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Short-term exposure to traffic-related air pollution and daily
mortality in London, UK
Richard W. Atkinson1, Antonis Analitis2, Evangelia Samoli2, Gary W. Fuller3, David C. Green3, Ian S. Mudway3, Hugh R. Anderson1,3 and
Frank J. Kelly3

Epidemiological studies have linked daily concentrations of urban air pollution to mortality, but few have investigated specific
traffic sources that can inform abatement policies. We assembled a database of 4100 daily, measured and modelled pollutant
concentrations characterizing air pollution in London between 2011 and 2012. Based on the analyses of temporal patterns and
correlations between the metrics, knowledge of local emission sources and reference to the existing literature, we selected, a priori,
markers of traffic pollution: oxides of nitrogen (general traffic); elemental and black carbon (EC/BC) (diesel exhaust); carbon
monoxide (petrol exhaust); copper (tyre), zinc (brake) and aluminium (mineral dust). Poisson regression accounting for seasonality
and meteorology was used to estimate the percentage change in risk of death associated with an interquartile increment of each
pollutant. Associations were generally small with confidence intervals that spanned 0% and tended to be negative for
cardiovascular mortality and positive for respiratory mortality. The strongest positive associations were for EC and BC adjusted for
particle mass and respiratory mortality, 2.66% (95% confidence interval: 0.11, 5.28) and 2.72% (0.09, 5.42) per 0.8 and 1.0 μg/m3,
respectively. These associations were robust to adjustment for other traffic metrics and regional pollutants, suggesting a degree of
specificity with respiratory mortality and diesel exhaust containing EC/BC.
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INTRODUCTION
Epidemiological studies have provided a substantial body of
evidence linking daily concentrations of outdoor air pollution to
adverse effects on a range of health outcomes. This literature
comprising evidence from cohort, time-series, toxicological and
mechanistic studies, has been subject to thorough review.1–5

Studies have tended to focus on the mass concentrations of
particles and selected gaseous pollutants, but more insight is
required regarding the most harmful sources and components of
the air pollution mixture to inform focused policies to protect
public health. Hence, a growing number of studies have
attempted to assess which components of the particle mixture
are responsible for the observed associations.6–14

Time-series studies investigating associations between traffic-
related pollution and mortality have used source-apportioned
exposures to traffic15–19 or routinely measured pollutants such as
PM2.5 or nitrogen dioxide (NO2)

5 or elemental (EC) or black carbon
(BC).13 There is suggestive evidence for the biological mechanism
of these effects from controlled toxicological exposure studies,20

with increases in markers of oxidative stress21 and evidence of
DNA methylation changes also identified.22 Because some traffic-
related pollutants have other sources and spatial distributions,
the challenge is to identify the degree to which the various
components are specific for traffic, both in the near-roadside and
urban background context. To meet this challenge, extensive data

monitoring networks and measurement campaigns providing
complete daily data over a sufficiently long period of time are
required. Consequently, few epidemiological studies have been
able to fully assess health effects associated with specific sources.
To investigate associations between short-term exposure to

air pollutants arising from traffic sources and daily mortality in
London, we assembled a database comprising daily counts of
deaths from all causes and from cardiovascular and respiratory
diseases and a large number of pollutants, measured daily,
obtained from routine and campaign-based monitoring further
enhanced by modelling. Based on the published literature on
urban air pollution sources, analyses of temporal and seasonal
patterns and the correlations between the assembled pollution
metrics, we selected, a priori, indicators of diesel and petrol
exhaust, tyre, brake and road wear for inclusion in a time-series
analyses of daily mortality.

MATERIALS AND METHODS
Data
Individual death registration records for the period 1 January 2011 to 31
December 2012 were obtained from the Office for National Statistics. From
these records, we constructed daily counts of deaths in London, United
Kingdom based on the underlying cause of death for all disease-related
causes and from cardiovascular (International Classification of Diseases,
10th revision—ICD10: I00-I99) and respiratory (ICD10: J00-J99) diseases.
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Daily pollution concentrations were obtained from: (1) the London Air
Quality Network (www.londonair.org.uk); (2) the UK Particle Concentrations
and Numbers Network (http://uk-air.defra.gov.uk/networks/network-info?
view=particle); (3) the ClearfLo23 project that measured pollutant
concentrations at seven locations across London and the South East of
England; and (4) by a receptor modelling exercise to isolate the urban
increment from regional background concentrations. Data on over 100
pollutant metrics were assembled. From these data we selected, a priori,
the most appropriate metrics to act as markers of a range of traffic sources
in our main analyses. This selection was based on the analyses of temporal
patterns and correlations between the metrics, knowledge of local
emission sources and reference to the existing literature. Supplementary
Table S1 online provides details regarding the rationale for the selection of
these metrics and of their measurement methods. In brief, (1) oxides of
nitrogen (NOX) was selected as a general indicator of traffic pollution as
road transport represented ~ 47% of NOX emissions in 2010 compared
with 16% for space heating;24 (2) carbon monoxide (CO) was selected as an
indicator of petrol engine exhaust as in London it is derived predominately
from incomplete petrol combustion;25 (3) EC in PM10 (mass of particles
with aerodynamic diameter o10 μm) and BC in PM2.5 (mass of particles
with aerodynamic diameter o2.5 μm) were selected as markers of
emissions from diesel vehicles;26 (4) copper (Cu) was selected as an
indicator of brake wear as it is generally the most abundant element in
brake linings and in brake dust;27 (5) zinc (Zn) was selected as an indicator
of tyre wear as it is the only element in tyres with concentrations above
those found in crustal material;27 and (6) aluminium (Al) was selected as
the indicator species for mineral dust including road wear.28 All of the
above pollutants were measured at the central London background
monitoring site at North Kensington. All measurements were 24-h
averages except for CO, which were 8-h averages. We assessed the
specificity of each traffic indicator from other sources by calculating a
mean kerbside enrichment factor. This was defined as: kerbside enrich-
ment factor = ((roadside)− (background)/(background) using the London
Marylebone Road monitoring site to indicate roadside concentrations and
the North Kensington site to indicate background concentrations.
As a supplementary analysis, we estimated the concentrations of NOX,

CO, BC and EC, designated NOX urban, CO urban, BC urban and EC urban,
which were attributed to London sources rather than more distant sources.
London has relatively little heavy industry and the calculation of an urban
increment allowed us to focus more specifically on emissions from traffic
sources. Using the method of Lenschow et al.,29 daily urban increments of
NOX, BC and EC above the regional concentrations were calculated by
subtracting from concentrations measured in North Kensington those
measured at a rural site either to the west (Harwell, Oxfordshire, UK) or east
(Detling, Kent, UK) of London dependent on the wind direction on each
day. A similar approach was applied for CO using additional measurements
made at Royal Holloway (University of London, Surrey, UK).
Finally, we assessed associations with regulated pollutants including

PM10, PM2.5, NO2, sulphur dioxide (SO2) and ozone (O3) measured at
background monitoring stations at North Kensington and as daily averages
of concentrations measured at all available background monitoring
stations across London (see Supplementary Table S1 online for details of
measurement methods and summaries of daily pollutant concentrations
and intercorrelations between monitoring stations).
Mean daily temperature (°C) and relative humidity (%) were also

collected for the period 2011–2012 from a meteorological station close to
the North Kensington monitoring site.

Statistical Methods
We used generalized additive models to investigate associations between
daily concentrations of each pollutant and daily mortality counts assuming
a Poisson distribution with adjustment for overdispersion. The model was
of the form:

Yt � Poisson μ;φμð Þ
log E ½Yt � ¼ β0 þ b polt þ s timeð Þ þ ns temp;d:f: ¼ 3ð Þ

þns l16temp;d:f: ¼ 3ð Þ þ l012rhum

þas:factor dowð Þ þ hol

where Yt is the number of deaths on day t, with expectation μ, φ is the
overdispersion parameter, “pol” is the pollutant concentration and “time” is
a continuous variable indicating each day of the study period (1–722).
Based on a previous work in London,30 we selected a priori, previous day
pollution concentrations (lag 1) for total and CVD mortality and the
previous 2 days concentration (lag 2) for respiratory mortality. As a

sensitivity analysis for the lag choice, we also investigated the cumulative
effect over weekly exposure (lags 0–6) using unconstrained distributed lag
models.31 The time variable was introduced into the model using
penalized regression splines (s) with natural spline basis, to capture the
association between omitted time-varying covariates and daily mortality.
The degrees of freedom (d.f.) for time adjustment were chosen based
on the minimization of the absolute value of the sum of the partial
autocorrelation function of the residuals (lags 1–30), with a minimum of
3 d.f. per year.32 Weather-related confounding effects on mortality were
controlled using mean daily temperature and relative humidity. Two
temperature terms were introduced in the model using natural cubic
splines with 3 d.f.: same-day temperature (temp) to capture the heat effect
and the average of the previous 6 days temperature (l16(temp)) to capture
the prolonged cold effect. A linear term of the average of the same and the
two previous days’ relative humidity (l012rhum) was used. Dummy
variables for week day (dow) and public holidays (hol) were also included
in the model. Associations between EC/BC, Cu, Zn and Al and mortality
were assessed using two-pollutant models incorporating particle
(PM10/PM2.5) mass concentrations.
We also assessed associations stratified by season—warm season was

defined as the period from April to September and cool season from
October to March. The model used in the seasonal analysis was similar to
the annual one, except for seasonality and long-term trends control, for
which we used indicator variables per month per year of the study.
Two-pollutant models were applied for pollutant pairs with a correlation

coefficient below 0.7 and representing different sources (e.g. NOX or CO
controlling for non-traffic-related gases such as SO2 and O3). For
multipollutant models involving EC/BC or metals where adjustment for
PM mass was also required, we used the constituent residual method of
Mostofsky et al.33

Results are presented as percent change in mortality for an interquartile
(IQR) increase in pollutant concentration to facilitate comparison of relative
risks (RRs) between pollutants. Analyses were performed using R v.3.0.3
software (R development Core Team (2011), ISBN 3-900051-07-0; URL:
http://www.R-project.org).

RESULTS
Brief descriptive statistics for daily mortality counts, pollutants,
temperature and humidity are presented in Table 1. Mortality data
were available for 722 days during the 2-year study period.
The median daily numbers of deaths from all causes, and
cardiovascular and respiratory diseases were 117, 35 and 17,
respectively. All pollutant concentrations were available for at
least 86% of the days during the study period. Daily median PM2.5,
NOX and CO concentrations were 9.0, 41.8 and 0.3 mg/m3,
respectively. Urban NOX concentrations comprised ~ 75% of total
NOX measured in Central London, whereas only 33% of CO
concentrations were attributed to the urban increment. EC/BC
concentrations in PM2.5 were also driven by local sources (median
urban concentrations of EC and BC were 0.6 and 0.7 μg/m3,
respectively, compared with total EC and BC concentrations of 0.8
and 1.2 μg/m3, respectively). Median concentrations of all
pollutants except O3 were lower during the warm period
compared with the cool period of the year (Supplementary
Table S2). Roadside enrichment factors for NOX, BC, EC and Cu
were 4.6, 5.6, 5.4 and 4.7, respectively, indicating a high degree of
specificity for traffic sources, but lower for CO (1.4), Zn (1.3) and Al
(1.3). Enrichment factors in the cool period for NOX, BC, EC and Cu
were 3.5, 4.5, 4.2 and 3.8, respectively, increasing to 6.8, 7.2, 7.3
and 5.9 during the warm period of the year.
Pearson's correlation coefficients for pollutant pairs for the

study period, and by warm and cool periods are given in
Supplementary Table S3 online. Across the study period, NOX

concentrations were closely correlated with CO concentrations
(Pearson's correlation coefficient r= 0.83), with both EC and BC
(r= 0.91 and 0.90, respectively), but less so with markers of brake
and tyre wear (Cu, r= 0.77; Zn, r= 0.68) and only weakly correlated
with road wear (Al, r= 0.36). Urban increments of NOX, EC and BC
were strongly correlated with total concentrations (r= 0.98, 0.92
and 0.92, respectively), whereas urban increments of CO
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were generally less strongly correlated with daily total CO
concentrations (r= 0.6). When stratified by warm and cool periods
of the year, the pattern of correlations was broadly similar, other
than for O3, where associations with all traffic markers were
generally positive during the warm period and negative during
the cool period.
Table 2 shows the percent change in mortality (and 95%

confidence intervals (CIs)) associated with an IQR increase in
traffic-related pollutants, lagged 1 day for total and cardiovascular
mortality and for 2 days for respiratory mortality. Associations for
cumulative concentrations (average of lags 0–6) are given in
Supplementary Table S4 online. For total and cardiovascular
mortality, there was little evidence for associations with any traffic
marker: associations for interquartile range increments in the

pollutants were generally below 1% with CIs that spanned 0%.
Associations with respiratory mortality tended to be positive and
the largest associations observed were for EC adjusted for particle
mass (2.66% (95% CI: 0.11, 5.28) and BC adjusted for particle mass
(2.72% (95% CI: 0.09, 5.42) per IQR. Associations with the urban
increment estimates followed those of the measured concentra-
tions (Supplementary Table S5 online). Associations with the
regulated pollutants, PM10, PM2.5, NO2, SO2 and O3, measured at
North Kensington were negative except for O3 (Supplementary
Table S6 online). A similar pattern of associations was observed
when daily, London-wide average concentrations derived from all
available background monitors were used (data not shown).
Figure 1 gives the percent change in total (A), cardiovascular (B)

and respiratory (C) mortality (and 95% CIs) associated with a

Table 1. Descriptive statistics for study variables.a

Number of days Percentiles

10th 25th 50th 75th 90th

Mortality (n per day)
Total 722 99 107 117 128 139
Cardiovascular 722 27 31 35 40 45
Respiratory 722 11 13 17 21 25

Pollutants (μg/m3)
Traffic markers
NOX 697 21.8 27.5 41.8 69.1 106.7
NOX urban increment 694 14.9 19.7 31.3 53.4 84.8
CO (mg/m3) 720 0.2 0.2 0.3 0.4 0.5
CO urban increment (mg/m3) 715 0 0 0.1 0.1 0.2
EC (in PM10) 674 0.4 0.5 0.8 1.3 1.9
EC urban (in PM10) 582 0.3 0.4 0.6 0.9 1.4
BC (in PM2.5) 693 0.6 0.8 1.2 1.8 2.8
BC urban (in PM2.5) 621 0.3 0.5 0.7 1.1 1.8
Cu (in PM10) 668 0.003 0.004 0.007 0.012 0.018
Zn (in PM10) 668 0.004 0.005 0.009 0.014 0.025
Al (in PM10) 668 0.023 0.033 0.056 0.095 0.154

Regulated pollutants
PM10 720 9 11 15 21 32.6
PM2.5 721 5 6 9 14 25
NO2 697 18.6 23.3 33.6 47 58.1
SO2 708 0 0.4 1.8 2.6 3.6
O3 707 21.6 39 54.4 69.7 86

Meteorology
Mean temperature (°C) 722 5 8.1 11.8 15.5 18.1
Relative humidity (%) 722 61.6 69.6 77.9 84.1 88.5

Abbreviations: Al, Aluminium; BC, black carbon; CO, carbon monoxide; Cu, Copper; EC, elemental carbon; NO2, nitrogen dioxide; NOX, oxides of nitrogen;
O3, ozone; PM, particulate matter; PM2.5, mass of particles with diameter o2.5 microns; PM10, mass of particles with diameter o10 microns; SO2, sulphur
dioxide; Zn, Zinc. aTraffic-related and regulated pollutants and meteorological variables in London, United Kingdom, for 1 January 2011–22 December 2012.

Table 2. Percent change in mortality (and 95% CIs) associated with an IQR increase.a

Pollutant IQR Total% (95% CI) Cardiovascular% (95% CI) Respiratory% (95% CI)

NOX 41.6 − 0.43 (−1.24, 0.40) − 1.29 (−2.72, 0.17) − 0.04 (−1.96, 1.91)
CO 0.2 − 0.79 (−1.63, 0.04) − 1.47 (−2.94, 0.01) 0.41 (−1.62, 2.48)
EC (PM10) 0.8 0.45 (−0.58, 1.49) − 0.47 (−2.30, 1.40) 2.66 (0.11, 5.28)
BC (PM2.5) 1.0 0.47 (−0.63, 1.58) − 0.83 (−2.75, 1.13) 2.72 (0.09, 5.42)
Cu (PM10) 0.008 − 0.05 (−1.14, 1.05) − 0.94 (−2.85, 1.00) 1.53 (−1.14, 4.27)
Zn (PM10) 0.009 − 0.12 (−1.06, 0.83) − 1.58 (−3.25, 0.12) − 0.34 (−2.83, 1.84)
Al (PM10) 0.062 0.58 (−0.62, 1.80) 0.38 (−1.70, 2.50) 1.77 (−1.18, 4.81)

Abbreviations: Al, Aluminium; BC, black carbon; CI, confidence interval; CO, carbon monoxide; Cu, Copper; EC, elemental carbon; IQR, interquartile range;
NOX, oxides of nitrogen; PM, particulate matter; PM2.5, mass of particles with diameter o2.5 microns; PM10, mass of particles with diameter o10 microns;
Zn, Zinc. Results for EC/BC and elemental components are adjusted for PM mass. aIn traffic-related pollutants (lag 1 for total and cardiovascular and lag 2 for
respiratory mortality) in London, United Kingdom, for 1 January 2011–22 December 2012.
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period-specific IQR increase in traffic-related pollutants (lag 1 for
total and cardiovascular and lag 2 for respiratory mortality). Point
estimates and confidence intervals are also tabulated in the
Supplementary Table S7 online. Associations between all pollu-
tants and total and cause-specific mortality in the warm period of
the year were generally positive and larger than cool period
associations, although the seasonal differences did not achieve
statistical significance.
Results from selected two-pollutant models are shown in

Table 3. In general, associations for NOX and CO increased in
magnitude after adjustment for O3 and SO2. The table shows the
impact on the EC/BC mortality associations after adjustment for
particle mass — associations increased in magnitude, particularly
for respiratory mortality. Adjustment for CO, O3 and SO2 increased
the magnitude of the EC/BC associations further still. Similar
patterns of changes in the magnitude of the associations were
observed for Cu and Al, but not Zn when adjusted for PM mass,
CO, O3 and SO2.

DISCUSSION
Overview
We investigated associations between daily concentrations of
specific traffic-related pollutants and daily total and cause-specific
mortality in London between 2011 and 2012. Pollutants selected a
priori were NOX (general traffic pollution); EC/BC and CO (markers
of diesel and petrol exhaust, respectively); Cu (tyre wear);
Zn (brake wear) and Al for mineral dust. Associations between
all pollutants and mortality were generally below 1% per IQR, with
confidence intervals that spanned 0%. Associations with respira-
tory mortality were generally positive, stronger in the warmer
months of the year and most convincing for EC and BC adjusted
for PM mass.

Selection of Traffic Indicators
Our approach of selecting source-specific pollutant metrics
contrasts with the usual approach adopted in time-series studies
of focusing on routinely monitored, regulated pollutants. The
assembly of an analytic database containing a large number of
pollutant metrics facilitated a thorough assessment of the
seasonal patterns of a range of pollutants, the correlations
between them and the calculation of urban increments and
roadside enrichment factors. These analyses underpinned our
strategy of selecting traffic-specific metrics for our analyses. Our
selected indicators of traffic pollution were, in general, moderately
correlated, except for our marker of general traffic pollution (NOX),
which was highly correlated with both diesel and petrol exhaust
indicators and therefore was not expected to provide additional
information.
The use of indicator species to identify emissions from air

pollution sources is well established in receptor analysis and
source apportionment.34 The correct interpretation of the results
from our epidemiological analyses does, however, rely on source
specificity of the selected metrics. Roadside enrichment factors
were over 4 for NOX, BC, EC and Cu, indicating a high degree of
specificity for traffic sources but lower for CO, Zn and Al. However,
we acknowledge that the metrics selected are not exclusive
indicators of the relevant traffic sources—a point made by the HEI
in their review of traffic pollution.20 Nonetheless, our approach
goes some way towards providing policy makers with the
information needed to formulate policy and regulation to protect
public health. The development of more specific markers for traffic
pollutants would improve future studies. Although the increasing
measurement of organic aerosol using aerosol mass spectrometry
is opening insights into these types of particles, the complexity of
organic aerosol and the aging and oxidation processes that it is
subject to makes establishing a tracer difficult.35 The application of
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Figure 1. Percent change in total (a), cardiovascular (b) and respiratory
(c) mortality (and 95% confidence intervals (CIs)) associated with a
period-specific interquartile range (IQR) increase in traffic-related
pollutants (lag 1 for total and cardiovascular and lag 2 for respiratory
mortality). Al, Aluminium; BC, black carbon; CO, carbon monoxide;
Cu, Copper; EC, elemental carbon; NOX, oxides of nitrogen; Zn, Zinc.
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primary matrix factorization on the PM metrics measured at North
Kensington was not able to separate different types of traffic
emission sources.36

Our selective approach is also particularly relevant when a large
number of pollutant metrics are available for analysis, as it enables
a hypothesis testing strategy. This approach minimizes the
problem of multiple testing common in air pollution epidemiol-
ogy, where many outcomes and pollutants lead to large numbers
of model results and consequently difficulties in interpreting the
findings and a greater potential for publication bias. Alternative
approaches to this problem include assessing associations with
mixtures rather than individual pollutants37 and source apportion-
ment techniques to identify factors indicating specific pollution
sources.15,19 These data-driven techniques characterize complex
local pollution mixtures and inform policy thinking but are limited
when health impact assessment exercises are required to
formulate policy options and in monitoring the effects of policy
measures implemented to reduce pollution. Another approach
using the time-series design incorporated dispersion models to
differentiate residential locations exposed to traffic and non-traffic

sources or to focus on peak periods of pollution dominated by
traffic sources.38 Both of these approaches require substantial data
and analytical effort to focus on traffic sources, but supplement
studies of regulated pollutants by providing more specific policy
relevant information.

Is Short-Term Exposure to Traffic Pollution Associated with
Mortality?
We found no evidence for associations between our chosen
indicator of general traffic pollution, NOX, and total or
cause-specific mortality. Relatively few time-series studies have
assessed associations with NOX, focusing instead upon NO2 as a
regulated pollutant. We did not find evidence for an association
between NO2 and mortality. NOX interacts with O3 interchanging
NO and NO2

39 and is negatively correlated with O3, although the
correlations between the pollutants also vary by season.
Adjustment for O3 increased the size of the NOX associations
(Table 3), but our conclusion regarding NOX remained unaltered.
The recent review by the World Health Organization on the health

Table 3. Results from two-pollutant models.a

Pollutant (IQR, μg/m3) Adjustment Mortality% (95% CI)

Total Cardiovascular Respiratory

NOX (41.6) None − 0.43 (−1.24, 0.40) − 1.29 (−2.72, 0.17) − 0.04 (−1.96, 1.91)
O3 − 0.09 (−1.03, 0.86) − 0.47 (−2.11, 1.20) 0.54 (−1.64, 2.76)
SO2 0.05 (−0.94, 1.06) − 0.75 (−2.50, 1.03) 1.01 (−1.40, 3.48)
PM2.5 0.05 (−0.99, 1.10) − 0.82 (−2.67, 1.07) 0.42 (−2.02, 2.92)

CO (0.2mg/m3) None − 0.79 (−1.63, 0.04) − 1.47 (−2.94, 0.01) 0.41 (−1.62, 2.48)
EC (PM10)

b − 0.75 (−1.59, 0.09) − 1.42 (−2.91, 0.09) 0.43 (−1.62, 2.53)
O3 − 0.60 (−1.50, 0.30) − 0.87 (−2.44, 0.72) 0.90 (−1.29, 3.15)
SO2 − 0.52 (−1.47, 0.43) − 0.96 (−2.63, 0.73) 0.95 (−1.39, 3.35)

EC (0.8) None 0.03 (−0.84, 0.90) − 0.90 (−2.43, 0.66) 1.52 (−0.59, 3.68)
PM10 0.45 (−0.58, 1.49) − 0.47 (−2.30, 1.40) 2.66 (0.11, 5.28)
PM10+CO 1.57 (0.18, 2.98) 0.64 (−1.82, 3.16) 3.20 (−0.25, 6.77)
PM10+O3 0.67 (−0.40, 1.75) 0.11 (−1.79, 2.04) 3.06 (0.42, 5.76)
PM10+SO2 0.73 (−0.36, 1.84) − 0.19 (−2.13, 1.78) 3.17 (0.43, 5.98)

BC (1.0) None − 0.28 (−1.09, 0.55) − 1.30 (−2.72, 0.14) 1.28 (−0.67, 3.27)
PM2.5 0.47 (−0.63, 1.58) − 0.83 (−2.75, 1.13) 2.72 (0.09, 5.42)
PM2.5+CO 1.76 (0.17, 3.36) − 0.10 (−2.81, 2.69) 3.98 (0.15, 7.95)
PM2.5+O3 0.63 (−0.50, 1.78) − 0.32 (−2.29, 1.70) 3.20 (0.49, 5.99)
PM2.5+SO2 0.55 (−0.61, 1.73) − 0.71 (−2.74, 1.35) 3.70 (0.86, 6.62)

Cu (0.008) None − 0.35 (−1.25, 0.56) − 1.24 (−2.81, 0.35) 0.73 (−1.44, 2.95)
PM10 − 0.05 (−1.14, 1.05) − 0.94 (−2.85, 1.00) 1.53 (−1.14, 4.27)
PM10+CO 0.43 (−0.84, 1.71) − 0.19 (−2.39, 2.06) 1.11 (−1.96, 4.27)
PM10+O3 0.16 (−0.96, 1.30) − 0.46 (−2.40, 1.53) 1.81 (−0.92, 4.61)
PM10+SO2 0.17 (−0.96, 1.31) − 0.79 (−2.76, 1.22) 1.76 (−1.02, 4.62)

Zn (0.009) None − 0.36 (−1.05, 0.34) − 1.39 (−2.60, − 0.17) − 0.44 (−2.13, 1.28)
PM10 − 0.12 (−1.06, 0.83) − 1.58 (−3.25, 0.12) − 0.34 (−2.83, 1.84)
PM10+CO 0.08 (−0.91, 1.08) − 1.25 (−3.00, 0.52) − 0.74 (−3.18, 1.77)
PM10+O3 0.02 (−0.94, 0.98) − 1.34 (−3.02, 0.37) − 0.21 (−2.57, 2.22)
PM10+SO2 0.02 (−0.95, 1.01) − 1.38 (−3.10, 0.37) − 0.31 (−2.74, 2.17)

Al (0.062) None − 0.04 (−0.94, 0.87) − 0.50 (−2.02, 1.04) 0.62 (−1.54, 2.82)
PM10 0.58 (−0.62, 1.80) 0.38 (−1.70, 2.50) 1.77 (−1.18, 4.81)
PM10+CO 0.65 (−0.58, 1.89) 0.40 (−1.67, 2.52) 1.75 (−1.21, 4.80)
PM10+O3 0.48 (−0.73, 1.70) − 0.02 (−2.11, 2.12) 1.84 (−1.17, 4.94)
PM10+SO2 0.71 (−0.52, 1.95) 0.34 (−1.77, 2.50) 1.87 (−1.18, 5.01)

Abbreviations: Al, Aluminium; BC, black carbon; CI, confidence interval; CO, carbon monoxide; Cu, copper, EC, elemental carbon; IQR, interquartile range;
NOX, oxides of nitrogen; O3, ozone; PM, particulate matter; PM2.5, mass of particles with diameter o2.5 microns; PM10, mass of particles with diameter o10
microns; SO2, sulphur dioxide; Zn, zinc.

aPercent change in mortality (and 95% CIs) associated with an IQR increase in traffic-related (lag 1 for total and
cardiovascular and lag 2 for respiratory mortality) in London, United Kingdom, for 1 January 2011–22 December 2012. bAdjusted for PM mass.
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effects associated with air pollution specifically addressed the
question of traffic pollution and health and focused on PM
components and NO2 rather than NOX.

5 An earlier review by the
Health Effects Institute focusing on the health effects associated
with traffic pollution20 identified only four studies that utilized a
variety of traffic indicators and concluded that the findings “were
somewhat unclear with respect to associations between
short-term exposure to pollutants derived from traffic emissions
and all-cause mortality”.

Can We Differentiate Between Different Components of Traffic
Pollution?
Our analysis of total and cause-specific mortality in relation to the
components of traffic pollution revealed some degree of
specificity, with positive associations observed between daily
concentrations of EC and BC (each adjusted for PM mass and
lagged 2 days) and respiratory mortality that were robust to
adjustment for other traffic source indicators. There was, however,
some inconsistency between the single-day and cumulative lag
results. Although we have no clear explanation for these apparent
inconsistencies, it is possible that the cumulative measures are
capturing some harvesting.40,41

Associations between EC/BC and respiratory mortality have
been reported in a recently published study from the
MED-PARTICLES project42 and are consistent with the conclusions
from an assessment of BC particles.13 A more recent systematic
review of time-series studies focusing on particle components
concluded that the evidence per unit mass was strongest for
EC/BC and respiratory mortality.10 Although the lack of evidence
for associations between EC/BC and cardiovascular mortality
reported in this study is inconsistent with the positive associations
also highlighted in these reviews,10,13 we note that the present
study, together with our earlier time-series study in London,30 also
failed to find evidence of adverse associations between PM2.5 and
cardiovascular mortality, findings contrary to evidence presented
in systematic reviews.43 The results for cardiovascular mortality
in Athens and Barcelona,42 whereas positive and statistically
significant for 1 of the 4 lags investigated, were substantially
smaller than those observed for respiratory mortality.
Given the close correlation between NOX and EC/BC (r= 0.91 &

0.9), the inconsistency in associations with respiratory mortality
between NOX and EC/BC was surprising. This inconsistency was
partially explained by the fact that risk estimates for EC/BC were
adjusted for particle mass, whereas NOX was not, and after
adjustment for PM2.5, the NOX association increased from − 0.04 to
0.42 per IQR (Table 3).
Both measured and modelled urban increment concentrations

of CO were associated with respiratory mortality, especially during
the warmer months of the year. However, adjustment for carbon,
particularly EC, attenuated the CO–respiratory mortality associa-
tions, suggesting some confounding. Compared with other source
indicators, the association between ambient outdoor CO and
mortality has received relatively little attention.44 A systematic
review of the time-series evidence published in 2007 identified
positive associations with increased mortality.45 At that time, the
evidence regarding the independence of CO associations from
other pollutants was very limited and inconclusive.
We did not find evidence for associations between markers of

brake and tyre wear and mortality. As these metallic components
are highly enriched at the roadside27 and have established
chemical toxicity,46,47 the lack of an association either suggests
that population exposures away from the roadside are insufficient
to overwhelm endogenous airway defences or that their toxic
action requires longer-term accumulation within the body, and are
therefore unlikely to be apparent when interrogating short-term
health effects.48 Al, which was used as a marker of mineral dust,

did yield smaller positive associations with total mortality, but only
during the winter months.
Overall, the pattern of associations observed suggests that

traffic pollution in London, particularly that arising from the
exhaust of diesel vehicles (based on the associations observed
with EC and BC controlled for PM mass), has short-term impacts
on respiratory mortality.

Are Associations with Traffic Markers Confounded by Other
Sources of Pollution?
Our analyses using multipollutant models suggest that our findings
for NOX are not confounded (positively or negatively) by regional
pollutants such as SO2 or O3. Our selected metrics for EC/BC were
adjusted for PM10/PM2.5 mass and are also, therefore, unlikely to be
confounded by other particle components including secondary
aerosols. Previous analyses of particle metric data in London
reported associations between PM mass metrics and respiratory
mortality driven by the non-primary particulate component.30,49

Our finding from the present study for EC/BC adjusted for particle
mass suggests that these earlier associations with secondary
particles may have been confounded by EC/BC — a hypothesis
that we were unable to test in the earlier study.

Seasonal Results
We observed a tendency for associations between traffic metrics
and respiratory mortality to be stronger in the warmer period of
the year, although we note that seasonal differences were not
generally statistically significant and the period-specific associa-
tions were not precisely estimated. Nonetheless, we hypothesized
that concentrations of NOX and CO during the warmer period of
the year would be more indicative of traffic emissions than during
winter months when space heating contributes more to NOX

emissions.24 The higher roadside enrichment factors in the warm
vs cool periods support this suggestion. Another possible
explanation for the larger associations in the warm vs cool period
is differential exposure misclassification arising from different
patterns of human behaviour in the two periods of the year, in
particular time spent out doors and indoor/outdoor air exchange
rates.50

Strengths and Limitations
Our study benefits from the availability of complete recording of
death registrations in a large city. In time-series studies, statistical
power is determined by the number of observations (days), as well
as the mean numbers of events per day. Our study was limited
with regard to the number of days (722 days), although this was
compensated for to some degree by the large study population.
However, analyses with more years of data would improve the
precision of our model estimates and aid interpretation.
A further limitation of our study, one inherent in many time-

series studies, was the potential misclassification of exposure due
to the use of pollution data from a single background monitoring
station in central London. Zeger et al.51 have shown that what
matters is how well the exposure series matches the mean daily
exposures over the city as a whole. In London, PM2,5 measured at
monitoring stations in different geographical locations are
strongly correlated,52 and, to some extent, for particle number
concentrations also.53 In our data, daily concentrations of PM2.5

and NO2 measured at background monitoring stations across
London were well correlated, median (IQR) correlations 0.9 (0.16)
and 0.77 (0.19), respectively (Supplementary Table S1 online).
Results of analyses using daily averages derived from all available
data from background monitoring stations across London
produced comparable results to those using only data from North
Kensington (data not shown). EC/BC and metals were only
measured at North Kensington and we were therefore unable to
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assess the spatial distribution and temporal correlations across
London.
Measurement errors for particle constituents are generally

larger than for PM mass and, as classical error in an explanatory
variable can lead to attenuation in the estimation of the RR, it is
possible that the RRs for each metric may be influenced by their
measurement error. However, in time-series studies exposure error
comprises a combination of classical and Berskon54 error, the
latter derived from the use of average exposures as a surrogate for
individual exposures. How these errors impact upon the estima-
tion of the RR can vary depending on whether the errors are
additive or multiplicative.55 Without further, more extensive
monitoring campaigns, it is impossible to assess these issues fully
and we acknowledge that, as in other similar time-series studies,
the RRs obtained in this study may be influenced by these factors.
Therefore, caution should be exercised in interpreting these risk
estimates.
Our analysis of the components of traffic pollution and adverse

effects on daily mortality suggests a degree of specificity for
respiratory mortality and diesel exhaust containing EC/BC rather
than petrol exhaust or mechanical sources such as brake and tyre
wear. Further studies are needed to confirm this specificity in
other locations and to determine the precise nature of the toxic
components of the exhaust mixture. The suggestion that these
associations are more evident during the warmer months of the
year warrants replication in other urban environments as it has
implications for policies to protect public health.
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