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ABSTRACT   26 

Currently, the most effective tuberculosis control method resides in case-finding and 6 27 

months chemotherapy. There is a need to improve our understanding about drug interactions, 28 

combination activities and the ability to remove persistent bacteria in the current regimens, 29 

particularly in relation to relapse. We aimed to investigate the therapeutic effects of three 30 

main components, rifampicin (RMP), isoniazid (INH), and pyrazinamide (PZA), in current 31 

drug regimens using a modified version of the Cornell mouse model. We evaluated the post-32 

treatment levels of persistent Mycobacterium tuberculosis in the organs of mice using culture 33 

filtrate derived from M. tuberculosis strain H37Rv. When RMP was combined with INH, 34 

PZA or INH-PZA, significant additive activities were observed compared to each of the 35 

single drug treatments. However, the combination of INH and PZA showed a less significant 36 

additive effect than either of the drugs used on their own. Apparent culture negativity of 37 

mouse organs was achieved at 14 weeks of treatment with RMP-INH, RMP-PZA and RMP-38 

INH-PZA but not with INH-PZA, when conventional tests, namely culture on solid agar and 39 

in liquid broth indicated that the organs were bacteria negative. The relapse rates for RMP-40 

containing regimens were not significantly different to a 100% relapse rate at the numbers of 41 

mice examined in this study. In parallel, we examined the organs for the presence of culture 42 

filtrate-dependent persistent bacilli after 14 weeks of treatment.  Culture filtrate treatment of 43 

the organs revealed persistent M. tuberculosis.  Modelling of mycobacterial elimination rates 44 

and evaluation of culture-filtrate dependent organisms showed promise as surrogate methods 45 

for efficient factorial evaluation of drug combinations in tuberculosis in mouse models and 46 

should be further evaluated against relapse. The presence of culture filtrate-dependent 47 

persistent M. tuberculosis is the likely cause of disease relapse in this modified Cornell 48 

mouse model. 49 
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INTRODUCTION  52 

Tuberculosis (TB) remains a major killer worldwide and  is  responsible for approximately 53 

two million deaths annually (1). The main obstacle for successful disease control resides in 54 

the ability of M. tuberculosis to persist in the host despite host immune responses and 55 

chemotherapy.   Prolonged multi-drug antimicrobial therapy is necessary to achieve a cure, 56 

which leads to poor patient compliance, high relapse rates (7 - 13%) and the emergence of 57 

drug-resistance (2).  Although short course TB therapy has been in clinical use for nearly four 58 

decades, the drug interactions and the ability to remove persistent bacteria with the current 59 

regimens have not been clearly demonstrated. Previous work in the murine Cornell model has 60 

shown that after 7 weeks of intensive treatment with isoniazid (INH) and pyrazinamide (PZA) 61 

to induce a latent infection, the follow-up treatment with rifampicin (RMP) alone, RMP-INH, 62 

RMP-PZA or RMP-INH-PZA exhibited very similar anti-tuberculosis activities (3). However, 63 

another study found that when mice were treated with INH-RMP-PZA, INH-RMP or RMP-64 

PZA for 6 months, the RMP-PZA treated group demonstrated significantly lower relapse 65 

rates than the INH-RMP-PZA or INH-RMP groups (4). This study suggested that INH 66 

antagonised the actions of RMP-PZA (4) because INH in the regimen significantly reduced 67 

the Cmax and the area under the serum concentration-time curve of RMP in the mice (4) 68 

leading to higher relapse rates. The antagonism between INH and RMP-PZA was due to a 69 

negative interaction between INH and PZA in the combination and the effect was INH dose 70 

dependent (5). It was not clear what interaction INH has with each of the components in the 71 

regimens. To provide greater clarity, it is important to identify and evaluate the level of 72 

persistent bacilli after chemotherapy. This information is of clinical importance since 73 

combination therapy involving RMP-INH-PZA is commonly employed. Using appropriate 74 
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drug-combinations has the potential to maximise therapeutic effects whilst minimising side 75 

effects of multiple drug therapy. Furthermore, evaluation of post-treatment persister levels 76 

may serve as a biomarker to predict relapse rate (6). In this study, we examined the 77 

therapeutic effects of each of the components singly, in two-drug and three-drug 78 

combinations using a modified Cornell mouse model. We evaluated persistent M. 79 

tuberculosis using culture filtrate which was shown by others (7) to contain resuscitation 80 

promoting factors (RPF) in mouse organs from a population of mice of which a sample had 81 

apparently culture negative organs after long-term chemotherapy.  82 

MATERIALS AND METHODS 83 

Bacterium and growth condition. M. tuberculosis strain H37Rv was mouse-passaged and 84 

grown in 7H9 medium supplemented with 10% albumin dextrose complex (ADC; Becton 85 

and Dickinson, UK) and containing 0.05% Tween 80 at 37°C without disturbance for 15 86 

days. The culture was subsequently frozen at -70°C for storage. To determine the viable 87 

counts prior to infection, colony forming unit (CFU) counting was performed prior to 88 

freezing and once again after thawing.  CFU counts were carried out by plating serial 10-fold 89 

dilutions of the cultures on 7H11 agar medium supplemented with oleic albumin dextrose 90 

complex (OADC, Becton and Dickinson, UK). Colonies were counted after incubation of 91 

the plates at 37°C for 3 to 4 weeks and viability was expressed as Log CFU/ml.  The cultures 92 

were subsequently diluted in phosphate-buffered saline (PBS) and used for inoculations in 93 

mice.   94 

Modified Cornell mouse model.  Rifampicin, isoniazid and pyrazinamide were tested singly 95 

or in double (RMP-INH, RMP-PZA and INH-PZA) or triple (RMP-INH-PZA) combinations 96 

using a modified Cornell mouse model which was based on the model previously established 97 
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in Cornell University (8, 9).   The model was conducted using the experimental design and 98 

procedure described below. 99 

  (i) Infection of mice.  Female BALB/c mice (6 to 8 weeks old) were obtained from Harlan 100 

UK Ltd. A total of 364 mice was infected intravenously via the tail vein with 1.2 × 105 CFU 101 

of mouse-passaged M. tuberculosis strain H37Rv per mouse as described previously (8, 10, 102 

11).   The animal husbandry guidelines and all animal experiments were performed according 103 

to the Animals Scientific Procedures Act, 1986 (an Act of the Parliament of the United 104 

Kingdom 1986 c. 14) (Home Office Project licence Number 70/7077) with approval from St 105 

George’s, University of London ethics committee.  106 

  (ii) Chemotherapy. As shown in Table 1, mice were randomly allocated into eight groups. 107 

Control group consisted of infected and untreated mice; 4 of these were sacrificed at 2 hours 108 

after infection (D0) and 4 were killed at the beginning of treatment, D14 and D21 days after 109 

infection. The treatment groups were as follows: single drug treatment group, each contained 110 

16 mice receiving RMP, INH or PZA, respectively, for 8 weeks. Combination groups, each 111 

contained 76 mice were administrated with RMP-INH, RMP-PZA, INH-PZA or RMP-INH-112 

PZA, respectively, for 14 weeks. Single drug therapy started 14 days after infection, when a 113 

large bacterial load in the organs (the mean CFU counts reached 107 per lung or spleen) had 114 

been achieved with visible symptoms of disease. Combination therapy started at 21 days after 115 

infection. All groups were treated by daily oral administration (0.2 ml) for 5 days per week at 116 

the dosages of RMP 10 mg/kg, INH 25 mg/kg or PZA 150 mg/kg. The drug suspensions 117 

were prepared freshly for the daily dosage. In the combination containing RMP, RMP was 118 

administered 1 hour before the other drugs to avoid drug to drug interactions (4). 119 

Immediately after termination of 14 weeks of chemotherapy, the remaining mice were 120 

administered 0.5 mg/mouse of hydrocortisone acetate by daily oral administration for 8 121 
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weeks to suppress host immune response.  CFU counts from lungs and spleens were 122 

performed to determine disease relapse.  123 

  (iii) Assessment of infection and treatment efficacy.  As seen in Table 1, to examine M. 124 

tuberculosis infection and baseline CFU counts before initiation of chemotherapy, 4 untreated 125 

control mice were sacrificed at 2 hours, day 14 and day 21 after infection, respectively. For 126 

assessment of treatment efficacy, 4 mice were sacrificed at the 2, 4, 6 and 8 weeks post 127 

treatment for single drug treatment to monitor CFU counts. For combination therapy, a 128 

sample of 8 mice was sacrificed at 2, 4, 6 and 8 weeks and 10 mice were used at 11 and 14 129 

weeks of treatment (Table 1). Lungs and spleens from mice were removed rapidly after 130 

sacrifice and a sterile autopsy was performed. The organs were transferred into 2 ml tubes 131 

each containing 1 ml sterile distilled water and 2 mm diameter glass beads. Lungs and 132 

spleens of mice were homogenised using a reciprocal shaker (Thermo Hybaid Ltd) for 40 133 

seconds at 6.5 speed. CFU counts from each lung and spleen were performed using serial 134 

dilutions of the homogenates. At 14th week treatment, the entire organ homogenates (the total 135 

volume of each organ homogenate was approximately 1.5 ml including the organ and 1 ml of 136 

water) from the 10 mice were aliquoted equally into three tubes which were used  1. CFU 137 

counting by addition of the homogenate to 2 ml of sterile distilled water following by plating 138 

out the entire organ homogenate suspension on 6 selective 7H11 agar plates,  2.  culturing in 139 

5 ml of selective Kirchner liquid medium by the addition of polymyxin B 200 U/ml, 140 

carbenicillin 100 mg/L, trimethoprim 20 mg/L and amphotericin B 10 mg/L  (Selectatab, 141 

Mast Diagnostica GmbH) for 4 weeks with subsequent sub-culturing of the entire culture 142 

onto Löwenstein-Jensen slopes for a further 4 weeks and 3. resuscitation of persistent bacteria. 143 

Culture negative organs were defined as no colonies grown on 7H11 agar plates and no 144 

growth in selective Kirchner liquid medium following inoculation on Löwenstein-Jensen 145 

slopes.   146 
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Selection of RMP- and INH-resistant mutants in mice. At 4th, 6th and 8th week post 147 

treatment, mouse lung and spleen homogenates were plated on 7H11 plates containing RMP 148 

or INH concentration at  two fold serial dilution from 1 to 64 mg/L. Colonies from the plates 149 

containing MIC value higher than 4 folds were picked and regrown in 7H9 medium. MIC 150 

was retested on RMP or INH containing 7H11 agar plates.  151 

Resuscitation of M. tuberculosis in mouse lungs and spleens. For resuscitation of M. 152 

tuberculosis grown in mouse organs, culture filtrates containing RPFs were used as described 153 

previously (6, 7).  M. tuberculosis H37Rv was grown in 7H9 medium for 15 to 20 days until 154 

an optical density of 1 to 1.5 was reached.  The cultures were harvested by centrifugation at 155 

3000 g for 15 minutes and sterilised by filtration with 0.2 µm filter (Sartorius) twice. The 156 

sterilised culture filtrates were made selective by addition of polymyxin B 200000 U/L, 157 

carbenicillin 100 mg/L, trimethoprim 20 mg/L and amphotericin B 10 mg/L (Selectatab, Mast 158 

Diagnostica GmbH) and immediately used for  broth counting of the most probable number 159 

(MPN) of the bacilli (7).  Broth counting of lungs and spleens after 14 weeks of combination 160 

therapy was performed as serial 10-fold dilutions in triplicate in which 0.5 ml of tissue 161 

homogenates were added to 4.5 ml of the culture filtrates. At 10-day intervals over a 2-month 162 

period of incubation at 37°C, the broth cultures were examined for visible turbidity changes. 163 

Growth of M. tuberculosis in turbid tubes was confirmed by colonial morphology on 7H11 164 

agar plates. The MPN of viable bacilli was then estimated from the patterns of positive and 165 

negative tubes (7). The absence of microorganisms other than mycobacteria from turbid tubes 166 

was confirmed by plating on blood agar medium (Oxoid) and Sabouraud dextrose agar 167 

(Oxoid).  In order to assess the sterility of culture filtrates free of M. tuberculosis, tubes 168 

containing culture filtrates were incubated at 37°C for 2 months to ensure  the absence of M. 169 

tuberculosis in the culture filtrates.  170 
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Statistical analysis. A simple model for monoexponential bacterial growth and elimination 171 

(12) (Fig 1) was fitted to the profiles of CFU vs. time obtained experimentally. As 172 

simultaneously occurring exponential replication and death rates cannot be differentiated with 173 

this type of data, a “knet” exponential rate constant was estimated separately before treatment 174 

began (“knet_no_drug” where it would take a net positive value) and during treatment 175 

(“knet_with_drug” where it would take negative value). During therapy, knet is a 1st order 176 

elimination rate constant which can be interpreted as the slope of the modelled line fit 177 

through the logarithmic-transform of the data (with units in these data of wk-1).  Parameter 178 

estimation was carried out with nonlinear regression using the nonlinear least squares 179 

optimisation function “lsqnonlin” as part of the “pracma” package in the R statistical 180 

software language, with an objective function weighted by 1/(predicted value)^2. Standard 181 

errors of parameter estimates were calculated using the method outlined by Landaw et al. (13) 182 

with the Jacobian of model parameter sensitivities estimated using a numerical central 183 

difference method. The datasets comprised from multiple individual subject animals were 184 

treated as a naïve pool for data analysis purposes (14) rather than using the average of the 185 

data at each time-point. The significance of differences between model parameter estimates 186 

under different therapies was examined with pairwise Z-tests incorporating a Bonferroni 187 

correction of 21, where P values <0.002 would be considered significant. The significance of 188 

differences between the relapse rates was determined with pairwise Fisher’s exact tests with a 189 

Bonferroni correction of 6, with P values <0.008 considered significant. 190 

RESULTS 191 

Survival of mice.  During treatment, 4 mice died in the group of RMP-INH (1 at 9 weeks, 1 192 

at 10 weeks and 2 at 12 weeks, 2 mice died in RMP-PZA (1 at 10 weeks and 1 at 12 weeks) 193 

and 3 mice died in the group of INH-PZA (1 at 9 weeks, 1 at 10 weeks and 1 at 13 weeks). 194 

The reason for the death was unknown but was most likely due to natural causes such as 195 
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tumour development or neurological disorders and was unrelated to tuberculosis or treatment. 196 

As the time of death was uncertain and also not at the sampling time point, organ bacterial 197 

counts were not determined from these animals. No mortality was observed during the course 198 

of single drug and RMP-INH-PZA treatments.  199 

Treatment with RMP, INH and PZA singly and in two drug or three drug combination 200 

in a modified Cornell mouse model. We investigated the effect of RMP, INH and PZA 201 

singly and in double and triple combinations on the rate of bacterial eradication and relapse in 202 

a modified Cornell mouse model.  The single dose of the drugs was tested in the animals for 203 

8 weeks and terminated before resistant strain emergence (15). As shown in Table 2, Table 3 204 

and Fig 2, RMP at 10 mg/kg, INH at 25 mg/kg or PZA at 150 mg/kg exhibited modest rates 205 

of bacterial eradication in both lungs and spleens showing 99% kill (2-log reduction)  at 206 

around 8 weeks. The exponential rate constants (logarithmic base 10) for net bacterial 207 

elimination during treatment (knet_with_drug) for RMP, INH and PZA were -0.21, -0.27 and -208 

0.26 for lungs and -0.31, -0.29 and -0.26 for spleens (Table 4), respectively.  Notably, the 209 

drop in CFU counts in both lungs and spleens during the first 2 weeks of treatment with the 210 

singly dosed drugs was minimal, though over the complete time course of therapy a clear 211 

monoexponential decline in CFU counts was observed. No RMP or INH resistant strains 212 

were isolated from 4 to 8 weeks of treatment.  In addition, there was no significant difference 213 

in activities amongst each of the single drug treatments (Table S1 and S2 in the supplemental 214 

material). Interestingly, treatment with RMP combined with INH (Fig. 2A and 2E) or PZA 215 

(Fig. 2B and 2F) accelerated the rate of bacterial eradication showing 99% kill (Table 2 and 216 

Table 3) at 4 weeks of treatment for RMP-INH and at about 3 weeks for RMP-PZA with the 217 

estimation of knet_with_drug at -0.53 and -0.51 for lungs and -5.2 and -0.43 for spleens (Table 4), 218 

respectively. All the combined therapies were significantly more effective than the single 219 

therapy (Table S1 and S2 in the supplemental material). As seen in Table 2, Table 3,  Fig. 2C 220 
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and Fig. 2G, 99% kill with the RMP-INH-PZA combination was achieved at  about 3 weeks 221 

for both lungs and spleens showing a similar elimination rate constant  (-0.51 for lung and -222 

0.48 for spleen) to RMP-INH or RMP-PZA (Table 4 ).  There was no significant difference in 223 

efficacies amongst these RMP containing regimens against M. tuberculosis in this mouse 224 

model (Table S1 and S2 in the supplemental material). All the RMP containing combinations 225 

achieved undetectable M. tuberculosis CFU counts (Table 2 and Table 3) and negative broth 226 

growth in selective Kirchner liquid medium in murine lungs and spleens at 14 weeks of 227 

treatment. However, when INH was combined with PZA (Fig. 2D and 2H), there was no 228 

noticeably increased initial kill compared to each of the single drugs until 4 weeks of 229 

treatment followed by a reduction of CFU count showing a 99% kill at 5.6  weeks post 230 

treatment (Table 2) for lungs and 4 weeks for spleens (Table 3). This was reflected in the 231 

estimates for knet_with_drug for the INH and PZA combination, which was -0.42 and -0.44 for 232 

lungs and spleens, respectively (Table 4). Although the INH and PZA combinations failed to 233 

achieve undetectable M. tuberculosis CFU counts in murine lungs after 14 weeks of treatment 234 

(Fig. 2D and 2H), the difference in efficacies between the single drug treatment and the 235 

combination was significant (Table S1 and S2 in the supplemental material).  236 

Relapse rate of treatment with RMP-INH, RMP-PZA and RMP-INH-PZA in the 237 

modified Cornell mouse model. After 8 weeks of immunosuppression with high dosage 238 

steroid, disease relapse rates for the treatments with double and triple regimens were 239 

determined by the percentage of mice that developed positive M. tuberculosis CFU counts in 240 

lungs, spleens or both. The organ relapse proportions for the four regimens are shown in 241 

Table 5. The treatment with the regimens of RMP-INH, RMP-PZA and RMP-INH-PZA 242 

yielded similar relapse rates at 85, 77.3 and 87.5%, respectively.  These relapse rates were not 243 

significantly different amongst the three drug regimens or to a 100% relapse rate (P>0.002 244 

for Fishers exact test including Bonferroni correction for multiple pairwise tests). The INH 245 
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and PZA combination was not able to produce negative organ CFU count at the termination 246 

of the 14 week treatment (Table 2 and Table 3).  247 

Determination of persisters after treatment with four drug regimens. In order to 248 

determine the effect of the four combination regimens on the post-treatment level of 249 

persisters, we analysed lung and spleen homogenates at 14 weeks post-treatment using M. 250 

tuberculosis culture filtrate resuscitation (6). As shown in Table 6, at 14 weeks post-treatment, 251 

although CFU counts and growth in Kirchner liquid medium were negative for the drug 252 

regimens INH-RMP, RMP-PZA and INH-RMP-PZA, there were significant amounts of 253 

culture filtrate-dependent persisters present  in lungs and spleens (1.89 log cells/lung and 2.09 254 

log cells/spleen for RMP-PZA,  2 log cells/lung and 2.18 log cells/spleen for INH-RMP and 255 

1.94 log cells/lung and 2.12  log cells/spleen for INH-RMP-PZA). After INH-PZA treatment, 256 

there were 4 log culture filtrate-resuscitated bacilli in both lungs and spleens. If we exclude 257 

CFU count positive bacilli, there were still 4-log culture filtrate-dependent persisters in the 258 

organs of INH-PZA treated mice.  259 

DISCUSSION 260 

In this study, we re-evaluated the current TB treatment regimen and studied the drug 261 

interactions by comparing the bacterial elimination rates, the number of culture filtrate-262 

dependent bacteria present at treatment completion  and relapse rates with different therapies 263 

in a mouse tuberculosis treatment model based on the model established at Cornell University  264 

over a half century ago (8, 9). This model enables us to determine anti-TB activities of 265 

combination regimens and, importantly, to measure relapse rates. It is characterized by the 266 

inoculation of a large number of bacteria intravenously to initiate an infection and the 267 

treatment of the disease once the infection has been established (2 to 3 weeks post infection).  268 

In this model, an intensive treatment is able to render mouse organs culture-negative on agar 269 

plates and in broth culture lacking culture filtrate, but fails to prevent relapse (10, 11).  270 
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However, these apparently culture-negative organs contained viable bacteria that could be 271 

cultivated by supplementing broth media with culture filtrate (6) containing RPFs (7). 272 

Significantly, we found that when RMP was combined with INH, PZA or INH-PZA, 273 

significant additive activities were observed compared to each of the single drug treatments. 274 

However, the combination of INH and PZA showed a less significant additive effect to either 275 

of the single drug treatments. The combination regimens of RMP-INH, RMP-PZA and RMP-276 

INH-PZA exhibited equivalent treatment efficacies with very similar relapse rates which 277 

could not actually be differentiated from a 100% relapse rate, while INH-PZA failed to 278 

render organ culture negative after 14 weeks of treatment.  Rifampicin-containing regimens 279 

reduced the number of culture filtrate-dependent persisters to a greater extent than INH-PZA, 280 

but did not eliminate them from mouse organs by the end of 14 weeks of treatment.   281 

In humans, the key for treatment success depends on the bactericidal drugs INH and RMP 282 

which rapidly kill actively replicating bacilli in cavities and control disease progression (16) 283 

within the first two months of chemotherapy. This is defined by negative acid fast staining in 284 

sputum. In fact, bactericidal drugs such as INH exhibit bactericidal activity during the first 2 285 

days of monochemotherapy (17). The need for prolonged treatment is due to the emergence 286 

of persistent bacilli which may arise in the heterogeneity of host environments (18). These 287 

persistent tubercle bacilli are undetectable by the traditional microbiological methods and 288 

become profoundly tolerant to bactericidal drugs (10).  Sterilizing drugs such as PZA and 289 

RMP contribute to shortening of the treatment duration (18). However, in our study, 290 

comparing elimination rate constants for monotherapies in mice, there was no significant 291 

difference between RMP, INH or PZA. There was no superior bactericidal activity of INH, 292 

which contrasts with the effect of INH in humans. This indicates that treatment profiles are 293 

different between mice and humans.  294 
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Synergistic drug interactions have not been demonstrated in the treatment of TB in mice. It is 295 

generally accepted that more than a 2 log kill compared to the single drug defines a 296 

synergistic combination (19). Here we showed that enhanced bactericidal activities were 297 

achieved when RMP was combined with INH or PZA.  Estimates of the elimination rate 298 

constant for all the combinations were significantly faster (P < 0.0001) than all single drugs 299 

(Table S1 and S2 in the supplemental material) showing 99% kill of the bacilli (a 2 log kill) 300 

achieved 4 to 5 weeks earlier than monotherapies. The activities of the combinations namely 301 

RMP-INH, RMP-PZA and RMP-INH-PZA shown by the value of the exponential 302 

elimination rate constant (Table 4) demonstrated significant additive interactions on the 303 

original scale. It is interesting therefore that the INH-PZA combination showed less enhanced 304 

effect than the singly dosed drugs at the earlier stage of treatment when there was a large 305 

number of actively growing organisms (10) and its increased efficacy compared to the 306 

monotherapies was more apparent after 6 weeks of treatment. This was in agreement with the 307 

previous findings that INH and PZA combination was more efficacious than the single drug 308 

in the reduction of organ bacterial counts and prevention of relapse rates in mice (8, 20) and 309 

in humans (21-23). Efficacy of all RMP containing regimens (INH-RMP, RMP-PZA and 310 

INH-RMP-PZA) in mouse tuberculosis treatment was very similar (P>0.05) as shown by the 311 

similarity of the elimination rate constants, which confirmed previous findings (3, 4) while 312 

INH-PZA therapy was less effective than other combination therapies (P < 0.001) (5).  At the 313 

end of 14 weeks of treatment, lungs and spleens of mice treated with RMP/INH, RMP/PZA 314 

or RMP/INH/PZA became CFU count and broth count negative, conversely, the INH and 315 

PZA combination failed to achieve culture negativity in the mouse organs. After 8-weeks of 316 

steroid treatment, tubercle bacilli were found in the organs of mice treated with RMP/INH, 317 

RMP/PZA or RMP/INH/PZA. Although the elimination rates of the rifampicin containing 318 

regimens (RMP-INH, RMP-PZA and RMP-INH-PZA) displayed significant differences to 319 
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INH/PZA (the latter regimen having failed to achieve culture negativity), their relapse rates 320 

could not be differentiated from a 100% relapse rate at the numbers of mice examined in this 321 

study. This is attributable to the presence of persistent bacteria in the RMP-containing 322 

regiments which could only be resuscitated by culture filtrate (Table 6). This observation 323 

coincided with the previous finding that early bactericidal activities of certain novel drug 324 

regimens were not necessarily predictive of a sterilizing effect (24) which may be attributed 325 

to the inability of the drug regimens to eliminate the persistent bacilli which were 326 

undetectable using our traditional microbiological methods. Recently, we showed that faster 327 

elimination rates derived from high dose RMP treatment led to elimination of persistent 328 

bacteria and this contributed to a shortened chemotherapy and a reduced relapse rate (6).  It is 329 

not known if the elimination rate of culture filtrate-dependent bacteria is likely a surrogate 330 

measure of the sterilizing activity of the regimens as this has not been determined.  RMP-331 

containing regimens resulted in faster elimination rates than INH-PZA against plate-332 

cultivable and reduced culture filtrate-dependent sub-populations at 14 weeks of treatment. 333 

Clearly further study is required to demonstrate if elimination rate of culture filtrate-334 

dependent bacteria is a better surrogate for sterilizing effect.  335 

The major caveat of this study was the relatively short period of chemotherapy in which INH-336 

PZA failed to achieve CFU count negative mouse organs, this made it difficult to compare 337 

relapse of all the treatment regimens. It is likely that a difference in the sterilizing activity of 338 

these regimens would emerge with longer durations of treatment.  Future work aiming to use 339 

a larger number of mice and longer treatment duration would illustrate more clearly the 340 

relationship between elimination rate and relapse amongst different drug regimens.  341 

Bacterial population dynamics in infected animals is expected to be complex and related to 342 

the density and composition of the infecting population. In this study, the route of infection 343 

was systemic which was performed according to the previously established method (8, 9). 344 
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Previous studies showed that intravenous infection of M. tuberculosis in mice led to slower 345 

disease progression in lungs (25) in spite of a high level of systemic immunity. However, 346 

low-dose aerosol infection resulted in substantially more virulent of M. tuberculosis in mouse 347 

lungs (25). In aerosol infected mice, a low number of bacilli was seeded in the lung and these 348 

then multiply into larger populations (25) presumably with smaller sub-populations of 349 

persistent organisms. It has been shown that slower bactericidal rates of combination 350 

regimens were found in intravenously infected mice with a higher relapse rate than aerosol 351 

infected animals (26). The difference might be due to different immune responses produced 352 

between intravenous and aerosol infected animals. It is not known if different routes of 353 

infection affect the level of culture filtrate-dependent persisters. Future work will be 354 

conducted to compare persistent M. tuberculosis levels in mice using respiratory and 355 

systemic infections.  356 

It has been shown that antagonism occurred between INH and the combination RMP-PZA in 357 

the treatment of tuberculosis in mice (4). The authors suggested that the antagonistic effect 358 

was partially derived from the interaction of INH with RMP as addition of INH significantly 359 

reduced the Cmax and AUC of RMP (4).  There was also a negative interaction between INH 360 

and PZA against M. tuberculosis (5) in mice when higher dose of INH was used.  In contrast, 361 

a separate study showed that the RMP-PZA was less effective than RMP-INH-PZA 362 

combination in mouse models with both aerosol and intravenous infections indicating that 363 

inclusion of INH in the regimen showed no negative interaction to RMP-PZA (26). 364 

Observation of CFU counts over time with RMP-INH, RMP-PZA and RMP-INH-PZA, 365 

RMP-PZA treatment showed increased reduction in CFU counts compared to RMP-INH and 366 

RMP-INH-PZA especially in week 2, 4 and 6 of treatment (Fig. 2), indicating that INH was 367 

slightly antagonistic.  However, our data demonstrated that  this antagonistic effect when 368 

INH is added to the RMP-PZA regimen was not significant based on comparison of the 369 
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elimination rate constants estimated from the profiles of bacterial elimination over time; the 370 

knet_with_drug was -0.51  for RMP-PZA and -0.51 for RMP-INH-PZA (significance of 371 

difference p>0.002). We also observed that the INH-PZA combination was not antagonistic 372 

against M. tuberculosis compared to the activities of each single drug. The differences in drug 373 

interaction of the current regimens seen from different studies may be attributable to different 374 

experimental conditions such as M. tuberculosis strains, mouse species, routes of infection 375 

and length of treatment used by different research groups (26).  Importantly, our 376 

demonstration of RMP containing regimens being superior to a RMP-free regimen against M. 377 

tuberculosis in the modified Cornell mouse model indicated the essential role RMP plays in 378 

the current regimen to treat tuberculosis disease.  However, the relationship between 379 

elimination rate, MPN counts and relapse rates requires further evaluation across a broader 380 

range of (possibly non-RMP containing) regimens. 381 
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Figure legend 471 

Figure 1. A simple mathematical model for exponential growth and decline of bacteria 472 

Figure 2. Treatment profiles of M. tuberculosis H37Rv with RMP, INH and PZA singly or in 473 

combination in the modified Cornell mouse model. The results of a single experiment are 474 

shown with viability expressed as log CFU counts per lung or per spleen.  Mice were infected 475 

intravenously at week -2 or -3 and the infection was allowed to progress for 2 or 3 weeks 476 

prior to treatment with RMP, INH and PZA singly or in combination indicated as a solid 477 

arrow for 14 weeks (time weeks 0 – 14).  At week 2, 4, 6, 8, 11 and 14 of post treatment, 478 

CFU counts in the organs from each treatment group were estimated. Steroid treatment was 479 

started immediately after the termination of 14 weeks of antibiotic treatment as indicated with 480 

an empty arrow.  A. treatment with RMP, INH and RMP-INH in lungs. B, treatment with 481 

RMP, PZA and RMP-PZA in lungs. C. treatment with RMP, INH, PZA and RMP-INH-PZA 482 

in lungs. D. treatment with INH, PZA and INH-PZA in lungs. E. treatment with RMP, INH 483 

and RMP-INH in spleens. F, treatment with RMP, PZA and RMP-PZA in spleens. G. 484 

treatment with RMP, INH, PZA and RMP-INH-PZA in spleens. H. treatment with INH, PZA 485 

and INH-PZA in spleens.  486 

 487 
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TABLE 1. Mouse tuberculosis experimental design 

Treatment groupsa Total No. of miceb D0 D14 D21 2W 4W 6W 8W 11W 14W 22Wc

Control 12 4 4 4 
RMP 16 4 4 4 4 
INH 16 4 4 4 4 
PZA 16 4 4 4 4 

RMP-INH 76 8 8 8 8 10 10 24 
RMP-PZA 76 8 8 8 8 10 10 24 
INH-PZA 76 8 8 8 8 10 10 24 

RMP-INH-PZA 76 8 8 8 8 10 10 24 
 

a Mice were intravenously infected at day 0. Treatment commenced at 14 days after infection for single 
drug therapy and 21 days for combination therapy. Dosages for each drug were as follows: RMP 10 
mg/kg, INH 25 mg/kg and PZA 150 mg/kg. 
b  Total mice were infected and treated excluding natural death of the mice during the course of 
treatment  
c  8 weeks of hydrocortisone treatment post 14 weeks of treatment 
 



TABLE 2. Bactericidal and sterilising activities of experimental regimens against M. tuberculosis in mouse lungs 

Time of infection 
and treatment 

Mean Log CFU per lung ± SD 
Control RMP INH PZA RMP-INH RMP-PZA INH-PZA RMP-INH-PZA 

D0a 4.38 ± 0.04 
D14b 6.86 ± 0.13 
D21c 7.04 ± 0.01 
W2d 6.48 ± 0.14 6.83 ± 0.25 6.87 ± 0.13 6.05 ± 0.07 5.66 ± 0.13 6.84 ± 0.04 6.10 ± 0.16 
W4 5.40 ± 0.15 5.57 ± 0.37 5.32 ± 0.15 5.05 ± 0.07 4.26 ± 0.08 5.46 ± 0.24 4.63 ± 0.17 
W6 5.37 ± 0.29 5.27 ± 0.70 5.19 ± 0.35 3.64 ± 0.12 3.46 ± 0.18 5.16 ± 0.04 3.81 ± 0.14 
W8 5.18 ± 0.13 4.89 ± 0.40 5.05 ± 0.15 3.12 ± 0.21 2.73 ± 0.22 3.83 ± 0.07 2.32 ± 0.24 
W11 1.20 ± 0.27 0.77 ± 0.48 2.54 ± 0.12 0.63 ± 0.70 
W14e 0 0 1.82 ± 0.42 0 

 
 a. 2 hours post-infection. b. 14 days  post-infection. e. 21 days post-infection. d. week 2 post-treatment. e. CFU counts were derived from one 
third of tissue homogenate and limit detection was 3 CFU/lung. 
 
 



TABLE 3. Bactericidal and sterilising activities of experimental regimens against M. tuberculosis in mouse spleens 

Time of infection 
and treatment 

Mean Log CFU per spleen ± SD 
Control RMP INH PZA RMP-INH RMP-PZA INH-PZA RMP-INH-PZA 

D0a 5.32 ± 0.04 
D14b 7.06 ± 0.01  
D21c 7.22 ± 0.21 
W2d 6.66 ± 0.06 6.85 ± 0.15 6.45 ± 0.51 5.59 ± 0.14 5.07 ± 0.12 6.14 ± 0.17 5.57 ± 0.15 
W4 5.49 ± 0.10 5.58 ± 0.30 5.89 ± 0.10 4.52 ± 0.14 3.99 ± 0.22 5.29 ± 0.25 4.15 ± 0.10 
W6 4.90 ± 0.24 5.19 ± 0.19 5.46 ± 0.24 3.52 ± 0.20 2.71 ± 0.45 5.01 ± 0.08 3.15 ± 0.29 
W8 4.80 ± 0.24 4.99 ± 0.16 5.06 ± 0.08 3.01 ± 0.11 1.95 ± 0.19 4.57 ± 0.06 1.99 ± 0.07 
W11 0.78 ± 0.50 0.64 ± 0.69 2.53 ± 0.43 0.73 ± 0.49 
W14e 0 0 1.52 ± 0.50 0 

a. 2 hours post-infection. b. 14 days  post-infection. c. 21 days post-infection. d. week 2 post-treatment. e. CFU counts were derived from one 
third of tissue homogenate and limit detection was 3 CFU/spleen. 

 



TABLE 4. Estimates of exponential rate constants during pre-treatment (knet_no_drug) and treatment (knet_with_drug) in mouse lungs and 

spleens 

Treatmenta 
knet_no_drug in Lungs 

(week-1) 
knet_with_drug in lungs 

(week-1) 
knet_no_drug in spleens 

(week-1) 
knet_with_drug in spleens 

(week-1) 
est.b %RSEc est.b %RSEc est.b %RSEc est.b %RSEc 

RMP 1.03 1.99 -0.21 8.22 1.08 3.15 -0.31 6.09 
INH 1.03 1.99 -0.27 10.37 1.08 3.15 -0.29 6.35 
PZA 1.03 1.99 -0.26 9.05 1.08 3.15 -0.26 5.92 

RMP-INH 0.85 5.05 -0.53 2.61 0.58 0.91 -0.52 2.15 
RMP-PZA 0.85 5.05 -0.51 1.65 0.58 0.91 -0.43 4.95 
INH-PZA 0.85 5.05 -0.42 3.00 0.58 0.91 -0.44 4.38 

RMP-INH-PZA 0.85 5.05 -0.51 2.91 0.58 0.91 -0.48 3.23 
 

a single drug treatments for 8 weeks. Double and triple drug treatments for 14 weeks. b estimate. c percentage relative standard error. 



TABLE 5. Relapse of mice after double or triple drug treatment 

Positive culture from RMP-INH RMP-PZA RMP-INH-PZA 
Spleen only 8 6 15 
Lung only 5 4 1 

Both organs 4 7 5 
Neither organs 3 5 3 

Total No. of mice with positive cultures 17 17 21 
Total No. of mice 20 22 24 

Relapse (%) 85 77.3 87.5 
 
P values of relative relapse rates determined by Fisher’s exact test: RMP-INH/RMP-PZA 0.7, 
RMP-INH/RMP-INH-PZA 1.0 and RMP-PZA/RMP-INH-PZA 0.45. With Bonferroni 
correction P <0.008 would considered significant.  



TABLE 6. Resuscitation of M. tuberculosis H37Rv in mouse lungs and spleens of a modified 

Cornell mouse model after treatment with different drug regimens 

Lung Spleen 
Drug regimensa Plate countsb Broth counts RPFc Plate countsb Broth counts RPFc 

RMP-PZA 0 1.89±0.12 0 2.09±0.29 
INH-RMP 0 2.00±0.14 0 2.18±0.32 

INH-RMP-PZA 0 1.94±0.14 0 2.12±0.26 
INH-PZA 1.82±0.42 4.10 ±0.09 1.52±0.5 4.07±0.15 

 
a 14 week treatment 
b determined by CFU counts of the organ homogenies (n=10) on 7H11 agar plates, Mean Log 
CFU/organ ± standard deviations. CFU counts were derived from one third of tissue 
homogenate and calculated to represent the counts of entire organ. The limit of detection was 
3 CFU/organs.  
c determined by MPN of the diluted organ homogenies (n=10)  with the culture filtrates, 
Mean of Log MPN/organ ± standard deviations. Broth counts were derived from one third of 
tissue homogenate and calculated to represent the MPN of entire organ. The limit of detection 
was 10 MPN/organ.  
 


