the experiment (Figure 1C).

Alcohol bioavailability was not different between FGF21 treated Klbfl/fl and KlbCamk2a mice (Figure

1D). We have previously shown that FGF21 decreases the sucrose and saccharine preference ratio

in Klbfl/fl but not KlbCamk2a mice, and has no effect on the quinine preference ratio12. To rule out a

potential perturbation of our findings as a result of the experimental procedure, we independently

measured preference and consumption of 16 vol. % alcohol in Klbfl/fl and KlbCamk2a mice without

implantation of an osmotic minipump. Again, KlbCamk2a mice showed significantly greater alcohol

consumption and increased alcohol preference compared to Klbfl/fl mice (Figure 2A,B), thus

replicating our findings above. Alcohol bioavailability after an i.p. injection was not different between

Klbfl/fl and KlbCamk2a mice after 1 and 3 hours (Figure 2C).

Increased alcohol drinking in humans and mice may be motivated by its rewarding

properties or as a means to relieve anxiety16. FGF21 increases corticotrophin release factor and

catecholamine release in mice17, which is linked to heightened anxiety. We therefore tested Klbfl/fl

and KlbCamk2a mice in behavioral paradigms measuring anxiety, including novelty suppressed feeding

(Supplementary Figure 4A), elevated plus maze (Supplementary Figure 4B), and open field activity
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tests (Supplementary Figure 4C) but did not find differences between Klbfl/fl and KlbCamk2a mice in

any of the anxiety measures, or in general locomotor activity. Our finding of increased alcohol

preference in KlbCamk2a mice may thus be caused by alteration of alcohol-associated reward

mechanisms. This notion is consistent with our previous results showing Klb expression in areas

important for alcohol reinforcement, specifically the nucleus accumbens and the ventral tegmental

area12.

Here we report from observations in over 100,000 individuals that SNP rs11940694 in KLB

associates with alcohol consumption. In functional animal experiments we show that β-Klotho 

controls alcohol drinking through a central nervous system mechanism involving the action of

FGF21 that is secreted in the liver. Whereas most previous studies investigating the mechanisms

underlying alcohol drinking behavior have focused on investigations of brain (or liver) functions

alone, our results suggest the possibility of a coordinated action across the two organ systems, liver

and brain. This FGF21-KLB axis may be involved in regulation of complex adaptive behaviors

involving alcohol drinking.
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ONLINE METHODS

Alcoholp henoty p es

Alcohol intake in grams of alcohol per day was estimated by each cohort based on information

about drinking frequency and type of alcohol consumed. For cohorts that collected data in

‘drinks per week’, standard ethanol contents in different types of alcohol drinks were provided as

guidance to convert the data to ‘grams per week’, which was further divided by 7 to give intake

as ‘grams per day’. Adjustment was made if cohort-specific drink sizes differed from the

standard. For cohorts that collected alcohol use in grams of ethanol per week, the numbers were

divided by 7 directly into ‘grams per day’. Cohorts with only a categorical response to the

question for drinks per week used mid-points of each category for the calculation. All non-

drinkers (individuals reporting zero drinks per week) were removed from the analysis. The

‘grams per day’ variable was then log10 transformed prior to the analysis. Sex-specific residuals

were derived by regressing alcohol in log10(grams per day) in a linear model on age, age-square,

weight, and if applicable, study site and principal components to account for population

structure. The sex-specific residuals were pooled and used as the main phenotype for subsequent

analyses.

Dichotomous alcohol phenotype was created based on categorization of ‘drinks per week’

variable. Heavy drinking was defined as >=21 drinks per week in men, or >=14 drinks per week

in women. Light (or zero) drinking was defined if male participants had <=14 drinks per week,

or female participants had <=7 drinks per week. Drinkers having >14 to <21 drinks for men, or

>7 to <14 drinks for women were excluded. Where information was available, current non-

drinker who was former drinker of >14 drinker per week in men, and >7 drinks per week in

women, as well as current non-drinker who was a former drinker of unknown amount were
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excluded; whereas current non-drinkers who were former drinkers of <=14 for men or <=7 for

women were included. Further exclusion was made if there were missing data on alcohol

consumption or on the covariates. The analyses only included participants of European origin.

Dis cov ery GW ASin AlcGen and CH ARGE+and rep lication analy s es

Genotyping methods are summarized in Supplementary Table 1B, 1C and 1F. SNPs were

excluded if: HWE P < 1x10-6 or based on cohort-specific criteria; MAF < 1%; imputation

information score < 0.5; if results were only available from 2 or fewer cohorts, or total N < 10,000.

Population structure was accounted for within cohorts via principal components analysis (PCA).

LD score regression18 was conducted on the GWAS summary results to examine the degree of

inflation in test statistics, and genomic control correction was considered unnecessary (λGC=1.06 

and intercept=1.00; λ=0.99 to 1.06 for individual cohorts, Supplementary Table 1B, 1C). SNPs 

were taken forward for replication from discovery GWAS if they passed the above criteria and if

they had P < 1x10-6 (one SNP with the smallest P taken forward in each region, except for AUTS2

for which two SNPs were taken forward based on previous results6). Meta-analyses were

performed by METAL19 or R (v3.2.2).

Gene Ex p res s ion Profiling in Fram ingham s tu dy

In the Framingham study, gene expression profiling was undertaken for the blood samples of a

total of 5,626 participants from the Offspring (N=2,446) at examination eight and the Third

Generation (N=3,180) at examination two. Fasting peripheral whole blood samples (2.5ml) were

collected in PAXgene™ tubes (PreAnalytiX, Hombrechtikon, Switzerland). RNA expression

profiling was conducted using the Affymetrix Human Exon Array ST 1.0 (Affymetrix, Inc., Santa

Clara, CA) for samples that passed RNA quality control. The expression values for ~ 18,000

transcripts were obtained from the total 1.2 million core probe sets. Quality control procedures for
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transcripts have been described previously. All data used herein are available online in dbGaP

(http://www.ncbi.nlm.nih.gov/gap; accession number phs000007).

T he cis -Ex p res s ion Qu antitativ e T rait LociAnaly s is in Fram ingham s tu dy

To investigate possible effects of rs11940694 in KLB on gene expression, we performed cis-eQTL

analysis. The SNP in KLB was used as the independent variable in association analysis with the

transcript of KLB measured using whole blood samples in the FHS (n=5,236). Affymetrix probe

2724308 was used to represent the KLB overall transcript levels. Age, sex, BMI, batch effects and

blood cell differentials were included as covariates in the association analysis. Linear mixed model

was used to account for familial correlation in association analysis.

M ou s e s tu dies

klb knock-out: All mouse experiments were approved by the Institutional Animal Care and

Research Advisory Committee of the University of Texas Southwestern Medical Center. Male

littermates (2 to 4-month-old) maintained on a 12 hr light/dark cycle with ad libitum access to

chow diet (Harlan Teklad TD2916) were used for all experiments. The Klb gene was deleted from

brain by crossing Klbfl/fl mice with Camk2a-Cre mice on a mixed C57BL/6J;129/Sv background

as described9.

Alcohol drinking in mice

For voluntary two-bottle preference experiments, male mice (n=9-13 per group) were given access

to two bottles, one containing water and the other containing 2-16% ethanol (vol/vol) in water.

After acclimation to the two-bottle paradigm, mice were exposed to each concentration of ethanol



14

for 4 days. Total fluid intake (water + ethanol-containing water), food intake and body weight were

measured each day. Alcohol consumption (g) was calculated based on EtOH density (0.789 g/ml).

To obtain accurate alcohol intake that corrected for individual differences in littermate size,

alcohol consumption was normalized by body weight per day for each mouse. As a measure of

relative alcohol preference, the preference ratio was calculated at each alcohol concentration by

dividing total consumed alcohol solution (ml) by total fluid volume. Two-bottle preference assays

were also performed with sucrose (0.5 and 5%) and quinine (2 and 20 mg/dl) solutions. For all

experiments, the positions of the two bottles were changed every two days to exclude position

effects.

Mouse experiments with native FGF21

For FGF21 administration studies, recombinant human FGF21 protein provided by Novo Nordisk

was administered at a dose of 0.7 mg/kg/day by subcutaneous osmotic mini-pumps (Alzet 1004).

Mice were single caged following mini-pump surgery, which was conducted under isoflurane

anesthesia and 24 hour buprenorphine analgesia. Mice were allowed to recover from mini-pump

surgery for 4 days prior to alcohol drinking tests. After experiments, mice were sacrificed by

decapitation and plasma was collected using EDTA or heparin after centrifugation for 15 minutes

at 3000 rpm. Plasma FGF21 concentrations were measured using the Biovendor FGF21 ELISA

Kit according to manufacturer’s protocol.
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Plasma ethanol concentration and clearance

For alcohol bioavailability tests, mice (n=4-5 per group) were injected i.p. with alcohol (2.0 g/kg,

20% w/vol) in saline, and tail vein blood was collected after 1 and 3 hours. Plasma alcohol

concentrations were measured using the EnzyChrom™ Ethanol Assay Kit.

Emotional behavior in mice

For open field activity assays, naïve mice were placed in an open arena (44 cm2, with the center

defined as the middle 14 cm2 and the periphery defined as the area 5 cm from the wall), and the

amount of time spent in the center versus along the walls and total distance traveled were

measured. For elevated plus maze activity assays, mice were placed in the center of a plus maze

with 2 dark enclosed arms and 2 open arms. Mice were allowed to move freely around the maze,

and the total duration of time in each arm and the frequency to enter both the closed and open arms

was measured. For novelty suppression of feeding assays, mice fasted for 12 hours were placed in

a novel environment and the time to approach and eat a known food was measured.

Statistical Analysis

All data are expressed as means ± S.E.M. Statistical analysis between the two groups was

performed by unpaired two-tailed Student's t test using Excel or GraphPad Prism (GraphPad

Software, Inc.). For multiple comparisons, one-way analysis of variance (ANOVA) with post-hoc

Tukey was done using SPSS.
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Main Figures and Tables

Table 1. Associations of single nucleotide polymorphisms* with alcohol intake (log g/day) in the Genome-wide association analysis (GWAS).

* One SNP with smallest P-value taken forward per region

# Effect Allele Frequency, in Discovery GWAS

SNP Chr Position (hg

19)

Nearest

gene

Effect /

other

alleles

EAF# Discovery GWAS Replication Combined

Beta (SE) P-value Beta (SE) P-value Beta (SE) P-value N

rs780094 2 27741237 GCKR T/C 0.40 -0.0155 (0.0026) 3.6x10-9 0.0035 (0.0029) 0.238 -0.0102 (0.0019) 1.6x10-7 98,679

rs350721 2 52980427 ASB3 C/G 0.18 0.0206 (0.0040) 3.2x10-7 -0.0000 (0.0042) 0.994 0.0109 (0.0029) 1.9x10-4 100,859

rs197273 2 161894663 TANK A/G 0.49 -0.0141 (0.0026) 9.8x10-8 -0.0058 (0.0028) 0.040 -0.0103 (0.0019) 7.4x10-8 97,631

rs11940694 4 39414993 KLB A/G 0.42 -0.0137 (0.0027) 3.2x10-7 -0.0135 (0.0030) 5.2x10-6 -0.0136 ( 0.0020) 9.2x10-12 98,477

rs6943555 7 69806023 AUTS2 A/T 0.29 -0.0115 (0.0030) 1.4x10-4 -0.0070 (0.0033) 0.032 -0.0094 (0.0022) 1.9x10-5 104,282

rs10950202 7 69930098 AUTS2 G/C 0.16 -0.0194 (0.0038) 2.9x10-7 -0.0015 (0.0042) 0.720 -0.0113 (0.0028) 5.9x10-5 105,639
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Figure 1
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Figure 2
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Figure Legends:

Figure 1: FGF21 reduces alcohol preference by acting on the brain in mice. (A) Alcohol preference ratios

determined by two-bottle preference assays with water and the indicated ethanol concentrations for

control (Klbfl/fl) and brain-specific β-Klotho knockout (KlbCamk2a) mice administered either FGF21 (0.7

mg/kg/day) or vehicle (n=10/ group). (B) Plasma ethanol and (C) FGF21 concentrations at the end of the

16% ethanol step of the two-bottle assay. (D) Plasma ethanol concentrations 1 and 3 hours after i.p.

injection of 2 g/kg alcohol (n=4/each group). (E) Preference ratios for sucrose and quinine (n=4/each

group). Values are means ±S.E.M, +p<0.05 for Klbfl/fl + vehicle versus KlbCamk2a + vehicle groups;

*p<0.05; **p<0.01; ***p<0.001 for Klbfl/fl + vehicle versus Klbfl/fl + FGF21 groups; and # p<0.05; ##

p<0.01; ### p<0.001 for Klbfl/fl + FGF21 versus KlbCamk2a + FGF21 groups as determined by one-way

ANOVA followed by Tukey's post-tests.

Figure 2: β-Klotho in brain regulates alcohol drinking in mice. (A) Consumption of 16% ethanol (g/kg/d)

and (B) alcohol preference ratios in two-bottle preferences assays performed with control (Klbfl/fl) and

brain-specific β-Klotho-knockout (KlbCamk2a) mice. Alcohol preference was measured by volume of

ethanol/total volume of fluid consumed (n=13/group). (C) Plasma ethanol concentrations 1 and 3 hours

after i.p. injection of 2 g/kg alcohol (n=5/group).


