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ABSTRACT  

Addiction to psychostimulants is a major public health problem with no available treatment. 

Adenosine A2A receptors (A2AR) co-localize with metabotropic glutamate 5 receptors (mGlu5R) 

in the striatum and functionally interact to modulate behaviors induced by addictive substances, 

such as alcohol. Using genetic and pharmacological antagonism of A2AR in mice, we 

investigated whether A2AR-mGlu5R interaction can regulate the locomotor, stereotypic and drug-

seeking effect of methamphetamine and cocaine, two drugs which exhibit distinct mechanism of 

action. Genetic deletion of A2AR, as well as combined administration of sub-threshold doses of 

the selective A2AR antagonist (SCH 58261, 0.01 mg/kg, i.p.) with the mGlu5R antagonist, 3-((2-

methyl-4-thiazolyl)ethynyl)pyridine (MTEP; 0.01 mg/kg, i.p.), prevented methamphetamine- but 

not cocaine-induced hyperactivity and stereotypic rearing behavior. This drug combination also 

prevented methamphetamine rewarding effects in a conditioned-place preference paradigm. 

Moreover, mGlu5R binding was reduced in the nucleus accumbens core of A2AR knockout (KO) 

mice supporting an interaction between these receptors in a brain region crucial in mediating 

addiction processes. Chronic methamphetamine, but not cocaine administration, resulted in a 

significant increase in striatal mGlu5R binding in wild-type mice, which was absent in the A2AR 

KO mice. These data are in support of a critical role of striatal A2AR-mGlu5R functional 

interaction in mediating the ambulatory, stereotypic and reinforcing effects of methamphetamine 

but not cocaine-induced hyperlocomotion or stereotypy. The present study highlights a distinct 

and selective mechanistic role for this receptor interaction in regulating methamphetamine 

induced behaviors and suggests that combined antagonism of A2AR and mGlu5R may represent a 

novel therapy for methamphetamine addiction. 
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INTRODUCTION  

Cocaine and methamphetamine (MAP) are highly addictive and commonly abused 

psychostimulant substances and their use is a public health concern. There are currently no 

specific therapeutic agents with established efficacy for the treatment of either MAP or cocaine 

addiction. There is substantial evidence supporting a key role of the adenosine A2A receptors 

(A2AR) in regulating the behavioral properties of drugs of abuse (Brown and Short, 2008). 

However, its role in modulating the behavioral and neurochemical effects of psychostimulant 

substances remains largely unclear, mainly due to the discrepancies between outcomes from 

studies using pharmacological manipulation of A2AR in rodents compared with studies using the 

A2AR knockout (KO) mouse model. For instance, pharmacological activation of A2AR attenuates 

cocaine self-administration (Knapp et al., 2001) and decreases both cocaine and MAP locomotor 

sensitization (Filip et al., 2006; Shimazoe et al., 2000). In contrast, global deletion of the A2AR 

gene has been shown to attenuate psychostimulant-induced hyperlocomotion and motor 

sensitization (Chen et al., 2000). Evidence supports both facilitatory as well as antagonistic 

roles of striatal postsynaptic and presynaptic A2AR, respectively, in modulating 

psychostimulant-mediated responses (Shen et al., 2008).  

Expression of A2AR in the brain is highly enriched in the striatum (Rosin et al., 1998), where 

pre- and post-synaptic receptors are known to play differential role in the modulation of 

behavioral responses to psychostimulants (Golembiowska and Zylewska, 1997; Quarta et al., 

2004; Rodrigues et al., 2005; Shen et al., 2008). A2AR post-synaptically co-localize with D2R in 

striatopallidal GABAergic neurons (Canals et al., 2003; Fink et al., 1992; Hillion et al., 2002) 

and functional antagonistic A2AR-D2R interactions have been demonstrated to negatively 

modulate the locomotor and rewarding effects of psychostimulant drugs (Ferre et al., 1997; Filip 



4 
 

et al., 2006; Poleszak and Malec, 2002). A2AR are also located pre-synaptically on cortical 

glutamatergic afferents projecting to the striatum (Ciruela et al., 2006; Popoli et al., 1995; 

Schiffmann et al., 2007). In contrast to the antagonistic A2AR-D2R interaction, activation of pre-

synaptic A2AR positively modulates the behavioral responses of psychostimulants by facilitating 

accumbal DA and glutamate release (Golembiowska and Zylewska, 1997; Quarta et al., 2004; 

Rodrigues et al., 2005). Studies carried out in forebrain-specific and striatal-specific A2AR KO 

mice indicated a dominant role of the facilitatory effect of pre-synaptic extra-striatal A2AR over 

the antagonistic effects of post-synaptic striatal A2AR on modulating the behavioral effects of 

cocaine and phencyclidine (Shen et al., 2008). 

There is increasing evidence suggesting that A2AR are also co-localized and functionally interact 

with the mGlu5R (Ferre et al., 2002). In particular, mGlu5R are expressed post-synaptically in 

striatopallidal GABAergic neurons, where they are co-expressed and functionally interact with 

A2AR to synergistically overcome D2R-mediated effects, both at the behavioral and molecular 

level (Coccurello et al., 2004; Ferre et al., 2002; Kachroo et al., 2005; Popoli et al., 2001). 

Moreover, supra-additive effects of co-administration of sub-threshold doses of mGlu5R and 

A2AR antagonists have been reported in the facilitation of glutamate release to the striatum, 

suggesting presynaptic A2AR-Glu5R interactions to also regulate glutamatergic striatal 

neurotransmission (Rodrigues et al., 2005). These receptor interactions have been shown to 

modulate motor deficits in an animal model of Parkinson’s disease (Kachroo et al., 2005; Popoli 

et al., 2001) and to also regulate alcohol-seeking (Adams et al., 2008) and cocaine conditioning, 

behavior but not cocaine-induced hyperactivity (Brown et al., 2012). However, the role of A2AR-

mGlu5R interactions on addictive-related behavioral effects of MAP is currently unknown. 
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The aim of the present study was to characterize the role of A2AR and its interaction with 

mGlu5R on the behavioral and neurochemical effects associated with MAP and cocaine use. 

Therefore, we firstly investigated the effect of genetic and pharmacological antagonism of A2AR 

on the motor-activating effects of chronic MAP and cocaine. To assess the role of A2AR-mGlu5R 

interactions in regulating the motor and rewarding effects of MAP, we tested the effect of the 

combination of subthreshold doses of A2AR and mGlu5R antagonists on MAP-induced 

hyperactivity, stereotypic rearing and conditioned-place preference behavior of mice. The effect 

of A2AR and mGlu5R antagonists on MAP-induced hyperactivity was compared to the respective 

behavioral effects of cocaine. We further biochemically explored the presence of A2AR-mGlu5R 

interactions by assessing the effect of A2AR deletion on striatal mGlu5R binding in treatment-

naïve mice and following chronic MAP or cocaine administration in wild type (WT) and A2AR 

KO mice. Finally, given the evidence supporting a possible functional D2R-A2AR-mGlu5R 

trimeric receptor interaction in the striatum (Cabello et al., 2009), we also investigated the effect 

of A2AR deletion on striatal D2R binding, in treatment-naïve mice and following chronic MAP 

and cocaine administration. 
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MATERIALS AND METHODS  

Animals 

The methodology for the generation of A2AR KO mice (CD-1 background) used in the current 

study has been previously described (Ledent et al., 1997). Male, 8–12 week-old, WT and A2AR 

KO, were housed individually in a controlled environment (12:12 hour light/dark cycle - lights 

on 06:00). Food and water were available ad libitum. All procedures received a favorable 

opinion from the University of Surrey Animal Welfare and Ethical Review Body and were 

approved by the UK Home Office under The Animals (Scientific Procedures) Act 1986. For 

genotyping, tail DNA was extracted using the DNeasy tissue kit, according to the manufacturer’s 

instructions (QIAGEN, Germany). Genotyping was performed as previously described (Ledent 

et al., 1997). 

Confirmation of genotype 

To confirm the genotype of the animals used in our studies, brain sections from all experimental 

WT and A2AR KO mice were processed for A2AR binding, using 10 nM [3H]CGS21680 

(PerkinElmer, USA) according to Bailey et al. (2002). A2AR were only detected in striatal 

regions of WT mice and absent in A2AR KO mice (Supplementary Figure S1). 

Chronic psychostimulant administration paradigms 

A group of WT and A2AR KO mice (n = 7-11/group) were treated with a chronic steady-dose 

‘binge’ cocaine administration paradigm as described by Metaxas et al. (2012), consisting of 3 

injections per day (at 11:00, 12:00 and 13:00) of either cocaine (15 mg/kg/injection, s.c., Sigma-

Aldrich, UK) or saline (10 ml/kg/day, s.c.), for 14 days. Another cohort of WT and A2AR KO 

mice (n= 6/group) were administered with chronic steady-dose of MAP (1 mg/kg/day, i.p.; 
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Sigma-Aldrich, Dorset, UK) or saline (10 ml/kg/day, i.p.) for 10 days, according to Zanos et al. 

(2014b). 

Ambulatory and stereotypic rearing activity 

Ambulatory activity was measured in locomotor chambers (40 cm length x 20 cm width x 20 cm 

height; Linton Instrumentation, Norfolk, UK). Each cage has two sets of 16 photocells, 2.5 cm 

apart, located 1 cm or 6 cm (referred to here as “vertical beams”) above the cage floor. 

Ambulatory time was defined by the total active time, and vertical activity (i.e., rearing) was 

defined by vertical beam-breaks, recorded every 5 min. Each daily session began with placing 

the mice in the locomotor chambers for 1 hour prior to drug administration, for assessing basal 

activity. Subsequently, locomotor activity was measured for either 60 min following each of the 

3 daily cocaine/saline injections (total time: 3 hours) or for 3 hours following MAP/saline 

injection. Since there were no differences between the three daily cocaine injections in either 

WT or A2AR knockout mice (data not shown), total three-hour daily aggregated locomotor 

responses of cocaine-treated animals are reported. 

Effects of pharmacological co-antagonism of A2AR and mGlu5R on cocaine- and 

methamphetamine-induced ambulatory and stereotypic rearing behavior  

To investigate the effects of pharmacological co-antagonism of A2AR and mGlu5R on cocaine- 

and MAP-induced ambulatory and rearing behavior, sub-threshold doses of A2AR antagonist, 

SCH 58261 (Tocris Biosciences, UK) and mGlu5R antagonist, 3-((2-Methyl-4-

thiazolyl)ethynyl)pyridine (MTEP; Tocris Biosciences, UK) were determined.  WT, 9 week-old 

mice were injected i.p. with either vehicle (20% DMSO-saline), MTEP (0.5, 0.25, 0.1 or 0.01 

mg/kg) or SCH 58261 (1, 0.25, 0.1 or 0.01 mg/kg) following 1 hour habituation in locomotor 

chambers. They were then immediately placed back into the locomotor chambers for a further 30 
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minutes and ambulatory as well as rearing activity were measured. Subsequently mice received 

an injection of either MAP (1 mg/kg; i.p.) or saline (10 ml/kg; i.p.) and placed back into the 

chambers. Ambulatory time and rearing activity were recorded following MAP or saline 

administration for a period of 3 hours. The dose of 0.01 mg/kg, i.p. was identified as sub-

threshold for both SCH 58261 and MTEP from the aforementioned dose-response experiments, 

as this dose did not alter MAP-induced ambulatory time or vertical activity of mice 

(Supplementary Figure S3; Also see Results section). Both SCH 58261 and MTEP were 

dissolved in DMSO and diluted to the required concentration using saline solution with a final 

concentration of 20% DMSO, in accordance with Kuzmin et al. (1999).  To determine the 

effects of sub-threshold co-antagonism of A2AR and mGlu5R on psychostimulant-induced 

motor effects, another cohort of WT mice were pre-treated with either vehicle (20% DMSO-

saline), SCH 58261 (0.01 mg/kg; i.p.), MTEP (0.01 mg/kg; i.p.), or a combination of both 

ligands (SCH 58261, 0.01 mg/kg and MTEP 0.01 mg/kg; i.p) 30 min prior to MAP (1 mg/kg, 

i.p./ 1 injection) or cocaine (15 mg/kg, i.p./3 injections; 1 hour apart) or saline (10ml/kg, i.p) 

administration, and ambulatory time and vertical activity were recorded for a total of 3 hours 

as described above. 

Effects of pharmacological co-antagonism of A2AR and mGlu5R on methamphetamine-

induced conditioned place preference 

Male, 9-week old, WT mice were used for the conditioned place preference (CPP) studies. We 

used a CPP apparatus (Opto-Max Activity Meter v2.16, Columbus Instruments, OH, USA), as 

previously described by Zanos et al. (2014a) and Bailey et al. (2010). Briefly, the MAP-induced 

CPP protocol consisted of a habituation phase, a pre-conditioning test, six conditioning sessions 

and a post-conditioning test (Figure 3A). On day 1 (i.e., habituation) and day 2 (i.e., pre-

conditioning), WT mice were placed in the CPP apparatus and were allowed to explore both 



9 
 

compartments for 20 min. During the conditioning phase, mice were administered with MAP 1 

mg/kg, i.p. and placed in their least preferred compartment on alternating days (i.e., days 3, 5 and 

7) and saline (10 ml/kg, i.p.) in their preferred compartment on days 4, 6 and 8 (Figure 3A) for 

45 minutes. During the post-conditioning test session (i.e., day 9), mice were pre-treated with an 

i.p. injection of vehicle (20% DMSO-saline), selective A2A receptor antagonist SCH 58261 (0.01 

mg/kg), selective and non-competitive mGlu5R antagonist MTEP (0.01 mg/kg), or a combination 

of both antagonists (SCH 58261, 0.01 mg/kg and MTEP 0.01 mg/kg). Following a 30-min period 

in their home cages, mice were then placed in the CPP apparatus and were allowed to explore 

both compartments for 20 min. Time spent in each CPP compartment was measured during the 

last 15 min of both pre- and post-conditioning sessions. 

To ascertain that the combined antagonism of A2AR and mGlu5R did not have any rewarding or 

aversive effects on its own following repeated administration, the effect of i.p. co-administration 

of SCH 58261 (0.01 mg/kg) and MTEP (0.01 mg/kg) was compared to vehicle (20% DMSO-

saline) in a CPP paradigm, consisting of one habituation (20 min), one pre-conditioning (20 

min), three 45-min conditioning (each consisting of daily vehicle injection in the morning and 

SCH 5826/ MTEP administration 4 hours later) and one post-conditioning phase (20 min). Time 

spent in each compartment was assessed during the last 15 min of the 20-min pre- and post-

conditioning sessions. 

Effects of A2AR deletion on mGlu5R, D2R and DAT binding in treatment-naïve animals or 

following chronic cocaine and MAP administration 

Since cocaine, but not MAP, acts primarily via blocking dopamine transporters (DAT) to exert 

its acute rewarding effects, DAT binding was also assessed in brains of naïve WT and A2AR KO 

mice to assess baseline differences. Quantitative autoradiography of mGlu5R, D2R and DAT 

procedures were performed as detailed previously (Bailey et al., 2008; Bailey et al., 2007; 
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Georgiou et al., 2014), with minor modifications. Briefly, adjacent frozen coronal brain sections 

from naïve as well as chronically cocaine- or MAP-treated WT and A2AR KO mice and their 

respective saline controls were obtained. For the determination of total mGlu5R, D2R and DAT 

binding, 10nM [3H]2-methyl-6-(phenylethynyl)-pyridine ([3H]MPEP; American Radiolabelled 

Chemicals, Missouri, USA), 4 nM [3H]raclopride (PerkinElmer, USA) and 4nM [3H]mazindol 

(PerkinElmer, USA) were used respectively. Non-specific binding was determined in the 

presence of 10 µM fenobam (Tocris Biosciences, UK) for mGlu5R binding, 10 µM sulpiride 

(Tocris Biosciences, UK) for D2R binding and 10 μΜ mazindol (Sigma-Aldrich, Poole, UK) for 

DAT binding. For the DAT binding, desipramine 0.3μM was also used in order to block the 

binding of [3H]mazindol to norepinephrine uptake sites (Metaxas et al., 2010). Following a 60-

min incubation period (on ice for [3H]MPEP binding and room temperature for [3H]raclopride 

and [3H]mazindol), slides were rinsed in ice-cold Tris-HCl buffer, dried and apposed to Kodak 

MR films (Amersham International, UK) with [3H]microscale standards, for a period of 3 weeks 

for mGlu5R binding, 6 weeks for D2R receptor binding and 5 weeks for DAT binding. Films 

were then developed using 50% Kodak D19 developer (Sigma-Aldrich, Poole, UK). Quantitative 

autoradiographic analysis was carried out by reference to the mouse brain atlas of Franklin and 

Paxinos, (2007) and binding was analyzed as previously described (Kitchen et al., 1997), using 

MCID image analyser (Image Research, Ontario, Canada).  

Statistics 

All data are expressed as mean ± SEM. Comparison of chronic cocaine and MAP-induced 

ambulatory time and stereotypic behaviors was carried out using three-way repeated measures 

ANOVA for factors ‘genotype’, ‘treatment’ (i.e. saline or cocaine/MAP) and ‘day’. For the dose-

response experiments, one-way ANOVA was used to compare the effects of A2AR and mGlu5R 
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antagonist pre-treatment with the vehicle control group. Analysis of the effects of 

pharmacological antagonism of A2AR or mGlu5R or the combination of these antagonists on 

cocaine- and MAP-induced locomotor and rearing responses was conducted using two-way 

ANOVA for factors ‘treatment’ (i.e., saline or MAP) and ‘ligand pre-treatment’ (vehicle, SCH 

58261, MTEP, SCH 58261 + MTEP). Analysis of the effects of pharmacological antagonism of 

A2AR and/or mGlu5R on MAP-induced CPP was assessed by using two-way ANOVA for factors 

‘treatment’ (i.e., vehicle, SCH 58261, MTEP, SCH 58261 + MTEP) and ‘CPP phase’ (i.e., pre-

Cond, post-Cond). In treatment-naïve animals, differences in quantitative autoradiographic 

binding were assessed using two-way ANOVA for factors ‘genotype’ and ‘brain region’. The 

effects of A2AR genetic deletion on D2R and mGlu5R binding following chronic cocaine and 

MAP administration were assessed using two-way ANOVA for factors ‘genotype’ and 

‘treatment’ (i.e. saline or cocaine/MAP) in each brain region. ANOVAs were followed by a post-

hoc Tukey test when significance was reached (i.e., p<0.05). All relevant F-values and p values 

are provided in Table 1. All statistical analyses were performed using Statistica V10 (StatSoft 

Inc., USA). 
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RESULTS  

Basal ambulatory time and vertical locomotor activity of WT and A2AR KO mice 

To investigate whether there are any baseline locomotor alterations induced by the genetic 

deletion of A2AR, basal (i.e., treatment-naïve) locomotor activity of WT and A2AR KO mice, 

defined as the total ambulatory time or vertical beam-breaks for 1 hour prior to any treatment 

injection on Day 1 of the chronic cocaine and MAP administration paradigms. There was no 

difference in either the ambulatory time or vertical activity between WT and A2AR KO mice 

(Supplementary Figure S2). 

Genetic deletion of A2AR modulates methamphetamine- but not cocaine-induced 

ambulatory and stereotypic rearing activity 

Chronic treatment with either cocaine or MAP increased ambulatory time of WT as well as A2AR 

KO mice compared to the control saline group (Figure 1A, C; Table 1). While no significant 

genotype effect on ambulatory time was observed following cocaine treatment (Figure 1A), 

MAP-induced increase of ambulatory time was significantly attenuated in the A2AR KO 

compared to WT mice (genotype effect: F (1, 20) = 7.78, p<0.05; Figure 1C; Table 1) 

Cocaine administration caused a significant increase in vertical (stereotypic) activity (Figure 1B; 

Table 1); no significant effect of genotype on cocaine-induced vertical activity was observed. In 

contrast, MAP-induced increase of vertical activity was abolished in the A2AR KO (Figure 1D; 

Table 1). Vertical activity in MAP-treated A2AR KO mice did not differ from that of saline-

treated A2AR KO mice. 

A2AR-mGlu5R receptor interaction modulates methamphetamine-induced hyperactivity 

and stereotypic rearing behavior 
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In order to assess the role of A2AR-mGlu5R interaction in the modulation of MAP-induced 

hyperactivity and stereotypic rearing behavior, WT mice were treated with a combination of sub-

threshold doses of the A2AR antagonist, SCH 58261 and the mGlu5R antagonist, MTEP 

identified in a pilot study. A dose-response study was carried out with administration of SCH 

58261 or MTEP 30 min prior to MAP treatment. MAP-induced ambulatory time was 

significantly decreased following pre-treatment with SCH 58261 at the dose of 1 mg/kg, 

(Supplementary Figure S3A; Table 1), and by pre-treatment with MTEP at the doses of 0.5 

mg/kg and 0.25 mg/kg (Supplementary Figure S3B; Table 1). Similarly, MAP-induced vertical 

(rearing) behavior was significantly reduced following pre-treatment with either SCH 58261 at 

doses of 1 mg/kg, 0.25 mg/kg and 0.1 mg/kg (Supplementary Figure S3C; Table 1) or MTEP at 

doses of 0.5 mg/kg, 0.25 mg/kg and 0.1 mg/kg (Supplementary Figure S3D; Table 1). In 

contrast, pre-treatment with SCH 58261 or MTEP at a dose of 0.01 mg/kg did not alter MAP-

induced hyperlocomotion (Supplementary Figure S3), and was thereby chosen as the sub-

threshold dose. Neither SCH 58261, nor MTEP or their combined administration, at a dose of 

0.01 mg/kg, has altered basal ambulatory time or stereotypic rearing activity (Supplementary 

Figure S4). 

To investigate the role of the A2AR-mGlu5R in the locomotor and stereotypic rearing behaviors 

induced by cocaine and MAP, sub-threshold doses of MTEP (0.01 mg/kg) and SCH 58261 (0.01 

mg/kg) were injected separately or in combination 30 min prior to saline, MAP (1 mg/kg, i.p.) or 

cocaine (15 mg/kg, i.p.) injection. Administration of cocaine or MAP significantly increased 

both ambulatory time (Figure 2A, C; Table 1) and vertical activity (Figure 2B, D; Table 1). SCH 

58261 (0.01 mg/kg) or MTEP (0.01 mg/kg) pre-treatment, when administered alone, did not alter 

cocaine- or MAP-induced ambulatory time or vertical activity (Figure 2). While co-

administration of SCH 58261 (0.01 mg/kg, i.p.) and MTEP (0.01 mg/kg, i.p.) did not affect 
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ambulatory time or vertical activity induced by cocaine (Figure 2A, B; Table 1), it significantly 

reduced by 30% and 47% MAP-induced stimulation of these respective behaviors (Figure 2C, D; 

Table 1). Pre-treatment with either MTEP (0.01 mg/kg) or SCH 58261 (0.01 mg/kg) alone, or in 

combination, did not alter the ambulatory time or vertical locomotor response in saline-treated 

animals (Figure 2). 

A2AR-mGlu5R interaction mediates methamphetamine-induced conditioned place 

preference 

We further investigated the role of A2AR-mGlu5R receptor interaction in the reinforcing 

properties of MAP by using a CPP paradigm (Figure 3A). Sub-threshold doses of SCH 58261 

and MTEP were administered separately or in combination 30 min prior to post-conditioning test 

session of a MAP-induced CPP protocol. WT mice pre-treated with vehicle, SCH (0.01 mg/kg, 

i.p.) and MTEP (0.01 mg/kg, i.p.) alone exhibited a MAP-induced CPP, as illustrated by an 

increase in the time spent in the drug-paired compartment during the post-conditioning phase 

compared to the pre-conditioning phase (Figure 3B). In contrast, pre-treatment with a 

combination of SCH 58261 (0.01 mg/kg, i.p.) and MTEP (0.01 mg/kg, i.p.) prevented the 

acquisition of MAP-induced CPP (Figure 3B; Table 1). 

A possible mechanism by which the combined antagonism of A2AR and mGlu5R may modulate 

the reinforcing effects of MAP in the CPP paradigm is by inducing reward. Thus, we assessed 

the rewarding or aversive properties of the combination of MTEP and SCH 58261 ligands using 

the CPP paradigm. Co-administration of SCH 58261 (0.01 mg/kg, i.p.) and MTEP (0.01 mg/kg, 

i.p.) did not induce any conditioned place preference or aversion compared to the vehicle control 

group (Figure 3C; Table 1). 
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Chronic cocaine administration does not alter mGlu5R, or D2R binding in wild-type or 

A2AR KO mice 

Chronic cocaine treatment did not induce any changes in the mGlu5R (Figure 4 A, B) binding or 

dopamine D2R (Supplementary Figure S5A,B) in WT or A2AR KO mice in any of the analyzed 

brain regions (Supplementary table 1). No genotype or ‘genotype’ x ‘treatment’ interaction was 

observed (Table 1). 

Genetic deletion of A2AR prevented methamphetamine-induced striatal mGlu5R up-

regulation 

Chronic MAP administration caused a significant increase in mGlu5R binding in the nucleus 

accumbens core (AcbC) and shell (AcbSh) of WT mice compared to saline controls (Figure 4C, 

D; Table 1). In the A2AR KO mice, this effect of chronic MAP treatment was not present (Figure 

4B, D). Chronic MAP administration did not induce any significant alterations in any other brain 

regions analyzed (Supplementary Table 2). 

Chronic methamphetamine treatment did not alter D2R in wild-type or A2AR KO mice 

Chronic MAP treatment did not induce any changes in the dopamine D2R binding 

(Supplementary Figure S5C, D) in WT or A2AR KO mice, and no genotype effect was observed 

(Table 1). 

Decreased mGlu5R binding in the striatum of treatment-naïve A2AR KO mice  

We investigated the effects of global A2AR deletion on D2R, DAT and mGlu5R in the brain 

(Figure 5). Quantitative autoradiographic binding of the striatal D2R and DAT showed no 

significant genotype effect or ‘genotype’ x ‘brain region’ interaction (Figure 5, Table 1). 

However, compared to WT mice, mGlu5R binding was significantly lower in the nucleus 
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accumbens core of A2AR KO mice, but not in the other brain regions analyzed (Figure 5C, F; 

Supplementary Table 3). 

DISCUSSION 

This is the first study to demonstrate the critical role of A2AR via its striatal interaction with 

mGlu5R in mediating the ambulatory, stereotypic rearing behavior and rewarding properties of 

MAP. Interestingly, and in contrast with MAP, neither A2AR nor the A2AR-mGlu5R interaction 

modulates the motor enhancing properties of cocaine in mice. These findings demonstrate a 

differential role of the A2AR and the A2AR-mGlu5R interactions in modulating the effects of two 

mechanistically distinct psychostimulants. In addition, we showed that A2AR deletion does not 

only alter striatal mGlu5R binding under physiological conditions, but also prevents the MAP-

induced upregulation of striatal mGlu5R binding, thus further supporting the evidence for a 

functional striatal A2AR-mGlu5R interaction.  

We show that both pharmacological antagonism and genetic deletion of A2AR attenuate MAP-

induced stimulation of ambulatory activity. In addition, the present study is the first to 

demonstrate complete abolition of MAP-induced stereotypic rearing behavior in A2AR KO mice, 

supporting a main facilitatory role for A2AR in mediating the motor enhancing properties of 

MAP. Activation of the pre-synaptic A2AR localized on cortical glutamatergic afferents has been 

shown to positively modulate the behavioral responses of psychostimulants by facilitating 

glutamate release in the striatum (Golembiowska and Zylewska, 1997; Quarta et al., 2004; Shen 

et al., 2008).  Since enhanced striatal glutamatergic release has been associated with the 

manifestation of stereotypic rearing behavior (Presti et al., 2004), it is likely that the positive 

modulatory effect of A2AR on glutamate release in the striatum might be at least partly 

responsible for the stereotypic-inducing properties of MAP. Interestingly MAP-induced 
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dependence/psychosis has been shown to be associated with a polymorphism of the A2AR, 

ADORA2A gene (Kobayashi et al., 2010) supporting a role for A2AR in the psychotic effect of the 

drug. Given that selective increase of psychostimulant-induced repetitive rearing behavior in 

rodents has been previously associated with psychotic consequences of drugs of abuse (Reeves et 

al., 2003), the abolition of MAP-induced stereotypic rearing activity in A2AR knockout mice may 

suggest a key role for A2ARs in facilitating MAP-induced psychotic effects.  “While in the 

present study we show complete abolition of MAP-induced repetitive rearing behavior in mice 

lacking the A2AR gene, as well as following combined antagonism of A2AR and mGlu5R, 

alterations in other stereotypic behaviors including circling, sniffing, grooming and head-

weaving need to be further investigated” 

To further investigate whether the effects of A2AR antagonism involves its interaction with 

mGlu5R, we investigated the effect of co-administration of sub-threshold doses of A2AR and 

mGlu5R antagonists on the ambulatory and stereotypic rearing behaviors induced by MAP. In 

line with the findings from the genetic deletion of A2AR, we also showed that sub-threshold co-

antagonism of A2AR and mGlu5R reduced ambulatory time and completely prevented MAP-

induced rearing activity. Overall, these data clearly suggest a functional A2AR-mGlu5R 

interaction in the positive modulation of the motor enhancing properties of MAP. These findings 

are in agreement with studies showing synergistic interactions between A2AR and mGlu5R in the 

drug-seeking effect of alcohol and cocaine (Adams et al., 2008; Brown et al., 2012), as well as, 

as well as in the manifestation of motor responses associated with Parkinson’s disease (Ferre et 

al., 2002; Kachroo et al., 2005).  Specifically, combination of sub-threshold doses of A2AR and 

mGlu5R antagonists improved motor deficits in bilaterally 6-hydroxy-dopamine-lesioned rats 

(Coccurello et al, 2004) as well as in DA-depleted mice (Kachroo et al, 2005), and prevented the 

conditioned cue-induced reinstatement of alcohol-seeking (Adams et al., 2008). 
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The synergistic interaction of A2AR with mGlu5R observed in the present study is consistent with 

evidence for the existence of heterodimeric A2AR-mGlu5R complexes within the striatum (Ferre 

et al., 2002). The presence of a functional A2AR-mGlu5R interaction is further supported by the 

significant reduction of mGlu5R binding in the ventral striatum of A2AR KO mice compared to 

WT.  While it is possible that this down-regulation of mGlu5R binding reflects compensatory 

neuroadaptations due to the deletion of A2AR, these observations may also have resulted from the 

inability of mGlu5R to interact with A2AR in the KO mice. These results are consistent with 

Brown et al. (2012), who demonstrated a decrease in A2AR binding in the striatum of mice 

treated with the mGlu5R antagonist MTEP. Moreover, the involvement of functional interactions 

between striatal A2AR and mGlu5R in the actions of MAP is supported by our findings showing 

complete abolition of chronic MAP-induced up-regulation of mGlu5R binding in the nucleus 

accumbens of A2AR KO mice. In line with cocaine (Ghasemzadeh et al., 1999) and morphine 

(Narita et al., 2005), chronic MAP administration induced an up-regulation of mGlu5R. This is 

however, the first study to show that A2AR positively modulate this effect. The abolition of 

MAP-induced mGlu5R up-regulation along with the concomitant attenuation of MAP-associated 

hyperactivity and stereotypic rearing in A2AR KO mice, indicate a potential role of the mGlu5R 

up-regulation in the hyperactivity associated with MAP use.  

Interestingly, the results from the present study demonstrate that A2AR is not involved in 

mediating the ambulatory or stereotypic rearing effects of cocaine, since genetic deletion of 

A2AR did not alter cocaine-induced enhancement on ambulatory time or vertical activity.  The 

differential role of A2AR receptors in regulating MAP- and cocaine-associated ambulatory and 

stereotypic rearing effects may lie on their distinct mechanism of action. While MAP 

administration enhances striatal DA release primarily through facilitating vesicular DA 

release into the synaptic cleft by reversing DAT transporter action, cocaine increases 
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extracellular striatal DA levels by blocking DAT, thereby preventing DA reuptake. Given the 

dominant role of pre-synaptic striatal A2AR in positively modulating the behavioral responses of 

psychostimulants by facilitating DA and glutamate release (Golembiowska and Zylewska, 1997; 

Mark et al., 2004; Quarta et al., 2004) versus the antagonistic effect of post-synaptic A2AR, the 

differential role of A2AR receptors in regulating MAP- and cocaine-induced hyperactivity is 

therefore perhaps not surprising. As a result, the lack of effect of A2AR or combined antagonism 

of A2AR and mGlu5R on motor activating properties of cocaine is likely to reflect a lack of pre-

synaptic A2AR involvement in cocaine’s mechanism of action. Moreover, it has been recently 

shown that MAP mechanism of action involves a DA-independent mechanism, by direct 

modulation of hippocampal glutamatergic synaptic transmission (Zhang et al., 2014), further 

supporting a differential regulation of these psychostimulants. Given that DAT is the prime 

target for cocaine, the lack of effect of A2AR on DAT binding might further explain the lack of 

A2AR involvement in the motor enhancing effects of cocaine. However, Short et al., (2006) 

found decreased DAT binding in the caudate putamen of A2AR KO mice. These discrepancies 

might reflect differences in the genetic background of the animals used. While Short et al., 

(2006) used A2AR KO mice on a CD-1 backcrossed with C57BL/6J for four generations, in the 

present study A2AR KO mice were bred exclusively on a CD-1 backound. In fact, phenotypic 

differences have been identified between A2AR KO mice bred on a CD-1 and C57BL/6J 

background (Castane et al., 2006; Chen et al., 2000; Shen et al., 2008). 

Unlike MAP, chronic cocaine administration did not alter mGlu5R binding. Additionally, A2AR 

deletion did not affect mGlu5R binding in chronically cocaine-treated mice suggesting a lack of 

A2AR-mGlu5R in the locomotor-enhancing effects of cocaine. This is in agreement with the 

absence of any effect of combined administration of sub-threshold doses of A2AR and mGlu5R 

antagonists on cocaine-induced ambulatory and stereotypic rearing activity observed in our 
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study. Nonetheless, this does not necessarily preclude an involvement of this receptor interaction 

on other behavioral effects of cocaine.  Indeed, although Brown et al, (2012) did not detect an 

A2AR-mGlu5R interaction in regulating the acute enhanced locomotor responses of cocaine, they 

provided evidence for the involvement of such an interaction in mediating the reinforcing effects 

of cocaine.   

In order to further assess the role of A2AR-mGlu5R interaction in the reinforcing properties of 

MAP, we investigated the effects of co-administration of sub-threshold doses of A2AR-mGlu5R 

antagonists in MAP-induced CPP. This is the first study, to our knowledge, to show complete 

abolition of the expression of MAP-induced place preference by sub-threshold co-antagonism of 

A2AR and mGlu5R, supporting the key modulatory role of the functional A2AR-mGlu5R 

interaction in the reinforcing properties of MAP. In line with our findings, Chesworth et al., 

(2015) have recently shown that A2AR KO mice do not develop CPP to MAP, further 

supporting a key role for the A2AR in mediating the reinforcing properties of MAP. 

Interestingly, genetic deletion of mGlu5R did not affect the development of MAP-induced CPP 

in mice (Chesworth et al., 2013), whereas activation of A2AR reduced the development of MAP-

induced CPP (Kavanagh et al., 2015), suggesting a distinct function of A2AR-mGlu5R interaction 

vs A2AR and mGlu5R on their own on the development of MAP-induced CPP. Since combined 

administration of A2AR-mGlu5R antagonists was also able to prevent MAP-induced locomotor 

and stereotypic responses, it is hence plausible that these MAP-related behaviors are regulated by 

common neural circuits likely localized in the striatum, a brain area underlying Pavlovian 

conditioning responses (Robbins et al., 2008). Specifically, the mesolimbic DAergic system, 

projecting from the ventral tegmental area to the Acb, has been implicated in both the locomotor 

and the reinforcing properties of psychostimulant drugs of abuse (Koob, 1992). Similarly, 

psychostimulant-induced stereotypic behavior has been demonstrated to involve the DAergic 
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system in the striatum and more specifically the DA D2R (Amalric and Koob, 1993; Berke and 

Hyman, 2000). Interestingly, in our study, A2AR gene deletion did not affect striatal D2R binding 

either in treatment naïve mice, or in chronically MAP- or cocaine-treated mice suggesting a lack 

of involvement of A2AR-D2R interactions in the actions of psychostimulants, at least at the 

receptor binding level. Although there is evidence suggesting that post-synaptic A2AR-D2R 

interactions can negatively modulate the behavioral effects of psychostimulants (Ferre et al., 

1997; Filip et al., 2006; Poleszak and Malec, 2002), it has been suggested that the actions of 

presynaptic A2AR receptors dominate over the postsynaptic A2AR receptors (Shen et al., 2008), 

which may explain why A2AR receptors do not modulate D2R binding following chronic 

psychostimulant treatment. However, multiple allosteric interactions have been described for 

A2AR-D2R heteromer, which can differentially modulate G protein-dependent and independent 

signalling (Navarro et al., 2014). 

In summary, our findings support the existence of functional striatal interactions between A2AR 

and mGlu5R in modulating MAP- but not cocaine-induced locomotor and stereotypic rearing 

responses. We also demonstrated a key role of this interaction in positively modulating MAP-

seeking behavior. These pre-clinical data highlight the potential of therapeutic agents which 

simultaneously target A2AR and mGlu5R for the treatment of MAP addiction. The fact that this 

combination of sub-threshold doses of A2AR and mGlu5R antagonists is neither sedating 

(Supplementary Figure S4), nor rewarding or aversive (Figure 3C) and at the same time it 

effectively prevents the motor enhancing and reinforcing effects of MAP, makes its potential 

progress towards clinical development for the treatment of MAP addiction especially appealing. 
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        Factor effect     Interaction effect   N (per group) 

Overall effects for Figure 1 
        

Chronic Cocaine 
  

Factor 'treatment' 
 

Factor 'treatment' x 'genotype' 
 

 
Ambulatory Time 

 
F[1,30] = 60.91;  p<0.001 

 
F[1,30] = 0.001;  p=0.99 

 
5-11 

 
Rearing activity 

 
F[1,30] = 25.06;  p<0.01 

 
F[1,30] = 0.001;  p=0.98 

 
5-11 

           Chronic Methamphetamine (MAP) Factor 'treatment' 
 

Factor 'treatment' x 'genotype' 
 

 
Ambulatory Time 

 
F[1,20] = 190.78;  p<0.001 

 
F[1,20] = 13.01;  p=0.33 

 
6 

 
Rearing activity 

 
F[1,20] = 25.58;  p<0.001 

 
F[1,20] = 12.27;  p<0.01 

 
6 

           Overall effects for Figure 2 
        

Cocaine 
  

Factor 'treatment' 
 

Factor 'treatment' x 'ligand' 
  

 
Ambulatory Time 

 
F[1,42] = 1098.5;  p<0.001 

 
F[3,42] =0.10;  p=0.96 

 
6-7 

 
Vertical activity 

 
F[1,42] = 106.79;  p<0.001 

 
F[3,42] = 0.22;  p=0.88 

 
6-7 

           MAP 
  

Factor 'treatment' 
 

Factor 'treatment' x 'ligand' 
  

 
Ambulatory Time 

 
F[1,40] = 123.30;  p<0.001 

 
F[3,40] = 3.48;  p=0.03 

 
6 

 
Vertical activity 

 
F[1,40] = 87.99;  p<0.001 

 
F[3,40] = 3.55;  p=0.02 

 
6 

           Overall effects for Figure 3 
 

Factor 'ligand' 
  

Factor 'ligand' x 'CPP phase' 
  

MAP-incuced CPP 
 

F[1,50] =21.52;  p<0.001 
 

F[3,50] =6.032;  p<0.01 
 

6-7 

           
    

Factor 'ligand' 
  

Factor 'ligand' x 'CPP phase' 
  

SCH 58261 (0.01) + MTEP (0.01) -induced CPP F[1,20] =0.14;  p=0.71 
 

F[1,20] =0.01;  p=0.93 
 

6 

           Overall effects for Figure 4 
        

Chronic Cocaine -  mGlu5 receptor autoradiography Factor 'treatment' 
 

Factor 'treatment' x 'genotype' 
 

 
AcbC 

  
F[1,18] = 0.002;  p=0.96 

 
F[1,18] =0.22; p=0.65 

 
5-8 

 
AcbSh 

  
F[1,18] = 0.19;  p=0.66 

 
F[1,18] =0.02; p=0.89 

 
5-8 

 
Tu 

  
F[1,17] = 0.28;  p=0.61 

 
F[1,17] =0.49; p=0.49 

 
5-7 

 
CPu 

  
F[1,18] = 0.31;  p=0.58 

 
F[1,18] =0.10; p=0.76 

 
5-8 

           Chronic MAP -  mGlu5 receptor autoradiography Factor 'treatment' 
 

Factor 'treatment' x 'genotype' 
 

 
AcbC 

  
F[1,18] = 1.59;  p=0.22 

 
F[1,18] =7.98; p<0.05 

 
5-6 

 
AcbSh 

  
F[1,18] = 2.25;  p=0.15 

 
F[1,18] =6.64; p<0.05 

 
5-6 

 
Tu 

  
F[1,17] = 2.01;  p=0.17 

 
F[1,17] =0.49; p=0.06 

 
5-6 

 
CPu 

  
F[1,19] = 0.84;  p=0.37 

 
F[1,19] =5.96; p<0.05 

 
5-6 

           Overall effects for Figure 5 
        

Treatment-naïve WT and A2AR KO mice Factor 'genotype' 
 

Factor 'genotype x brain region' 
 

 
D2 receptor autoradiography F[1,40] = 3.88;  p=0.56 

 
F[3,40] = 0.13; p=0.94 

 
6 

 
mGlu5 receptor autoradiography F[1,38] =5.19;  p<0.05 

 
F[3,38] = 2.96;  p<0.05 
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           Overall effects for  Supplementary Figure 3 
       

SCH 58261 
  

Factor 'ligand' 
      

 
Ambulatory Time 

 
F[4,19] = 2.28;  p=0.09 

    
3-8 

 
Vertical activity 

 
F[4,19] = 9.82;  p<0.001 

    
3-8 

           MTEP 
  

Factor 'ligand' 
      

 
Ambulatory Time 

 
F[4,19] = 2.64;  p<0.05 

    
3-8 

 
Vertical activity 

 
F[4,19] = 5.86;  p<0.01 
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           Overall effects for  Supplementary Figure 2 
       

Effects of ligand - Treatment-naïve mice Factor 'ligand' 
      

 
Ambulatory Time 

 
F[3,65] = 0.81;  p=0.50 

    
16-21 

 
Vertical activity 

 
F[3,65] = 0.21;  p=0.89 

    
16-21 

           Overall effects for Supplementary Figure 5 
       

Chronic Cocaine -  D2 receptor autoradiography Factor 'treatment' 
 

Factor 'treatment' x 'genotype' 
 

 
AcbC 

  
F[1,16] = 0.77;  p=0.39 

 
F[1,16] = 0.004; p=0.95 
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AcbSh 

  
F[1,17] = 0.25;  p=0.62 

 
F[1,17] = 0.02;  p=0.90 

 
4-5 

 
Tu 

  
F[1,19] = 0.34;  p=0.57 

 
F[1,19] = 0.04;  p=0.83 

 
4-6 

 
CPu 

  
F[1,19] = 1.05;  p=0.32 

 
F[1,19] = 0.64;  p=0.43 
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           Chronic MAP -  D2 receptor autoradiography Factor 'treatment' 
 

Factor 'treatment' x 'genotype' 
 

 
AcbC 

  
F[1,18] = 1.17;  p=0.29 

 
F[1,18] = 0.98; p=0.33 

 
5-6 

 
AcbSh 

  
F[1,18] = 0.62;  p=0.44 

 
F[1,18] = 0.01; p=0.90 

 
5-6 

 
Tu 

  
F[1,17] = 1.76;  p=0.20 

 
F[1,17] = 0.03;  p=0.87 

 
5-6 

 
CPu 

  
F[1,19] = 0.54;  p=0.47 

 
F[1,19] = 0.01;  p=0.91 

 
5-6 

Table 1: Relevant effects of behavioral and biochemical data 

: 
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LEGENDS FOR TABLES AND FIGURES 

Table 1: Relevant effects for biochemical and behavioral data. 

 

Supplementary Table 1: Quantitative autoradiography of mGlu5R in WT and adenosine A2AR 

KO mice following chronic cocaine administration. 

 

Supplementary Table 2: Quantitative autoradiography of mGlu5R in WT and adenosine A2AR 

KO mice following chronic methamphetamine administration. 

 

Supplementary Table 3: Quantitative autoradiography of mGlu5R in treatment-naive WT and 

adenosine A2AR KO mice. 

 

Figure 1: Adenosine A2AR deletion attenuates hyperactivity and prevents stereotypic rearing 

behavior following chronic methamphetamine, but not cocaine administration. Ambulatory 

time in wild-type (WT) and adenosine A2AR knockout (KO) mice was measured daily during 

chronic cocaine (3 x 15 mg/kg/day, 14 days, n = 7-11/group) or methamphetamine (MAP, 1 

mg/kg/day, 10 days, n = 6/group) administration. Cocaine-induced (A) ambulatory time and (B) 

vertical activity, as well as MAP-induced (C) ambulatory time and (D) vertical activity are 

represented as the cumulative mean ± SEM, for a period of 3 hours daily. #p<0.05, ##p<0.01, 

###p<0.001 vs WT Saline; ††p<0.01, †††p<0.001 vs A2AR KO MAP. 

Figure 2: Co-antagonism of A2AR and mGlu5R reduces methamphetamine- but not cocaine-

induced hyperactivity and stereotypic rearing behavior. Wild type mice were pre-treated with 

sub-threshold doses of A2AR antagonist SCH 58261 (SCH, 0.01 mg/kg, i.p.), mGlu5R antagonist 

MTEP (0.01 mg/kg, i.p.) or a combined administration of both (SCH 0.01 mg/kg + MTEP 0.01 

mg/kg, i.p.), followed by an acute treatment with saline, methamphetamine (MAP, 1 mg/kg, i.p. 

n = 5-6/group) or cocaine (15mg/kg, i.p., n = 5-6/group). Cocaine-induced (A) ambulatory time 
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and (B) vertical activity, as well as MAP-induced (C) ambulatory time and (D) vertical activity 

are represented as the cumulative mean ± SEM, for a period of 3 hours. *p<0.05, **p<0.01, 

***p<0.001. 

Figure 3: Co-antagonism of A2AR and mGlu5R prevents methamphetamine-induced 

conditioned place preference. (A) Experimental protocol of the different phases of the CPP 

paradigm. Wild type mice underwent the following protocol: Habituation phase; Pre-

conditioning (Pre-Cond) phase: assessment of spontaneous place preference; Conditioning 

phase: 6 days, with saline injection (10 ml/kg, i.p., even days) in the preferred compartment and 

administration of methamphetamine (MAP; 1 mg/kg, i.p. odd days) in the least-preferred 

compartment; Post-conditioning (Post-Cond) session: assessment of conditioning with no 

injection. For the Post-Cond phase, mice were subdivided into four different experimental groups 

to receive vehicle (20% DMSO, i.p.; n=8), SCH 58261 (SCH, 0.01 mg/kg, i.p.; n=7), MTEP 

(0.01 mg/kg, i.p.; n=7) or a combination of SCH 0.01 mg/kg i.p. and MTEP 0.01 mg/kg, i.p.; 

n=7 Following a period of 30 min, mice were tested for post-conditioning during a 20-min 

session. (B) Time spent in the MAP-paired compartment for each phase of the CPP paradigm 

(analysis of the last 15 min of the 20-min session). Data are expressed as mean ± SEM*p<0.05; 

**p<0.01; ***p<0.001. (C) Time spent in the MTEP/SCH- or saline-paired compartment 

(analysis of the last 15 minutes of the 20-min session) during the pre-conditioning (Pre-Cond) 

and post-conditioning (Post-Cond) phases of the CPP paradigm.  Data are expressed as mean ± 

SEM, n = 6. 

Figure 4: Absence of methamphetamine-induced striatal mGlu5R upregulation in adenosine 

A2AR knockout mice. Wild-type (WT) and A2AR knockout (KO) mice were treated with a 

chronic saline /cocaine (3 x 15 mg/kg/day, 14 days, n = 7-11/group) or saline/MAP (1 x 1 
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mg/kg/day, 10 days, n=6/group). Representative autoradiograms of [3H]MPEP binding to 

mGlu5R receptors in coronal brain sections of mice underwent chronic (A) saline/cocaine or (B) 

saline/MAP administration. Binding levels are represented as a pseudo-colour interpretation of 

black and white film images in fmol/mg of tissue equivalent. Quantitative mGlu5R binding levels 

in the striatum of WT and A2AR KO mice following chronic (C) saline/cocaine or (D) 

saline/MAP administration. Data are expressed as the mean specific binding ± SEM. *p<0.05. 

Abbreviations: AcbC, nucleus accumbens core; AcbSh, nucleus accumbens shell; CPu, caudate 

putamen; Tu, olfactory tubercle. 

Figure 5: Decreased striatal mGlu5R binding in treatment-naïve adenosine A2AR knockout 

mice. Representative autoradiograms of (A) [3H]MPEP binding to mGlu5R (n=5-6/genotype), 

(B) [3H]raclopride binding  to dopamine D2 receptors (D2R; n=6/genotype) and (C) 

[3H]mazindol binding to dopamine transporters (DAT; n=4-6/genotype), in coronal brain 

sections of treatment-naïve CD-1 wild-type (WT) and A2AR knockout (KO) mice (n=5-6/group). 

Binding levels are represented using a pseudo-colour interpretation of black and white film 

images in fmol/mg of tissue equivalent. Quantitative (D) mGlu5R, (E) D2R and (F) DAT binding 

levels in treatment-naïve WT and A2AR KO mice. Data are expressed as the mean specific 

binding ± SEM. *p<0.05. Abbreviations: AcbC, nucleus accumbens core; AcbSh, nucleus 

accumbens shell; CPu, caudate putamen; Tu, olfactory tubercule. 

Supplementary Figure S1: Confirmation of mouse genotype by autoradiographic binding of 

A2AR. Representative computer-enhance pseudo-colour autoradiograms of brain sections 

incubated with [3H]-CGS 21680 from mice used in the cocaine as well as MAP studies to label 

A2AR.  
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Supplementary Figure S2: No differences in basal ambulatory and vertical activity between 

wild-type and A2AR knockout mice. Cumulative basal (A) ambulatory time and (B) vertical 

(rearing) locomotor activity of wild-type (WT) and adenosine A2AR knockout (KO) mice were 

recorded for 1 hour prior to any drug treatment injection on Day 1 of chronic saline, cocaine or 

MAP administration protocol. Data are represented as mean ± SEM (n = 24 – 29; mice from both 

cocaine and MAP experiments). 

Supplementary Figure S3: Dose-response effect of SCH 58261 and MTEP on 

methamphetamine-induced motor activity. Male wild-type mice were pre-treated with either 

A2AR antagonist SCH 58261 (1, 0.25, 0.1 or 0.01 mg/kg, i.p., n = 3 – 4/ group) or mGlu5R 

antagonist MTEP (0.5, 0.25, 0.1 or 0.01 mg/kg, i.p., n = 3 - 4/group) followed by an acute 

methamphetamine (MAP, 1 mg/kg, i.p.) administration. The effects of SCH 58261 or MTEP pre-

treatment on (A, C) ambulatory time and (B, D) vertical (rearing) locomotor activity were 

recorded for 3 hours following acute MAP administration. Data are represented as mean ± SEM. 

*p<0.05, ** p<0.01 

Supplementary Figure S4: Effect of SCH 58261 and MTEP on ambulatory and vertical 

activity of mice. Wild-type (WT) were treated with either vehicle (10ml/kg; 20% DMSO; n=16), 

SCH 58261 (SCH, 0.01 mg/kg, i.p.; n=16), MTEP (0.01 mg/kg, i.p.; n=16) or a combination of 

SCH 0.01 mg/kg i.p. and MTEP 0.01 mg/kg, i.p. (n=21) and tested for (A) ambulatory time and 

(B) stereotypic rearing activity. Data are represented as mean ± SEM 

Supplementary Figure S5: Chronic methamphetamine or cocaine administration does not 

alter dopamine D2R binding in WT and A2AR knockout mice. Wild-type (WT) and A2AR 

knockout (KO) mice were treated with a chronic saline/cocaine (3 x 15 mg/kg/day, 14 days; n=4-

6/group) or saline/MAP (1 x 1 mg/kg/day, 10 days; n=5-6/group). Representative 
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autoradiograms of [3H]raclopride binding to dopamine D2R in coronal brain sections of mice 

underwent a chronic (A) saline/cocaine or (C) saline/MAP administration. Binding levels are 

represented using a pseudo-colour interpretation of black and white film images in fmol/mg of 

tissue equivalent. Quantitative D2R binding levels in the striatum of WT and A2AR KO mice 

treated with a chronic (B) saline/cocaine or (D) saline/MAP administration. Data are expressed 

as the mean specific binding ± SEM. Abbreviations: AcbC, nucleus accumbens core; AcbSh, 

nucleus accumbens shell; CPu, caudate putamen; Tu, olfactory tubercule. 

 

 


