- 1 HEALTHCARE-ASSOCIATED INFECTIONS IN PAEDIATRIC AND NEONATAL INTENSIVE CARE UNITS:
- 2 IMPACT OF UNDERLYING RISK FACTORS AND ANTIMICROBIAL RESISTANCE ON 30-DAY CASE-
- 3 **FATALITY**
- 4 Laura Folgori,^{1,2*} MD; Paola Bernaschi,³ MSc; Simone Piga,⁴ MSc; Michaela Carletti,³ MSc; Filippe
- 5 Pirrone Cunha, BSc; Paulo Henrique Rodriguez Lara, BSc; Nicholas Cafieiro de Castro Peixoto,
- 6 BSc; Bárbara Gomes Alves Guimarães,⁵ BSc; Mike Sharland,² MD; André Ricardo Araujo da
- 7 Silva,^{5,6‡} MD, and Marta Ciofi degli Atti,^{4‡} MD
- 8 [†]These Authors shared seniorship in this study
- ¹University Department of Pediatrics, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4,
- 10 00165, Rome Italy
- ²Paediatric Infectious Disease Research Group, Institute for Infection and Immunity, St George's
- 12 University of London, Cranmer Terrace, SW17 ORE, London UK
- ³Unit of Microbiology, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00165, Rome -
- 14 Italy
- ⁴Unit of Clinical Epidemiology, Bambino Gesù Children's Hospital, Piazza Sant'Onofrio 4, 00165,
- 16 Rome Italy
- ⁵Faculty of Medicine-Federal Fluminense University, 9 Miguel de Frias, 24.220-900, Niterói Brazil
- ⁶Infection Control Committee, Prontobaby Hospital da Criança, R. Adolfo Mota 81, 20540-100, Rio
- 19 de Janeiro Brazil

- ***Corresponding Author:** Dr Laura Folgori
- 22 Address: St George's University of London, Cranmer Terrace, SW17 ORE, London UK

1 E-mail: laura.folgori@gmail.com

2 Telephone number: +44 20 87254851

3 Fax number: +44 20 87250716

5

4

Running title: Mortality of nosocomial infections in PICUs

Word count: 2,399 words 6

1 **ABSTRACT**

- 2 **Objectives.** Our aims were (i) to describe trends in the epidemiology of Healthcare-associated
- 3 Infections (HAIs) in paediatric/neonatal ICUs and (ii) to evaluate risk factors and impact of
- 4 Multidrug-Resistance (MDR) in children admitted to ICUs.
- 5 **Design.** Multicentre, retrospective, cohort study with a nested case-control study conducted
- 6 between January 2010 and December 2014.
- 7 **Setting.** Three tertiary-care paediatric hospitals in Italy and Brazil with a total of 97 ICU beds.
- 8 Patients. Inclusion criteria were (i) admission to ICU during the study period (ii) age at onset <18
- 9 years and (iii) microbiologically-confirmed HAI.
- 10 **Results.** 538 HAIs in 454 children were included. 93.3% of patients had comorbidities. Bloodstream
- infections (BSIs) were the leading pattern (45.4%). The cumulative incidence of HAI was 3.6/100
- 12 ICU-admission and the crude 30-day fatality rate was 5.7/1,000-admission. The most frequently
- isolated pathogens were Enterobacteriaceae, followed by *Pseudomonas aeruginosa* and
- 14 Staphylococcus aureus. 44% of isolates were MDR. Two multivariate logistic regressions were
- performed. Factors independently associated with an MDR-HAI were Country, previous antibiotics,
- transplantation, major surgery, and colonisation by an MDR strain. Factors independently
- associated with 30-day case-fatality were Country, previous transplantation, fungal infection, BSI,
- 18 LRTI, and infection caused by MDR strains.
- 19 **Conclusions.** Infection control and prevention should be a primary focus to limit the spread of
- 20 MDR strains and improve the outcome of hospitalised patients. Targeted surveillance programmes
- 21 collecting neonatal and paediatric HAI/BSI data and outcomes would allow global benchmarking
- between centres. The next step is to identify simple methods to monitor key HAIs and integrate
- 23 these into affordable intervention programmes.

INTRODUCTION

1	
,	

1

- 3 Healthcare-associated infections (HAIs) are one of the most frequent adverse event affecting
- 4 children admitted to Intensive Care Units (ICUs).^{1, 2} Exposure to invasive devices and procedures,
- 5 immune suppression, and underlying conditions are considered as main determinants of patients'
- 6 increased susceptibility.^{3, 4} The impact of multidrug-resistant (MDR) organisms in paediatrics is
- 7 increasing globally.⁵⁻⁷ It is assumed that infections caused by MDR bacteria will have a worse
- 8 prognosis because of the delay in the administration of appropriate therapy. However, it is difficult
- 9 to estimate the clinical impact of MDR-HAI in children.
- 10 Previous literature has showed conflicting results about the impact of different underlying risk
- factors on clinical outcome of patients with HAI admitted to ICUs. There is no clear independent
- 12 correlation between antimicrobial resistance (AMR) and patients' mortality.8-11
- 13 Clarifying the relationship between patient risk factors and paediatric HAI mortality could allow
- improved targeting of interventions on the patients most at risk of adverse outcome. The aims of
- this study were (i) to describe trends in the epidemiology of HAIs in Italian and Brazilian paediatric
- 16 ICUs over a five-year period and (ii) to evaluate patient risk factors and clinical impact of MDR-HAI
- in children admitted to ICUs.

18

19

MATERIALS AND METHODS

20

21

Study design and setting

- 1 We conducted a multicentre, retrospective, cohort study with a nested case-control study in one
- 2 paediatric hospitals in Italy and two in Brazil. These countries were chosen because of the high
- 3 rates of AMR identified. The Bambino Gesù Children's Hospital (Rome, Italy) is a 607-bed
- 4 paediatric tertiary-care centre, including one neonatal (NICU), three paediatric (PICU) and one
- 5 cardiac intensive care unit (CICU) (47 ICU-bed). The Prontobaby Hospital da Criança (Rio de
- 6 Janeiro, Brazil) is a 135-bed private service including NICU and PICU (45 ICU-bed). The Centro
- 7 Pediátrico da Lagoa (Rio de Janeiro, Brazil) is a 39-bed private service including an 11-bed PICU.
- 8 The study was conducted between the 1st January 2010 and the 31st December 2014. During this
- 9 period, ongoing prospective surveillance of HAIs was conducted in all the participating ICUs.
- 10 Patients with a microbiologically-confirmed diagnosis of HAI were retrieved from this data source.
- 11 Inclusion criteria were (i) admission to ICU during the study period (ii) age at onset <18 years and
- 12 (iii) diagnosis of microbiologically-confirmed HAI. Polymicrobial infections were included if criteria
- for HAI were fulfilled. Episodes with a positive isolate from the same patient for the same
- pathogen within 4 weeks of the first one were excluded.

Definitions

15

- 17 The study was conducted using CDC HAI case definitions, with only those infections presenting and
- identified >48 hours after admission to ICU considered as ICU-acquired and included. 12
- 19 The multidrug-resistance (MDR) of the isolates was defined according to Magiorakos A-P et al. 13
- 20 Coagulase-negative staphylococci (CoNS) were considered as MDR if resistant to ≥3 different
- 21 antibiotics classes including oxacillin, aminoglycosides, trimethoprim-sulfamethoxazole,
- 22 clindamycin and quinolones. 14 Isolates that did not meet MDR definition were classified as
- 23 susceptible. Patients with polymicrobial infection with mixed MDR and non-MDR isolates were

- 1 classified as MDR. Cases were defined as patients with HAI due to MDR isolates. Controls were
- 2 defined as patients with HAIs caused by non-MDR.

3

4

Microbiological methods

- 5 In Italy, isolation and identification of microorganisms were made with accredited routine
- 6 laboratory methods (Vitek® 128 2, bioMérieux, Durham, NC or Phoenix, BD Diagnostics). The CLSI
- 7 criteria were used for antibiotic susceptibility testing (AST) from 2010 to 2011 whereas from 2012
- 8 the EUCAST breakpoints have been introduced in the Hospital's practice.
- 9 In Brazil, isolation of microbiological species was done by semi-quantitative process (Auto-Scan 4-
- 10 SIEMENS). AST were done by disk-diffusion according to CLSI recommendations until 2013 and to
- 11 EUCAST from 2014.
- 12 Prior colonisation with MDR strains was assessed by stool culture/rectal swab.

13

14

Data source and statistical analysis

- 15 We considered the cohort of patients admitted to ICU to estimate HAI cumulative incidence (HAI
- episodes/100 ICU-admission), rate of infections (HAI episodes/1,000 ICU-day), and mortality rate
- at 7-and 30-day of HAI onset (deaths among patients with at least one HAI episode/1,000 ICU-
- 18 admission). For all HAI episodes we collected information about possible risk factors, including
- 19 demographic, clinical and microbiological variables from inpatient clinical and laboratory records.
- 20 We then compared cases versus control to evaluate determinants for acquisition of HAI due to MDR,
- 21 compared to non-MDR HAI. Predictors of 30-day HAI case-fatality rate was estimated by
- 22 comparing survivors versus non survivors.

1	Categorical variables were summarized by absolute frequencies and percentages, and continuous
2	variables by median and interquartile range (IQR).
3	To determine statistical differences between groups, the Chi square test or Fischer's exact test
4	were used for categorical variables, while the t-test or Mann-Whitney test were used for
5	continuous variables.
6	Two multivariate logistic regression models were developed to assess independent predictors of:
7	1) acquisition of MDR-HAI compared to non-MDR-HAI, and 2) 30-day HAI case-fatality rate.
8	Variables for which the p-value was <0.20 in univariate analyses were included in the multivariate
9	models. Final models were computed with a stepwise backward procedure (likelihood ratio test
10	p<0.05).
11	All statistical analyses were performed using STATA, Statistical Software: Release 13. College
12	Station, Tx: StataCorp 2013.
13	
14	Ethics
15	The study was approved by the Ethical Committee of all institutions with a waiver of informed
16	consent.
17	
18	RESULTS
19	
20	Demographic and clinical data

- 1 During the study period 14,924 children were admitted to one of the ICUs for a total of 148,243
- 2 ICU days. Overall, 538 HAI episodes in 454 children, fulfilling the inclusion criteria, were identified
- 3 and included in the analysis.
- 4 Characteristics of episodes of HAI are summarised in Table 1. Bloodstream infections (BSIs) were
- 5 the leading pattern accounting for 244 episodes (45.4%), followed by lower respiratory tract
- 6 infections (LRTIs) with 149 (27.8%) and urinary tract infections (UTIs) with 85 episodes (15.8%).
- 7 The median age of patients at HAI onset was 7.8 months (IQR 2.1-26.2 months). 93.3% of HAI
- 8 cases affected children with comorbidities. The median length of stay (LOS) in ICU was 67 days
- 9 (IQR 31-127 days) whereas the median time between ICU admission and onset of HAI was 24 days
- 10 (IQR 11-58 days).
- Overall, 478 out of the 538 HAIs (88.8%) were diagnosed in patients with an invasive device in situ.
- 12 In 443 of them (82.3%), the device had been in place for more than 48 hours before the infection.
- 13 Among BSIs, 195/244 (79.9%) interested children with a Central Venous Catheter (CVC) in situ
- when diagnosed (179 (73.4%) of them for >48 hours). 120 out of 149 (80.5%) LRTIs were in
- children mechanically-ventilated (100 (67.1%) of them for >48 hours). Among UTIs, 38/85 were in
- children who had a Urinary Catheter (28 (32.9%) of them for >48 hours).
- 17 In 318 out of 538 episodes (59.1%), children were already on antibiotics when diagnosed with a
- 18 HAI (141 (44.3%) were receiving monotherapy, 130 (40.9%) were on two, and 47 (14.8%) on three
- 19 antibiotics).
- The cumulative incidence of HAI was 3.6/100 ICU-admission whereas the rate of infections was
- 3.6/1,000 ICU-day. No significant trends in HAI incidence and rate were identified over the five-
- year period. The mortality rate was 2.3/1,000-admission for 7-day and 5.7/1,000-admission for 30-
- day mortality rate. HAI case-fatality rate at 30 days was 18.7% (85/454).

1

2

Microbiological data

- 3 A total of 573 microorganisms were isolated (Table 2). Among them, 317/573 were Gram-negative
- 4 bacteria (55%), 184/573 were Gram-positive bacteria (32%), and 40/573 were Fungi (7%). The
- 5 most frequently isolated pathogens were Enterobacteriaceae (30.9%), followed by *Pseudomonas*
- 6 aeruginosa (19.2%) and Staphylococcus aureus (11.0%). The percentage of MDR isolates was 44%.
- 7 Based on the susceptibility profile, 79/175 (45%) of the Enterobacteriaceae were ESBL-positive.
- 8 Culture-confirmed carbapenem resistance was reported in 3/175 (2%) of the Enterobacteriaceae
- 9 (CRE), 46/110 (42%) of P. aeruginosa and 6/10 of Acinetobacter baumannii. Among Gram-
- positives, 35/63 (56%) of S. aureus were methicillin-resistant (MRSA) whereas no vancomycin-
- resistant Enterococcus spp (VRE) was isolated. 76 Coagulase-negative Staphylococci (CoNS) were
- isolated, 47 of which were classified as MDR (62%). Overall, 40 cultures were positive for *Candida*
- 13 *spp*, all of them fully sensitive.

14

15

Determinants of HAI due to MDR and 30-day case-fatality rate

- Out of a total of 538 episodes, 241 were due to MDR isolates, and 297 to non-MDR isolates, with
- 17 no statistically significant differences in cumulative incidence (1.61 episodes/100 ICU-admissions
- vs 1.99/100; p=0.995). 30-day case-fatality rate was also similar in MDR-HAI episodes compared to
- 19 non-MDR episodes (19.1% vs 13.1%; p=0.06).
- 20 In the univariate analysis, risk factors significantly associated with HAI caused by MDR isolates
- compared to non-MDR isolates were country (Brazil), antibiotic use in the month before HAI,
- 22 minor surgery in the six months before HAI, and previous colonisation by a MDR strain (Table 3).

- 1 In the multivariate analysis, factors independently associated with an MDR-HAI were country
- 2 (Brazil), antibiotic use in the month before HAI, previous transplantation, major surgery in the six
- 3 months before HAI, and previous colonisation by an MDR strain (Table 3).
- 4 Risk factors associated with 30-day case-fatality are summarised in Table 4. In the univariate
- 5 analysis, factors significantly associated with 30 day case-fatality were country (Brazil),
- 6 prematurity, type of HAI, and microorganism category. In the multivariate multilevel analysis,
- 7 factors independently associated with 30-day case-fatality were previous transplantation, BSI,
- 8 LRTI, infection caused by Fungi compared to Gram-positive bacteria, and infection caused by an
- 9 MDR strain. 2-5 years age group resulted as a protective factor compared to 0-28 days age group.

DISCUSSION

10

11

- 13 We reported a five-year experience of microbiologically-confirmed HAIs in eight ICUs at three
- 14 Children's Hospitals in Italy and Brazil. Our study involved nearly 15,000 patients admitted
- between 2010 and 2014, and data on 538 HAIs were included. This cohort was larger compared to
- previous studies published in paediatrics. We documented a HAI incidence of 3.6% and an
- infection rate of 3.6/1,000 ICU days. Compared to previous reports, our rates were lower than
- expected, since the incidence of HAIs has been previously reported as between 7 and 12% in
- paediatric and between 15 and 20% in neonatal ICUs.^{4, 6, 15-18} The vast majority of children in our
- 20 cohort had an underlying disease (93.3%), proportion quite similar to previous data in paediatric
- 21 ICUs.¹⁹
- 22 Consistent with previous studies, BSIs represented the leading cause of paediatric HAIs, followed
- by LRTIs and UTIs. 6, 16-18, 20 These findings underline how children differ from adults in HAI

- distribution, emphasising the need to target interventions focused on BSI prevention in neonates
- 2 and children.⁹
- 3 Of the isolated pathogens, 55% were Gram-negatives, 32% were Gram-positives and 7% were
- 4 Fungi. This distribution is consistent with previous studies, conducted both in adults and children,
- 5 showing that in ICU the majority of HAIs is due to Gram-negative bacteria, with
- 6 Enterobacteriaceae counting for 25-30% of all isolates.⁴
- 7 In our cohort, nearly half of the grown organisms were classified as MDR. Among
- 8 Enterobacteriaceae, 45% of the isolates were ESBL-positive. This proportion was high compared to
- 9 previous reports in hospitalised children.^{21, 22} However, this could have been over represented,
- since our definition was only based on susceptibility profile. Culture-confirmed carbapenem
- resistance was reported in only 2% of Enterobacteriaceae in our cohort. Infections due to
- 12 Carbapenem-resistant Enterobacteriaceae (CRE) in adult populations have been associated with
- mortality rates as high as 40%.²³ CRE infections are still relatively uncommon in children, with
- prevalence being reported less than 1% and mortality rate lower compared to adults.²⁴
- 15 In the multivariate analysis, previous colonisation by an MDR pathogen was independently
- associated with an MDR-HAI. Children have been proved to show particularly high colonisation
- 17 rates, representing a reservoir from which bacteria can spread.²⁵ However, the actual mechanisms
- leading from colonisation to infection are still debated and little surveillance data have been
- 19 published so far on resistant bacteria causing invasive disease in children.
- 20 One of our aims was to evaluate the impact of different patient-level risk factors on ICU-mortality.
- 21 In our cohort, 30-day fatality rate for children with HAIs was 5.7/1,000-admission. This proportion
- was comparable to previous reports in paediatric ICUs,⁴ but lower compared to adults.²⁶ In the
- 23 multivariate analysis, factors independently associated with 30-day HAI case-fatality were BSI, LRTI

- and infection caused by an MDR strain. Many studies have so far failed to demonstrate a clear
- 2 relationship between antimicrobial resistance and mortality.^{8, 10, 11, 27} A possible explanation is that
- 3 the currently used definitions for MDR bacteria may not be directly applicable in clinical care, as
- 4 they do not take into account infection type, age or risk-adjustment.¹³
- 5 The other factor independently associated with mortality was type of infection. In our cohort,
- 6 children with BSI and LRTI had a respective risk of death 4.0 and 2.9 times higher than children
- 7 with other HAIs. This finding is consistent with previous studies.^{4, 6, 16}
- 8 This study has some limitations. Children admitted to ICU are a highly heterogeneous population,
- 9 characterised by different medical/surgical underlying diseases. This very variable case-mix could
- 10 have influenced the analysis and misrepresented the impact of different risk factors on the
- outcomes. We assessed risk factors with a retrospective nested case-control study design; the
- independent role of determinants of HAI due to MDR and of case-fatality were assessed by logistic
- regression analysis. Other approaches, including multistate regression analysis, could be adopted
- to investigate multiple events associated with HAI, such as excess length of hospital-stay and
- mortality.²⁸ Our multicentre study was conducted in two Countries; differences in population
- demographic, organization of care, and laboratory technics for confirming HAIs and diagnosing
- MDR may have influenced our results. Further studies should be conducted in multiple Countries
- to better address geographical variability. To this regard, multilevel regression analysis could be a
- useful tool to simultaneously investigate how population-level and individual-level factors
- 20 contribute to disease outcomes.²⁹
- 21 Education of healthcare personnel about intravascular catheter use and procedures in ICUs have
- proved to be effective measures to reduce the rate of central line-associated BSIs (CLABSIs) in
- paediatric intensive care.³⁰ Facility data submission mandates at national and international level

- demonstrated to improve CLABSI prevention and reduce CLABSI rates in hospitalised children.³¹
- 2 Targeted surveillance programmes collecting neonatal and paediatric HAI/BSI data and clinical
- 3 outcomes may be useful to allow global benchmarking between centres. However, the data
- 4 collected for this study are just too labour intensive for routine use, especially in the low-middle
- 5 income countries setting. Web-based Point Prevalence Surveys (PPSs) seem to be an effective tool
- 6 to allow simple-to-collect data to be used to set benchmark and monitor interventions. The Global
- 7 Antimicrobial Resistance, Prescribing, and Efficacy among Neonates and Children (GARPEC)
- 8 Project,³² the repeated PPSs of HAIs and antimicrobial use in European hospitals conducted by the
- 9 ECDC,³³ or the International Nosocomial Infection Control Consortium (INICC)³⁴ represent good
- 10 examples of international initiatives aiming at reducing HAIs burden and their attributable
- mortality. The next step is to identify simple methods to monitor key HAIs and integrate these into
- 12 affordable intervention programmes.

ACKNOWLEDGMENTS

- 2 We thank Lucilla Ravà for her statistical support.
- **Financial support:** none reported.
- **Conflict of interest**: All authors report no conflicts of interest relevant to this article.

REFERENCES

- 2 1. Allegranzi B, Bagheri Nejad S, Combescure C, et al. Burden of endemic health-care-
- 3 associated infection in developing countries: systematic review and meta-analysis. Lancet
- 4 2011;377:228-241.
- 5 2. Esteban E, Ferrer R, Urrea M, et al. The impact of a quality improvement intervention to
- 6 reduce nosocomial infections in a PICU. *Pediatr Crit Care Med* 2013;14:525-532.
- 7 3. Martin-Loeches I, Diaz E, Valles J. Risks for multidrug-resistant pathogens in the ICU. Curr
- 8 *Opin Crit Care* 2014;20:516-524.
- 9 4. Mathot F, Duke T, Daley AJ, Butcher T. Bacteremia and pneumonia in a tertiary PICU: an
- 10 11-year study. *Pediatr Crit Care Med* 2015;16:104-113.
- 11 5. IDSA. The 10 x '20 Initiative: pursuing a global commitment to develop 10 new antibacterial
- drugs by 2020. Clin Infect Dis 2010;50:1081-1083.
- 13 6. McGrath EJ, Asmar BI. Nosocomial infections and multidrug-resistant bacterial organisms in
- the pediatric intensive care unit. *Indian J Pediatr* 2011;78:176-184.
- 15 7. Mitt P, Metsvaht T, Adamson V, et al. Five-year prospective surveillance of nosocomial
- bloodstream infections in an Estonian paediatric intensive care unit. *J Hosp Infect* 2014;86:95-99.
- 17 8. Burnham JP, Lane MA, Kollef MH. Impact of Sepsis Classification and Multidrug-Resistance
- 18 Status on Outcome Among Patients Treated With Appropriate Therapy. Crit Care Med
- 19 2015;43:1580-1586.
- 20 9. Lambert ML, Suetens C, Savey A, et al. Clinical outcomes of health-care-associated
- 21 infections and antimicrobial resistance in patients admitted to European intensive-care units: a
- cohort study. Lancet Infect Dis 2011;11:30-38.

- 1 10. Lye DC, Earnest A, Ling ML, et al. The impact of multidrug resistance in healthcare-
- 2 associated and nosocomial Gram-negative bacteraemia on mortality and length of stay: cohort
- 3 study. *Clin Microbiol Infect* 2012;18:502-508.
- 4 11. Patel SJ, Oliveira AP, Zhou JJ, et al. Risk factors and outcomes of infections caused by
- 5 extremely drug-resistant gram-negative bacilli in patients hospitalized in intensive care units. Am J
- 6 Infect Control 2014;42:626-631
- 7 12. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-
- 8 associated infection and criteria for specific types of infections in the acute care setting. Am J
- 9 *Infect Control* 2008;36:309-332
- 10 13. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant
- and pandrug-resistant bacteria: an international expert proposal for interim standard definitions
- for acquired resistance. *Clin Microbiol Infect* 2012;18:268-281
- 13 14. Monsen T, Karlsson C, Wistrom J. Spread of clones of multidrug-resistant, coagulase-
- negative staphylococci within a university hospital. *Infect Control Hosp Epidemiol* 2005;26:76-80
- 15 15. Banerjee SN, Grohskopf LA, Sinkowitz-Cochran RL, Jarvis WR. Incidence of pediatric and
- neonatal intensive care unit-acquired infections. *Infect Control Hosp Epidemiol* 2006;27:561-570
- 17 16. Grohskopf LA, Sinkowitz-Cochran RL, Garrett DO, et al. A national point-prevalence survey
- of pediatric intensive care unit-acquired infections in the United States. J Pediatr 2002;140:432-
- 19 438
- 20 17. Rutledge-Taylor K, Matlow A, Gravel D, et al. A point prevalence survey of health care-
- associated infections in Canadian pediatric inpatients. *Am J Infect Control* 2012;40:491-496

- 1 18. Simon A, Bindl L, Kramer MH. Surveillance of nosocomial infections: prospective study in a
- 2 pediatric intensive care unit. Background, patients and methods. Klin Padiatr 2000;212:2-9
- 3 19. Murni IK, Duke T, Kinney S, Daley AJ, Soenarto Y. Reducing hospital-acquired infections and
- 4 improving the ratenal use of antibiotics in a developing country: an effectiveness study. *Arch Dis*
- 5 *Child* 2015;100:454-459
- 6 20. Muhlemann K, Franzini C, Aebi C, et al. Prevalence of nosocomial infections in Swiss
- 7 children's hospitals. *Infect Control Hosp Epidemiol* 2004;25:765-771
- 8 21. Logan LK, Braykov NP, Weinstein RA, Laxminarayan R; CDC Epicenters Prevention Program.
- 9 Extended-Spectrum beta-Lactamase-Producing and Third-Generaten Cephalosporin-Resistant
- 10 Enterobacteriaceae in Children: Trends in the United States, 1999-2011. J Pediatric Infect Dis Soc
- 11 2014;3:320-328
- 12 22. Lukac PJ, Bonomo RA, Logan LK. Extended-spectrum beta-lactamase-producing
- 13 Enterobacteriaceae in children: old foe, emerging threat. Clin Infect Dis 2015;60:1389-1397
- 14 23. Gupta N, Limbago BM, Patel JB, Kallen AJ. Carbapenem-resistant Enterobacteriaceae:
- epidemiology and prevention. *Clin Infect Dis* 2011;53:60-67
- 16 24. Chiotos K, Han JH, Tamma PD. Carbapenem-Resistant Enterobacteriaceae Infections in
- 17 Children. Curr Infect Dis Rep 2016;18:2
- 18 25. Fernandez-Reyes M, Vicente D, Gomariz M, et al. High rate of fecal carriage of extended-
- 19 spectrum-beta-lactamase-producing Escherichia coli in healthy children in Gipuzkoa, northern
- 20 Spain. Antimicrob Agents Chemother 2014;58:1822-1824
- 21 26. Malacarne P, Boccalatte D, Acquarolo A, et al. Epidemiology of nosocomial infection in 125
- 22 Italian intensive care units. *Minerva Anestesiol* 2010;76:13-23

- 1 27. Shime N, Kawasaki T, Saito O, et al. Incidence and risk factors for mortality in paediatric
- 2 severe sepsis: results from the national paediatric intensive care registry in Japan. *Intensive Care*
- 3 *Med* 2012;38:1191-1197
- 4 28. Green N, Johnson AP, Henderson KL, et al. Quantifying the burden of Hospital-Acquired
- 5 Bloodstream Infection in children in England by estimating Excess Length of Hospital Stay and
- 6 Mortality using a Multistate Analysis of linked, routinely collected data. J Pediatric Infect Dis Soc
- 7 2015;4:305-312
- 8 29. Diez Roux AV, Aiello AE. Multilevel analysis of infectious diseases. *J Infect Dis* 2005;191
- 9 Suppl 1:S25-S33
- 10 30. O'Grady NP, Alexander M, Burns LA, et al. Guidelines for the prevention of intravascular
- catheter-related infections. *Clin Infect Dis* 2011;52:e162-193
- 12 31. Zachariah P, Reagan J, Furuya EY, et al. The association of state legal mandates for data
- submission of central line-associated bloodstream infections in neonatal intensive care units with
- process and outcome measures. *Infect Control Hosp Epidemiol* 2014;35:1133-1139
- 15 32. Global Antimicrobial Resistance, Prescribing, and Efficacy among Neonates and Children.
- Available at: http://garpec.org/. Accessed January 24, 2016
- 17 33. European Centre for Disease Prevention and Control: Point prevalence survey of
- healthcare-associated infections and antimicrobial use in European acute care hospitals. 2011–
- 19 2012. Stockholm: ECDC. 2013. Available at:
- 20 http://ecdc.europa.eu/en/publications/Publications/healthcare-associated-infections-
- 21 <u>antimicrobial-use-PPS.pdf</u>. Accessed January 24, 2016

- 1 34. International Nosocomial Infection Control Consortium INICC. Available at:
- 2 http://www.inicc.org/. Accessed March 3, 2016

1 Table 1: Characteristics of episodes of HAI included in the study

Variable	Italy (%)	Brazil (%)	Total (%)	р
Total number of episodes	335	203	538	
Gender				0.831
M	180(53.7)	111(54.7)	291(54.1)	
F	155(46.3)	92(45.3)	247(45.9)	
Median age in months (range IQR)	5.3(1.8-12.8)	14.9(4.0-49.7)	7.8(2.1-26.2)	0.001
Age group				0.001
0-28 days	51(15.2)	17(8.4)	68(12.6)	
29 days-3 months	74(22.1)	23(11.3)	97(18.0)	
3 months-2 years	151(45.1)	73(36.0)	224(41.6)	
2-5 years	22(6.6)	39(19.2)	61(11.3)	
>5 years	37(11.0)	51(25.1)	88(16.4)	
Underlying disease				0.001
No	11(3.3)	25(12.3)	36(6.7)	
Yes	324(96.7)	178(87.7)	502(93.3)	
Admission ward				0.001
NICU ^σ	84(25.1)	30(14.8)	114(21.2)	
PICU ^b	96(28.7)	173(85.2)	269(50.0)	
CICU ^c	155(46.3)	0(-)	155(28.8)	
Median length of stay (LOS) in ICU				
ICU-days (IQR)	73(33-135)	55(26-124)	67(31-127)	0.085
LOS pre-HAI ^d (IQR)	24(10-55)	26(13-67)	24(11-58)	0.186

HAI distribution				0.033
Bloodstream infection	159(47.6)	85(41.9)	244(45.4)	
Lower respiratory tract infection ^e	88(26.4)	61(30.1)	149(27.8)	
Urinary tract infection	51(15.3)	34(16.8)	85(15.8)	
Surgical site infection	25(7.5)	7(3.5)	32(6.0)	
Other infections	11(3.3)	16(7.9)	27(5.0)	
Susceptibility of the isolate				0.001
MDR ^f	119(35.5)	122(60.1)	241(44.8)	
non-MDR	216(64.5)	81(39.9)	297(55.2)	
Mortality				
7-day mortality	15(4.8)	19(10.7)	34(7.0)	0.014
30-day mortality	25(7.8)	26(14.1)	51(10.1)	0.024

^aNICU: Neonatal intensive Care Unit; ^bPICU: Paediatric Intensive Care Unit; ^cCICU: Cardiac Intensive

² Care Unit; ^dHAI: Healthcare-associated Infections; ^eIncluding Pneumonia; ^fMDR: Multidrug-

³ Resistant

1 Table 2: Distribution and resistance of isolates by type of Healthcare-associated Infection

	Bl	oodstrea	m	Low	er Respir	atory	U	rinary T	ract	S	urgical S	Site			
Pathogen		infection		Tra	ct Infect	ion ^a		Infectio	n		Infectio	on		Other	
		252			164			94			35			27	
Total isolates	n	n MDR ^b	%	n	n MDR	%	n	n MDR	%	n	n MDR	%	n	n MDR	%
Total Gram positives	110	52	47.3	31	19	61.3	13	3	23.1	16	9	56.3	14	9	64.3
Total Gram negatives	107	44	41.1	115	52	45.2	66	35	53	16	8	50	12	9	75
Staphylococcus aureus	25	14	56	28	17	60.7	1	0	-	7	3	42.9	2	2	100
CoNS ^c	59	33	55.9	3	2	66.7	0	-	-	7	5	71.4	7	6	85.7
Klebsiella pneumoniae	31	11	35.5	17	8	45.1	17	13	46.5	4	4	100	2	2	100
Escherichia coli	10	3	30	9	3	33.3	18	8	44.4	1	0	-	1	1	100
Pseudomonas aeruginosa	27	13	48.1	57	23	40.4	19	9	47.4	6	3	50	1	0	-
Serratia marcescens	9	1	11.1	3	0	-	4	1	25	0	-	-	1	1	100
Stenotrophomonas maltophilia	4	4	100	14	14	100	1	1	100	0	-	-	0	-	-
Enterobacter spp	16	9	56.3	7	5	71.4	5	3	60	2	1	50	5	4	80
Acinetobacter spp	3	2	66.7	7	3	42.9	1	1	100	1	1	100	1	1	100
Enterococcus spp	25	5	20	0	-	-	14	5	35.7	4	1	25	3	1	33.3
Candida spp	27	0	-	5	0	-	7	0	-	0	-	-	1	0	-
Other Gram- positives	3	0	-	2	0	-	0	-	-	0	-	-	2	0	-

Other Gram-															
	13	5	38.5	12	6	50	7	2	28.6	3	0	-	1	0	-
negatives ^d															

- ^aIncluding Pneumonia; ^bMDR: Multidrug-Resistant; ^cCoNS: Coagulase-negative staphylococci; ^d1
- 2 missing case

1 Table 3: Univariate and multivariate regression analysis of the impact of cohort characteristics

2 on Healthcare-associated Infections caused by Multidrug-Resistant isolates

W	MDR ^a	non-MDR		Crude	(050(61)		Adj	(050/01)	
Variable	(n=241)	(n=297)	p	OR	(95%CI)	p	OR	(95%CI)	p
Country (%)			0.001						
Italy	119(35.5)	216(64.5)		1			1		
Brazil	122(60.1)	81(39.9)		2.73	(1.91-3.92)	0.001	3.11	(1.86-5.20)	<0.001
Age group (%)			0.070				N.I. ^b		
0-28 days	25(36.8)	43(63.2)		1					
29 days-3 months	40(41.2)	57(58.8)		1.21	(0.64-2.28)	0.563			
3 months-2 years	95(42.4)	129(57.6)		1.27	(0.72-2.22)	0.408			
2-5 years	35(57.4)	26(42.6)		2.32	(1.14-4.70)	0.020			
>5 years	46(52.3)	42(47.7)		1.88	(0.99-3.59)	0.055			
Male gender (%)	136(46.7)	155(53.3)	0.326	1.19	(0.84-1.67)	0.326			
Underlying conditions (%)			0.319						
No	19(52.8)	17(47.2)		1					
Yes	222(44.2)	280(55.8)		0.71	(0.36-1.40)	0.321			
Risk category (%)			0.212						
Surgery	72(38.3)	116(61.7)		1			1		
Immunodeficiency	6(40.0)	9(60.0)		1.07	(0.37-3.14)	0.896	1.51	(0.46-4.96)	0.500
Transplantation	8(66.7)	4(33.3)		3.22	(0.94-11.09)	0.063	4.17	(1.12-15.61)	0.034
Cancer	10(62.5)	6(37.5)		2.69	(0.94-7.70)	0.066	1.17	(0.37-3.66)	0.790
Renal failure	5(45.5)	6(54.6)		1.34	(0.40-4.56)	0.637	0.89	(0.22-3.63)	0.874
Prematurity	17(44.7)	21(55.3)		1.30	(0.65-2.63)	0.459	2.25	(0.96-5.31)	0.063
Other	102(46.4)	118(53.6)		1.39	(0.94-2.07)	0.101	1.41	(0.82-2.43)	0.211
AB use in the month before HAI ^c (%)			0.001						

No	20(27.8)	52(72.2)		1			1		
Yes	217(48.2)	233(51.8)		2.42	(1.40-4.19)	0.002	2.10	(1.14-3.88)	0.017
Type of AB (%)									
Penicillin/Ampicillin	7(36.8)	12(63.2)	0.442	1.52	(0.52-4.40)	0.443			
Combination of penicillin,									
incl. beta-lactamase	15(41.7)	21(58.3)	0.146	1.86	(0.80-4.30)	0.148	N.I.		
inhibitor									
Cephalosporin 2 nd	23(32.9)	47(67.1)	0.510	1.30	(0.63-2.67)	0.474			
Cephalosporin 3 rd	21(53.9)	18(46.2)	0.007	3.03	(1.34-6.84)	0.008	1.85	(0.90-3.81)	0.093
Carbapenem not combined with enzyme	48(57.1)	36(42.9)	0.001	3.47	(1.77-6.79)	0.001	1.60	(0.93-2.66)	0.093
Combination of									
sulfonamised/trimethoprim	2(40.0)	3(60.0)	0.620	1.73	(0.27-11.15)	0.563			
Macrolide	7(58.3)	5(41.7)	0.048	3.64	(1.03-12.81)	0.044	N.I.		
Aminoglycoside	15(44.1)	19(55.9)	0.095	2.05	(0.88-4.81)	0.098	N.I.		
Quinolone	24(50.0)	24(50.0)	0.023	2.60	(1.21-5.59)	0.014	N.I.		
Glycopeptide	32(48.5)	34(51.5)	0.012	2.45	(1.21-4.96)	0.013	N.I.		
Surgery in the previous 6 months (%)			0.063						
No	91(43.5)	118(56.5)		1			1		
Minor	40(58.0)	29(42.0)		1.80	(1.04-3.13)	0.036	1.81	(0.98-3.33)	0.058
Major	110(42.5)	149(57.5)		0.97	(0.68-1.39)	0.851	1.99	(1.10-3.58)	0.022
Invasive devices (%)			0.833						
No	18(43.9)	23(56.1)		1					
Yes	218(45.6)	260(54.4)		1.01	(0.54-1.91)	0.963			
Previous colonisation by			0.001						
MDR (%)			0.001						
No	139(38.7)	220(61.3)		1			1		

Yes 87(63.0	51(37.0)	2.70	(1.80-4.05)	0.001	1.72	(1.08-2.76)	0.023
-------------	----------	------	-------------	-------	------	-------------	-------

^aMDR: Multidrug-Resistant; ^bNot included in the final model; ^cHAI: Healthcare-associated

2 Infection

1 Table 4: Univariate and multivariate regression analysis of the impact of cohort characteristics

2 on Mortality

Variable	Survived (n=453)	Non- survived (n=85)	p	Crude OR	(95%CI)	p	Adj OR	(95%CI)	р
Country (%)			0.002						
Italy	295(88.1)	40(11.9)		1			1		
Brazil	158(77.8)	45(22.2)		2.10	(1.32-3.35)	0.002	3.58	(1.96-6.52)	<0.001
Age group (%)			0.187						
0-28 days	51(75.0)	17(25.0)		1			1		
29 days-3 months	81(83.5)	16(16.5)		0.59	(0.28-1.28)	0.181	0.59	(0.25-1.38)	0.226
3 months-2 years	195(87.0)	29(13.0)		0.45	(0.23-0.87)	0.019	0.52	(0.23-1.17)	0.112
2-5 years	53(86.9)	8(13.1)		0.45	(0.18-1.14)	0.093	0.32	(0.11-0.95)	0.039
>5 years	73(83.0)	15(17.1)		0.62	(0.28-1.35)	0.225	0.51	(0.19-1.37)	0.181
Male gender (%)	245(84.2)	46(15.8)	0.995	1.00	(0.63-1.59)	0.995			
Underlying conditions (%)			0.635						
No	32(88.9)	4(11.1)		1					
Yes	421(83.9)	81(16.1)		1.54	(0.53-4.47)	0.428			
Risk category (%)			0.120						
Surgery	161(85.6)	27(14.4)		1			1		
Immunodeficiency	11(73.3)	4(26.7)		2.17	(0.64-7.31)	0.212	2.00	(0.52-7.77)	0.315
Transplantation	8(66.7)	4(33.3)		2.99	(0.84-10.59)	0.091	5.98	(1.38-25.94)	0.017
Cancer	13(81.3)	3(18.8)		1.38	(0.37-5.15)	0.635	0.96	(0.21-4.33)	0.958
Renal failure	10(90.9)	1(9.1)		0.60	(0.07-4.85)	0.629	0.38	(0.04-3.51)	0.395
Prematurity	27(71.0)	11(29.0)		2.43	(1.07-5.47)	0.032	1.70	(0.67-4.28)	0.262
Other	188(85.5)	32(14.6)		1.01	(0.58-1.77)	0.958	0.85	(0.44-1.63)	0.616

Previous colonisation									
by MDR ^a (%)			0.401						
No	305(85.0)	54(15.0)		1					
Yes	113(81.9)	25(18.1)		1.25	(0.74-2.10)	0.402			
Median ICU-stay pre-	24.0 (11-59)	24.0 (13-51)	0.912	1.00	(0.99-1.00)	0.867			
HAI ^b (IQR)	24.0 (11-39)	24.0 (13-31)	0.912	1.00	(0.55-1.00)	0.807			
Type of HAI			0.001						
Urinary tract infection	79(92.9)	6(7.1)		1			1		
Bloodstream infection	193(79.1)	51(20.9)		3.48	(1.43-8.43)	0.006	4.01	(1.50-10.61)	0.005
Lower respiratory tract	123(82.6)	26/17 E\		2.78	(1.10-7.07)	0.031	2.93	(1.08-8.00)	0.036
infection ^c	123(82.0)	26(17.5)		2.70	(1.10-7.07)	0.031	2.95	(1.08-8.00)	0.036
Surgical site infection	32(100.0)	O(-)		1.00	-	-	1.00	-	-
Other infections	25(92.6)	2(7.4)		1.05	(0.20-5.55)	0.951	0.88	(0.15-5.00)	0.881
Organisms			0.031						
Gram-positive	161(87.5)	23(12.5)		1			1		
Gram-negative	266(83.9)	51(16.1)		1.34	(0.79-2.28)	0.276	1.51	(0.83-2.75)	0.182
Fungi	26(70.3)	11(29.7)		2.96	(1.29-6.79)	0.010	4.93	(1.88-12.90)	0.001
Susceptibility			0.060						
non-MDR	258(86.9)	39(13.1)		1			1		
MDR	195(80.9)	46(19.1)		1.56	(0.98-2.49)	0.061	1.85	(1.06-3.22)	0.030

amd MDR: Multidrug-Resistant; bhal: Healthcare-associated Infection; clincluding Pneumonia