2	Paramyxoviridae family
2	
3 4	D. F. Young ¹ , J. Andrejeva ¹ , X Li ² , F. Inesta-Vaquera ³ , C. Dong ² , V. H. Cowling, S ³ .
5	Goodbourn ⁴ and R. E. Randall ^{1} §
6	
7	¹ School of Biology, Centre for Biomolecular Sciences, BMS Building, North Haugh,
8	University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
9	² Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
10	³ School of Life Sciences, Centre for Gene Regulation and Expression, University of Dundee,
11	Dundee DD1 5EH, UK
12	⁴ Institute for Infection and Immunity, St. George's, University of London, London SW17
13	ORE, UK
14	
15	[§] corresponding author
16	E-mail: rer@st-and.ac.uk
17	Phone: +44 1334 463397
18	Fax: +44 1334 462595
19	Running title: IFIT1 inhibition of paramyxoviruses
20	
21	Key words: Paramyxoviruses, interferon, IFIT1

Human IFIT1 inhibits mRNA translation of rubulaviruses but not other members of the

- 22 Abstract
- 23

24	We have previously shown that IFIT1 is primarily responsible for the antiviral action of
25	interferon (IFN) alpha/beta against parainfluenza virus (PIV) type 5, selectively inhibiting
26	the translation of PIV5 mRNAs. Here we report that whilst PIV2, PIV5 and mumps virus
27	(MuV) are sensitive to IFIT1, non-rubulavirus members of the paramyxoviridae such as
28	PIV3, Sendai virus (SeV) and canine distemper virus (CDV) are resistant. The IFIT1-
29	sensitivity of PIV5 was not rescued by co-infection with an IFIT1-resistant virus (PIV3),
30	demonstrating that PIV3 does not specifically inhibit the antiviral activity of IFIT1 and that
31	the inhibition of PIV5 mRNAs is regulated by cis-acting elements. We developed an <i>in vitro</i>
32	translation system using purified human IFIT1 to further investigate the mechanism of action
33	of IFIT1. Whilst the translation of PIV2, PIV5 and MuV mRNAs were directly inhibited by
34	IFIT1, the translation of PIV3, SeV and CDV mRNAs were not. Using purified human
35	mRNA capping enzymes we show biochemically that efficient inhibition by IFIT1 is
36	dependent upon a 5' guanosine nucleoside cap (which need not be N7-methylated) and that
37	this sensitivity is partly abrogated by 2'O methylation of the cap 1 ribose. Intriguingly, PIV5
38	M mRNA, in contrast to NP mRNA, remained sensitive to inhibition by IFIT1 following in
39	vitro 2'O methylation, suggesting that other structural features of mRNAs may influence
40	their sensitivity to IFIT1. Thus, surprisingly, the viral polymerases (which have 2'-O-
41	methyltransferase activity) of rubulaviruses do not protect these viruses from inhibition by
42	IFIT1. Possible biological consequences of this are discussed.
43	

- 44
- 45
- 46 Importance

47	Paramyxoviruses cause a wide variety of diseases and yet most of their genes encode for
48	structural proteins and proteins involved in their replication cycle. Thus the amount of
49	genetic information that determines the type of disease paramyxoviruses cause is relatively
50	small. One factor that will influence disease outcomes is how they interact with innate host
51	cell defences, including the interferon (IFN) system. Here we show that different
52	paramyxoviruses interact in distinct ways with cells in a pre-existing IFN-induced antiviral
53	state. Strikingly, all the rubulaviruses tested were sensitive to the antiviral action of
54	ISG56/IFIT1, whilst all the other paramyxoviruses tested were resistant. We developed
55	novel in vitro biochemical assays to investigate the mechanism of action of IFIT1,
56	demonstrating that the mRNAs of rubulaviruses can be directly inhibited by IFIT1 and that
57	this is at least partially because their mRNAs are not correctly methylated.
58	
59	Introduction

61 Paramyxoviruses are a large group of negative-sense single-stranded RNA viruses that cause 62 a wide variety of animal and human diseases. The Paramyxoviridae family is divided into 63 two subfamilies, the paramyxovirinae and the pneumovirinae subfamilies. The 64 paramyxovirinae are further subdivided into a number of genera including morbilliviruses 65 [e.g. measles virus (MeV) and canine distemper virus (CDV)], respiroviruses [e.g. Sendai 66 virus (SeV) and parainfluenza virus type 3 (PIV3)] and rubulaviruses [e.g. mumps virus 67 (MuV), PIV2 and PIV5]. Paramyxoviruses are enveloped viruses, the viral glycoproteins 68 protrude from the outer surface of the envelope and function to attach the viruses to their 69 target cells. On the inner surface of the envelope is the matrix (M) protein, which is required

70	for the structural integrity of the virion. The envelope surrounds a helical nucleocapsid, in
71	which the nucleocapsid protein (NP) encapsidates genomic or antigenomic RNA. Associated
72	with the nucleocapsid is the virally-encoded polymerase complex. The viral polymerase both
73	transcribes and replicates the viral genome. Viral mRNAs are capped and polyadenylated by
74	the viral polymerase (for reviews of the molecular biology of paramyxoviruses see $(1, 2)$).
75	
76	Despite their limited genetic information the majority of paramyxoviruses encode
77	small multifunctional accessory proteins which function to aid virus multiplication and block
78	cellular antiviral defence mechanisms; typically these proteins can block both the production
79	of, and signaling response to, interferons (IFNs) (for reviews see (3-7)). Significantly, the
80	mechanisms of action of these multifunctional IFN antagonists differ from one virus to
81	another. Undoubtedly these properties, and in general how paramyxoviruses interact with the
82	IFN system and other innate defence mechanisms, are likely to be major factors in
83	determining the type of disease each virus causes (8).
84	
85	The IFN response is an extremely powerful antiviral defence system that, unless
86	counteracted by viruses, will limit their replication to such a degree that they will not cause
87	disease or be efficiently transmitted between susceptible hosts (8, 9). Infected cells detect the
88	presence of viruses due to the production by viruses of molecules with molecular signatures
89	(pathogen associated molecular patterns or PAMPs), such as dsRNA, which activate the
90	IFN-induction cascade and result in the secretion of IFN- α/β from infected cells (9, 10). The
91	release of IFN induces an antiviral state in neighbouring uninfected cells by up-regulating
92	the expression of hundreds of interferon stimulated genes (ISGs), many of which have direct
93	or indirect antiviral activity (11). Most paramyxoviruses counteract the IFN responses by

94	producing proteins that block IFN induction and/or IFN signaling by a variety of
95	mechanisms (3-7). Furthermore, they tightly control viral transcription and replication,
96	thereby limiting the production of PAMPs that may activate the IFN response (12, 13).
97	Indeed, it is probably mistakes that viruses make during transcription and replication, such as
98	the production of copyback defective interfering particles, that activate the IFN response
99	(14-16), reviewed in (17). Nevertheless, the ability of paramyxoviruses to block the IFN
100	response both in tissue culture cells and <i>in vivo</i> is not absolute and some IFN- α/β will be
101	produced (18, 19). Furthermore, IFN- γ , which can also induce an antiviral state in cells, will
102	also be produced by activated subsets of lymphocytes (20). Therefore it is inevitable that
103	viruses will infect cells in a pre-existing IFN-induced antiviral state, potentially limiting the
104	speed of virus replication and spread. Although IFNs induce hundreds of ISGs, several ISGs
105	with direct antiviral activity have been shown to be specific for families or groups of related
106	viruses (11, 21, 22). With regard to the paramyxoviridae family we have previously shown
107	that ISG56/IFIT1 (hereinafter referred to as IFIT1), which selectively inhibits translation, is
108	the primary effector of the IFN-induced antiviral state that limits the replication of the
109	rubulavirus PIV5 (23). Pretreatment of cells with IFN- α/β inhibits PIV5 protein synthesis
110	but not cellular protein synthesis. This is because IFIT1 selectively inhibits the translation of
111	PIV5 mRNAs but does not affect cellular mRNAs (23).

113 Mammalian mRNAs have N-7 methyl guanosine (m⁷GpppN), termed cap 0, at their 5' end 114 that recruits factors involved in RNA processing and translation initiation. The first and 115 second nucleosides of mammalian mRNAs are also methylated on the 2' hydroxyl group of 116 the ribose ring, generating cap 1 and cap 2 respectively. Whilst cap 1 and cap 2 are not

117	required for efficient mRNA translation, IFIT1 can inhibit the translation of mRNAs that
118	lack cap 1 (24-27). IFIT1 also binds uncapped, 5'-triphosphorylated RNA, characteristic of
119	the 5' ends of the genomic and antigenomic RNAs of some RNA viruses, as well as those of
120	some viral transcripts (28); for reviews on the mechanism of action of IFIT1 and the IFIT
121	family of proteins see (21, 26, 27, 29). However, recent evidence suggests that there are
122	differences in the mechanisms of action of the murine and human paralog IFIT1 proteins.
123	Whilst murine IFIT1 (IFIT1B) inhibits the translation of mRNAs that lack cap 1, it has been
124	proposed that human IFIT1 recognises some other, as yet undefined, structure near the cap,
125	or possibly that 5' mRNA sequences may help define the specificity of inhibition by human
126	IFIT1 (30). The RNA-capping activity of viral RNA polymerases often include 2'-O-
127	methyltransferases (2'-O-MTases) which modify cap 1 and thus can avoid inhibition by
128	IFIT1(B), as evidenced by the sensitivity of virus mutants that lack 2'-O-MTase activity (for
129	reviews see (21, 26)). Capping and methylation of viral RNAs are also be important as such
130	modifications can prevent the activation of RIG-I, thereby reducing the amount of IFN
131	produced by virally infected cells (for review see (31)).
132	
133	Here we have examined the ability of IFIT1 to inhibit the translation of a variety of
134	paramyxovirus mRNAs, and thus the replication of those viruses. We show that whilst all
135	rubulaviruses tested were sensitive to IFIT1, all non-rubulavirus members of the
136	paramyxoviridae tested were insensitive. Lack of 2' O-methylation of rubulavirus mRNAs
137	was at least partially responsible for their inhibition by IFIT1. The possible biological
138	consequences of differences in sensitivity of paramyxoviruses to IFIT1 are discussed.
139	

140 Methods

142 Cells, viruses, antibodies and interferon

143

144	A549 cells, and derivatives, were grown as monolayers in 25-cm ² , 75-cm ² , or 300-cm ² tissue
145	culture flasks in Dulbecco's modified Eagle's medium supplemented with 10% foetal bovine
146	serum at 37 ⁰ C. Where appropriate, cells were treated with human recombinant interferon
147	(Intron A, Merck, Sharpe and Dohme) at 1000 units/ml. Viruses used in these studies were;
148	PIV2 (Colindale strain), PIV3 (Washington and JS strains and recombinant ΔC and ΔD JS
149	viruses (32)), PIV5 (formerly known as SV5: strains W3 (33), CPI+ and CPI- (34)), MuV
150	(Enders (35)), RSV (36), Sendai (Cantell strain, free of defective interfering particles), and
151	canine distemper virus (Mill Hill strain). Plaque assays were performed by standard methods
152	in six-well dishes that included 0.1% Avicel (FMC Biopolymer) in the overlay medium.
153	Plaques were visualized by immunostaining by using a pool of monoclonal antibodies or
154	polyclonal antisera specific for the different viruses as described previously (37), together
155	with alkaline phosphatase-conjugated secondary antibody by using SIGMAFAST
156	BCIP/NBT as the substrate.
157	
158	Preparation of [³⁵ S]-L-methionine labeled total-cell extracts and SDS-PAGE.
159	
160	Infected or uninfected cells that had or had not been pretreated with IFN for 12h prior to
161	infection, were metabolically labeled for 1h with [³⁵ S]-L-methionine (500Ci/mmol, MP
162	Biomedical, USA) at 18h p.i. After labeling, cells were lysed in disruption buffer, sonicated
163	and heated for 5 min at 100° C then analyzed by gel electrophoresis (SDS-PAGE). The gels

164 were fixed, stained, dried and resolved bands visualized by phosphoimager analysis. Where

165	appropriate the same amount of cell equivalents were run on PAGE. Furthermore the amount
166	of protein in each sample was monitored by staining the polyacrylamide gels with
167	Coomassie Brilliant Blue.
168	
169	Immunofluorescence
170	Cells to be stained for immunofluorescence were grown on 10-mm-diameter coverslips
171	(MIC3270, Scientific Laboratory Supplies, UK). Cells were stained with specific mAbs, as
172	described in detail elsewhere (38). Briefly, monolayers were fixed with 5% formaldehyde,
173	2% sucrose in PBS for 10 min at 20°C, permeabilized with 0.5% Nonidet-P40, 10% sucrose
174	in PBS for 5 min at 20°C, and washed three times in PBS containing 1% calf serum. PIV5-
175	and PIV3- infected cells were detected by indirect immunofluorescence using a secondary
176	goat anti-mouse Ig Texas Red-conjugated antibody (Abcam; catalog number ab6787). The
177	primary antibodies were PIV5-NP-a and PIV5-Pe for PIV5 (39) and 4721, 2281 and 4812
178	for PIV3 (40). After staining for immunofluorescence the monolayers of cells were
179	examined with the use of a Nikon Microphot-FXA immunofluorescence microscope.
180	
181	RNA selection and in vitro translation.
182	RNA for in vitro translations was isolated by sedimentation through CsCl gradients by a
183	modified method described by Leppert et al (41). Confluent monolayers of infected cells,
184	grown in 300-cm ² flasks were resuspended in ice-cold lysis buffer [(150mM NaCl, 50mM
185	Tris-HCl pH 7.5, 0.6% NP-40, protease-inhibitor cocktail (Roche, complete Mini EDTA-
186	free, 1 tablet per 7 ml of buffer)] at 1 - 2 x 10^8 cells per ml and left on ice for 5 minutes prior
187	to vortexing for 2 minutes. Nuclei were removed by centrifugation twice at 4,200 x g for 5

188 minutes at 4°C. The supernatant (cytoplasmic extract) was collected, made to 6mM EDTA

189	and layered onto 35% w/w CsCl in 25mM Tris-HCl pH 7.5, 2mM EDTA followed by
190	centrifugation at 175,000 x g, at 12 °C for 16 – 18h. Naked RNA (including mRNA) forms a
191	pellet at the bottom of the gradient, whilst viral genomic and antigenomic RNAs remain
192	complexed with nucleoprotein and do not enter the 35% CsCl cushion. The supernatant was
193	discarded and the pellet resuspended in RNase-free water and adjusted to $1\mu g/\mu l$. Selected
194	RNA was translated in vitro with a rabbit reticulocyte lysate kit (L4960, Promega) in the
195	presence of ^[35] S-methionine/cysteine (Perkin Elmer, NEG772, EasyTag TM Express Protein
196	Labeling Mix) using a modification to the manufacturer's instructions: Methionine/cysteine-
197	free medium (Sigma, D0422) was used to provide other amino acids (1µl per 50µl reaction).
198	
199	Capping and methylation of mRNA
200	Human RNA guanylyltransferase and 5'-phosphatase (RNGTT), RNA guanine-7
201	methyltransferase (RNMT) and cap methyltransferase 1 (CMTR1) were synthesized and
202	purified according to Gonatopoulos-Pournatzis et al (42). As described, the enzymes were all
203	verified as being active by <i>in vitro</i> reactions followed by thin layer chromatography.
204	Capping and methylation reactions were carried out in 50mM Tris-HCl, pH 8.0, 6mM KCl,
205	1.25mM MgCl ₂ , 1mM DTT buffer as follows: 1µl 10x buffer, 1µl RNGTT (2.5 mg/ml), 1µl
206	RNMT (0.5 mg/ml), CMTR1 (0.28 mg/ml), 1µl SAM (2mM), 1µl GTP (1mM), 0.5 µl
207	RNasin, 2µl RNA (1 µg/µl). The reaction mixture was made up to 10µl with H ₂ O, including
208	experiments in which RNGTT, RNMT or CMTR1 were omitted, and incubated at 37°C for
209	1h.
210	
211	Cloning and purification of IFIT1

- 212 IFIT1 was amplified with primer IFIT1F/IFIT1Xho from the plasmid pGAC-HA-IFIT1,
- 213 restricted with Nco I and Xho I, ligated with a modified pLOU3, in which MBP was
- 214 replaced with SUMO, while Sal I in the MCS was replaced with Xho I.
- 215 IFIT1F: CCGCCATGGCTACAAATGGTGATGATCATCAGG
- 216 IFIT1Xho: GCGCCTCGAGCTAAGGACCTTGTCTCACAGAGTT

- 218 The fusion protein, His-SUMO-(TEV)-IFIT1 was expressed in Rossetta in 6L LB/Amp/CM.
- 219 0.2mM IPTG was added at OD = 0.8. The expression was carried out at 18°C overnight.
- 220 Purification was carried out with a routine protocol for His-tagged protein. Binding buffer
- 221 contains (20mM Tris-HCl, pH8.0, 0.3M NaCl, 10mM imidazole), washing buffer contains
- 30mM imidazole, and protein was eluted with 300mM imidazole. To remove non-
- specifically bound RNA the columns were washed with 9 vol. 0.2M Na₂HPO₄/4M NaCl,
- pH7.5. After desalting into GF buffer (20mM Tris-HCl, pH8, 150mM NaCl, 5% Glycerol),
- the fusion was cleaved with TEV protease (1:100) at room temperature overnight. Gel
- filtration was carried out after passing through Ni-beads again and addition of 3mM DTT.
- The IFIT1 peak was collected and concentrated and had an A260/A280 of 0.7-0.8.

230 Results

231

232 Paramyxoviruses interact in distinct ways with cells in a pre-existing IFN-induced

233 antiviral state.

234

235 Despite the fact that paramyxoviruses encode IFN antagonists that inhibit IFN production 236 and signaling, their ability to block the IFN response is not absolute. Thus they form larger 237 plaques on IFN-incompetent cells than IFN-competent cells (Figure 1 and reference (19), 238 showing that during virus replication and spread some IFN is produced which slows the 239 spread of the viruses (see also Figure 3). In the experiments shown in figure 1 and below we 240 have used naïve A549, A549/Npro and A549/shIFIT1 cells; Naïve A549 cells can produce 241 and respond to IFN in response to virus infection, A549/Npro cells respond to exogenous 242 IFN but cannot produce IFN as they constitutively express Npro from bovine viral diarrhea 243 virus (BVDV) which targets IRF-3 for degradation (43). Furthermore, because IRF-3 is 244 degraded in A549/Npro cells they cannot up-regulate expression of IFIT1 in an IRF-3-245 dependent, IFN-independent, manner in direct response to virus infection (29). 246 A549/shIFIT1 cells produce and respond to IFN but expression of endogenous IFIT1 in 247 response to IFN or viral infection is inhibited due to constitutive expression of small hairpin 248 RNA (shRNA) to IFIT1 (23). 249 250 We previously showed that IFIT1 is the major cellular protein responsible for the IFN 251 sensitivity of the rubulavirus PIV5 (23). To further investigate the ability of IFN, and the

252 role of IFIT1, to induce an antiviral state against other paramyxoviruses, we initially tested

253	the ability of PIV2, PIV3 and PIV5 to form plaques in A549, A549/Npro and A549/shIFIT1
254	cells. All three viruses induced IFN in A549 cells as the plaques developed, as observed by
255	the induction of MxA in the uninfected cells surrounding the plaque (Figure 1, panel a). As
256	previously observed (23), PIV5 formed bigger plaques on A549/shIFIT1 cells than on A549
257	cells, but the plaques were not as large as those on A549/Npro cells (Figure 1, panel b).
258	Whilst PIV2 also produced slightly larger plaques on A549/shIFIT1 than on A549 cells, the
259	plaques on A549/Npro cells were obviously bigger (note the centre of mid- to large-sized
260	PIV2 plaques has fallen out of monolayers). PIV3 produced similarly sized plaques on A549
261	and A549/shIFIT1, and slightly larger plaques on A549/Npro cells. These results also
262	support our previous conclusion that in A549 (and Hep2) cells IFIT1 is the primary ISG
263	effector to PIV5 (23) and that the rubulavirus PIV2 is also sensitive to IFIT1. However,
264	knocking down IFIT1 did not have such a marked effect on PIV2 plaque size as it did for
265	PIV5. This indicates that there are likely to be additional ISGs that play an important role in
266	IFN-mediated inhibition of PIV2. In contrast, PIV3 (Washington strain) produced similarly
267	sized plaques on A549 and A549/shIFIT1, and only slightly larger plaques on A549/Npro
268	cells; this suggests that the IFN response is capable of slowing the spread of PIV3 to some
269	degree (but not through the activity of IFIT1), but not as dramatically as it does for PIV2 or
270	PIV5. However, experiments on the JS strain of PIV3 showed it to be more sensitive to the
271	antiviral effects of IFN, but this was not because JS is sensitivity to IFIT1 (data not shown).
272	
273	We next compared the synthesis of viral proteins in cells infected with PIV2, PIV3 and PIV5
274	that had, or had not, been pretreated with IFN prior to infection with PIV2, PIV3 and PIV5.
275	Cells were infected at a high moi (10-20 pfu/cell) and the relative levels of NP synthesis
276	visualized by radioactively labeling the cells for 1h with [³⁵ S]-methionine at 18h p.i. (Figure

277 2). Pretreatment of A549 and A549/Npro cells with IFN in this assay reduced the expression 278 of the NP of PIV2 and PIV5 to barely detectable levels. However, IFN-pretreatment had no 279 discernable effect on the expression of the NP protein of PIV3, or on the expression of host 280 cell proteins. Strikingly, expression of NP of PIV2 and PIV5 was largely rescued in IFN-281 pretreated A549/shIFIT1 cells, demonstrating that IFIT1 plays a major role in the inhibition 282 of PIV2 and PIV5 protein synthesis observed in A549 and A549/Npro cells pretreated with 283 IFN. Figure 2 is an exemplar of many similar experiments we have performed under 284 different conditions (time course, moi etc) that show the same result, namely that PIV2 and 285 PIV5 are inhibited by IFIT1 whilst PIV3 is not.

286

287 Having demonstrated that PIV2 and PIV5 are sensitive to IFIT1, whilst PIV3 is resistant, we 288 tested the sensitivity of other members of the Paramyxoviridae family, namely mumps virus 289 (MuV strain Enders), Sendai virus (SeV) and Canine Distemper virus (CDV). In a similar set 290 of experiments to those described in Figure 2, A549/Npro and A549/shIFIT1 cells were, or 291 were not pretreated with IFN, prior to a high multiplicity of infection with these viruses. The 292 relative levels of NP synthesis were visualized by radioactively labeling the cells for 1h with 293 [³⁵S]-methionine at 18h p.i (Figure 3, panel A). These experiments clearly demonstrated that, 294 like PIV2 and PIV5, pretreating A549 cells with IFN inhibited MuV strain Enders protein 295 synthesis, but that knocking down IFIT1 expression could largely restore MuV protein 296 synthesis. In contrast, as was observed for PIV3, although pretreatment of A549 cells with 297 IFN slightly reduced the expression of SeV and CDV protein synthesis, no increase in SeV 298 and CDV protein synthesis was observed in A549/shIFIT1 compared to A549 cells 299 pretreated with IFN. These results therefore show that MuV Enders is sensitive to IFIT1, but 300 SeV and CDV are not; the weak inhibition of SeV and CDV protein synthesis observed in

301 A549 and A549/shIFIT1 cells pretreated with IFN presumably being due to the action of

302 other ISGs induced by IFN. Whilst MuV is sensitive to IFIT1, it only forms pinpoint plaques

303 on A549/Npro cells at 5 days p.i. (data not shown), strongly suggesting that there are host

- 304 cell restrictions other than innate intracellular defence mechanisms on MuV replication in
- 305 A549 cells (44).
- 306

307 Since in these experiments we used the attenuated Enders strains of MuV to test whether 308 attenuation may be linked to sensitivity to IFIT1, we tested a wild type isolate of MuV-309 London-1 (Lo-1) for its sensitivity. At the same time we also tested the sensitivity of another 310 strain of PIV5, termed CPI+ (Figure 3, panel B). MuV-Lo was as sensitive as MuV Enders, 311 demonstrating that attenuation was not linked to differences in their relative sensitivity to 312 IFIT1. Similarly PIV5 CPI+ was also sensitive to inhibition by IFIT1. 313 314 The IFIT1-sensitivity of PIV5 is not rescued by co-infection with an IFIT1-resistant 315 virus. 316 From these results it was clear that the replication of the non-rubulaviruses PIV3, SeV and 317 CDV are not inhibited by IFIT1. To investigate whether PIV5 replication could be rescued 318 by co-infections with an IFIT1-resistant virus, mixed infections between PIV3 and PIV5 319 were undertaken. To avoid any possible synergistic effects between PIV3 and PIV5 in 320 dismantling an IFN-induced antiviral state, the CPI- strain of PIV5 was used in these 321 experiments as, due to mutations in its V protein, it does not block IFN signaling (45). A549 322 or A549/shIFIT1 cells were or were not pretreated with IFN for 8h prior to high multiplicity 323 (10 - 20 p.f.u./cell) infection with PIV5, PIV3, or a mixture of both viruses (Figure 4, panel 324 a). The expression of the NP protein of PIV3 was resistant to IFN in both A549 and in

325	A549/shIFIT1 cells when they were infected with PIV3 alone and when co-infected with
326	PIV5. In contrast, whilst the expression of PIV5 NP was resistant to IFN in A549/shIFIT1
327	cells, its expression was inhibited in A549 cells, even when the cells were co-infected with
328	PIV3. Immunofluorescence was undertaken to ensure that in these experiments there was no
329	exclusion of one virus by the other (Figure 4, panels b and c). These results confirmed that
330	co-infection of PIV3 with PIV5 does not rescue the sensitivity of PIV5 to IFIT1 and strongly
331	suggests that PIV3 does not specifically inhibit the antiviral activity of IFIT1, and that the
332	inhibition of PIV5 NP expression is regulated by cis-acting elements.
333	
334	Differential inhibition of translation of mRNAs of different paramyxoviruses by
335	purified IFIT1
336	
336 337	The data above show that the IFN-sensitivity of rubulaviruses is at least in part due to the
336337338	The data above show that the IFN-sensitivity of rubulaviruses is at least in part due to the actions of IFIT1. Since this cellular protein has been shown to inhibit translation in a
336337338339	The data above show that the IFN-sensitivity of rubulaviruses is at least in part due to the actions of IFIT1. Since this cellular protein has been shown to inhibit translation in a template-specific manner we developed an <i>in vitro</i> translation system to study the ability of
 336 337 338 339 340 	The data above show that the IFN-sensitivity of rubulaviruses is at least in part due to the actions of IFIT1. Since this cellular protein has been shown to inhibit translation in a template-specific manner we developed an <i>in vitro</i> translation system to study the ability of human IFIT1 to selectively inhibit the translation of rubulavirus mRNAs. The gene encoding
 336 337 338 339 340 341 	The data above show that the IFN-sensitivity of rubulaviruses is at least in part due to the actions of IFIT1. Since this cellular protein has been shown to inhibit translation in a template-specific manner we developed an <i>in vitro</i> translation system to study the ability of human IFIT1 to selectively inhibit the translation of rubulavirus mRNAs. The gene encoding human IFIT1 was cloned as an SUMO-fusion protein expressed in E.coli and the
 336 337 338 339 340 341 342 	The data above show that the IFN-sensitivity of rubulaviruses is at least in part due to the actions of IFIT1. Since this cellular protein has been shown to inhibit translation in a template-specific manner we developed an <i>in vitro</i> translation system to study the ability of human IFIT1 to selectively inhibit the translation of rubulavirus mRNAs. The gene encoding human IFIT1 was cloned as an SUMO-fusion protein expressed in E.coli and the recombinant protein purified (Figure 5, panel a). To determine whether the recombinant
 336 337 338 339 340 341 342 343 	The data above show that the IFN-sensitivity of rubulaviruses is at least in part due to the actions of IFIT1. Since this cellular protein has been shown to inhibit translation in a template-specific manner we developed an <i>in vitro</i> translation system to study the ability of human IFIT1 to selectively inhibit the translation of rubulavirus mRNAs. The gene encoding human IFIT1 was cloned as an SUMO-fusion protein expressed in E.coli and the recombinant protein purified (Figure 5, panel a). To determine whether the recombinant IFIT1 was able to selectively inhibit PIV5 mRNAs, <i>in vitro</i> translation of mRNA isolated
 336 337 338 339 340 341 342 343 344 	The data above show that the IFN-sensitivity of rubulaviruses is at least in part due to the actions of IFIT1. Since this cellular protein has been shown to inhibit translation in a template-specific manner we developed an <i>in vitro</i> translation system to study the ability of human IFIT1 to selectively inhibit the translation of rubulavirus mRNAs. The gene encoding human IFIT1 was cloned as an SUMO-fusion protein expressed in E.coli and the recombinant protein purified (Figure 5, panel a). To determine whether the recombinant IFIT1 was able to selectively inhibit PIV5 mRNAs, <i>in vitro</i> translation of mRNA isolated from mock and PIV5-infected cells was carried out in the presence and absence of different
 336 337 338 339 340 341 342 343 344 345 	The data above show that the IFN-sensitivity of rubulaviruses is at least in part due to the actions of IFIT1. Since this cellular protein has been shown to inhibit translation in a template-specific manner we developed an <i>in vitro</i> translation system to study the ability of human IFIT1 to selectively inhibit the translation of rubulavirus mRNAs. The gene encoding human IFIT1 was cloned as an SUMO-fusion protein expressed in E.coli and the recombinant protein purified (Figure 5, panel a). To determine whether the recombinant IFIT1 was able to selectively inhibit PIV5 mRNAs, <i>in vitro</i> translation of mRNA isolated from mock and PIV5-infected cells was carried out in the presence and absence of different concentrations of IFIT1 (Figure 5, panels b, c and d). In the absence of IFIT1, expression of
 336 337 338 339 340 341 342 343 344 345 346 	The data above show that the IFN-sensitivity of rubulaviruses is at least in part due to the actions of IFIT1. Since this cellular protein has been shown to inhibit translation in a template-specific manner we developed an <i>in vitro</i> translation system to study the ability of human IFIT1 to selectively inhibit the translation of rubulavirus mRNAs. The gene encoding human IFIT1 was cloned as an SUMO-fusion protein expressed in E.coli and the recombinant protein purified (Figure 5, panel a). To determine whether the recombinant IFIT1 was able to selectively inhibit PIV5 mRNAs, <i>in vitro</i> translation of mRNA isolated from mock and PIV5-infected cells was carried out in the presence and absence of different concentrations of IFIT1 (Figure 5, panels b, c and d). In the absence of IFIT1, expression of the NP protein (and to a lesser extent the M protein) of PIV5 could clearly be visualized in

- 347 the background of *in vitro* translated cellular proteins (Figure 5 panels c and d). Increasing
- 348 concentrations of IFIT1 had no obvious effect on the efficiency of translation of host cell

349 proteins, but in striking contrast, purified IFIT1 selectively inhibited the translation of the

- 350 NP and M proteins of PIV5 in a concentration-dependent manner.
- 351

352	Having established that the sensitivity of <i>in vitro</i> translation of PIV5 mRNA to inhibition by
353	purified IFIT1 correlated with the biological sensitivity of PIV5 to IFIT1, we next tested the
354	ability of IFIT1 to inhibit the translation of mRNA isolated from cells infected with other
355	paramyxoviruses (Figure 6). These results clearly demonstrated that translation of (NP)
356	mRNAs from PIV2- and from MuV-infected cells was inhibited by IFIT1. In contrast, there
357	was no obvious reduction in the amount of PIV3 NP synthesized when increasing amounts
358	of IFIT1 was added to the <i>in vitro</i> translation reactions. Although there was a slight apparent
359	reduction in the amount of SeV and CDV NP synthesis in the samples in which IFIT1 was
360	added, there was no increase the inhibition observed by increasing the amount of IFIT1
361	added to the <i>in vitro</i> translation reactions, strongly suggesting that the translation of SeV and
362	CDV mRNAs are also resistant to inhibition by IFIT1.
363	
364	Lack of 2'-O methylation of the cap structure of MuV and PIV5 mRNAs is partially
365	responsible for their sensitivity to inhibition by IFIT1
366	
367	Previous studies have shown that the absence of cap 1 on mRNAs renders them sensitive to
368	inhibition to IFIT1. To investigate whether this was the case for rubulavirus mRNAs we
369	developed an in vitro assay in which purified human mRNA-modifying enzymes were used
370	to progressively cap and add different methyl groups to the 5'ends of mRNAs. Purified
371	human RNA guanylyltransferase and 5'-phosphatase (RNGTT), RNA guanine-7
372	methyltransferase (RNMT) and cap methyltransferase 1 (CMTR1) were used in these assays.

373	RNGTT adds a 5' guanosine to RNAs with 5'-ppp, whilst RNMT adds a methyl group to the
374	7 G of the guanine ring, generating (m 7 G) cap 0. CMTR1 adds a methyl group to the 2' OH
375	position of the adjacent ribose, generating cap 1. To demonstrate the functionality of this
376	system, we first tested the in vitro translation of luciferase mRNA with a 5'-triphosphate
377	group. This RNA was efficiently translated in a cap-independent manner and was only
378	weakly inhibited by IFIT1 (Figure 7a, compare lanes 1 and 2). When the luciferase mRNA
379	was capped with the addition of 5'-guanosine by RNGTT (generating Gppp-mRNA) there
380	was a slight decrease in the amount of luciferase made (Figure 7a, compare lanes 1 and 3).
381	This may have been due to RNGTT destabilizing or blocking the translation of Gppp-
382	mRNAs in the absence of ⁷ N methylation. However strikingly, translation of this mRNA was
383	completely inhibited by IFIT1(Figure 7a lane 4) despite this cap structure lacking N-7
384	methylation. As expected, the addition of a methyl group to the N-7 position of the guanine
385	ring (generating m ⁷ Gpppm ² N) by RNMT increased the efficiency of translation, but
386	m ⁷ Gppp-luciferase remained completely sensitive to inhibition by IFIT1 (Figure 7a lanes 5
387	and 6). Addition of a methyl group to the 2' OH group of the adjacent ribose (generating cap
388	1) by CMTR1 did not affect the efficiency by which the mRNA is translated but it did
389	clearly reduce the sensitivity of the mRNA to inhibition by IFIT1(Figure 7A compare lanes 7
390	and 8). However, it should be noted that in these experiments, for reasons that are unclear,
391	we were unable to completely restore full translation of the luciferase mRNA in the presence
392	of IFIT1 by increasing the amount of CMTR1 or length of incubation of the mRNA with the
393	enzyme (data not shown).

To investigate how similar modifications to the cap of rubulavirus mRNAs influenced theirinhibition by IFIT1, we initially used MuV mRNA in a parallel set of experiments. These

397	results showed that treatment of the MuV mRNA with RNGTT and RNMT did not increase
398	the efficiency of in vitro translation of MuV NP mRNA or its sensitivity to inhibition by
399	IFIT1 (Figure 7b lanes 1 to 6), consistent with the viral polymerase adding m ⁷ Gppp-cap at
400	(cap 0) to the 5' end of viral mRNAs. However, surprisingly, since rubulavirus polymerases
401	have conserved 2'-O MTase domains, addition of a methyl group to the 2'OH group of the
402	adjacent ribose (cap 1) by CMTR1 clearly reduced the sensitivity of the NP mRNA to
403	inhibition by IFIT1 (Figure 7b lanes 7 and 8). As expected, the IFIT1 sensitivity was
404	dependent on the addition of S-adenosyl methionine (SAM) to the reaction mixture (Figure
405	7c). Similarly, following 2'O methylation of PIV5 mRNA, in vitro translation of PIV5 NP
406	became completely resistant to inhibition by IFIT1 (Figure 7d). Strikingly, in contrast to NP,
407	the translation of PIV5 M mRNA remained completely sensitive to inhibition by IFIT1 even
408	after 2'O methylation of PIV5 mRNA by CMTR1 (Figures 7d and 7e); the basis for this is
409	currently unknown but we are investigating it further.

410

411 Discussion

413 Over the past decade or so it has become clear that the ways in which paramxoviruses 414 circumvent innate immune responses, including the IFN response, and differences in the multifunctional nature of their IFN antagonists are likely to influence the types of disease 415 416 they cause. For example, the viral IFN antagonists within the rubulavirus genus, namely the 417 V proteins, as well as interacting with common targets such as MDA 5 and LGP2 also have 418 unique properties. The V protein of PIV5 targets STAT1 for degradation, PIV2 targets 419 STAT2 and MuV targets both STAT1 and STAT3. Within the respirovirus and morbillivirus 420 genera it is a combination of the V and C proteins that counteract innate responses by

421	different molecular mechanisms and strikingly, although PIV3 encodes a C protein, it does
422	not encode a functional V protein. Despite encoding these powerful IFN antagonists, IFN is
423	produced during virus spread both in tissue culture cells and <i>in vivo</i> , and thus undoubtedly
424	paramyxoviruses will, during the course of an infection, infect cells in a pre-existing IFN-
425	induced antiviral state. Here we show that different paramyxoviruses interact in distinct
426	ways with cells in a pre-existing IFN-induced antiviral state, and suggest that this may
427	influence the types of diseases caused. Strikingly, in contrast to the sensitivity of
428	rubulaviruses to IFIT1, the other paramyxoviruses we tested were resistant, strongly
429	suggesting that this might be a distinguishing feature of rubulaviruses, although before this
430	can be firmly concluded the sensitivity of more species of paramyxoviruses to IFIT1 needs
431	to be tested. Even within the rubulavirus genus it appears that there may be differences in
432	how members interact with cells in IFN-induced antiviral state. In A549 cells IFIT1 is
433	primarily responsible for the IFN-induced antiviral state induced to counter PIV5. However,
434	although PIV2 is sensitive to IFIT1, there appear to be other ISGs that have strong anti-PIV2
435	activity. This conclusion comes from the observation that whilst there is a slight increase in
436	the size of PIV2 plaques on A549/shIFIT1 cells compared to A549 cells, it is not as obvious
437	as that observed for PIV5. Furthermore, whilst plaques for PIV5 were smaller on
438	A549/shIFIT1 cells than on A549/Npro cells, this difference was not as marked as that
439	observed for PIV2. MuV Enders strain is also sensitive to IFIT1, but there are clearly other
440	major constraints on the growth of MuV Enders in human cells as the virus grows extremely
441	poorly in IFN-incompetent human cells but replicates to high titres in Vero cells (44).
442	
443	It is striking that only rubulaviruses are sensitive to the antiviral activity of human IFIT1.

444 Our data indicate that the inhibition of rubulavirus mRNAs was inhibited by IFIT1 in a cis-

445	linked manner, implying that the restriction is associated with some feature of the mRNA
446	sequence or structure. Since IFIT1 can selectively inhibit the translation of mRNAs that are
447	incorrectly capped or not methylated at the 2' OH group of the first ribose, i.e. cap 1, (24, 46,
448	47), it was likely that rubulaviruses have a structural motif in their cap, not present or hidden
449	in the mRNA of other paramyxoviruses, that is recognized by IFIT1. To investigate this
450	further we used purified human enzymes to modify the cap of mRNAs. As a control for the
451	activity of the enzymes we used an uncapped 5'-ppp mRNA that encodes luciferase. The 5'-
452	ppp luciferase mRNA translated in a cap-independent manner in vitro using rabbit
453	reticulocyte lysate and this translation was only weakly inhibited by purified IFIT1. Whilst
454	addition of a 5' guanosine nucleoside cap slightly decreased the amount of luciferase
455	synthesized, probably because the enzyme RNGTT destabilizes the mRNA, addition of the
456	(unmethylated) guanosine nucleoside to the 5' end of the mRNA significantly increased the
457	sensitivity of the mRNA to inhibition by IFIT1. Furthermore, although methylation of the
458	guanine ring at position N7 (m7GpppNp-RNA) by RNMT increased the efficiency of
459	translation of luciferase mRNA it did not appear to affect the sensitivity of inhibition by
460	IFIT1.These results are therefore consistent with the observation that human IFIT1 binds
461	with low affinity to 5'-ppp RNA, but more avidly to cap 0 RNA lacking 2' O methylation.
462	Methylation at position N7 of the guanine ring has also been reported to increases the
463	affinity of binding of IFIT1 (24), however the observation here that Gppp-luciferase is
464	inhibited as efficiently as m7Gppp-luciferase suggests that the methyl group does not play a
465	central role in the inhibition of mRNAs by IFIT1. In contrast, 2' O-methylation of the first
466	ribose by CMTR1 to generate cap 1 partially prevented IFIT1 from inhibiting the translation
467	of the cap 0-modified mRNA. However, even by increasing the amount of CMTR1 and the
468	incubation time we were unable to complete restore full translational activity of the

469 luciferase mRNA. The reasons for this are unclear but it suggests that other structural

470 features, for example methylation of the penultimate ribose to generate cap 2, or sequences

at the 5' end of mRNAs, may also influence inhibition by IFIT1, as has been suggested by

472 Daugherty et al (30).

473

474 mRNAs isolated from PIV3, SeV and CDV infected cells were not inhibited by IFIT1 and 475 neither was the replication of these viruses (Figures 2 and 3). In contrast, 2' O-methylation 476 of the terminal ribose by CMTR1 of MuV mRNAs partially alleviated inhibition of the NP 477 mRNA by IFIT1. With regards PIV5, our previous studies suggested that PIV5 mRNAs 478 were 2' O-methylated (23). Furthermore, we never observed complete IFIT1-inhibition of 479 PIV5 NP synthesis in vitro, suggesting that at least a proportion of the PIV5 NP mRNA was 480 correctly capped. However, the fact that treating PIV5 mRNAs with CMTR1 rescued NP 481 synthesis in the presence of IFIT1 suggests that a significant proportion of PIV5 mRNAs 482 was also not fully methylated. It is also of potential significance that the M mRNA of PIV5 483 appears to be more sensitive than NP mRNA to inhibition by IFIT1 and furthermore 484 translation inhibition of PIV5 M mRNA was not rescued by treatment with CMTR1. The 485 reasons for differences in the relative sensitivity of the NP and M mRNAs clearly warrants 486 further investigation, but may be due to the fact that the viral methyltransferase differentially 487 methylates the viral mRNAs (as has been shown for VSV (48)), that CMTR1 does not 488 recognize the UTR of the PIV5 M mRNA, or that inhibition by IFIT1 is influenced by 489 additional structural features present on PIV5 M mRNA but not NP mRNA. Regarding this 490 latter point, it is of note that the first three nucleotides of the UTRs of NP and M differ. 491 Furthermore the 4 to 5 nucleotides downstream of cap 0 are thought to be bound by IFIT1 492 and may thus modulate IFIT1-RNA interactions (49) and some secondary RNA structures,

493 e.g. those found at the 5' end of some alphaviruses, can prevent IFIT1 binding to RNA494 independent of the cap-methylation status (50).

496	Most viruses successfully avoid inhibition by IFIT1 by encoding their own 2'-O MTase,
497	cap-snatching appropriately capped and 2'-O methylated structures from cellular mRNAs or
498	having cap-independent translation with covalently linked viral protein, VPg or a 5' RNA
499	secondary structure that block the activity of IFIT1 (reviewed in (26)). Indeed, work on
500	virus restriction by IFIT1 has primarily involved the investigation of viruses in which the 2'-
501	O-MTases have been mutated such that their mRNAs do not have a cap 1 structure (25, 51-
502	54). Nevertheless our results show that the viral polymerase of rubulaviruses, unlike other
503	paramyxoviruses, does not fully protect the viral mRNAs from inhibition by human IFIT1.
504	In this regard, it is of interest to note that, although rubulaviruses have the conserved
505	methyltransferase domain in their polymerase, they all have an alanine instead of the first
506	glycine in a GxGxG motif present in the methyltransferase domain of other paramyxoviruses
507	and mononegavirales that has been shown to affect the efficiency of cap methylation (55).
508	
509	Most viruses, including other mononegavirales (56), appear to be naturally resistant to
510	inhibition by IFIT1. It is therefore intriguing that rubulaviruses have not evolved
511	mechanisms to ensure that their mRNAs are correctly capped and methylated, or have the
512	appropriate UTRs, to be resistant to IFIT1. It is tempting to speculate that there is some
513	unknown biological advantage to being sensitive to IFIT1. For example, it may help some
514	rubulaviruses (and perhaps hepatitis C virus (57) which is also sensitive to IFIT1) to
515	establish prolonged or persistent infections. Thus, following infection of cells in an IFN-
516	induced antiviral state, IFIT1 restricts PIV5 replication. Under such conditions, virus

517	genomes are located in cytoplasmic foci where, as we have previously suggested, they may
518	remain hidden from intracellular and adaptive immune responses. Furthermore, if viral
519	mRNA is produced in cells in an IFN-induced antiviral state then viral protein synthesis will
520	largely be inhibited by IFIT1, thus reducing the amount of protein that may be processed and
521	presented to CTLs. Eventually, in such cells however, enough of the virus IFN antagonist,
522	the V protein, will be produced, or brought in by infecting virus particles, to target STAT1
523	for proteasome-mediated degradation, and the cells will no longer be able to maintain their
524	antiviral state, thus facilitating virus replication (58). Whether such a scenario occurs in
525	vivo, these, and other considerations, emphasize that to fully understand the molecular
526	pathogenesis of viruses, it will be necessary to understand the subtleties of how viruses
527	interact with the IFN system and other host cell defence mechanisms.

530 Acknowledgements

531

532	This worl	c was	supported	by	The	Welcome	Trust	(101788/Z/13/Z,	101792/Z/13/Z) and
-----	-----------	-------	-----------	----	-----	---------	-------	-----------------	---------------	-------

- 533 Medical research council grant (G1100110/1, MR/K024213/1). The University of St
- 534 Andrews is a charity registered in Scotland (No.SC013532).
- 535

536

537 **References**

- 538
- 539
- Samal SK. 2011. The Biology of Paramyxoviruses. CAISTER ACADEMIC PRESS,
 32 HEWITTS LANE, WYMONDHAM NR 18 0JA, ENGLAND.
 Lamb RAaGDP. 2013. Paramyxoviridae: the viruses and their replication., Sixth ed.
 Lippincott, Williams and Wilkins, Philadelphia.
- 544 3. Parks GD, Alexander-Miller MA. 2013. Paramyxovirus activation and inhibition of
 545 innate immune responses. Journal of molecular biology 425:4872-4892.
- 5464.Goodbourn S, Randall RE. 2009. The regulation of type I interferon production by
paramyxoviruses. J Interferon Cytokine Res 29:539-547.
- 5485.Ramachandran A, Horvath CM. 2009. Paramyxovirus disruption of interferon549signal transduction: STATus report. J Interferon Cytokine Res 29:531-537.
- 550 6. Fontana JM, Bankamp B, Rota PA. 2008. Inhibition of interferon induction and signaling by paramyxoviruses. Immunol Rev 225:46-67.
- Audsley MD, Moseley GW. 2013. Paramyxovirus evasion of innate immunity:
 Diverse strategies for common targets. World journal of virology 2:57-70.
- Randall RE, Goodbourn S. 2008. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89:1-47.
- 5579.Broz P, Monack DM. 2013. Newly described pattern recognition receptors team up558against intracellular pathogens. Nature reviews. Immunology 13:551-565.
- 559 10. Schmidt A, Endres S, Rothenfusser S. 2011. Pattern recognition of viral nucleic
 acids by RIG-I-like helicases. J Mol Med (Berl) 89:5-12.
- 561 11. Schoggins JW, Rice CM. 2011. Interferon-stimulated genes and their antiviral
 562 effector functions. Current opinion in virology 1:519-525.
- 563 12. Sun D, Luthra P, Li Z, He B. 2009. PLK1 down-regulates parainfluenza virus 5
 564 gene expression. PLoS Pathog 5:e1000525.

565	13.	Dillon PJ, Parks GD. 2007. Role for the phosphoprotein p subunit of the
566		paramyxovirus polymerase in limiting induction of host cell antiviral responses. J
567		Virol 81: 11116-11127.
568	14.	Strahle L, Garcin D, Kolakofsky D. 2006. Sendai virus defective-interfering
569		genomes and the activation of interferon-beta. Virology 351: 101-111.
570	15.	Killip MJ, Young DF, Gatherer D, Ross CS, Short JA, Davison AJ, Goodbourn
571		S , Randall RE. 2013. Deep sequencing analysis of defective genomes of
572		parainfluenza virus 5 and their role in interferon induction. Journal of virology
573		87: 4798-4807.
574	16.	Tapia K, Kim WK, Sun Y, Mercado-Lopez X, Dunay E, Wise M, Adu M, Lopez
575		CB. 2013. Defective viral genomes arising in vivo provide critical danger signals for
576		the triggering of lung antiviral immunity. PLoS Pathog 9: e1003703.
577	17.	Lopez CB. 2014. Defective viral genomes: critical danger signals of viral infections.
578		J Virol 88: 8720-8723.
579	18.	Carlos TS, Young DF, Schneider M, Simas JP, Randall RE. 2009. Parainfluenza
580		virus 5 genomes are located in viral cytoplasmic bodies whilst the virus dismantles
581		the interferon-induced antiviral state of cells. J Gen Virol 90: 2147-2156.
582	19.	Young DF, Andrejeva L, Livingstone A, Goodbourn S, Lamb RA, Collins PL,
583		Elliott RM, Randall RE. 2003. Virus replication in engineered human cells that do
584		not respond to interferons. J Virol 77:2174-2181.
585	20.	Schoenborn JR, Wilson CB. 2007. Regulation of interferon-gamma during innate
586		and adaptive immune responses. Advances in immunology 96: 41-101.
587	21.	Fensterl V, Sen GC. 2015. Interferon-induced Ifit proteins: their role in viral
588		pathogenesis. J Virol 89:2462-2468.
589	22.	Schoggins JW, Wilson SJ, Panis M, Murphy MY, Jones CT, Bieniasz P, Rice
590		CM. 2011. A diverse range of gene products are effectors of the type I interferon
591		antiviral response. Nature 472:481-485.
592	23.	Andrejeva J, Norsted H, Habjan M, Thiel V, Goodbourn S, Randall RE. 2013.
593		ISG56/IFIT1 is primarily responsible for interferon-induced changes to patterns of
594		parainfluenza virus type 5 transcription and protein synthesis. The Journal of general
595		virology 94: 59-68.
596	24.	Kumar P, Sweeney TR, Skabkin MA, Skabkina OV, Hellen CU, Pestova TV.
597		2014. Inhibition of translation by IFIT family members is determined by their ability
598		to interact selectively with the 5'-terminal regions of cap0-, cap1- and 5'ppp-
599		mRNAs. Nucleic Acids Res 42:3228-3245.
600	25.	Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, Lin TY, Schneller S,
601		Zust R, Dong H, Thiel V, Sen GC, Fensterl V, Klimstra WB, Pierson TC, Buller
602		RM, Gale M, Jr., Shi PY, Diamond MS. 2010. 2'-O methylation of the viral mRNA
603		cap evades host restriction by IFIT family members. Nature 468: 452-456.
604	26.	Hyde JL, Diamond MS. 2015. Innate immune restriction and antagonism of viral
605		RNA lacking 2-O methylation. Virology 479-480:66-74.
606	27.	Vladimer GI, Gorna MW, Superti-Furga G. 2014. IFITs: Emerging Roles as Key
607		Anti-Viral Proteins. Frontiers in immunology 5:94.
608	28.	Pichlmair A, Lassnig C, Eberle CA, Gorna MW, Baumann CL, Burkard TR,
609		Burckstummer T, Stefanovic A, Krieger S, Bennett KL, Rulicke T, Weber F,
610		Colinge J, Muller M, Superti-Furga G. 2011. IFIT1 is an antiviral protein that
611		recognizes 5'-triphosphate RNA. Nat Immunol 12:624-630.

612	29.	Fensterl V, Sen GC. 2011. The ISG56/IFIT1 gene family. Journal of interferon &
613		cytokine research : the official journal of the International Society for Interferon and
614		Cytokine Research 31: 71-78.
615	30.	Daugherty MD, Schaller AM, Geballe AP, Malik HS. 2016. Evolution-guided
616		functional analyses reveal diverse antiviral specificities encoded by IFIT1 genes in
617		mammals. eLife 5.
618	31.	Leung DW, Amarasinghe GK. 2016. When your cap matters: structural insights
619		into self vs non-self recognition of 5' RNA by immunomodulatory host proteins.
620		Current opinion in structural biology 36: 133-141.
621	32.	Durbin AP, McAuliffe JM, Collins PL, Murphy BR. 1999. Mutations in the C, D,
622		and V open reading frames of human parainfluenza virus type 3 attenuate replication
623		in rodents and primates. Virology 261 :319-330.
624	33.	Choppin PW. 1964. Multiplication Of A Myxovirus (Sv5) With Minimal Cytopathic
625		Effects And Without Interference. Virology 23: 224-233.
626	34.	Chen C. Compans RW. Choppin PW. 1971. Parainfluenza virus surface
627	• • •	projections: glycoproteins with haemagglutinin and neuraminidase activities. J Gen
628		Virol 11:53-58.
629	35	Enders JF. Levens JH. Stokes J. Jun. Maris EP. Berenberg W. 1946. Attenuation
630	55.	of virulence with retention of antigenicity of mumps virus after passage in the
631		embryonated egg. Journal of Immunology 54:283-291.
632	36	Collins PL , Murnhy BR , 2002. Respiratory syncytial virus: reverse genetics and
633	200	vaccine strategies. Virology 296: 204-211.
634	37.	Chen S. Short JA. Young DF. Killip MJ. Schneider M. Goodbourn S. Randall
635	0,1	RE . 2010. Heterocellular induction of interferon by negative-sense RNA viruses.
636		Virology 407: 247-255.
637	38.	Randall RE. Dinwoodie N. 1986. Intranuclear localization of herpes simplex virus
638		immediate-early and delayed-early proteins: evidence that ICP 4 is associated with
639		progeny virus DNA. J Gen Virol 67 (Pt 10):2163-2177.
640	39.	Randall RE. Young DF. Goswami KK. Russell WC. 1987. Isolation and
641	• • •	characterization of monoclonal antibodies to simian virus 5 and their use in revealing
642		antigenic differences between human, canine and simian isolates. J Gen Virol 68 (Pt
643		11):2769-2780.
644	40.	Rvdbeck R. Love A. Orvell C. Norrby E. 1987. Antigenic analysis of human and
645		bovine parainfluenza virus type 3 strains with monoclonal antibodies. J Gen Virol 68
646		(Pt 8):2153-2160.
647	41.	Leppert M. Rittenhouse L. Perrault J. Summers DF. Kolakofsky D. 1979. Plus
648		and minus strand leader RNAs in negative strand virus-infected cells. Cell 18 :735-
649		747.
650	42.	Gonatopoulos-Pournatzis T. Dunn S. Bounds R. Cowling VH. 2011.
651		RAM/Fam103a1 is required for mRNA can methylation. Molecular cell 44:585-596
652	43.	Hilton L. Moganeradi K. Zhang G. Chen YH. Randall RE. McCauley JW.
653		Goodbourn S. 2006. The NPro product of bovine viral diarrhea virus inhibits DNA
654		binding by interferon regulatory factor 3 and targets it for proteasomal degradation. J
655		Virol 80: 11723-11732.
656	44.	Young DF, Galiano MC, Lemon K, Chen YH, Andreieva J. Duprex WP. Rima
657		BK, Randall RE. 2009. Mumps virus Enders strain is sensitive to interferon (IFN)
658		despite encoding a functional IFN antagonist. J Gen Virol 90: 2731-2738.

659	45.	Chatziandreou N, Young D, Andrejeva J, Goodbourn S, Randall RE. 2002.
660		Differences in interferon sensitivity and biological properties of two related isolates
661		of simian virus 5: a model for virus persistence. Virology 293:234-242.
662	46.	Habjan M, Hubel P, Lacerda L, Benda C, Holze C, Eberl CH, Mann A, Kindler
663		E, Gil-Cruz C, Ziebuhr J, Thiel V, Pichlmair A. 2013. Sequestration by IFIT1
664		impairs translation of 2'O-unmethylated capped RNA. PLoS Pathog 9:e1003663.
665	47.	Abbas YM, Pichlmair A, Gorna MW, Superti-Furga G, Nagar B. 2013.
666		Structural basis for viral 5'-PPP-RNA recognition by human IFIT proteins. Nature
667		494: 60-64.
668	48.	Rahmeh AA, Li J, Kranzusch PJ, Whelan SP. 2009. Ribose 2'-O methylation of
669		the vesicular stomatitis virus mRNA cap precedes and facilitates subsequent guanine-
670		N-7 methylation by the large polymerase protein. J Virol 83:11043-11050.
671	49.	Abraham N, Stojdl DF, Duncan PI, Methot N, Ishii T, Dube M, Vanderhyden
672		BC, Atkins HL, Gray DA, McBurney MW, Koromilas AE, Brown EG,
673		Sonenberg N, Bell JC. 1999. Characterization of transgenic mice with targeted
674		disruption of the catalytic domain of the double-stranded RNA-dependent protein
675		kinase, PKR. J Biol Chem 274:5953-5962.
676	50.	Hyde JL, Gardner CL, Kimura T, White JP, Liu G, Trobaugh DW, Huang C,
677		Tonelli M, Paessler S, Takeda K, Klimstra WB, Amarasinghe GK, Diamond
678		MS. 2014. A viral RNA structural element alters host recognition of nonself RNA.
679		Science 343: 783-787.
680	51.	Kimura T, Katoh H, Kayama H, Saiga H, Okuyama M, Okamoto T, Umemoto
681		E, Matsuura Y, Yamamoto M, Takeda K. 2013. Ifit1 inhibits Japanese encephalitis
682		virus replication through binding to 5' capped 2'-O unmethylated RNA. J Virol
683		87: 9997-10003.
684	52.	Menachery VD, Yount BL, Jr., Josset L, Gralinski LE, Scobey T, Agnihothram
685		S, Katze MG, Baric RS. 2014. Attenuation and restoration of severe acute
686		respiratory syndrome coronavirus mutant lacking 2'-o-methyltransferase activity. J
687		Virol 88: 4251-4264.
688	53.	Szretter KJ, Daniels BP, Cho H, Gainey MD, Yokoyama WM, Gale M, Jr.,
689		Virgin HW, Klein RS, Sen GC, Diamond MS. 2012. 2'-O methylation of the viral
690		mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms
691		of host restriction in vivo. PLoS Pathog 8:e1002698.
692	54.	Zhang Y, Wei Y, Zhang X, Cai H, Niewiesk S, Li J. 2014. Rational design of
693		human metapneumovirus live attenuated vaccine candidates by inhibiting viral
694		mRNA cap methyltransferase. J Virol 88:11411-11429.
695	55.	Murphy AM, Moerdyk-Schauwecker M, Mushegian A, Grdzelishvili VZ. 2010.
696		Sequence-function analysis of the Sendai virus L protein domain VI. Virology
697		405: 370-382.
698	56.	Pinto AK, Williams GD, Szretter KJ, White JP, Proenca-Modena JL, Liu G,
699		Olejnik J, Brien JD, Ebihara H, Muhlberger E, Amarasinghe G, Diamond MS,
700		Boon AC. 2015. Human and Murine IFIT1 Proteins Do Not Restrict Infection of
701		Negative-Sense RNA Viruses of the Orthomyxoviridae, Bunyaviridae, and
702		Filoviridae Families. J Virol 89:9465-9476.
703	57.	Raychoudhuri A, Shrivastava S, Steele R, Kim H, Ray R, Ray RB. 2011. ISG56
704		and IFITM1 proteins inhibit hepatitis C virus replication. J Virol 85:12881-12889.

705 58. Precious BL, Carlos TS, Goodbourn S, Randall RE. 2007. Catalytic turnover of
706 STAT1 allows PIV5 to dismantle the interferon-induced anti-viral state of cells.
707 Virology 368:114-121.

709 Figure legends

710

708

711 Figure 1

712

713 Panel a). A549 cells produce and respond to IFN during development of PIV2, PIV3 and 714 PIV5 plaques. Panel a). A549 cells grown on coverslips in 24 well microtitre were infected 715 with PIV2, PIV3 or PIV5 at a multiplicity that resulted in 2 - 10 plaques per well. At 3 days 716 p.i. the cells were fixed and stained with antibodies to the NP proteins of the respective 717 viruses (green) and anti-MxA antibody, which is an ISG that is up-regulated in response to 718 IFN α/β (red). The images show cross sections through plaques with the center of the plaque 719 at the left hand side of the image. Panel b). Relative plaque size of PIV2 (Colindale), PIV3 720 (Washington strain) and PIV5 (W3) on A549, A549/shIFIT1 and A549/NPro cells. Infected 721 monolayers of cells in 6-well dishes were fixed at 4 days (PIV3) or 5 days (PIV2 and PIV5) 722 p.i. and virus plaques visualized by immunostaining the monolayers with antibodies to the 723 respective NP and/or P proteins. The numbers at the bottom left in each panel give the 724 average plaque size in mm, together with their standard deviation. 725 726

Figure 2

729	IFIT1 inhibits PIV5 (W3) and PIV2 (Colindale) protein synthesis but not that of PIV3
730	(Washington). A549, A549/ NPro cells and A549/shIFIT1 cells, grown in 25-cm ² flasks
731	were, or were not, treated with IFN 8h prior to infection at a high moi with PIV2, PIV3
732	(Washington strain) or PIV5. At 18h p.i. cells were metabolically labeled with [³⁵ S]-
733	methionine for 1h. Total-cell extracts were separated by electrophoresis through a 4 -12%
734	PAG and labeled proteins visualized using a phosphoimager. The positions of the NP
735	polypeptides are indicated by asterisks. The figures at the bottom indicate the fraction of NP
736	made in cells pretreated with IFN compared to untreated cells as estimated by densitometry
737	scans.
738	
739	
740	Figure 3
741	IFIT1 inhibits MuV (Enders and wild type (Lo-1) strains), PIV5 (strain CPI+) protein
742	synthesis but not that of SeV or CDV. A549/ N^{Pro} cells and A549/shIFIT1 cells, grown in 25-
743	cm ² flasks, were or were not treated with IFN 8h prior to infection at high multiplicity with
744	MuV Enders, MuV Lo-1 (wt), SeV, CDV or PIV5 (CPI+). At 18h p.i. cells were
745	metabolically labeled with [³⁵ S]-methionine for 1h. Total-cell extracts were separated by
746	electrophoresis through a 4 -12% PAG and labeled proteins visualized using a
747	phosphoimager. The figures at the bottom indicate the fraction of NP made in cells
748	pretreated with IFN compared to untreated cells.
749	
750	Figure 4
751	PIV3 (Washington) does not inhibit the antiviral activity of IFIT1. A549 and A549/shIFIT1
752	cells, grown in either 25-cm ² flasks (panel a) or on coverslips (panels b and c), were or were

753	not treated with IFN 8h prior to infection at high multiplicity with PIV3, PIV5 (strain CPI-)
754	or a mixture of both viruses. Panel a): At 18h p.i. the cells were metabolically labeled with
755	$[^{35}S]$ -methionine for 1h. Total cell extracts were separated by electrophoresis through a 4 -
756	12% PAG and labeled proteins visualized using a phosphoimager. The positions of the NP
757	protein are indicated by asterisks. Panel b and c): At 18h p.i. cells grown on coverslips were
758	fixed and immunostained with antibodies specific for the NP and/or P proteins of the
759	respective viruses.

761 Figure 5

762 Purified IFIT1 directly inhibits in vitro translation of PIV5 mRNA. Panel a) Coomassie

763 Brilliant Blue-stained PAG of purified IFIT1, molecular weight markers are shown in the left

hand lane. Panels b) and c). RNA isolated from mock- or PIV5-infected cells was in vitro

translated in the presence of [³⁵S]-methionine for 90 min in the presence or absence of

766 increasing concentrations of purified IFIT1 (0.1 and 1.0 μg per reaction mixture).

Polypeptides were separated by electrophoresis through a 4 -12% PAG. The total protein

content present in the *in vitro* translation mixes were visualized by staining the gel with

769 Coomassie Brilliant Blue (panel b) and the radioactively labeled proteins (panel c) visualized

using a phosphoimager. Panel d shows the densitometry traces of lanes 1, 3, 4 and 6 of panel

c. The position of PIV5 NP and M proteins are indicated; asterisks mark two prominent host

cell polypeptides. The figures at the bottom of the gel indicate the fraction of either the host

cell proteins or NP proteins made in the *in vitro* translation mixes in the presence of purified

1774 IFIT1 compared to in the absence of IFIT1.

775

Figure 6

///	Purified IFITT inhibits the <i>in vitro</i> translation of NP mKINA isolated from PTv2-, and Muv-
778	infected cells but not mRNA from mock-infected cells or NP mRNA isolated from PIV3-
779	(Washington strain), SeV- or CDV- infected cells. RNA isolated from mock or infected cells
780	was <i>in vitro</i> translated in the presence of $[^{35}S]$ -methionine for 90 min in the presence or
781	absence of increasing concentrations of purified IFIT1 (0.1 and $1.0\mu g$ per reaction mixture).
782	Polypeptides were separated by electrophoresis through a 4 -12% PAG and labeled proteins
783	visualized using a phosphoimager. The positions of the NP proteins are indicated. The
784	figures at the bottom of the gel indicate the fraction of either the host cell proteins or NP
785	proteins made in the <i>in vitro</i> translation mixes in the presence of purified IFIT1 compared to
786	in the absence of IFIT1.

1 ...

CNID

1 0

DIX

1 1 4 17

787

777

1 IEIT1

788 Figure 7

789 Lack of 2'-O methylation of the cap 1 structure of MuV and PIV5 mRNAs is at least 790 partially responsible for their sensitivity to inhibition by IFIT1. Panel a): uncapped 5'-ppp 791 mRNA encoding luciferase synthesized by T7 polymerase (provided as a control in the 792 Promega in vitro translation kit) was translated in vitro in a rabbit reticulocyte lysate in the 793 absence or presence of purified IFIT1 (lanes 1 and 2). RNGTT was used to add a 5' guanine 794 cap (lanes 3 and 4), then RNMT to methylate the cap at the N7 position (lanes 5 and 6), 795 generating cap 0, and CMTR1 to methylate the adjacent ribose on the 2' OH position, 796 generating (cap 1). The modified mRNAs were then in vitro translated in the absence (lanes 797 3, 5 and 7) or presence of IFIT1 (lanes 4, 6 and 8). Panel b): mRNA isolated from MuV-798 infected cells was treated in parallel under the same conditions as described for panel (a). 799 Panel c and d): mRNA isolated from either MuV- (Enders) or PIV5- (W3) infected cells was 800 in vitro translated prior to (lanes 1 and 2) or following modification by CMTR1 in the

- 801 presence (lanes 3 and 4) or absence (lanes 5 and 6) of SAM. The mRNA was also translated
- in the absence (lanes 1, 3 and 5) or presence of purified IFIT1 (lanes 2, 4 and 6). Panel e)
- shows the densitometry traces of lanes 1, 2, 3 and 4 of panel d). The figures at the bottom of
- 804 the gel indicate the fraction of either the host cell proteins or NP proteins made in the *in vitro*
- translation mixes in the presence of purified IFIT1 compared to in the absence of IFIT1.

0.6

0.7 0.6

