## SUPPLEMENTARY NOTE

## Table of Contents

Supplementary Note ..... 3
Members of the International Headache Genetics Consortium ..... 3
Study phenotypes ..... 4
Study design ..... 4
Defining credible sets ..... 5
Description of population-based studies ..... 7
Description of clinic-based studies ..... 16
Study-specific acknowledgements ..... 19
Ethics statement ..... 22
Conflicts of interest ..... 22
Supplementary References ..... 23
Supplementary Figures ..... 28
Supplementary Figure 1. Region plots of the 38 genome-wide significant loci (see separate attached PDF document for figure) ..... 28
Supplementary Figure 2. Individual gene expression in GTEx tissues ..... 29
Supplementary Figure 3. QQ-plot of the primary analysis test statistics ..... 30
Supplementary Figure 4. QQ-plot of the primary analysis after LD-pruning ..... 31
Supplementary Figure 5. LD-score regression plot for all migraine ..... 32
Supplementary Figure 6. LD-score regression plot for the MA subtype ..... 33
Supplementary Figure 7. LD-score regression plot for the MO subtype ..... 34
Supplementary Figure 8. Manhattan plot for the MO subset analysis ..... 35
Supplementary Figure 9. Manhattan plot for the MA subset analysis ..... 36
Supplementary Figure 10. Correlation of test statistics between migraine and eQTL SNPs at the MRVI1 locus ..... 37
Supplementary Figure 11. Gene expression of the 38 genes nearest to the migraine loci index SNPs ..... 38
Supplementary Figure 12. Gene expression of TGFBR2 in 60 types of smooth muscle tissue ..... 39
Supplementary Figure 13. Gene expression of NRP1 in 60 types of smooth muscle tissue ..... 40
Supplementary Figure 14. Forest plots of the 45 independently associated SNPs (see separate attached PDF document for figure) ..... 41
Supplementary Figure 15. eQTL credible sets in GTEx tissues with significant correlation to migraine loci credible sets. ..... 42
Supplementary Tables ..... 44
Supplementary Table 1. Design and characteristics of IHGC individual GWA studies ..... 44
Supplementary Table 2. Evaluating heterogeneity from the 23andMe study ..... 46
Supplementary Table 3. Quality Control and imputation description of the individual GWA studies ..... 47
Supplementary Table 4. Covariates and genomic inflation for each individual GWA study. ..... 50
Supplementary Table 5. Validation of the migraine index SNPs by whole-genome sequencing. ..... 52
Supplementary Table 6. Previously reported loci not reaching genome-wide significance in the current meta-analysis ..... 54
Supplementary Table 7. The 44 LD-independent SNPs that are significantly associated with migraine (P < $5 \times 10^{-8}$ ). ..... 55
Supplementary Table 8. Overlaps with the NHGRI GWAS catalog and OMIM of all 38 loci identified, rank ordered by lowest p-value of association. ..... 57
Supplementary Table 9. Genes in the 38 loci with previously reported associations to mechanisms or diseases that have hypothesized links to migraine ..... 62
Supplementary Table 10. NHGRI GWAS catalog SNPs correlated with the migraine SNPs. ..... 63
Supplementary Table 11 The seven loci associated with the MO subtype ..... 64
Supplementary Table 12. Subsets of non-overlapping MA/MO samples used for the heterogeneity analysis ..... 65
Supplementary Table 13. Testing for heterogeneity between MA and MO ..... 66
Supplementary Table 14. List of credible set SNPs in each locus. ..... 68
Supplementary Table 15. Credible-set genic overlap analysis. ..... 74
Supplementary Table 16. Number of samples per tissue in the GTEx collection ..... 76
Supplementary Table 17. Overlap of the migraine and eQTL credible sets in peripheral blood. ..... 78
Supplementary Table 18. Overlap of the migraine and eQTL credible sets in brain tissue. ..... 79
Supplementary Table 19. Overlap of the migraine and eQTL credible sets in GTEx tissues. ..... 81
Supplementary Table 20. DEPICT gene-expression enrichment in tissue annotations. ..... 82
Supplementary Table 21. Enhancer analysis list of tissues and cell lines ..... 93
Supplementary Table 22. Gene Ontology enrichment analysis. ..... 96
Supplementary Table 23. Selected pathways from the DEPICT analysis with previously hypothesized roles in migraine. ..... 97
Supplementary Table 24. DEPICT enrichment analysis in reconstituted gene sets. ..... 98
Supplementary Table 25 . Specificity of individual gene expression in GTEx tissues ..... 101

## Supplementary Note

## Members of the International Headache Genetics Consortium

Verneri Anttila ${ }^{1}$, Ville Artto ${ }^{2}$, Andrea Carmine Belin ${ }^{3}$, Dorret I Boomsma ${ }^{4}$, Sigrid Børte ${ }^{5}$, Daniel I Chasman ${ }^{6}$, Lynn Cherkas ${ }^{7}$, Anne Francke Christensen ${ }^{8}$, Bru Cormand ${ }^{9}$, Ester Cuenca-Leon ${ }^{1}$, George Davey-Smith ${ }^{10}$, Martin Dichgans ${ }^{11}$, Cornelia van Duijn ${ }^{12}$, Else Eising ${ }^{13}$, Tonu Esko ${ }^{14}$, AnnLouise Esserlind ${ }^{8}$, Michel Ferrari ${ }^{13}$, Rune R. Frants ${ }^{13}$, Tobias Freilinger ${ }^{15}$, Nick Furlotte ${ }^{16}$, Padhraig Gormley ${ }^{1}$, Lyn Griffiths ${ }^{17}$, Eija Hamalainen ${ }^{18}$, Thomas Folkmann Hansen ${ }^{8}$, Marjo Hiekkala ${ }^{19}$, M Arfan Ikram ${ }^{12}$, Andres Ingason ${ }^{20}$, Marjo-Riitta Järvelin ${ }^{21}$, Risto Kajanne ${ }^{18}$, Mikko Kallela², Jaakko Kaprio ${ }^{18}$, Mari Kaunisto ${ }^{19}$, Christian Kubisch ${ }^{22}$, Mitja Kurki ${ }^{1}$, Tobias Kurth ${ }^{6}$, Lenore Launer ${ }^{23}$, Terho Lehtimaki ${ }^{24}$, Davor Lessel ${ }^{22}$, Lannie Ligthart ${ }^{4}$, Nadia Litterman ${ }^{16}$, Arn van den Maagdenberg ${ }^{13}$, Alfons Macaya ${ }^{25}$, Rainer Malik ${ }^{11}$, Massimo Mangino ${ }^{7}$, George McMahon ${ }^{10}$, Bertram Muller-Myhsok ${ }^{26}$, Benjamin M Neale ${ }^{1}$, Carrie Northover ${ }^{16}$, Dale R Nyholt17, Jes Olesen ${ }^{8}$, Aarno Palotie ${ }^{1}$, Priit Palta ${ }^{18}$, Linda Pedersen ${ }^{5}$, Nancy Pedersen ${ }^{3}$, Danielle Posthuma ${ }^{4}$, Patricia Pozo-Rosich ${ }^{27}$, Alice Pressman ${ }^{28}$, Lydia Quaye ${ }^{7}$, Olli Raitakari ${ }^{29}$, Markus Schürks ${ }^{6}$, Celia Sintas ${ }^{9}$, Kari Stefansson ${ }^{20}$, Hreinn Stefansson ${ }^{20}$, Stacy Steinberg ${ }^{20}$, David Strachan ${ }^{30}$, Gisela Terwindt ${ }^{13}$, Marta Vila-Pueyo ${ }^{25}$, Maija Wessman ${ }^{19}$, Bendik S Winsvold ${ }^{5}$, William Wrenthal ${ }^{1}$, Huiying Zhao ${ }^{17}$, and John-Anker Zwart ${ }^{5}$.
${ }^{1}$ Broad Institute of MIT and Harvard, Cambridge, USA. ${ }^{2}$ Department of Neurology, Helsinki University Central Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland. ${ }^{3}$ Karolinska Institutet, Stockholm, Sweden. ${ }^{4}$ VU University, Amsterdam, The Netherlands. ${ }^{5}$ Oslo University Hospital and University of Oslo, Oslo, Norway. ${ }^{6}$ Harvard Medical School, Boston, USA. ${ }^{7}$ Department of Twin Research and Genetic Epidemiology, King's College London, London, UK. ${ }^{8}$ Danish Headache Center, Department of Neurology, Rigshospitalet, Glostrup Hospital, University of Copenhagen, Denmark. ${ }^{9}$ University of Barcelona, Barcelona, Spain. ${ }^{10}$ Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, UK. ${ }^{11}$ Institute for Stroke and Dementia Research, Munich, Germany. ${ }^{12}$ Erasmus University Medical Centre, Rotterdam, The Netherlands. ${ }^{13}$ Leiden University Medical Centre, Leiden, The Netherlands. ${ }^{14}$ Estonian Genome Center, University of Tartu, Tartu, Estonia. ${ }^{15}$ University of Tuebingen, Tuebingen, Germany. ${ }^{16} 23 \& M e$ Inc., Mountain View, USA. ${ }^{17}$ Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia. ${ }^{18}$ Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland. ${ }^{19}$ Folkhälsan Institute of Genetics, Helsinki, Finland, FI-00290. ${ }^{20}$ Decode genetics Inc., Reykjavik, Iceland. ${ }^{21}$ University of Oulu, Biocenter Oulu, Finland. ${ }^{22}$ University Medical Center Hamburg-Eppendorf, Hamburg, Germany. ${ }^{23}$ National Institute on Aging, Bethesda, USA. ${ }^{24}$ School of Medicine, Unviersity of Tampere, Kalevantie 4, Tampere, Finland. ${ }^{25}$ Vall d'Hebron Research Institute, Barcelona, Spain. ${ }^{26}$ Max Planck Institute of Psychiatry, Munich, Germany. ${ }^{27}$ Universitat Autònoma de Barcelona, Barcelona, Spain. ${ }^{28}$ Sutter Health, Sacramento, USA. ${ }^{29}$ Department of Medicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland. ${ }^{30}$ Population Health Research Institute, St George's, University of London, Cranmer Terrace, London SW17 ORE, UK.

## Study phenotypes

We examined three phenotypes; all migraine, migraine with aura, and migraine without aura. Our primary analysis of 'all migraine' cases incorporated study samples regardless of ascertainment and included individuals diagnosed with migraine by a doctor and also those who self-reported migraine by questionnaires. This facilitated the inclusion of a large number of cases for our main analysis, possibly at the expense of some precision in phenotyping, but with the benefit of increased statistical power. Whereas our secondary analyses of the subtypes, migraine with aura and migraine without aura, included only those samples where individuals could be strictly diagnosed according to classification criteria standardized by the International Headache Society (IHS). Specific IHS diagnostic criteria used to classify migraine with aura and migraine without aura can be found in the 2nd edition of the International Classification of Headache Disorders (ICHD-II) ${ }^{1}$. For the population-based study samples this involved a questionnaire used to assess the necessary criteria, whereas for the clinic-based study samples the diagnosis was assigned on the basis of a structured interview by telephone or in person. The stricter diagnosis was required for the subtypes as the migraine aura specifically is quite hard to distinguish from other neurological features that can present as symptoms from unrelated conditions.

## Study design

In order to detect common genetic variants of small effect (i.e. odds ratios approximately less than 1.3), we aimed to collect genome-wide association (GWA) study data from as many individuals as possible with migraine information available in order to maximize our power to detect associations. Thus, we jointly analyzed the summary statistics from 22 GWA studies provided by collaborators in the International Headache Genetics Consortium (IHGC). The 22 GWA studies were created by merging 33 population-matched, case/control samples. All samples contain unrelated individuals of European ancestry and were obtained from six tertiary headache clinics and 27 population-based studies. A description of study design, ascertainment, and phenotyping for each GWA study included in the meta-analysis is given in the next section and summarized in Supplementary Table 1. Each study underwent quality control procedures to exclude poorly genotyped individuals and/or markers according to a pre-established IHGC protocol (details given in the following section and Supplementary Table 3).

All of the individual GWA studies have been published previously for migraine or other population-based phenotypes, except for the Danish Headache Center (1,771 new cases) and the Tromsø Study ( 660 new cases), which represent completely new data. The 23andMe GWA study data has been reported previously for other phenotypes, but not for migraine ( 30,465 new cases), as is similar for the data from the Estonian Genome Center, University of Tartu (813 new cases). The migraine GWA study results from the Swedish Twin Registry have been previously published but have not been included in previous meta-analyses of migraine (1,307 new cases). Several population-based samples were also able to identify new migraine cases within their existing samples since our previous IHGC meta-analysis in $2013^{2}$ and were thus able
to moderately increase the total number of cases they have provided for the current metaanalysis. Therefore, the meta-analysis described here includes data from over 35,000 migraine cases that have not been included in previously published genome-wide association studies.

## Defining credible sets

Assume $D$ is the data including the genotype matrix $X$ for all of the $P$ variants (genotype for variant $j$ is denoted as $\boldsymbol{x}_{j}$ ) and disease status $Y$ (for $N$ individuals), and $\beta$ is the model parameters. We define the 'model', denoted $A$, as the causal status for all the $P$ variants in the locus: $A \equiv\left\{a_{j}\right\}$, in which $a_{j}$ is the causal status for variant $j$. $a_{j}=1$ if the variant $j$ is causal, whereas $a_{j}=0$ if it is not. We assume that there is one and only one genuine signal for each locus, therefore, one and only one of the $P$ variants is causal: $\sum_{j} a_{j}=1$. For convenience, we define $A_{j}$ as the model that only variant $j$ is causal, and $A_{0}$ as the model that no variant is causal (null model). The probability for model $A_{j}$ (variant $j$ is the only causal variant in this locus) given the data can be calculated using Bayes' rule:

$$
\begin{equation*}
\operatorname{Pr}\left(A_{j} \mid D\right)=\int_{\beta} \operatorname{Pr}\left(D, \beta \mid A_{j}\right) \cdot \frac{\operatorname{Pr}\left(A_{j}\right)}{\operatorname{Pr}(D)} \cdot d \beta . \tag{1}
\end{equation*}
$$

We estimate Equation (1) using the steepest descent approach ${ }^{57}$. Making the assumption of a flat prior on the model parameters, we approximate the integral over the model parameters using their maximum likelihood estimator $\left(\hat{\beta}_{j}\right)$ :

$$
\begin{equation*}
\operatorname{Pr}\left(A_{j} \mid D\right) \approx \operatorname{Pr}\left(D \mid A_{j}, \hat{\beta}_{j}\right) \cdot N^{-\frac{\left|\beta_{j}\right|}{2}} \cdot \frac{\operatorname{Pr}\left(A_{j}\right)}{\operatorname{Pr}(D)} \tag{2}
\end{equation*}
$$

where the sample size is denoted by $N$ and the number of fitted parameters for model $A_{j}$ is denoted by $\left|\beta_{j}\right| \cdot\left|\beta_{j}\right|$ is a constant in this study because model $A_{j}$ has the same number of parameters across all variants. In the framework of a generalized linear model (including linear and binomial regressions), the deviance for two nested models follows an approximate chi-square distribution. We therefore define $\chi_{j}{ }^{2}$ as the deviance comparing the null model and the model in which variant $j$ is causal

$$
\begin{equation*}
\chi_{j}^{2} \equiv-2 \log \frac{\operatorname{Pr}\left(D \mid A_{0}, \hat{\beta}_{0}\right)}{\operatorname{Pr}\left(D \mid A_{j}, \hat{\beta}_{j}\right)} \tag{3}
\end{equation*}
$$

We further show that $\chi_{j}^{2}$ can be calculated as the chi-square statistic of fitting a binomial model with the disease status $(Y)$ as the dependent variable and the genotype of variant $j$ as the explanatory variable:

$$
\begin{align*}
& \chi_{j}^{2}=-2 \log \frac{\operatorname{Pr}\left(\left\{\boldsymbol{x}_{i}\right\}, Y \mid\left\{a_{i}=0\right\},\left\{\hat{\beta}_{i, 0}\right\}\right.}{\operatorname{Pr}\left(\left\{\boldsymbol{x}_{i}\right\}, Y \mid\left\{a_{j}=1, a_{-j}=0\right\},\left\{\hat{\beta}_{j}, \hat{\beta}_{-j, 0}\right\}\right)} \\
&=-2 \log \frac{\prod_{i} \operatorname{Pr}\left(\boldsymbol{x}_{i}, Y \mid a_{i}=0, \hat{\beta}_{i, 0}\right)}{\operatorname{Pr}\left(\boldsymbol{x}_{j}, Y \mid a_{j}=1, \hat{\beta}_{j}\right) \Pi_{i \neq j} \operatorname{Pr}\left(\boldsymbol{x}_{i}, Y \mid a_{i}=0, \hat{\beta}_{i, 0}\right)} \\
&=-2 \log \frac{\operatorname{Pr}\left(\boldsymbol{x}_{j}, Y \mid a_{j}=0, \hat{\beta}_{j, 0}\right)}{\operatorname{Pr}\left(\boldsymbol{x}_{j}, Y \mid a_{j}=1, \hat{\beta}_{j}\right)} . \tag{4}
\end{align*}
$$

$\operatorname{Pr}\left(A_{j} \mid D\right)$ in Equation (2) is then a function of the $\chi_{j}^{2}$ :

$$
\begin{equation*}
\operatorname{Pr}\left(A_{j} \mid D\right) \approx \exp \left(\frac{\chi_{j}^{2}}{2}\right) \cdot l_{0} \cdot N^{-\frac{\left|\beta_{j}\right|}{2}} \cdot \frac{\operatorname{Pr}\left(A_{j}\right)}{\operatorname{Pr}(D)}, \tag{5}
\end{equation*}
$$

where $l_{0}=\operatorname{Pr}\left(D \mid A_{0}, \hat{\beta}_{0}\right)$. We make the assumption that the prior causal probability for all variants is equal, i.e., $\operatorname{Pr}\left(A_{j}\right)$ is the same across all variants $j$. Equation (5) can then be simplified with a constant for the term $l_{0} \cdot N^{-\frac{\left|\beta_{j}\right|}{2}} \cdot \frac{\operatorname{Pr}\left(A_{j}\right)}{\operatorname{Pr}(D)}$ and the probability that variant $j$ is causal can be calculated using

$$
\begin{equation*}
\operatorname{Pr}\left(A_{j} \mid D\right) \propto \exp \left(\frac{\chi_{j}^{2}}{2}\right) \tag{6}
\end{equation*}
$$

which can be normalized across all variants

$$
\begin{equation*}
\mathrm{P}\left(A_{j}\right) \equiv \operatorname{Pr}\left(A_{j} \mid D\right) / \sum_{k} \operatorname{Pr}\left(A_{k} \mid D\right) . \tag{7}
\end{equation*}
$$

Finally, the $99 \%$ credible set of variants is defined as the smallest set of models, with each model designating one causal variant, $\mathrm{S}=\left\{A_{j}\right\}$, such that

$$
\begin{equation*}
\sum_{A_{j} \in S} \mathrm{P}\left(A_{j}\right) \geq 99 \% \tag{8}
\end{equation*}
$$

This credible set of variants has 99\% probability of containing the causal variant, given the assumption that there is a true association and that all possible causal variants have been genotyped (both assumptions are likely to be valid in genome-wide significant regions of data that have been imputed to 1000 Genomes). Finally, note that for fine mapping, we only consider variants for which we have near complete data from the contributing datasets. As a consequence, we cannot unequivocally rule out other variants not in the credible set, as they are incompletely measured for this kind of analysis.

## Description of population-based studies

## 23andMe

For the 23andMe study, participants were drawn from the customer base of 23andMe Inc. (Mountain View, CA), a consumer genetics company ${ }^{3,4}$. All participants included in the analyses provided informed consent and answered surveys online according to 23andMe's human subjects protocol, which was reviewed and approved by Ethical \& Independent Review Services, a private institutional review board. Samples were genotyped on one of four genotyping platforms. The V1 and V2 platforms were variants of the Illumina HumanHap550+ BeadChip, including about 25,000 custom SNPs selected by 23andMe, with a total of about 560,000 SNPs.

Participants were restricted to a set of individuals who have $>97 \%$ European ancestry, as determined through an analysis of local ancestry ${ }^{5}$. A maximal set of unrelated individuals was chosen for each analysis using a segmental identity-by-descent (IBD) estimation algorithm ${ }^{6}$. Individuals were defined as related if they shared more than 700 cM IBD, including regions where the two individuals share either one or both genomic segments identical-by-descent. This level of relatedness (roughly 20\% of the genome) corresponds approximately to the minimal expected sharing between first cousins in an outbred population.

Participant genotype data were imputed against the March 2012 "v3" release of 1000 Genomes reference haplotypes, phased with Shapelt $2^{7}$. Data were phased and imputed for each genotyping platform separately. Data were phased using a 23andMe developed phasing tool, Finch, which implements the Beagle haplotype graph-based phasing algorithm ${ }^{8}$, modified to separate the haplotype graph construction and phasing steps.

In preparation for imputation, phased chromosomes were split into segments of no more than 10,000 genotyped SNPs, with overlaps of 200 SNPs. SNPs with Hardy-Weinberg equilibrium $\mathrm{P}<10^{-20}$, call rate $<95 \%$, or with large allele frequency discrepancies compared to European 1000 Genomes reference data were excluded. Frequency discrepancies were identified by computing a $2 \times 2$ table of allele counts for European 1000 Genomes samples and 2000 randomly sampled 23andMe research participants with European ancestry, and identifying SNPs with a chi squared $\mathrm{P}<10^{-15}$. Each phased segment was imputed against all-ethnicity 1000 Genomes haplotypes (excluding monomorphic and singleton sites) using Minimac2 ${ }^{9}$, using 5 rounds and 200 states for parameter estimation.

After imputation and quality control, 30,465 migraine cases and 143,147 controls from the V1 and V2 platforms were available for analysis. The genetic association test was performed using logistic regression assuming an additive model for allelic effects and controlled for age, sex, and five principal components of genetic ancestry.

## ALSPAC

The Avon Longitudinal Study of Parents and Children (ALSPAC) ${ }^{10}$ is a population-based birth cohort initially comprising of 14,541 mothers and their children recruited in the former County
of Avon, UK between 1991 and 1992. Mothers indicated history of migraine via questionnaire during early pregnancy. Subjects were asked 'Have you ever had any of the following problems: migraine'. Controls subjects indicated the option "No never" and case subjects indicated either options "Yes had it recently" or "Yes in the past, not now". Please note that the study website contains details of all the data that is available through a fully searchable data dictionary" and reference the following webpage: $\underline{\text { http://www.bris.ac.uk/alspac/researchers/data-access/data- }}$ dictionary/.

Centre National de Génotypage (CNG) carried out DNA genotyping on the Illumina human660W-quad array and genotypes were called with Illumina GenomeStudio. PLINK (v1.07) was used to carry out quality control measures on an initial set of 10,015 subjects and 557,124 directly genotyped SNPs. SNPs were removed if they displayed more than $5 \%$ missingness or a Hardy-Weinberg equilibrium $P$-value of less than 1.0e-06. Additionally SNPs with a minor allele frequency of less than $1 \%$ were removed. Samples were excluded if they displayed more than 5\% missingness, had indeterminate $X$ chromosome heterozygosity or extreme autosomal heterozygosity. Samples showing evidence of population stratification were identified by multidimensional scaling of genome-wide IBS pairwise distances using the four HapMap populations as a reference, and then excluded. Cryptic relatedness was assessed, in PLINK, using a pi-hat of more than 0.125 which is expected to correspond to roughly $12.5 \%$ alleles shared IBD or a relatedness at the first cousin level.

8,237 subjects and 526,688 SNPs passed these quality control filters. We imputed this data against the 1000 genomes reference panel (Phase I, v3, March 2012 release) using minimac (v2012.11.16). Genome-wide SNP data was analyzed in a logistic regression in mach2dat (v1.0.18).

Ethical approval for the study was obtained from the ALSPAC Law and Ethics Committee and the Local Research Ethics Committees. All study participants provided informed consent.

## ATM

The Australian Twin Migraine (ATM) GWA study includes data from Australian twins and their families. All cases and controls included in this study were unrelated individuals; one individual was selected from each family. The cases ( $\mathrm{N}=1,683$; 466 [28\%] male, 1,217 [72\% female]) were preferentially selected from each family based on migraine severity. The population controls ( N $=2,383 ; 1,225$ [51\%] male, 1,158 [49\%] female) were randomly selected from families containing no known migraine cases. For the current study, two subsets of cases were identified: ATM1 encompassing 886 IHS MO cases (154 [17\%] male, 732 [83\% female]); and ATM2: encompassing 797 self-report (migraine "yes" or "no") cases (312 [39\%] male, 485 [61\% female]). To allow for potential differences in genetic risk for the different migraine definitions, we utilized a stratified analysis approach where the ATM1 and ATM2 cases were compared to a random selection of 1,586 and 797 of the 2,393 population controls, respectively. The mean age at interview was 37.5 years ( $\mathrm{SD}=11.3$ ). All subjects gave informed consent and approval to conduct the research was obtained from the QIMR Human Research Ethics Committee.

Case and control individuals were drawn from our QIMR GWA cohort of over 19,000 individuals genotyped using a variety of Illumina GWA arrays. After strict QC, the observed genotypes were imputed up to 1000 Genomes (Phase I, v3, March 2012 release) using the MaCH program ${ }^{11}$. Association analysis of allelic dosage scores within a logistic regression framework including sex and strata (ATM1/ATM2) as covariates was performed using the PLINK program ${ }^{12}$. For a detailed description of the QIMR 19K GWA cohort, including QC and imputation methodology, see Medland et al. (2009) ${ }^{13}$.

## B58C

The British 1958 birth cohort is an ongoing follow-up of all persons born in England, Scotland and Wales during one week in 195814. At age 33 years, a history of migraine ever was obtained by interview, whereas at 23 years of age, cohort members had been asked whether they had had migraine or recurrent sick headaches since their 16th birthday. For the purpose of this meta-analysis, cases were defined by a positive interview response for migraine ever at age 33. Controls were defined as cohort members who denied migraine ever at age 33, and reported no migraine or recurrent sick headaches since 16, when interviewed at age 23. Subjects who reported migraine or headaches between 16 and 23 , but no history of migraine at age 33 , were excluded from the analysis.

At the age of 44-45 years, the participants were followed up with a biomedical examination and blood sampling ${ }^{15}$, from which a DNA collection was established as a nationally representative reference panel. Three non-overlapping subsets of the DNA collection were genotyped as part of case-control studies by the Wellcome Trust Case-Control Consortium ${ }^{16}$, the Type 1 Diabetes Genetics Consortium ${ }^{17}$ and the GABRIEL asthma genetics consortium ${ }^{18}$. Imputations were performed using the 1000 Genomes (Phase I, v3, March 2012 release) reference panel by the MACH software ${ }^{11}$. Within-cohort logistic regression analyses for migraine were performed using ProbAbel ${ }^{19}$. Written informed consent was obtained from all participants, and the local ethics committee approved the study.

## DeCODE

Icelandic individuals suffering from migraine were recruited from three sources: (1) a list of patients provided by two neurologists (401 potential participants), (2) responses to an advertisement in the newsletter of the Icelandic Migraine Society (137 participants), and (3) responses to a brief screening questionnaire mailed to a random sample of 20,000 Icelanders, aged 18-50 years and living in the Reykjavik area. All recruits were diagnosed based on their answers to the third edition of the deCODE Migraine Questionnaire (DMQ3) for use in genetic studies ${ }^{20}$. The DMQ3 is a comprehensive migraine questionnaire that was designed based on ICHD-II ${ }^{1}$, and validated using a semi-structured, physician-conducted telephone interview as a gold standard. Approval for these studies was provided by the National Bioethics Committee and the Icelandic Data Protection Authority, and informed consent was obtained from all participants.

## EGCUT

The Estonian cohort is from the population-based biobank of the Estonian Genome Project of University of Tartu (EGCUT) ${ }^{21}$. The project is conducted according to the Estonian Gene Research Act, and all participants have signed the broad informed consent. The current cohort size is $>51,515,18$ years of age and older, which reflects closely the age distribution in the adult Estonian population. Subjects were recruited by general practitioners (GP) and physicians in the hospitals were randomly selected from individuals visiting GP offices or hospitals. Each participant filled out a computer-assisted personal interview during 1-2 hours at a doctor's office, including personal data (place of birth, place(s) of living, nationality. etc.), genealogical data (three generation family history), educational and occupational history, and lifestyle data (physical activity, dietary habits, smoking, alcohol consumption, women's health, quality of life). For the current study, 813 migraine cases (after quality control) were compared to 9,850 controls from the population. Genotyping was performed on either the Illumina HumanHapCNV370 or OmniExpress array, according to the Illumina protocol (www.illumina.com) in the Estonian Biocenter Genotyping Core Facility.

## Health 2000

The Health 2000 study is a national health survey undertaken in Finland consisting of a nationally representative sample of 10,000 persons drawn from the population aged 18 and over. Targets of the study were general health, major chronic conditions, functional ability and limitations, determinants of health, diseases, functional ability and limitations, health needs and service needs and their satisfaction (http://www.terveys2000.fi/background 001.html). Genotyping was performed on the Illumina 370k and after quality control, 136 migraine cases were available for comparison to 1,764 controls from the population. The study was approved by the co-ordinating ethical committee of the Helsinki University Hospital and all study participants provided informed consent.

## HUNT

In total, 1,395 Norwegian migraine cases were recruited from the Nord-Trøndelag Health Study (HUNT), in which all inhabitants (age $\geq 20$ years) of the Nord-Trøndelag county of Norway were invited to participate. Participants answered 13 headache questions designed to diagnose migraine according to a modified version of the ICHD criteria ${ }^{22}$, and to differentiate migraine with and without visual aura. This questionnaire-based classification has been validated by interview diagnoses, yielding positive and negative predictive values for ICHD migraine of $87 \%$ and $75 \%$ respectively ${ }^{22}$. The 1,011 Norwegian control samples were recruited from the same HUNT population study (see description above), and included 346 samples previously genotyped as part of a GWA study of lung cancer ${ }^{23}$ and 542 samples genotyped as part of an ongoing GWA study of pre-eclampsia, in addition to 123 control samples genotyped for the present study. Participants fulfilling criteria for migraine were excluded from the control population. Written informed consent was obtained from all participants, and the local ethics committee approved the study.

## NFBC

Mothers expected to give birth in the two Northern provinces of Oulu and Lapland in 1966 were enrolled in the NFBC196624 ( $N=12,058$ live births). Primary clinical data collection on parents and the child occurred prenatally and at birth. Data collection on the child continued at ages six months, one year, 14 years (no data from one year or 14 years are included in this paper), 31 years, with assessment of a wide range of trait measures. Cohort members still living in Northern Finland and those who had moved to the capital area were invited to a clinical examination at age 31 years ( $\mathrm{N}=8,463$ ). The attendees ( $71 \%$ response rate, $N=6,007$ ) were adequately representative of the original cohort ${ }^{25}$. Migraine was assessed based on the health questionnaire survey provided by the participants. The sample was originally genotyped for this study ${ }^{26}$. The study was approved by the co-ordinating ethical committee of the Helsinki University Hospital and all study participants provided informed consent.

## NTR/NESDA

The NTR/NESDA cohort includes participants of the Netherlands Twin Registry (NTR) and the Netherlands Study of Depression and Anxiety (NESDA). Data collection procedures for these studies are described in detail elsewhere ${ }^{27,28}$. Written informed consent was obtained from all participants, and the local ethics committee approved the study. Individuals were classified as migraineurs based on questionnaire data if they reported enough migraine symptoms to qualify for a diagnosis according to ICHD-II criteria. The questionnaire started with a screening question ("do you ever experience headache attacks, for instance migraine?"). Individuals screening positive answered a set of more detailed questions on their headache symptomatology. Based on these symptom data, a diagnosis was made, following the ICHD-II criteria ${ }^{1}$. Details on this procedure can be found in previous work ${ }^{29}$. Individuals who did not complete the full headache questionnaire but reported a diagnosis of migraine were also classified as cases. The control group consisted of individuals who screened negative for headache. Individuals diagnosed with anxiety or depressive disorder (mostly NESDA participants) were excluded from the analyses

Buccal or blood DNA samples ( $\mathrm{N}=14,003$ ) were collected for multiple NTR and NESDA projects. DNA extraction and purification of these samples were performed at various points in time, following several manufacturer specific protocols to obtain the best quality and concentration prior to SNP platform genotyping ${ }^{30}$. Genotyping of several partly overlapping subsets was done on multiple platforms. Chronologically the following platforms have been used Affymetrix Perlegen 5.0, Illumina 370, Illumina 660, Illumina Omni Express 1M, and Affymetrix 6.0. After array specific data analysis, genotype calls were made with the platform specific software (BIRDSUITE, APT-GENOTYPER, BEADSTUDIO).

Quality control was done within and between platforms and subsets prior to imputation. For each platform, the individual SNP markers were lifted over to build 37 (HG19) of the Human reference genome, using the LiftOver tool. SNPs that were not mapped at all, SNPs that had ambiguous locations, and SNPs that did not have matching (or strand opposite alleles) were removed. Subsequently, the data were strand aligned with the 1000 Genomes GIANT phase1 release v3 20,101,123 SNPs INDELS SVS ALL panel. SNPs from each platform were removed if they still had mismatching alleles with this imputation reference set, if the allele frequencies differed more than 0.20 with the reference. From each platform, SNPs with a Minor Allele

Frequency (MAF) <0.01 were removed, as well as SNPs that were out of Hardy-Weinberg Equilibrium (HWE) with $p<0.00001$. Samples were excluded from the data if their expected sex did not match their genotyped sex, if the genotype missing rate was above $10 \%$ or if the Plink $F$ inbreeding value was either $>0.10$ or $<-0.10$.

After these steps, the data of the individual arrays were merged into a single dataset using PLINK $1.07^{12}$. Within the merged set, identity by state (IBS) sharing was calculated between all possible individual pairs and compared to the known family structure of the NTR study. Samples were removed if the data did not match their expected IBS sharing. DNA samples, which were typed on multiple platforms, were tested to ascertain that the concordance rate among overlapping SNPs exceeded 99.0\%. If the concordance rate was lower, we removed all data of these samples. Subsequently, from each MZ twin pair a single DNA sample was selected. The HWE-, MAF- and the reference allele frequency difference $<0.20$ filters were re-applied in the combined data. As a final step, SNPs with C/G and A/T allele combinations were removed when the MAF was between 0.35 and 0.50 to avoid incorrect strand alignment.

Phasing of all samples and imputing cross-missing platform SNPs was done with MACH $1^{11}$. The phased data were then imputed with MINIMAC ${ }^{31}$ in batches of around 500 individuals for 561 chromosome chunks obtained by the CHUNKCHROMOSOME program ${ }^{32}$. After imputation, DNA confirmed MZ twins were re-duplicated back into the data. The format of the data was transformed to the basic three probabilities SNPTEST gen.gz format, as this is the most general applicable format for the subsequent genomic analyses tools. The mean imputation quality $\mathrm{R}^{2}$ metric is 0.38 (based on all 30,051,533 imputed autosomal SNPs).

GWA analysis was conducted in Plink, using logistic regression under an additive genetic model and adjusting for sex, genetic ancestry and batch and chip effects. Ancestry was accounted for by inferring ancestry principal components using the EIGENSOFT program ${ }^{33}$, as described previously ${ }^{34}$. In this study the first ancestry PC was included as a covariate. Plink's --family option was used to account for familial relatedness in the data. Genotype imputation uncertainty was accounted for by using allelic dosage.

## Rotterdam III

This sample included participants of the Rotterdam Study, a prospective population based cohort study among persons 55 years or older who were living in Ommoord, a well-defined district of Rotterdam, the Netherlands ${ }^{35}$. The aim of this study was to investigate causes of frequent chronic diseases, with a focus on cardiovascular, neurologic, psychiatric, and ophthalmic diseases. The Medical Ethics Committee of Erasmus Medical Center approved of the study and all participants provided informed consent. The original cohort of the Rotterdam Study ( 7,983 participants) was expanded in $2000(N=3,011$ ) and again in 2006 to include 3,919 persons who were 45 years of age or older. At study entry all participants underwent a structural interview and a physical examination, which was repeated every 3-4 years. The migraine questionnaire was introduced into the core study protocol in 2006 (response rate of $64.8 \%)$. For the current report, we used data from persons from the second cohort expansion (2006 to 2008) who completed the migraine questionnaire. Migraine data were available for

2,662 unrelated individuals, including 487 cases and 2,175 controls. The mean age of the sample was 55.37 years ( $\mathrm{SD}=4.51)^{36}$.

## Swedish Twins

The Swedish Twin study consisted of 9,897 Swedish individuals collected by the Swedish Twin Registry ${ }^{37}$. All experiments on human subjects, human material and human data were performed in accordance with the Declaration of Helsinki. All procedures were carried out with the adequate understanding and written consent of the subjects. Formal approval to conduct the experiments described has been obtained from the human subjects ethical review board of Stockholm (reference number 2007/644-31). The occurrence of migraine was self-assessed through a questionnaire using the criteria for migraine of the ICHD-II38. Genotyping was done on the Illumina Omni Express chip at the SNP\&SEQ Technology Platform, Uppsala University. We followed standard GWA study quality control procedures for missingness (max 0.03 genotypes missing per-SNP), low genotyping rate (max 0.03 genotypes missing per-individual), SNP frequency (minor allele frequency < 0.01), Hardy Weinberg equilibrium ( $P \leq 1 \mathrm{e}-7$ ) and excluded individuals that were population outliers, heterozygosity outliers, or with incompatible sex assignment based on X chromosome homozygosity. After quality control, data from 642,402 single nucleotide polymorphisms (SNP) remained which we then imputed into the 1000 Genomes (phase I, v3, March 2012) reference panel. We selected one member from each twin pair for inclusion in the study (preferentially selecting cases) and excluded additional related individuals from the sample approximately greater than second cousins (IBD >0.185). After quality control procedures, this resulted in 1,307 migraine cases and 4,182 unrelated control individuals available for analysis.

## Troms $\varnothing$

The Troms $\varnothing$ Study is a population based health study of the Troms $\varnothing$ municipality of Northern Norway. In the $6^{\text {th }}$ wave of the study, which was used in the current study, 19,762 residents were invited and 12,984 ( $65.7 \%$ ) participated ( $53 \%$ women, age range $30-87$ years). 660 migraine cases and 2,407 controls were genotyped and in included in this study. Migraine cases were defined as those who 1) reported suffering from headache during the last year, and satisfied ICHD criteria ${ }^{1}$ for migraine, with the modification that instead of requiring "nausea and/or vomiting OR photophobia and phonophobia" as in the original criteria, we required "nausea and/or vomiting", since information on photophobia and phonophobia was not available. This resulted in a slightly conservative definition of migraine for this group; or 2) selfreported previous or current migraine headache. Subjects who were not classified as migraine sufferers from these criteria were included as controls. Written informed consent was obtained from all participants, and the local ethics committee approved the study.

## Twins UK

The study population comprised 4,809 individuals ( 428 males and 4,381 females) from the TwinsUK Adult Twin Registry ${ }^{39}$. The twins were volunteers recruited through a national media campaign (www.twins.ac.uk), were not enriched for any particular disease or trait and were representative of the British general population ${ }^{39}$. Volunteers provided informed consent and were administered a protocol approved by the St. Thomas' Hospital ethics committee. The
twins were aged between 16 and 82 years with a standard deviation of 13 years and a mean age of 50 years. We selected 1 member from each twin pair, preferentially selecting cases, and excluded other relatedness within the sample by estimating IBD sharing. Migraine status was ascertained through questionnaires. 618 of the study participants fulfilled the IHS definition of migraine ${ }^{1}$, and of these, 202 with typical aura with migraine headache. Samples were genotyped with a combination of Illumina arrays (HumanHap300, and HumanHap610Q). The genotype data was imputed with IMPUTE ${ }^{40}$ version 2 using 1000 Genomes (Phase I, v3, March 2012 release) combined populations reference panel and the 610Q data was use as a reference panel for the HumanHap300 data. In total, there were 618 cases and 2,334 controls available for analysis after quality control. The imputed genotype data was analyzed with GWAF (Genome-wide association analyses for family data) to test for SNP association with adjustments for age ${ }^{41}$. We used the equations option for logistic regression via generalized estimating of the GWAF software, which incorporates familial clustering.

## WGHS

The Women's Genome Health Study (WGHS) ${ }^{42}$ is a prospective cohort of initially healthy, female North American health care professionals at least 45 years old at baseline representing participants in the Women's Health Study (WHS) who provided a blood sample at baseline and consent for blood-based analyses. The WHS was a $2 \times 2$ trial beginning in 1992-1994 of vitamin E and low dose aspirin in prevention of cancer and cardiovascular disease with about 10 years of follow-up. Since the end of the trial, follow-up has continued in observational mode. Additional information related to health and lifestyle were collected by questionnaire throughout the WHS trial and continuing observational follow-up. Written informed consent was obtained from all participants, and the local ethics committee approved the study.

Genotyping in the WGHS sample was performed using the HumanHap300 Duo " + " chips or the combination of the HumanHap300 Duo and iSelect chips (Illumina, San Diego, CA) with the Infinium II protocol. In either case, the custom SNP content was the same; these custom SNPs were chosen without regard to minor allele frequency (MAF) to saturate candidate genes for cardiovascular disease as well as to increase coverage of SNPs with known or suspected biological function, e.g. disease association, non-synonymous changes, substitutions at splice sites, etc. For quality control, all samples were required to have successful genotyping using the BeadStudio v. 3.3 software (Illumina, San Diego, CA) for at least $98 \%$ of the SNPs. A subset of 23,230 individuals were identified with self-reported European ancestry that could be verified on the basis of multidimensional scaling analysis of identity by state using 1,443 ancestry informative markers in PLINK v. 1.06. In the final dataset of these individuals, a total of 339,596 SNPs were retained with MAF > 1\%, successful genotyping in $90 \%$ of the subjects, and deviations from Hardy-Weinberg equilibrium not exceeding $\mathrm{P}=10^{-6}$ in significance. Among these same 23,230 individuals of verified European ancestry, genotypes for a total of 30,052,423 (autosomes) $+1,264,493$ (X) SNPs were imputed from the experimental genotypes and phase information from the 1000G phase I v. 3 release (March 2012) ALL panel using MaCH (v. 1.0.16) and Minimac (release 5/29/2012). A total of 332,927 genotyped SNPs that were selected by HWE p-value $>10^{-6}$ but unrestricted by MAF could be reconciled with the 1000G ALL panel and were used for imputation.

## Young Finns

The Young Finns study (YFS) cohort is a Finnish longitudinal population study sample on the evolution of cardiovascular risk factors from childhood to adulthood ${ }^{43}$. The first cross-sectional study was conducted in the year 1980 in five different centers. It included 3,596 participants in the age groups of $3,6,9,12,15$, and 18 , who were randomly chosen from the national population register. After the baseline in 1980 these subjects have been re-examined in 1983 and 1986 as young individuals, and in 2001, 2007 (aged 30-45 years) as older individuals. For the current analysis the latest follow-up was used. This study was carried out in accordance with the recommendations of the Declaration of Helsinki. All participants provided written informed consent and the study protocol was approved by the Ethics Committee.

Genomic DNA was extracted from peripheral blood leukocytes using a commercially available kit and Qiagen BioRobot M48 Workstation according to the manufacturer's instructions (Qiagen, Hilden, Germany). Genotyping was done for 2,556 samples using custom build Illumina Human 670k BeadChip at Welcome Trust Sanger Institute. Genotypes were called using Illuminus clustering algorithm. 56 samples failed Sanger genotyping pipeline QC criteria (i.e., duplicated samples, heterozygosity, low call rate, or Sequenom fingerprint discrepancy). From the remaining 2,500 samples one sample failed gender check, three were removed due to low genotyping call rate (<0.95) and 54 samples for possible relatedness (pi-hat >0.2). 11,766 SNPs were excluded based on Hardy-Weinberg equilibrium (HWE) test ( $p=10^{-6}$ ), 7,746 SNPs failed missingness test (call rate $<0.95$ ) and 34,596 SNPs failed frequency test (MAF $<0.01$ ). After quality control there were 2,443 samples and 546,677 genotyped SNPs available for further analysis ${ }^{43}$. Genotype imputation was performed using IMPUTE ${ }^{40}$ version 2.1.2 and 1000 Genomes Interim Phase I June 2011 haplotypes as reference. Palindromic A/T and C/G SNPs were removed before imputation. After filtering SNPs with low Fisher information (info < 0.4) and MAF (<0.001) there were $12,569,109$ SNPs available.

## Description of clinic-based studies

## Danish HC

The Danish Headache Center (Danish HC) sample comprised 775 unrelated MA cases (cases with migraine with aura with or without a co-diagnosis of migraine without aura) and 996 unrelated MO cases (cases with migraine without aura only). All cases were recruited among patients at the Danish Headache Center in the years 1999-2002, 2005-2006 and 2010-201144-46. Migraine history and clinical data were obtained by a validated, extensive, semi-structured interview performed over the telephone or face-to face by a trained physician or a trained senior medical student ${ }^{46}$. The migraine diagnoses adhere to the ICHD-2 ${ }^{1}$. The 1000 healthy and unrelated controls were recruited among volunteers in the Danish Blood Donor Study (DBDS) ${ }^{47}$. Genotyping was carried out using Illumina HumanOmniExpress-12v1. Genotypes were phased and imputed into the 1000 Genomes phase 1 version 3 (Build 37HG19) using IMPUTE2. DNA extraction, genotyping and imputation was performed by deCODE Genetics, Reykjavik, Iceland. The study was approved by the Danish Ethical Standards Committee. Written informed consent was obtained from all participants.

## Dutch MA

The Dutch MA study contains 879 Dutch MA patients that were available from the clinic-based Leiden University Migraine Neuro Analysis (LUMINA) study. After performing standard GWA study quality control procedures, 734 cases remained for analysis. Of the 734 MA cases, 138 (19\%) were male and 596 ( $81 \%$ ) were female. Self-reported migraineurs were recruited via the project's website (www.lumc.nl/hoofdpijn). A set of previously validated screening questions was used ${ }^{48}$. Participants fulfilling the screening criteria then completed an extended questionnaire that focuses on signs and symptoms of migraine headache and aura as outlined in ICHD-II¹. Individual diagnoses were made using an algorithm based on these criteria and that was validated by a semi-structured telephone interview performed by experienced physicians or by well-trained medical students, when necessary in consultation with a neurologist specialized in headache (GMT) ${ }^{49}$. A subset of the patients was asked to participate upon visiting the outpatient clinic. Population-matched controls ( $n=5,211$ after QC) were obtained from the Rotterdam Study ${ }^{36}$. Written informed consent was obtained from all participants, and the local ethics committee approved the study.

## Dutch MO

The Dutch MO study contains 1,115 Dutch MO patients, of which 163 (15\%) were male and 952 (85\%) were female, that were available from the clinic-based Leiden University Migraine Neuro Analysis (LUMINA) study. Self-reported migraineurs were recruited via the project's website (www.lumc.nl/hoofdpijn). A set of screening questions validated previously in a populationbased study ${ }^{48}$ was used. Participants fulfilling the screening criteria then completed an extended questionnaire that focuses on signs and symptoms of migraine headache and aura (aura symptoms were absent in the selected patient group) as outlined in ICHD-II. Individual diagnoses were made using an algorithm based on these criteria, validated by a semi-structured telephone interview performed by experienced physicians or by well-trained medical students,
when necessary in consultation with a neurologist specialized in headache (GMT) ${ }^{49}$. A subset of the patients was asked to participate upon visiting the outpatient clinic. Population-matched controls ( $n=2,028$ after QC) were obtained from the Rotterdam Study II (RSII) ${ }^{36}$. Written informed consent was obtained from all participants, and the local ethics committee approved the study.

## Finnish MA

1,032 Finnish patients (or 933 after QC) having either migraine with aura (MA) or migraine with and without aura (MA/MO) were collected nationwide from headache clinics and from the FinnTwin collection (http://www.nationalbiobanks.fi/index.php/studies2/30-finnish-twincohort). Each patient belongs to a multigenerational migraine family with at least three affected family members. All patients completed the validated Finnish Migraine Specific Questionnaire for Family Studies (FMSQ $\left.{ }_{\text {FS }}\right)^{50}$ and all fulfilled the current International Headache Society diagnostic criteria (ICHD-III) for MA. In cases of insufficient or conflicting information, a followup interview was performed by telephone. 1,018 Finnish control subjects were obtained from FINRISK and 1,697 controls from the Helsinki Birth Cohort study ${ }^{51}$. Written informed consent was obtained from all participants and the study was approved by the Helsinki University Central Hospital local ethics committee.

## German MA

The German MA sample consists of 1,071 German patients with MA (after QC). The patients were recruited from a tertiary headache center in Northern Germany (Pain Clinic, Kiel), the University of Bonn, the University of Cologne, and the Department of Neurology at the Klinikum Großhadern of the Ludwig-Maximilians-University, Munich, Germany. All patients were diagnosed as having MA according to the ICHD-II ${ }^{1}$ by experienced neurologists with a specialization in headache disorders, as described previously ${ }^{52}$. The diagnosis of MA was obtained either by face-to-face interviews or by telephone interviews.

German controls were obtained from the PopGen study ${ }^{53}(n=645)$ and from the Heinz Nixdorf Recall (HNR) study $(\mathrm{n}=365)^{54}$, all genotyped on the Illumina 550K platform. Written informed consent was obtained from all participants, and the local ethics committee approved the study.

## German MO

The German MO sample of $1,160 \mathrm{MO}$ cases was recruited in Munich and Kiel and data were examined by a headache specialist at the Klinikum Großhadern of the Ludwig-MaximiliansUniversity, Munich, and the Kiel Pain and Headache Center, Kiel. Phenotyping was based on a German translation of the $\mathrm{FMSQ}_{\text {F5 }}{ }^{50}$. Particular emphasis was put on reliable exclusion of aura symptoms. In case of insufficient or conflicting information, an additional telephone interview was performed. Information was obtained on all aspects of the ICHD-II ${ }^{1}$ criteria as well as on other aspects (such as age at onset, prodromal symptoms, triggers, acute and prophylactic medication, family history, general past medical history, co-morbidity and place of birth).

Population-matched controls were obtained from pre-existing previously genotyped studies. German controls were available from the KORA S4/F455 ( $\mathrm{n}=801$ ) as well as from the GSK56 ( $\mathrm{n}=$ 846). Written informed consent was obtained from all participants, and the local ethics committee approved the study.

## Study-specific acknowledgements

23andMe: We would like to thank the research participants and employees of 23andMe for making this work possible. This work was supported by the National Human Genome Research Institute of the National Institutes of Health (grant number R44HG006981).

ALSPAC: We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. The UK Medical Research Council and the Wellcome Trust (Grant ref: 102215/2/13/2) and the University of Bristol provide core support for ALSPAC. This publication is the work of the authors and George McMahon, Susan M Ring, and George Davey Smith will serve as guarantors for the contents of this paper.

ATM: The Australian cohort was supported by National Institutes of Health (NIH) Grants AA07535, AA07728, AA13320, AA13321, AA14041, AA11998, AA17688, DA012854, DA019951, AA010249, AA013320, AA013321, AA011998, AA017688, and DA027995; by Grants from the Australian National Health and Medical Research Council (NHMRC) (241944, 339462, 389927, 389875, 389891, 389892, 389938, 442915, 442981, 496739, 552485, 552498 and 1075175); by Grants from the Australian Research Council (ARC) (A7960034, A79906588, A79801419, DP0770096, DP0212016, and DP0343921); by the EU - funded GenomEUtwin (FP5 - QLG2 CT - 2002-01254) and ENGAGE (FP7 - HEALTH - 201413) projects; and by the European Union's Seventh Framework program (2007-2013) under grant agreement no. 602633 (EUROHEADPAIN). DRN (FT0991022, 613674) and GWM (619667) were supported by the ARC Future Fellowship and NHMRC Fellowship Schemes. We thank P Visscher, D Duffy, A Henders, B Usher, E Souzeau, A Kuot, A McMellon, MJ Wright, MJ Campbell, A Caracella, L Bowdler, S Smith, B Haddon, A Conciatore, D Smyth, H Beeby, O Zheng and B Chapman for their input into project management, databases, phenotype collection, and sample collection, processing and genotyping.

B58C: We acknowledge use of phenotype and genotype data from the British 1958 Birth Cohort DNA collection, funded by the Medical Research Council grant G0000934 and the Wellcome Trust grant 068545/Z/02. Genotyping for the B58C-WTCCC subset was funded by the Wellcome Trust grant 076113/B/04/Z. The B58C-T1DGC genotyping utilized resources provided by the Type 1 Diabetes Genetics Consortium, a collaborative clinical study sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), National Human Genome Research Institute (NHGRI), National Institute of Child Health and Human Development (NICHD), and Juvenile Diabetes Research Foundation International (JDRF) and supported by U01 DK062418. B58C-T1DGC GWAS data were deposited by the Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research (CIMR), University of Cambridge, which is funded by Juvenile Diabetes Research Foundation International, the Wellcome Trust and the National Institute for Health Research Cambridge Biomedical Research Centre; the CIMR is in receipt of a Wellcome Trust Strategic

Award (079895). The B58C-GABRIEL genotyping was supported by a contract from the European Commission Framework Programme 6 (018996) and grants from the French Ministry of Research.

Danish HC: This study is funded by grants from The Advanced Technology Foundation (001-2009-2), The Lundbeck Foundation (R34-A3243), and The Lundbeck Foundation Initiative for Integrative Psychiatric Research (R102-A9118).

DeCODE: The deCODE migraine study was funded in part by the European Commission (HEALTH-FP7-2013-Innovation-602891 to the NeuroPain Consortium) and the National Institute of Dental and Craniofacial Research (NIH RO1DEO22905).

EGCUT: EGCUT received targeted financing from Estonian Research Council grant IUT20-60, Center of Excellence in Genomics (EXCEGEN) and University of Tartu (SP1GVARENG). We acknowledge EGCUT technical personnel, especially Mr V. Soo and S. Smit. Data analyses were carried out in part in the High Performance Computing Center of University of Tartu.

Finnish MA: The Wellcome Trust (grants WT089062 and 098051 to A.P. ), the Academy of Finland (grants 200923, 251704, and 286500 to A.P., and 139795 to M.W.); the Academy of Finland Center of Excellence for Complex Disease Genetics; the EuroHead project (LSM-CT-2004-504837); the Academy of Finland, Center of Excellence in Complex Disease Genetics, (grant numbers 213506 and 129680 to A.P. and J.K.); FP7-EUROHEADPAIN-no.602633, ENGAGE Consortium (grant agreement HEALTH-F4-2007-201413); EU/SYNSYS-Synaptic Systems (grant number 242167 to A.P.); the Sigrid Juselius Foundation, Finland (to A.P.); the Folkhälsan Research Foundation, Finland (to M.W.); Medicinska Understödsföreningen Liv \& Hälsa (to M.W.), and the Helsinki University Central Hospital (to M.K., V.A.).

German MA/MO (Munich): This study was supported by the Corona Foundation (S199/10052/2011).

Health 2000: The Health 2000 survey was funded by the Finnish National Institute for Health and Welfare (THL) in collaboration with the National Social Insurance Institution and the five university hospital districts. VS was supported by the Academy of Finland, grant \#139635, and the Finnish Foundation for Cardiovascular Research.

NFBC: The NFBC1966 sample received financial support from the Academy of Finland (project grants 104781, 120315, 129269, 1114194, 24300796, Center of Excellence in Complex Disease Genetics and SALVE), University Hospital Oulu, Biocenter, University of Oulu, Finland (75617), NHLBI grant 5R01HL087679-02 through the STAMPEED program (1RL1MH083268-01), NIH/NIMH (5R01MH63706:02), ENGAGE project and grant agreement HEALTH-F4-2007-201413, EU FP7 EurHEALTHAgeing -277849, the Medical Research Council, UK (G0500539, G0600705, G1002319, PrevMetSyn/SALVE) and the MRC, Centenary Early Career Award. The program is currently being funded by the H2020-633595 DynaHEALTH action and academy of Finland EGEA-project.

NTR/NESDA: We acknowledge the Netherlands Organisation for Scientific Research (NWO), the Netherlands Organisation for Health Research and Development (ZonMW), the EMGO+ Institute for Health and Care Research, the Neuroscience Campus Amsterdam, BBMRI-NL (184.021.007: Biobanking and Biomolecular Resources Research Infrastructure), the Avera Institute, Sioux Falls, South Dakota (USA), Rutgers University Cell and DNA Repository cooperative agreement [National Institute of Mental Health U24 MH068457-06], and the National Institutes of Health (NIH R01 HD042157-01A1, MH081802, Grand Opportunity grants 1RC2 MH089951 and 1RC2 MH089995). Part of the genotyping and analyses were funded by the Genetic Association Information Network (GAIN) of the Foundation for the National Institutes of Health. Genotyping was funded in part by grants from the National Institutes of Health (4R37DA018673-06, RC2 MH089951). The statistical analyses were carried out on the Genetic Cluster Computer (http://www.geneticcluster.org) which is supported by the Netherlands Scientific Organization (NWO 480-05-003), the Dutch Brain Foundation and the Department of Psychology and Education of the VU University Amsterdam. The Netherlands Twin register was also supported by ZonMW Addiction 31160008; ZonMW 940-37-024; NWO/SPI 56-464-14192; NWO-400-05-717; NWO-MW 904-61-19; NWO-MagW 480-04-004; NWO-Veni 016-115-035 and the European Research Council (ERC 230374, 284167). The Netherlands Study of Depression and Anxiety (NESDA) was also funded by ZonMW (Geestkracht program grant 10-000-1002).

Rotterdam III: The generation and management of GWAS genotype data for the Rotterdam Study (RS I, RS II, RS III) was executed by the Human Genotyping Facility of the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands. The GWAS datasets are supported by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012), the Genetic Laboratory of the Department of Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project nr. 050-060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters, MSc, and Carolina Medina-Gomez, MSc, for their help in creating the GWAS database, and Karol Estrada, PhD, Yurii Aulchenko, PhD, and Carolina Medina-Gomez, MSc, for the creation and analysis of imputed data. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are grateful to the study participants, the staff from the Rotterdam Study and the participating general practitioners and pharmacists.

Swedish Twins: The Swedish Twin Registry acknowledges funding support from the Swedish Research Council, Swedish Brain Foundation, Karolinska Instutet Resarch Funds, and the Åke Wibergs Stiftelse.

WGHS: The WGHS is supported by HL043851 and HL080467 from the National Heart, Lung, and Blood Institute and CA047988 from the National Cancer Institute with collaborative scientific support and funding for genotyping provided by Amgen.

Young Finns: The Young Finns Study has been financially supported by the Academy of Finland: grants 286284 (T.L.), 134309 (Eye), 126925, 121584, 124282, 129378 (Salve), 117787 (Gendi), and 41071 (Skidi); the Social Insurance Institution of Finland; Kuopio, Tampere and Turku University Hospital Medical Funds (grant X51001 for T.L.); Juho Vainio Foundation; Paavo Nurmi Foundation; Finnish Foundation of Cardiovascular Research (T.L.); Finnish Cultural Foundation; Tampere Tuberculosis Foundation (T.L.); Emil Aaltonen Foundation (T.L.); and Yrjö Jahnsson Foundation (T.L.). We gratefully acknowledge the THL DNA laboratory for its skilful work to produce the DNA samples used in this study, and Ville Aalto and Irina Lisinen for the expert technical assistance in the statistical analyses.

Other funding: Ester Cuenca-Leon is supported by a 'Beatriu de Pinós' grant (2010 BP-A and BPA2) funded by AGAUR, Generalitat de Catalunya. Phil H. Lee is supported by NIMH K99 MH101367. Tune H. Pers is supported by the Alfred Benzon Foundation.

## Ethics statement

All participating IHGC studies were approved by local research ethics committees and written informed consent was obtained from all study participants.

## Conflicts of interest

Thomas Werge has acted as lecturer and consultant for H. Lundbeck A/S, Valby, Denmark. Markus Schürks is a full-time employee of Bayer HealthCare, Germany.

## Supplementary References

1. Society, H. C. C. of the I. H. The International Classification of Headache Disorders: 2nd edition. Cephalalgia 24, 1-160 (2004).
2. Anttila, V. et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat. Genet. 45, 912-7 (2013).
3. Eriksson, N. et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLoS Genet. 6, 1-20 (2010).
4. Tung, J. Y. et al. Efficient replication of over 180 genetic associations with self-reported medical data. PLoS One 6, e23473 (2011).
5. Durand, E. Y., Do, C. B., Mountain, J. L. \& Macpherson, J. M. Ancestry Composition: A Novel, Efficient Pipeline for Ancestry Deconvolution. bioRxiv (2014). doi:10.1101/010512
6. Henn, B. M. et al. Cryptic Distant Relatives Are Common in Both Isolated and Cosmopolitan Genetic Samples. PLoS One 7, e34267 (2012).
7. Durbin, R. M. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061-1073 (2010).
8. Browning, S. R. \& Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084-1097 (2007).
9. Fuchsberger, C., Abecasis, G. R. \& Hinds, D. A. minimac2: faster genotype imputation. Bioinformatics 31, 782-784 (2015).
10. Fraser, A. et al. Cohort profile: The avon longitudinal study of parents and children: ALSPAC mothers cohort. Int. J. Epidemiol. 42, 97-110 (2013).
11. Li, Y., Willer, C. J., Ding, J., Scheet, P. \& Abecasis, G. R. MaCH: Using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816-834 (2010).
12. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559-575 (2007).
13. Medland, S. E. et al. Common Variants in the Trichohyalin Gene Are Associated with Straight Hair in Europeans. Am. J. Hum. Genet. 85, 750-755 (2009).
14. Power, C. \& Elliott, J. Cohort profile: 1958 British birth cohort (National Child Development Study). Int. J. Epidemiol. 35, 34-41 (2006).
15. Strachan, D. P. et al. Lifecourse influences on health among British adults: effects of region of residence in childhood and adulthood. Int. J. Epidemiol. 36, 522-31 (2007).
16. Wellcome, T., Case, T. \& Consortium, C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared. Nature 447, 661-78 (2007).
17. Barrett, J. C. et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat. Genet. 41, 703-707 (2009).
18. Moffatt, M. F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211-1221 (2010).
19. Aulchenko, Y. S., Struchalin, M. V \& van Duijn, C. M. ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 11, 134 (2010).
20. Kirchmann, M. et al. Validation of the deCODE Migraine Questionnaire (DMQ3) for use in genetic studies. Eur. J. Neurol. 13, 1239-1244 (2006).
21. Nelis, M. et al. Genetic structure of Europeans: a view from the North-East. PLoS One 4, e5472 (2009).
22. Hagen, K., Zwart, J. A., Vatten, L., Stovner, L. J. \& Bovim, G. Head-HUNT: Validity and reliability of a headache questionnaire in a large population-based study in Norway. Cephalalgia 20, 244-251 (2000).
23. McKay, J. D. et al. Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 40, 1404-6 (2008).
24. Rantakallio, P. Groups at risk in low birth weight infants and perinatal mortality. Acta Paediatr. Scand. 193, Suppl 193:1+ (1969).
25. Sovio, U. et al. Cloninger's Temperament dimensions, socio-economic and lifestyle factors and metabolic syndrome markers at age 31 years in the Northern Finland Birth Cohort 1966. J. Health Psychol. 12, 371-382 (2007).
26. Sabatti, C. et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41, 35-46 (2009).
27. Penninx, B. W. J. H. et al. The Netherlands Study of Depression and Anxiety (NESDA): Rationale, objectives and methods. Int. J. Methods Psychiatr. Res. 17, 121-140 (2008).
28. Boomsma, D. I. et al. Netherlands Twin Register: from twins to twin families. Twin Res. Hum. Genet. 9, 849-857 (2006).
29. Ligthart, L. et al. Migraine symptomatology and major depressive disorder. Cephalalgia 30, 1073-1081 (2010).
30. Yang, J., Lee, S. H., Goddard, M. E. \& Visscher, P. M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76-82 (2011).
31. Howie, B., Fuchsberger, C., Stephens, M., Marchini, J. \& Abecasis, G. R. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nature Genetics 44, 955-959 (2012).
32. Liu, E. Y., Li, M., Wang, W. \& Li, Y. MaCH-Admix: Genotype Imputation for Admixed Populations. Genet. Epidemiol. 37, 25-37 (2013).
33. Patterson, N., Price, A. L. \& Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
34. Abdellaoui, A. et al. Population structure, migration, and diversifying selection in the Netherlands. Eur. J. Hum. Genet. 21, 1277-85 (2013).
35. Hofman, A. et al. The Rotterdam Study: Objectives and design update. Eur. J. Epidemiol. 22, 819-829 (2007).
36. Hofman, A. et al. The Rotterdam Study: 2012 objectives and design update. Eur. J. Epidemiol. 26, 657-686 (2011).
37. Ran, C. et al. A replication study of GWAS findings in migraine identifies association in a Swedish case-control sample. BMC Med. Genet. 15, 38 (2014).
38. Olesen, J. \& Steiner, T. J. The International classification of headache disorders, 2nd edn (ICDH-II). J. Neurol. Neurosurg. Psychiatry 75, 808-811 (2004).
39. Moayyeri, A., Hammond, C. J., Valdes, A. M. \& Spector, T. D. Cohort profile: Twinsuk and healthy ageing twin study. Int. J. Epidemiol. 42, 76-85 (2013).
40. Howie, B. N., Donnelly, P. \& Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, (2009).
41. Chen, M.-H. \& Yang, Q. GWAF: an R package for genome-wide association analyses with family data. Bioinformatics 26, 580-581 (2010).
42. Ridker, P. M. et al. Rationale, design, and methodology of the Women's Genome Health Study: a genome-wide association study of more than 25,000 initially healthy american women. Clin. Chem. 54, 249-55 (2008).
43. Raitakari, O. T. et al. Cohort profile: The cardiovascular risk in young Finns study. Int. J. Epidemiol. 37, 1220-1226 (2008).
44. Christensen, A. F., Le, H., Kirchmann, M. \& Olesen, J. Genotype-phenotype correlation in migraine without aura focusing on the rs 1835740 variant on $8 q 22.1$. J. Headache Pain 13, 21-27 (2012).
45. Esserlind, a. L., Kirchmann, M., Hauge, a. W., Le, H. \& Olesen, J. A genotype-phenotype analysis of the 8q22.1 variant in migraine with aura. Eur. J. Neurol. 19, 603-609 (2012).
46. Esserlind, A. L. et al. Replication and meta-analysis of common variants identifies a genome-wide significant locus in migraine. Eur. J. Neurol. 20, 765-772 (2013).
47. Pedersen, O. B. et al. The Danish Blood Donor Study: a large, prospective cohort and biobank for medical research. Vox Sang. 102, 271 (2012).
48. Launer, L. J., Terwindt, G. M. \& Ferrari, M. D. The prevalence and characteristics of migraine in a population-based cohort: the GEM study. Neurology 53, 537-542 (1999).
49. Van Oosterhout, W. et al. Validation of the web-based LUMINA questionnaire for recruiting large cohorts of migraineurs. Cephalalgia 31, 1359-1367 (2011).
50. Kallela, M., Wessman, M. \& Färkkilä, M. Validation of a migraine-specific questionnaire for use in family studies. Eur. J. Neurol. 8, 61-66 (2001).
51. Barker, D. J. P., Osmond, C., Forsén, T. J., Kajantie, E. \& Eriksson, J. G. Trajectories of growth among children who have coronary events as adults. N. Engl. J. Med. 353, 18021809 (2005).
52. Todt, U. et al. Variation of the serotonin transporter gene SLC6A4 in the susceptibility to migraine with aura. Neurology 67, 1707-9 (2006).
53. Krawczak, M. et al. PopGen: Population-based recruitment of patients and controls for the analysis of complex genotype-phenotype relationships. in Community Genetics 9, 5561 (2006).
54. Schmermund, A. et al. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: Rationale and design of the Heinz Nixdorf RECALL Study. Am. Heart J. 144, 212-218 (2002).
55. Wichmann, H. E., Gieger, C. \& Illig, T. KORA-gen - Resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 67, (2005).
56. Muglia, P. et al. Genome-wide association study of recurrent major depressive disorder in two European case-control cohorts. Mol. Psychiatry 15, 589-601 (2010).
57. Schwarz, G. Estimating the Dimension of a Model. The Annals of Statistics 6, 461-464 (1978).
58. Su, A. I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. U. S. A. 101, 6062-6067 (2004).
59. Magi, R., Lindgren, C. M. \& Morris, A. P. Meta-analysis of sex-specific genome-wide association studies. Genet. Epidemiol. 34, 846-853 (2010).
60. Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).
61. Mi, H., Muruganujan, A., Casagrande, J. T. \& Thomas, P. D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 8, 1551-66 (2013).
62. Freedman, M. L. et al. Assessing the impact of population stratification on genetic association studies. Nat. Genet. 36, 388-393 (2004).

## Supplementary Figures

Supplementary Figure 1. Region plots of the 38 genome-wide significant loci (see separate attached PDF document for figure).
Each point shows the significance level (left vertical axis) of each marker tested for association to migraine by logistic regression using an additive genetic model adjusted for sex. The index SNP for each locus is marked with a diamond and annotated with its corresponding rs-number. The solid blue line shows the recombination rate (right vertical axis) and the horizontal axis is the chromosomal position in megabases. The red line is the threshold for genome-wide significance ( $p<5 \times 10^{-8}$ ). Beneath the horizontal axis the track shows start-end co-ordinates from Gencode genes. Plots are ordered by genomic position.

Supplementary Figure 2. Individual gene expression in GTEx tissues.
Each panel shows the expression level (measured in reads per kilobase per million reads [RPKM]) of the nearest gene to the index SNP at each migraine locus (intergenic loci CCM2L and CARF are not shown) in four tissue groups. The gene expression data was obtained from 1,641 samples across 42 tissues and three cell lines from the GTEx consortium. The four tissue groups are Brain (Bran), Gastrointestinal (Gastro), Vascular (Vscl), and Other (Othr). The center values of box-plots represent the median and the box itself outlines the interquartile range.


Supplementary Figure 3. QQ-plot of the primary analysis test statistics.
In the analysis of all migraine (59,674 cases vs. 316,208 controls), $\lambda_{G c}=1.24$. For clarity, the observed association $p$-values along the vertical axis have been limited to a minimum value of $1 \times 10^{-12}$. The shaded area represents the $95 \%$ confidence intervals of expected $p$-values under the null hypothesis.


Supplementary Figure 4. QQ-plot of the primary analysis after LD-pruning. Re-plotting the test statistics for of all migraine (59,674 cases vs. 316,208 controls) after markers were pruned for LD-independence using a sliding window in PLINK and also removing all markers within our 38 associated loci means that now $\lambda_{\mathrm{GC}}=1.15$.


Supplementary Figure 5. LD-score regression plot for all migraine.
The mean SNP association test statistics from the primary meta-analysis of all migraine were regressed against LD score by grouping SNPs in bins of equal LD-score rank (59,674 cases vs. 316,208 controls). The intercept estimates the inflation in test statistics contributed by confounding factors such as population structure or other systematic bias, and suggests that $88.2 \%$ ( $95 \% \mathrm{Cls}=82.6-93.8$ ) of the inflation we see is due to genuine polygenicity in migraine as a trait. Using a prevalence estimate of $16 \%$ for all migraine, we calculated the heritability ( $h^{2}{ }_{g}$ ) as $14.63 \%$ ( $95 \% \mathrm{Cl}=13.79-15.47$ ).


Supplementary Figure 6. LD-score regression plot for the MA subtype.
The mean SNP association test statistics from the MA subset-analysis were regressed against LD score by grouping SNPs in bins of equal LD-score rank ( 6,332 cases and 142,817 controls). The intercept estimates the inflation in test statistics contributed by confounding factors such as population structure or other systematic bias, and suggests that $61.6 \%$ ( $95 \% \mathrm{Cls}=36.3-86.9$ ) of the inflation we see is due to genuine polygenicity in migraine as a trait. Using a prevalence estimate of $7.5 \%$ for MA, we calculated the heritability $\left(h^{2}{ }_{g}\right)$ as $10.63 \%(95 \% \mathrm{Cl}=7.39-13.88)$.


Supplementary Figure 7. LD-score regression plot for the MO subtype.
The mean SNP association test statistics from the MO subset-analysis were regressed against LD score by grouping SNPs in bins of equal LD-score rank ( 8,348 cases and 136,758 controls). The intercept estimates the inflation in test statistics contributed by confounding factors such as population structure or other systematic bias, and suggests that $88.1 \%$ ( $95 \% \mathrm{Cls}=71.3-100$ ) of the inflation we see is due to genuine polygenicity in migraine as a trait. Using a prevalence estimate of $13 \%$ for MO, we calculated the heritability $\left(h^{2}\right)$ as $20.62 \%(95 \% \mathrm{Cl}=17.76-23.47)$.


Supplementary Figure 8. Manhattan plot for the MO subset analysis.
Each marker was tested for association using an additive genetic model by logistic regression adjusted for sex. A fixed-effects metaanalysis was then used to combine the association statistics from each GWA study with available MO sub-type data. The horizontal axis shows the chromosomal position and the vertical axis shows the significance of tested markers from logistic regression. Markers with test statistics that reach genome-wide significance ( $P<5 \times 10^{-8}$ ) are shown in red. In total there were 8,348 cases and 136,758 controls and seven genome-wide significant loci.


Supplementary Figure 9. Manhattan plot for the MA subset analysis.
Each marker was tested for association using an additive genetic model by logistic regression adjusted for sex. A fixed-effects metaanalysis was then used to combine the association statistics from each GWA study with available MA sub-type data. The horizontal axis shows the chromosomal position and the vertical axis shows the significance of tested markers from logistic regression. Markers with test statistics that reach genome-wide significance ( $P<5 \times 10^{-8}$ ) are shown in red. In total there were 6,332 cases and 142,817 controls. No genome-wide significant loci were identified.


Supplementary Figure 10. Correlation of test statistics between migraine and eQTL SNPs at the MRVI1 locus.
For SNPs that were overlapping between the migraine locus credible set (at the MRVI1 locus) and SNPs in the eQTL credible set for a probe to the EIF4G2 gene (identified in 3,754 samples from peripheral venous blood), we tested whether there was a significant correlation (using Spearman's rank correlation) between the two sets of test statistics. The correlation was nominally significant ( $P=0.014$ ) but does not survive Bonferroni correction for multiple testing of the 23 identified eQTL signals in the peripheral blood data.


Supplementary Figure 11. Gene expression of the 38 genes nearest to the migraine loci index SNPs.
The expression data used to quantify the degree of brain/smooth muscle tissue expression comes from the GNF1H atlas ${ }^{58}$. The horizontal axis is mean gene-expression in brain tissues and the vertical axis is mean expression in smooth muscle tissues. The plot indicates that TGFBR2 and NRP1 are preferentially expressed in smooth muscle tissues.


Supplementary Figure 12. Gene expression of TGFBR2 in 60 types of smooth muscle tissue.
The horizontal bars show gene expression levels per tissue. The top 31 tissues are vascular smooth muscle types while the bottom 29 tissues are visceral smooth muscle types. TGFBR2 appears to be expressed in tissues across both smooth muscle types and shows particularly high expression in the aorta.


Supplementary Figure 13. Gene expression of NRP1 in 60 types of smooth muscle tissue.
The horizontal bars show gene expression levels per tissue. The top 31 tissues are vascular smooth muscle types while the bottom 29 tissues are visceral smooth muscle types. The expression of NRP1 appears to be high in many tissues from both the vascular and visceral smooth muscle categories.


Supplementary Figure 14. Forest plots of the 45 independently associated SNPs (see separate attached PDF document for figure).
For each SNP we plot the minor allele frequency for cases and controls (MAF[case] and MAF[ctrl] respectively) and the corresponding Odds Ratio (OR) from each of the 22 individual GWA studies. A value of "NA" means that the marker was filtered out of that particular study due to not passing genotyping or imputation quality control criteria. We also annotate each plot with the locus label, index SNP (and minor allele), chromosomal position (hg19 coordinates), combined meta-analysis association $P$-value, the heterogeneity index ( $i^{2}$ ), and the $P$ value from Cochran's $Q$ test for heterogeneity.

Supplementary Figure 15. eQTL credible sets in GTEx tissues with significant correlation to migraine loci credible sets. The figure shows four eQTL credible sets identified from expression data in GTEx tissues that were significantly correlated with the credible sets from migraine. We assessed significance using Spearman's rank correlation and adjusted for multiple testing using Bonferroni correction. The results implicate significant eQTLs in three tissues (Lung, Tibial Artery, and Aorta) for the HPSE2 locus and one tissue (Thyroid) for the HEY2 locus. In each plot the migraine locus index SNP is annotated in blue and the eQTL locus index SNP is annotated in red. A summary of all tested credible sets is presented in Supplementary Table 19.



## Supplementary Tables

## Supplementary Table 1. Design and characteristics of IHGC individual GWA studies.

In the control definition column, "no migraine" means that individuals with known or possible migraine have been excluded from the controls, where as "pop." stands for population-based controls that have not been screened for migraine. Where semi-colons separate the definitions, it means that more than one set of control samples has been combined for that study.

| GWA Study | Full Name | Study Design | Control Samples | Ethnicity | Cases | Controls | Migraine \% | ChrX | MA | MO | Migraine Definition | Control Definition | Study Ref. PMID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23andMe | 23andMe Inc. | Population | Within population | European descent | 30,465 | 143,147 | 17.5 | 30,465 | - | - | Self-reported | No migraine | $\begin{aligned} & 20585627 \\ & 21858135 \end{aligned}$ |
| ALSPAC | Avon Longitudinal Study of Parents and Children | Population | Within population | European, British | 3,134 | 5,103 | 38.0 | 3,134 | - | - | Self-reported migraine, current or prior | No migraine or use of migraine medications; pop. | 22507742 |
| ATM | Australian Twin Migraine | Population | Within population | European descent | 1,683 | 2,383 | 41.4 | 1,683 | - | - | Modified ICHD-II criteria, current migraine | Pop. | $\begin{aligned} & 20303062 \\ & 18676988 \end{aligned}$ |
| B58C | 1958 British Birth Cohort | Population | Within population | European, British | 1,165 | 4,141 | 22.0 | 1,165 | - | - | Self-reported migraine, current or prior | No migraine or severe recurrent headaches | 16155052 |
| Danish HC | Danish Headache Center | Clinic | Danish Blood Donor Study | European, Danish | 1,771 | 1,000 | 63.9 | 1,771 | 775 | 996 | ICHD-II | No migraine | - |
| DeCODE | deCODE Genetics Inc. | Population | Within population | European, Icelandic | 3,135 | 95,585 | 3.2 | 3,135 | 366 | 608 | Full ICHD-II criteria, current migraine | Pop.; no migraine | 17038039 |
| Dutch MA | Dutch migraine with aura | Clinic | Rotterdam I | European, Dutch | 734 | 5,211 | 12.3 | 734 | 734 | - | ICHD-II | Pop. | $\begin{aligned} & 21914734 \\ & 20802479 \\ & 21877163 \end{aligned}$ |
| Dutch MO | Dutch migraine without aura | Clinic | Rotterdam II | European, Dutch | 1,115 | 2,028 | 35.5 | 1,115 | - | 1,115 | ICHD-II | Pop. | $\begin{aligned} & 21914734 \\ & 22683712 \\ & 21877163 \end{aligned}$ |
| EGCUT | Estonian Genome Center, University of Tartu | Population | Within population | European, Estonian | 813 | 9,850 | 7.6 | - | 76 | 94 | Self-reported | No migraine | 19424496 |
| Finnish MA | Finnish migraine with aura | Clinic | Helsinki Birth Cohort (1,697); <br> FINRISK pop controls $(1,018)$ | European, Finnish | 933 | 2,715 | 25.6 | 933 | 933 | - | ICHD-II | Pop.; Pop. | $\begin{aligned} & 11509082 \\ & 20802479 \\ & 16251536 \\ & 19959603 \end{aligned}$ |
| German MA | German migraine with aura | Clinic | Heinz Nixdorf Recall study (365); PopGen (645) | European, German | 1,071 | 1,010 | 51.5 | 1,071 | 1,071 | - | ICHD-II | Pop.; Pop. | $\begin{aligned} & 20802479 \\ & 12177636 \\ & 16490960 \end{aligned}$ |


| German MO | German migraine without aura | Clinic | KORA (801); GSK (846) | European, German | 1,160 | 1,647 | 41.3 | 1,160 | - | 1,160 | ICHD-II | Pop.; Pop. | $\begin{aligned} & 22683712 \\ & 16032514 \\ & 19107115 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Health2000 | Health 2000 | Population | Within population | European, Finnish | 136 | 1,764 | 7.2 | 136 | - | - | Self-reported | Mig-free pop. | 20532202 |
| HUNT | Nord-Trøndelag Health Study | Population | HUNT pop. controls; HUNT lung cancer; HUNT pre-eclampsia | European, Norwegian | 1,395 | 1,011 | 58.0 | 1,395 | 290 | 980 | Self-reported migraine or fulfilling modified ICHD-II criteria, current migraine | No migraine; pop. | 10999674 |
| NFBC | Northern Finnish Birth Cohort | Population | Within population | European, Finnish | 756 | 4,393 | 14.7 | 756 | - | - | Self-reported migraine, current or prior | No migraine | 4911003 |
| NTR/NESDA | Netherlands Twin <br> Register and the <br> Netherlands Study of <br> Depression and Anxiety | Population | Within population | European, Dutch | 1,636 | 3,819 | 30.0 | 1,636 | 544 | 615 | Modified ICHD-II criteria, current migraine | No migraine or severe recurrent headache | $\begin{aligned} & 17254420 \\ & 16611468 \\ & 18763692 \\ & 20713558 \end{aligned}$ |
| Rotterdam III | Rotterdam Study III | Population | Within population | European, Dutch | 487 | 2,175 | 18.3 | - | 106 | 381 | Modified ICHD-II criteria, current migraine | No migraine | 21877163 |
| Swedish Twins | Swedish Twin Registry | Population | Within population | European, Swedish | 1,307 | 4,182 | 23.8 | 1,307 | - | - | Self-reported or fulfilling modified ICHD-II criteria | No migraine | 24674449 |
| Tromsø | The Tromsø Study | Population | Within population | European, Norwegian | 660 | 2,407 | 21.5 | 660 | - | - | Self reported or fulfilling modified ICHD-II criteria | No migraine | - |
| Twins UK | Twins UK | Population | Within population | European, British | 618 | 2,334 | 20.9 | - | 202 | 416 | Self-reported migraine or fulfilling Modified ICHD-II criteria, current or prior migraine | No migraine | 22253318 |
| WGHS | Women's Genome Health Study | Population | Within population | European descent | 5,122 | 18,108 | 22.0 | 5,122 | 1,177 | 1,826 | Self-reported migraine or fulfilling Modified ICHD-II criteria, current or prior migraine | No migraine | $\begin{aligned} & 16849661 \\ & 18070814 \end{aligned}$ |
| Young Finns | Young Finns | Population | Within population | European, Finnish | 378 | 2,065 | 15.5 | 378 | 58 | 157 | Full ICHD-II criteria, current migraine | No migraine | 18263651 |

## Supplementary Table 2. Evaluating heterogeneity from the 23andMe study.

The table shows summary statistics for 12 SNPs that have been previously associated with migraine (Anttila et al 2013, PMID:23793025). The effect sizes and allele frequencies for 23andMe (where migraine was self-reported by questionnaire) can be compared to those of the other 15 population-based studies (self-reported migraine and structured questionnaires), and to those of the six best phenotyped clinic-based studies (where migraine was doctor-diagnosed or by telephone interview). The table shows that 23andMe effects are closely comparable to both ascertainment groups. After combining all population and clinic-based studies in meta-analysis, the table shows that the 23andMe study does not contribute substantial heterogeneity. Only one SNP (rs10915437) shows significant heterogeneity (correcting for 12 tests) but was already heterogeneous in the meta-analysis before including 23andMe. The $Q$-Pval column is the $p$-value from Cochran's $Q$ test for heterogeneity and $i^{2}$ is the heterogeneity index.

| Locus | SNP | Allele | 23andMe |  | Population-based ( 15 GWA studies) |  | Clinic-based( 6 GWA studies) |  | Meta-analysis of Population \& Clinic-based (excluding 23andMe) |  |  |  | Meta-analysis of all 22 GWA studies (including 23andMe) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MAF | OR [95\% CI] | MAF | OR [95\% CI] | MAF | OR [95\% CI] | OR [95\% CI] | P | Q Pval | $\begin{gathered} \mathbf{i}^{2} \\ (\%) \end{gathered}$ | OR [95\% CI] | P | Q Pval | $\begin{gathered} \mathbf{i}^{2} \\ (\%) \end{gathered}$ |
| PRDM16 | rs2651899 | C | 0.44 | 1.06 [1.04-1.08] | 0.38 | 1.10 [1.07-1.12] | 0.43 | 1.04 [0.99-1.09] | 1.09 [1.07-1.11] | $1.6 \mathrm{E}-15$ | 0.01 | 46 | 1.07 [1.06-1.08] | $2.4 \mathrm{E}-22$ | 0.005 | 48 |
| Near AJAP1 | rs10915437 | G | 0.36 | 1.00 [0.99-1.02] | 0.34 | 1.00 [0.97-1.02] | 0.37 | 0.90 [0.86-0.95] | 0.98 [0.96-1.00] | 5.9E-02 | 0.0006 | 56 | 0.99 [0.98-1.01] | 3.9E-01 | 0.0004 | 56 |
| Near TSPAN2 | rs12134493 | A | 0.11 | 1.10 [1.07-1.13] | 0.12 | 1.13 [1.09-1.17] | 0.12 | 1.15 [1.07-1.23] | 1.13 [1.10-1.17] | 6.6E-15 | 0.28 | 13 | 1.11 [1.09-1.13] | 5.2E-24 | 0.28 | 13 |
| MEF2D | rs2274316 | C | 0.34 | 1.07 [1.05-1.09] | 0.36 | 1.06 [1.03-1.08] | 0.36 | 1.16 [1.10-1.21] | 1.08 [1.05-1.10] | 1.9E-11 | 0.05 | 35 | 1.07 [1.06-1.09] | 1.7E-21 | 0.07 | 32 |
| TRPM8 | rs7577262 | A | 0.11 | 0.91 [0.88-0.94] | 0.10 | 0.89 [0.86-0.93] | 0.10 | 0.78 [0.72-0.85] | 0.87 [0.84-0.90] | 1.5E-14 | 0.11 | 28 | 0.89 [0.87-0.91] | 1.4E-22 | 0.09 | 29 |
| Near TGFBR2 | rs6790925 | T | 0.36 | 1.04 [1.02-1.06] | 0.38 | 1.02 [0.99-1.04] | 0.38 | 1.14 [1.09-1.20] | 1.04 [1.02-1.06] | 6.4E-04 | 0.01 | 45 | 1.04 [1.03-1.05] | 4.2E-08 | 0.02 | 40 |
| PHACTR1 | rs9349379 | G | 0.41 | 0.93 [0.92-0.95] | 0.41 | 0.94 [0.92-0.97] | 0.39 | 0.89 [0.85-0.94] | 0.93 [0.91-0.95] | 1.0E-09 | 0.25 | 16 | 0.93 [0.92-0.95] | 5.8E-22 | 0.26 | 14 |
| FHL5 | rs13208321 | A | 0.22 | 1.08 [1.06-1.11] | 0.22 | 1.08 [1.05-1.11] | 0.23 | 1.19 [1.12-1.26] | 1.10 [1.07-1.13] | 7.5E-14 | 0.03 | 38 | 1.09 [1.07-1.11] | 1.4E-25 | 0.04 | 35 |
| C7orf10 | rs4379368 | T | 0.10 | 1.08 [1.05-1.11] | 0.11 | 1.07 [1.03-1.11] | 0.12 | 1.21 [1.13-1.30] | 1.09 [1.06-1.13] | $2.3 \mathrm{E}-08$ | 0.27 | 14 | 1.09 [1.07-1.11] | $8.4 \mathrm{E}-15$ | 0.29 | 12 |
| Near MMP16 | rs10504861 | T | 0.18 | 1.00 [0.98-1.02] | 0.16 | 0.97 [0.94-1.00] | 0.18 | 0.93 [0.88-0.99] | 0.96 [0.93-0.99] | $2.7 \mathrm{E}-03$ | 0.46 | 0 | 0.98 [0.96-1.00] | $4.6 \mathrm{E}-02$ | 0.30 | 11 |
| ASTN2 | rs6478241 | A | 0.37 | 1.05 [1.03-1.07] | 0.36 | 1.04 [1.02-1.07] | 0.38 | 1.14 [1.09-1.20] | 1.06 [1.04-1.08] | $6.0 \mathrm{E}-08$ | 0.07 | 33 | 1.05 [1.04-1.07] | 1.2E-12 | 0.09 | 29 |
| LRP1 | rs11172113 | C | 0.40 | 0.90 [0.89-0.92] | 0.44 | 0.90 [0.88-0.92] | 0.40 | 0.90 [0.85-0.94] | 0.90 [0.88-0.92] | 2.0E-24 | 0.66 | 0 | 0.90 [0.89-0.91] | 5.6E-49 | 0.71 | 0 |

## Supplementary Table 3. Quality Control and imputation description of the individual GWA studies.

The table lists genotyping platforms, software, and quality control metrics applied for each GWA study. The marker- and individual-level exclusion thresholds given are for minor allele frequency (MAF), Hardy-Weinberg equilibrium (HWE), genotyping call rate, identity-by-descent (IBD).

| GWA Study | Full Name | GENOTYPING |  | IMPUTATION |  |  |  | ASSOCIATION ANALYSIS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Genotyping Platform | Quality Control | Imputation Reference Panel | MAF | Imputation Quality | Imputation Software | SNPs in metaanalysis | Analysis software |
| 23andMe | 23andMe Inc. | Illumina HumanHap550+ BeadChip (custom) | 1) $\mathrm{MAF}>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-20}$, <br> 3) Call Rate $>0.95$ <br> 4) IBD $<0.125$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | Beagle, Minimac | 8,668,133 | mach2dat |
| ALSPAC | Avon Longitudinal Study of Parents and Children | Illumina human660W-quad | 1) $\mathrm{MAF}>0.01$ <br> 2) HWE $>1.0 x^{-6}$ <br> 3) Call Rate $>0.95$ <br> 4) IBD $<0.125$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | MACH, Minimac | 8,343,543 | mach2dat |
| ATM | Australian Twin Migraine | Illumina (various arrays) | 1) $\mathrm{MAF}>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) Call rate $>0.95$, <br> 4) IBD $<0.125$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | MACH, Minimac | 7,439,352 | PLINK |
| B58C | 1958 British Birth Cohort | Illumina 550k <br> Illumina 1.2M DuoCustom | 1) $\mathrm{MAF}>0.01$, <br> 2) $\mathrm{HWE}>0.0001$, <br> 3) Call Rate $>95 \%$, <br> 4) Concordant allele <br> frequencies across 3 deposits | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | MACH, Minimac | 8,166,696 | ProbAbel |
| Danish HC | Danish Headache Center | Illumina Human OmniExpress-12v1 | 1) $\mathrm{MAF}>0.01$ <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) Call rate $>95 \%$, <br> 4) IBD $<0.125$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | SHAPEIT, IMPUTE2 | 9,147,346 | Custom software |
| DeCODE | deCODE Genetics Inc. | Illumina HumanHap 317K, 370K, 610K or 1M BeadArrays | 1) $\mathrm{MAF}>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-3}$, <br> 3) Geno/Sample Yield $>95 \%$, <br> 4) Inher error < 0.001, <br> 5) No chip-chip freq diff, <br> 6) Sample yield $>97 \%$ | Custom Icelandic, 2300 wholegenomes | > 1\% | > 0.6 | Custom software | 9,119,069 | Custom software |
| Dutch MA | Dutch migraine with aura | Illumina 550k | 1) $\mathrm{MAF}>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) Call Rate $>95 \%$, <br> 4) IBD $<0.185$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | SHAPEIT, IMPUTE2 | 9,047,309 | SNPTEST |
| Dutch MO | Dutch migraine without aura | Illumina 550k | 1) $M A F>0.01$, <br> 2) HWE $>1 \times 10^{-6}$, <br> 3) Call Rate $>95 \%$, <br> 4) IBD $<0.185$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | SHAPEIT, IMPUTE2 | 9,037,120 | SNPTEST |
| EGCUT | Estonian Genome Center, University of Tartu | Illumina HumanHapCNV370 OmniExpress array | 1) $\mathrm{MAF}>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) Call Rate $>95 \%$, <br> 4) IBD $<0.185$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | SHAPEIT, IMPUTE2 | 8,906,443 | SNPTEST |


| Finnish MA | Finnish migraine with aura | Illumina 610k (Cases); <br> Illumina 610k (HBC); <br> Illumina HumanOmniExpress <br> (FINRISK) | 1) $\mathrm{MAF}>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) Call Rate $>95 \%$, <br> 4) IBD $<0.185$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | SHAPEIT, IMPUTE2 | 8,859,953 | SNPTEST |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| German MA | German migraine with aura | Illumina 610k | 1) $\mathrm{MAF}>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) Call Rate $>95 \%$, <br> 4) IBD $<0.185$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | SHAPEIT, IMPUTE2 | 9,092,253 | SNPTEST |
| German MO | German migraine without aura | Illumina Human 610-Quad; Illumina Human 660W-Quad v1 | 1) $\mathrm{MAF}>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) Call Rate $>95 \%$, <br> 4) IBD $<0.185$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | SHAPEIT, IMPUTE2 | 8,666,173 | SNPTEST |
| Health2000 | Health 2000 | Illumina 610k | 1) $\mathrm{MAF}>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) Call Rate $>95 \%$, <br> 4) IBD $<0.185$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | SHAPEIT, IMPUTE2 | 9,419,974 | SNPTEST |
| HUNT | Nord-Trøndelag Health Study | Illumina 670k (cases + pop controls); <br> Illumina 310k (lung cancer); <br> Illumina 550k (pre-eclampsia) | 1) $\mathrm{MAF}>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) Call Rate $>95 \%$, <br> 4) IBD $<0.185$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | SHAPEIT, IMPUTE2 | 8,961,818 | SNPTEST |
| NFBC | Northern Finnish Birth Cohort | Illumina 370k | 1) MAF $>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) Call Rate $>95 \%$, <br> 4) IBD $<0.185$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | SHAPEIT, IMPUTE2 | 9,331,341 | SNPTEST |
| NTR/NESDA | Netherlands Twin <br> Register and the <br> Netherlands Study of Depression and Anxiety | Affymetrix Perlegen 5.0, Illumina 370, Illumina 660, Illumina Omni Express 1M, and Affymetrix 6.0 | 1) $\mathrm{MAF}>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-5}$, <br> 3) Call Rate $>0.90$, <br> 4) $\mathrm{F}<-0.10 \& F>0.10$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | MACH, Minimac | 7,656,469 | PLINK |
| Rotterdam III | Rotterdam Study III | Illumina Human 610 Quad | 1) $\mathrm{MAF}>0.001$, <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) SNP call rate $>98 \%$ <br> 4) IBD $<0.125$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | MACH, Minimac | 8,052,185 | mach2dat |
| Swedish <br> Twins | Swedish Twin Registry | Illumina HumanOmniExpress | 1) $\mathrm{MAF}>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) Call Rate $>95 \%$, <br> 4) IBD $<0.185$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | SHAPEIT, IMPUTE2 | 9,209,621 | SNPTEST |
| Tromsø | The Tromsø Study | Infinium HumanCoreExome BeadChip | 1) MAF $>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) Call Rate $>98 \%$, <br> 4) $\operatorname{IBD}<0.20$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | SHAPEIT, IMPUTE2 | 8,997,693 | SNPTEST |
| Twins UK | Twins UK | Illumina HumanHap300 and HumanHap610Q | 1) $\mathrm{MAF}>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) Call Rate $>0.97$, <br> 4) IBD $<0.1875$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | IMPUTE2 | 8,674,998 | GWAF |
| WGHS | Women's Genome Health Study | Illumina HumanHap300 Duo+ and iSelect | 1) $\mathrm{MAF}>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) Call Rate $>0.90$ | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | MACH, Minimac | 7,670,940 | mach2dat |
| Young Finns | Young Finns | Illumina Human 670k BeadChip | 1) MAF $>0.01$, <br> 2) $\mathrm{HWE}>1 \times 10^{-6}$, <br> 3) Call Rate $>0.95$, | 1000G, Phase I, v3, March 2012 | > 1\% | > 0.6 | SHAPEIT, IMPUTE2 | 9,394,411 | SNPTEST |

## Supplementary Table 4. Covariates and genomic inflation for each individual GWA study.

List of all covariates controlled for in each individual GWA study when estimating coefficients and association statistics using logistic regression. Sex was adjusted for in all studies. Age (if available) and other relevant covariates were used when necessary. Any principal components that were significantly associated with the phenotype were also used as covariates. Also listed for each study is the genomic inflation factor ( $\lambda_{G C}$ ), defined as the median ratio of the observed test statistic to the expected test statistic. A scaled version of the genomic inflation factor is also shown ( $\lambda_{1000}$ ) which denotes the inflation estimated for the same study but rescaled for 1000 cases and 1000 controls $^{62}$.

| Study | Covariates | All migraine studies |  |  |  | MA studies |  |  |  | MO studies |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Cases | Controls | $\lambda_{G C}$ | $\lambda_{1000}$ | Cases | Controls | $\lambda_{G C}$ | $\lambda_{1000}$ | Cases | Controls | $\lambda_{G C}$ | $\lambda_{1000}$ |
| 23andMe | sex, age, PCs 1-5 | 30465 | 143147 | 1.157 | 1.003 | - | - | - | - | - | - | - | - |
| ALSPAC | sex (females-only study) | 3134 | 5103 | 1.008 | 1.002 | - | - | - | - | - | - | - | - |
| ATM | sex | 1683 | 2383 | 0.999 | 0.999 | - | - | - | - | - | - | - | - |
| B58C | sex | 1165 | 4141 | 1.003 | 1.002 | - | - | - | - | - | - | - | - |
| Danish HC | sex | 1771 | 1000 | 1.025 | 1.019 | 775 | 1000 | 1.020 | 1.023 | 996 | 1000 | 1.019 | 1.019 |
| DeCODE | sex | 3135 | 95585 | 0.994 | 0.999 | 366 | 95585 | 1.007 | 1.009 | 608 | 95585 | 0.995 | 0.996 |
| Dutch MA | sex, PCs 1-10 | 734 | 5211 | 1.053 | 1.041 | 734 | 5211 | 1.053 | 1.041 | - | - | - | - |
| Dutch MO | sex, PCs 1-10 | 1115 | 2028 | 1.046 | 1.032 | - | - | - | - | 1115 | 2028 | 1.046 | 1.032 |
| EGCUT | sex, PCs 1-4 | 813 | 9850 | 1.027 | 1.018 | 76 | 9850 | 1.004 | 1.025 | 94 | 9850 | 1.010 | 1.054 |
| Finnish MA | sex | 933 | 2715 | 1.055 | 1.040 | 933 | 2715 | 1.055 | 1.040 | - | - | - | - |
| German MA | sex | 1071 | 1010 | 1.035 | 1.033 | 1071 | 1010 | 1.035 | 1.033 | - | - | - | - |
| German MO | sex | 1160 | 1647 | 1.028 | 1.021 | - | - | - | - | 1160 | 1647 | 1.028 | 1.021 |
| Health 2000 | sex | 136 | 1764 | 1.013 | 1.050 | - | - | - | - | - | - |  |  |
| HUNT | sex | 1395 | 1011 | 1.015 | 1.013 | 290 | 1011 | 1.035 | 1.077 | 980 | 1011 | 1.002 | 1.002 |
| NFBC | sex | 756 | 4393 | 1.046 | 1.036 | - | - | - | - | - | - | - | - |
| NTR/NESDA | sex, DNA (buccal/blood), PC1 | 1636 | 3819 | 1.026 | 1.011 | 544 | 3819 | 1.008 | 1.008 | 615 | 3819 | 1.026 | 1.025 |
| Rotterdam III | sex | 487 | 2175 | 1.023 | 1.028 | 106 | 2175 | 0.989 | 0.947 | 381 | 2175 | 1.018 | 1.027 |
| Swedish Twins | sex | 1307 | 4182 | 1.007 | 1.003 | - | - | - | - | - | - | - | - |
| Tromsø | sex | 660 | 2407 | 1.020 | 1.019 | - | - | - | - | - | - | - | - |
| Twins UK | sex, age | 618 | 2334 | 1.004 | 1.004 | 202 | 2334 | 1.010 | 1.026 | 416 | 2334 | 1.005 | 1.007 |
| WGHS | sex (females-only study) | 5122 | 18108 | 1.029 | 1.004 | 1177 | 18108 | 1.007 | 1.003 | 1826 | 18108 | 1.022 | 1.007 |


| Young Finns | sex | 378 | 2065 | 1.017 | 1.026 | 58 | 2065 | 1.029 | 1.253 | 157 | 2065 | 1.013 | 1.044 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Combined | - | 59674 | 316078 | 1.240 | 1.002 | 6332 | 144883 | 1.075 | 1.006 | 8348 | 139622 | 1.058 | 1.004 |

Supplementary Table 5. Validation of the migraine index SNPs by whole-genome sequencing.
The table shows concordance between the best-guess imputed genotypes and the genotypes obtained for the same individuals by whole-genome sequencing. A total of 3,919 Whole-genome sequences (WGS) were available for comparison from three GWA studies; the Finnish MA ( $N=169$ ), DeCode ( $N=2,575$ ), and EGCUT ( $N=1,175$ ). Concordance rates were high ( $>85 \%$ ) for 41 out of 45 migraine-associated index SNPs. The four SNPs with lower concordance rates were found to be multiallelic in the WGS (rs67338227, rs186166891, rs2672599) or in repeat regions (rs111404218) which make them more difficult for correct alignment and calling in sequencing pipelines. For two of these SNPs we identified proxies in high LD ( $r 2>0.6$ in 1000Genomes) to the original SNP and validated those instead; $99.25 \%$ concordance for rs2971606 (proxy to rs67338227) and 99.5\% concordance for rs6134000 (proxy to rs111404218). Additionally, rs111404218 was confirmed to exist as a variant in the EGCUT sample by visually inspecting reads using the Integrative Genomics Viewer software.

| Migraine SNPs from GWAS |  |  |  |  | Finnish MA |  |  | DeCode |  |  | EGCUT |  |  | Combined Validation |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nearest Gene | Chr | SNP | Allele | EAF | Cases | Controls | Concordance | Cases | Controls | Concordance | Cases | Controls | Concordance | Total N | Concordance |
| PRDM16 | 1 | rs10218452 | G | 0.22 | 72 | 92 | 95.73 | 89 | 1929 | 98.76 | 59 | 1116 | 96.31 | 3357 | 97.76 |
| PRDM16 | 1 | rs12135062 | T | 0.23 | 71 | 89 | 85.63 | 103 | 2170 | 96.88 | 59 | 1116 | 88.12 | 3608 | 93.53 |
| LRRIQ3 | 1 | rs1572668 | A | 0.52 | 70 | 92 | 100 | 112 | 2410 | 99.52 | 59 | 1116 | 98.69 | 3859 | 99.29 |
| TSPAN2 | 1 | rs2078371 | C | 0.12 | 73 | 94 | 99.40 | 115 | 2446 | 99.80 | 59 | 1116 | 98.88 | 3903 | 99.51 |
| NGF | 1 | rs7544256 | G | 0.36 | 73 | 96 | 98.82 | 115 | 2383 | 98.92 | 59 | 1116 | 98.59 | 3842 | 98.82 |
| ADAMTSL4 | 1 | rs6693567 | C | 0.27 | 72 | 92 | 100 | 107 | 2344 | 97.10 | 59 | 1116 | 99.16 | 3790 | 97.87 |
| MEF2D | 1 | rs1925950 | G | 0.35 | 72 | 95 | 99.40 | 111 | 2359 | 97.65 | 59 | 1116 | 99.51 | 3812 | 98.30 |
| CARF | 2 | rs138556413 | T | 0.03 | 68 | 87 | 98.71 | 115 | 2456 | 99.69 | 59 | 1116 | 100 | 3901 | 99.74 |
| HJURP | 2 | rs566529 | T | 0.15 | 72 | 96 | 99.40 | 112 | 2452 | 99.80 | 59 | 1116 | 99.60 | 3907 | 99.73 |
| TRPM8 | 2 | rs10166942 | C | 0.20 | 72 | 96 | 99.40 | 112 | 2440 | 99.88 | 59 | 1116 | 98.72 | 3895 | 99.51 |
| TGFBR2 | 3 | rs6791480 | T | 0.31 | 73 | 91 | 100 | 112 | 2415 | 99.80 | 59 | 1116 | 99.05 | 3866 | 99.58 |
| GPR149 | 3 | rs13078967 | C | 0.03 | 72 | 94 | 97.59 | 109 | 2404 | 98.29 | 59 | 1116 | 86.36 | 3854 | 94.62 |
| SPINK2 | 4 | rs7684253 | T | 0.55 | 69 | 93 | 98.77 | 107 | 2382 | 99.80 | 59 | 1116 | 99.33 | 3826 | 99.61 |
| PHACTR1 | 6 | rs9349379 | G | 0.41 | 72 | 94 | 99.40 | 101 | 2138 | 96.29 | 59 | 1116 | 98.93 | 3580 | 97.30 |
| NOTCH4 | 6 | rs140002913 | A | 0.06 | 73 | 96 | 98.22 | 104 | 2197 | 97.18 | 59 | 1116 | 59.38 | 3645 | 85.04 |
| KCNK5 | 6 | rs10456100 | T | 0.28 | 72 | 96 | 97.02 | 112 | 2375 | 99.60 | 59 | 1116 | 98.21 | 3830 | 99.06 |
| FUT9 | 6 | rs2223239 | T | 0.15 | 73 | 95 | 99.40 | 114 | 2433 | 99.49 | 59 | 1116 | 99.39 | 3890 | 99.46 |
| FHL5 | 6 | rs67338227 | T | 0.23 |  | Not called | n WGS | 86 | 1859 | 56.50 | 59 | 1116 | 2.07 | 3120 | 36.00 |


| GJA1 | 6 | rs28455731 | T | 0.16 | 71 | 95 | 99.40 | 114 | 2460 | 99.65 | 59 | 1116 | 99.30 | 3915 | 99.54 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HEY2 | 6 | rs1268083 | C | 0.48 | 73 | 96 | 98.82 | 115 | 2446 | 99.80 | 59 | 1116 | 99.12 | 3905 | 99.56 |
| C7orf10 | 7 | rs186166891 | T | 0.11 | 25 | 34 | 98.31 | 106 | 2323 | 71.93 | 59 | 1116 | 74.15 | 3663 | 73.07 |
| DOCK4 | 7 | rs10155855 | T | 0.05 | 72 | 95 | 99.40 | 107 | 2328 | 99.92 | 59 | 1116 | 97.50 | 3777 | 99.14 |
| ASTN2 | 9 | rs6478241 | A | 0.36 | 69 | 90 | 100 | 113 | 2416 | 99.05 | 59 | 1116 | 98.19 | 3863 | 98.83 |
| NRP1 | 10 | rs2506142 | G | 0.17 | 72 | 95 | 99.40 | 114 | 2446 | 99.80 | 59 | 1116 | 98.68 | 3902 | 99.45 |
| PLCE1 | 10 | rs10786156 | G | 0.45 | 69 | 92 | 100 | 113 | 2382 | 99.64 | 59 | 1116 | 98.91 | 3831 | 99.43 |
| PLCE1 | 10 | rs75473620 | T | 0.04 | 71 | 95 | 98.19 | 113 | 2426 | 98.15 | 59 | 1116 | 94.62 | 3880 | 97.08 |
| HPSE2 | 10 | rs12260159 | A | 0.07 | 72 | 94 | 98.80 | 112 | 2415 | 99.17 | 59 | 1116 | 95.56 | 3868 | 98.06 |
| ARMS2 | 10 | rs2223089 | C | 0.08 | 73 | 95 | 99.40 | 114 | 2339 | 99.84 | 59 | 1116 | 98.21 | 3796 | 99.32 |
| ARMS2 | 10 | rs2672599 | C | 0.54 | 14 | 21 | 77.14 | 72 | 1468 | 60.32 | 59 | 1116 | 61.41 | 2750 | 61.00 |
| MRVII | 11 | rs4910165 | C | 0.33 | 73 | 96 | 99.41 | 112 | 2353 | 99.76 | 59 | 1116 | 99.23 | 3809 | 99.58 |
| MPPED2 | 11 | rs11031122 | C | 0.24 | 70 | 94 | 100 | 112 | 2423 | 99.72 | 59 | 1116 | 98.51 | 3874 | 99.37 |
| YAP1 | 11 | rs10895275 | A | 0.33 | 71 | 92 | 100 | 111 | 2428 | 99.80 | 59 | 1116 | 98.67 | 3877 | 99.47 |
| IGSF9B | 11 | rs561561 | T | 0.12 |  | mpu | WAS | 104 | 2163 | 99.96 | 59 | 1116 | 98.95 | 3442 | 99.61 |
| FGF6 | 12 | rs1024905 | C | 0.53 | 73 | 96 | 100 | 112 | 2393 | 99.72 | 59 | 1116 | 98.95 | 3849 | 99.50 |
| SDR9C7 | 12 | rs7961602 | T | 0.41 | 72 | 92 | 98.78 | 109 | 2335 | 96.44 | 59 | 1116 | 93.71 | 3783 | 95.69 |
| LRP1 | 12 | rs11172113 | C | 0.42 | 73 | 95 | 99.40 | 103 | 2230 | 92.33 | 59 | 1116 | 99.09 | 3676 | 94.81 |
| ITPK1 | 14 | rs11624776 | C | 0.31 | 71 | 95 | 100 | 101 | 2061 | 99.31 | 59 | 1116 | 98.69 | 3503 | 99.13 |
| CFDP1 | 16 | rs77505915 | G | 0.55 | 66 | 79 | 93.79 | 103 | 2297 | 97.75 | 59 | 1116 | 94.91 | 3720 | 96.70 |
| ZCCHC14 | 16 | rs4081947 | G | 0.34 |  | mpu | WAS | 106 | 2297 | 99.13 | 59 | 1116 | 99.22 | 3578 | 99.16 |
| WSCD1 | 17 | rs75213074 | T | 0.03 | 72 | 96 | 100 | 111 | 2388 | 99.92 | 59 | 1116 | 97.78 | 3842 | 99.27 |
| RNF213 | 17 | rs17857135 | C | 0.17 |  | mpu | WAS | 106 | 2220 | 96.65 | 59 | 1116 | 89.18 | 3501 | 94.14 |
| JAG1 | 20 | rs111404218 | G | 0.34 |  | call |  | 86 | 1818 | 81.62 |  | ot calle |  | 1904 | 81.62 |
| SLC24A3 | 20 | rs4814864 | C | 0.26 | 72 | 95 | 98.80 | 110 | 2414 | 99.88 | 59 | 1116 | 98.10 | 3866 | 99.29 |
| CCM2L | 20 | rs144017103 | T | 0.02 | 73 | 94 | 97.01 | 105 | 2324 | 99.75 | 59 | 1116 | 61.76 | 3771 | 87.79 |
| MED14 | X | rs12845494 | G | 0.27 | 68 | 88 | 98.72 | 114 | 2372 | 97.30 | 59 | 1116 | 91.98 | 3817 | 95.72 |

Supplementary Table 6. Previously reported loci not reaching genome-wide significance in the current meta-analysis. We tested 3 loci (near AJAP1, near MMP16, and near MTDH) that were previously reported to be associated with migraine subtypes through GWA studies. For each of the 3 previously reported index SNPs we show the effect sizes and association $P$-values obtained from our primary analysis of all migraine ( 59,674 cases and 316,078 controls), from the MA subset analysis ( 6,332 cases and 142,817 controls), from the MO subset analysis ( 8,348 cases and 136,758 controls), and from a meta-analysis of the six clinical samples only ( 6,784 and 13,611 controls). These loci are no longer significant ( $P<5 \times 10^{-8}$ ) in our current larger sample for any subsetting of the data. The ' $Q$ pval' is the $P$-value from Cochran's $Q$ test for heterogeneity.

| Locus | Original PMID | SNP | Minor Allele | All migraine |  |  |  |  | MA subtype |  |  |  |  | MO subtype |  |  |  |  | Clinical samples only |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | MAF | $\begin{gathered} \text { OR } \\ {[95 \% \mathrm{Cl}]} \end{gathered}$ | P | $\underset{\text { pval }}{\mathrm{Q}}$ | $\mathrm{i}^{2}$ | MAF | $\begin{gathered} \text { OR } \\ {[95 \% \mathrm{Cl}]} \end{gathered}$ | P | $\underset{\text { pval }}{\text { Q }}$ | $\mathrm{i}^{2}$ | MAF | $\begin{gathered} \text { OR } \\ {[95 \% \mathrm{CI}]} \end{gathered}$ | P | $\underset{\text { pval }}{\text { Q }}$ | $\mathrm{i}^{2}$ | MAF | $\begin{gathered} \text { OR } \\ {[95 \% \mathrm{CI}]} \end{gathered}$ | P | $\underset{\text { pval }}{\text { Q }}$ | $\mathrm{i}^{2}$ |
| near | 23793025 | rs10915437 | G | 0.35 | $\begin{gathered} 0.99 \\ {[0.98-1.01]} \end{gathered}$ | 0.39 | $3.8 \times 10^{-4}$ | 0.56 | 0.34 | $\begin{gathered} 0.93 \\ {[0.89-0.98]} \end{gathered}$ | 0.002 | 0.08 | 0.39 | 0.34 | $\begin{gathered} 1.03 \\ {[0.99-1.07]} \end{gathered}$ | 0.20 | 0.04 | 0.47 | 0.37 | $\begin{gathered} 0.90 \\ {[0.86-0.95]} \end{gathered}$ | $4.4 \times 10^{-5}$ | 0.06 | 0.53 |
| near <br> MMP16 | 23793025 | rs10504861 | T | 0.17 | $\begin{gathered} 0.98 \\ {[0.96-1.00]} \end{gathered}$ | 0.05 | 0.30 | 0.11 | 0.16 | $\begin{gathered} 0.95 \\ {[0.90-1.00]} \end{gathered}$ | 0.06 | 0.61 | 0 | 0.16 | $\begin{gathered} 0.90 \\ {[0.86-0.95]} \end{gathered}$ | $4.9 \times 10^{-5}$ | 0.31 | 0.14 | 0.18 | $\begin{gathered} 0.93 \\ {[0.88-0.99]} \end{gathered}$ | 0.02 | 0.57 | 0 |
| near <br> MTDH | 20802479 | rs1835740 | T | 0.23 | $\begin{gathered} 1.01 \\ {[0.99-1.02]} \end{gathered}$ | 0.42 | 0.38 | 0.06 | 0.22 | $\begin{gathered} 1.07 \\ {[1.02-1.13]} \end{gathered}$ | 0.005 | 0.18 | 0.28 | 0.23 | $\begin{gathered} 1.01 \\ {[0.97-1.06]} \end{gathered}$ | 0.55 | 0.57 | 0 | 0.22 | $\begin{gathered} 1.10 \\ {[1.04-1.17]} \end{gathered}$ | 7.0×10-4 | 0.26 | 0.22 |

Supplementary Table 7. The 44 LD-independent SNPs that are significantly associated with migraine ( $\mathrm{P}<5 \times 10^{-8}$ ). Effect sizes and association P-values were obtained from the primary meta-analysis of all migraine ( 59,674 cases and 316,078 controls). SNPs are ordered by chromosomal position and shaded rows represent SNPs within loci containing two associated SNPs that are LD-independent ( $r^{2}<0.1$ in 1000 Genomes European samples). The $P$-value(FE) lists the $p$-values from a fixed-effects metaanalysis and the $P$-value(RE) gives the $p$-value from a random effects model at the four SNPs that showed evidenced for heterogeneity in Cochran's $Q$ test for heterogeneity ( $Q P$-value $<0.05$ ). $i^{2}$ is the heterogeneity index and PAR is the population attributable risk contributed by each individual SNP. To estimate PAR we used $P A R_{k}=A F_{k}\left(O R_{k}-1\right) /\left[1+A F_{k}\left(O R_{k}-1\right)\right]$ where $A F_{k}$ is the frequency of the risk allele and $O R_{k}$ is the corresponding odds ratio of the risk-increasing allele at the $k^{\text {th }}$ SNP. The joint PAR for all SNPs combined was then estimated as $16.65 \%$ using $P A R_{\text {joint }}=1-\prod_{k}\left(1-P A R_{k}\right)$. Note PARs are difficult to interpret as applied to risk alleles in a population, as they tend to overestimate the predictive value of variants to a disease. The 'No. Samples' and 'No. Studies' columns show the total number of samples and studies respectively that had the marker present after quality control filtering.

| Nearest Gene | Chr | Position | SNP | Minor Allele | MAF | OR [95\% CI] | $P$-value <br> (FE) | $P$-value <br> (RE) |  | No. Studies | Q <br> $P$-value | $i^{2}$ | $\begin{aligned} & \hline \text { PAR } \\ & \text { (\%) } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRDM16 | 1 | 3075597 | rs10218452 | G | 0.22 | 1.11 [1.10-1.13] | $5.3 \times 10^{-38}$ | - | 370,744 | 20 | 0.44 | 0.01 | 2.48 |
| PRDM16 | 1 | 3103312 | rs12135062 | T | 0.23 | 1.05 [1.04-1.07] | $3.7 \times 10^{-10}$ | - | 374,810 | 22 | 0.58 | 0 | 1.17 |
| LRRIQ3 | 1 | 73899742 | rs1572668 | G | 0.48 | 1.04 [1.02-1.05] | $2.1 \times 10^{-08}$ | - | 374,810 | 22 | 0.26 | 0.14 | 1.85 |
| TSPAN2 | 1 | 115677183 | rs2078371 | C | 0.12 | 1.11 [1.09-1.13] | $4.1 \times 10^{-24}$ | - | 374,810 | 22 | 0.24 | 0.15 | 1.28 |
| NGF | 1 | 115824398 | rs7544256 | G | 0.36 | 0.96 [0.95-0.97] | $8.7 \times 10^{-09}$ | - | 374,810 | 22 | 0.26 | 0.14 | 2.64 |
| ADAMTSL4 | 1 | 150510660 | rs6693567 | C | 0.27 | 1.05 [1.03-1.06] | $1.2 \times 10^{-08}$ | - | 374,810 | 22 | 0.15 | 0.23 | 1.23 |
| MEF2D | 1 | 156450740 | rs1925950 | G | 0.35 | 1.07 [1.06-1.09] | $9.1 \times 10^{-22}$ | - | 374,810 | 22 | 0.06 | 0.33 | 2.45 |
| CARF | 2 | 203832867 | rs138556413 | T | 0.03 | 0.88 [0.84-0.92] | $2.3 \times 10^{-08}$ | - | 346,121 | 14 | 0.94 | 0 | 11.56 |
| HJURP | 2 | 234756811 | rs566529 | T | 0.15 | 0.94 [0.93-0.96] | $2.5 \times 10^{-09}$ | - | 374,706 | 22 | 0.37 | 0.06 | 4.84 |
| TRPM8 | 2 | 234825093 | rs10166942 | C | 0.20 | 0.94 [0.89-0.99] | $2.2 \times 10^{-27}$ | $2.2 \times 10^{-27}$ | 374,706 | 22 | 0.01 | 0.44 | 7.5 |
| TGFBR2 | 3 | 30480559 | rs6791480 | T | 0.31 | 1.04 [1.03-1.06] | $7.8 \times 10^{-09}$ | - | 374,706 | 22 | 0.43 | 0.02 | 1.34 |
| GPR149 | 3 | 154289946 | rs13078967 | C | 0.03 | 0.87 [0.83-0.91] | $1.8 \times 10^{-09}$ | - | 374,705 | 22 | 0.89 | 0 | 13.11 |
| SPINK2 | 4 | 57727311 | rs7684253 | C | 0.45 | 0.96 [0.94-0.97] | $2.5 \times 10^{-09}$ | - | 374,706 | 22 | 0.42 | 0.03 | 2.27 |
| PHACTR1 | 6 | 12903957 | rs9349379 | G | 0.41 | 0.93 [0.92-0.95] | $5.8 \times 10^{-22}$ | - | 374,706 | 22 | 0.26 | 0.14 | 4.07 |
| NOTCH4 | 6 | 32206049 | rs140002913 | A | 0.06 | 0.91 [0.88-0.94] | $3.8 \times 10^{-08}$ | - | 237,502 | 17 | 0.36 | 0.08 | 8.73 |


| KCNK5 | 6 | 39183470 | rs10456100 | T | 0.28 | 1.06 [1.04-1.07] | $6.9 \times 10^{-13}$ | - | 374,705 | 22 | 0.84 | 0 | 1.57 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FUT9 | 6 | 96767685 | rs2223239 | T | 0.15 | 1.06 [1.04-1.08] | $3.2 \times 10^{-10}$ | - | 374,706 | 22 | 0.21 | 0.18 | 0.91 |
| FHL5 | 6 | 97042147 | rs67338227 | T | 0.23 | 1.09 [1.08-1.11] | $2.0 \times 10^{-27}$ | - | 374,706 | 22 | 0.05 | 0.33 | 2.09 |
| GJA1 | 6 | 121846038 | rs28455731 | T | 0.16 | 1.06 [1.04-1.08] | $7.3 \times 10^{-09}$ | - | 374,706 | 22 | 0.17 | 0.21 | 0.9 |
| HEY2 | 6 | 126049040 | rs1268083 | C | 0.48 | 0.96 [0.95-0.97] | $5.3 \times 10^{-09}$ | - | 374,706 | 22 | 0.24 | 0.16 | 2.1 |
| C7orf10 | 7 | 40406876 | rs186166891 | T | 0.11 | 1.09 [1.07-1.12] | $9.7 \times 10^{-16}$ | - | 374,705 | 22 | 0.29 | 0.12 | 0.98 |
| DOCK4 | 7 | 111328397 | rs10155855 | T | 0.05 | 1.08 [1.05-1.12] | $2.1 \times 10^{-08}$ | - | 374,706 | 22 | 0.15 | 0.23 | 0.45 |
| ASTN2 | 9 | 119252629 | rs6478241 | A | 0.36 | 1.05 [1.04-1.07] | $1.2 \times 10^{-12}$ | - | 374,706 | 22 | 0.09 | 0.29 | 1.85 |
| NRP1 | 10 | 33468124 | rs2506142 | G | 0.17 | 1.06 [1.04-1.07] | $1.5 \times 10^{-09}$ | - | 374,706 | 22 | 0.09 | 0.29 | 0.95 |
| PLCE1 | 10 | 96014622 | rs10786156 | G | 0.45 | 0.95 [0.94-0.96] | $2.0 \times 10^{-14}$ | - | 374,706 | 22 | 0.08 | 0.30 | 2.95 |
| PLCE1 | 10 | 96019029 | rs75473620 | T | 0.04 | 0.89 [0.86-0.93] | $5.8 \times 10^{-09}$ | - | 374,706 | 22 | 0.74 | 0 | 10.25 |
| HPSE2 | 10 | 100702737 | rs12260159 | A | 0.07 | 0.92 [0.89-0.94] | $3.2 \times 10^{-10}$ | - | 374,706 | 22 | 0.65 | 0 | 7.92 |
| ARMS2 | 10 | 124210160 | rs2223089 | C | 0.08 | 0.93 [0.91-0.95] | $3.0 \times 10^{-08}$ | - | 374,706 | 22 | 0.24 | 0.15 | 6.37 |
| MRVI1 | 11 | 10674044 | rs4910165 | C | 0.33 | 0.94 [0.91-0.98] | $3.7 \times 10^{-14}$ | $2.9 \times 10^{-11}$ | 374,706 | 22 | 0.02 | 0.41 | 3.71 |
| MPPED2 | 11 | 30547438 | rs11031122 | C | 0.24 | 1.04 [1.03-1.06] | $3.5 \times 10^{-08}$ | - | 374,706 | 22 | 0.62 | 0 | 1.06 |
| YAP1 | 11 | 102083608 | rs10895275 | A | 0.33 | 1.04 [1.03-1.06] | $1.6 \times 10^{-08}$ | - | 374,706 | 22 | 0.79 | 0 | 1.35 |
| IGSF9B | 11 | 133829706 | rs561561 | T | 0.12 | 0.94 [0.92-0.96] | $3.4 \times 10^{-08}$ | - | 368,251 | 20 | 0.77 | 0 | 5.3 |
| FGF6 | 12 | 4518140 | rs1024905 | G | 0.47 | 1.06 [1.04-1.08] | $2.1 \times 10^{-17}$ | - | 374,706 | 22 | 0.17 | 0.21 | 2.77 |
| SDR9C7 | 12 | 57273481 | rs7961602 | T | 0.41 | 0.95 [0.94-0.97] | $2.1 \times 10^{-11}$ | - | 374,706 | 22 | 0.44 | 0.02 | 2.82 |
| LRP1 | 12 | 57527283 | rs11172113 | C | 0.42 | 0.90 [0.89-0.91] | $5.6 \times 10^{-49}$ | - | 374,706 | 22 | 0.71 | 0 | 5.98 |
| ITPK1 | 14 | 93595591 | rs11624776 | C | 0.31 | 0.96 [0.94-0.97] | $7.9 \times 10^{-09}$ | - | 374,706 | 22 | 0.39 | 0.05 | 2.99 |
| CFDP1 | 16 | 75442143 | rs77505915 | T | 0.45 | 1.05 [1.03-1.06] | $3.3 \times 10^{-10}$ | - | 374,705 | 22 | 0.92 | 0 | 2.08 |
| ZCCHC14 | 16 | 87579870 | rs4081947 | G | 0.34 | 1.03 [1.00-1.06] | $2.5 \times 10^{-08}$ | $2.5 \times 10^{-09}$ | 368,251 | 20 | 0.01 | 0.47 | 1.4 |
| WSCD1 | 17 | 5612640 | rs75213074 | T | 0.03 | 0.89 [0.86-0.93] | $7.1 \times 10^{-09}$ | - | 374,706 | 22 | 0.86 | 0 | 10.2 |
| RNF213 | 17 | 78262161 | rs17857135 | C | 0.17 | 1.06 [1.04-1.08] | $5.2 \times 10^{-10}$ | - | 364,185 | 18 | 0.20 | 0.20 | 1.06 |
| JAG1 | 20 | 10684159 | rs111404218 | G | 0.34 | 1.05 [1.03-1.07] | $2.0 \times 10^{-09}$ | - | 374,705 | 22 | 0.56 | 0 | 1.65 |
| SLC24A3 | 20 | 19469817 | rs4814864 | C | 0.26 | 1.07 [1.06-1.09] | $2.2 \times 10^{-19}$ | - | 374,706 | 22 | 0.41 | 0.04 | 1.83 |
| CCM2L | 20 | 30628982 | rs144017103 | T | 0.02 | 0.85 [0.76-0.96] | $4.3 \times 10^{-08}$ | $1.2 \times 10^{-08}$ | 317,252 | 16 | 0.03 | 0.42 | 16.72 |
| MED14 | 23 | 40764757 | rs12845494 | G | 0.27 | 0.96 [0.95-0.97] | $1.7 \times 10^{-08}$ | - | 358,626 | 18 | 0.60 | 0 | 2.88 |

Supplementary Table 8. Overlaps with the NHGRI GWAS catalog and OMIM of all 38 loci identified, rank ordered by lowest p-value of association.
For each locus, the nearest coding gene to the index SNP is given. The region column provides the left and right boundaries of all markers that are in LD with the index SNP (with an $r^{2}>0.6$ ). The size is the length of this LD region. Any other protein coding genes with transcripts overlapping this region (including a 20kb flank on each transcript) are given as they could also be relevant to migraine.

| Rank | Top SNP | Allele | EAF | OR [95\% CI] | P | Nearest coding gene | Region (hg19/b37) | Size <br> (kb) | Protein-coding genes in region | NHGRI GWAS catalog | OMIM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | rs11172113 | c | 0.42 | 0.9 [0.89-0.91] | 5.6E-49 | LRP1 | chr12:57244168-57545756 | 301.6 | LRP1, STATG, NAB2, TMEM194A, MYO1A, TАСЗ, ZВТВ39, НВСВР, GPR182, RDH16, SDR9C7 |  | MYO1A Deafness, autosomal dominant 48; TAC3 Hypogonadotropic hypogonadism 10 with or without anosmia |
| 2 | rs10218452 | G | 0.22 | 1.11 [1.1-1.13] | 5.3E-38 | PRDM16 | chr1:3065568-3112278 | 46.7 | PRDM16 |  |  |
| 3 | rs67338227 | T | 0.23 | 1.09 [1.08-1.11] | 2.0E-27 | FHL5 | chr6:96735298-97092478 | 357.2 | FHL5, UFL1 |  |  |
| 4 | rs10166942 | C | 0.20 | 0.91 [0.89-0.92] | 2.2E-27 | TRPM8 | chr2:234726966-234874402 | 147.4 | TRPM8, HJURP, MROH2A | BP response pmid=24165912 $\mathrm{p}=3 \mathrm{E}-08$; Bilirubin levels pmid $=21646302 \mathrm{p}=7 \mathrm{E}-23$ |  |
| 5 | rs2078371 | C | 0.12 | 1.11 [1.09-1.13] | 4.1E-24 | TSPAN2 | chr1:115084796-115829943 | 745.2 | NGF, TSPAN2, TSHB, SYCP1, SIKE1, CSDE1, NRAS, AMPD1, DENND2C, BCAS2 | $\begin{aligned} & \text { Autism pmid=24189344 } \\ & \mathrm{p}=4 \mathrm{E}-08 \end{aligned}$ | NRAS Autoimmune <br> lymphoproliferative syndrome type IV; NRAS Noonan syndrome 6; NRAS Epidermal nevus, somatic; NRAS Thyroid carcinoma, follicular, somatic; NRAS Colorectal cancer, somatic; NRAS Melanocytic nevus syndrome, congenital, somatic; NRAS Neurocutaneous melanosis, somatic; NRAS Schimmelpenning-FeuersteinMims syndrome, somatic mosaic; TSHB Hypothryoidism, congenital, nongoitrous 4; AMPD1 Myopathy due to myoadenylate deaminase deficiency; NGF Neuropathy, hereditary sensory and autonomic, type V |


| 6 | rs9349379 | G | 0.41 | 0.93 [0.92-0.95] | 5.8E-22 | PHACTR1 | chr6:12768218-12948388 | 180.2 | PHACTR1 | CAD pmid=21846871 p=9E- <br> 26; Coronary artery calcification pmid=22144573 $\mathrm{p}=4 \mathrm{E}-22$; Cervical artery dissection pmid= 25420145 $\mathrm{p}=1 \mathrm{E}-11$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | rs1925950 | G | 0.35 | 1.07 [1.06-1.09] | 9.1E-22 | MEF2D | chr1:156403681-156507704 | 104.0 | IQGAP3, MEF2D, C1orf61 |  |  |
| 8 | rs4814864 | c | 0.26 | 1.07 [1.06-1.09] | 2.2E-19 | SLC24A3 | chr20:19455203-19574290 | 119.1 | SLC24A3 |  |  |
| 9 | rs1024905 | c | 0.53 | 0.94 [0.93-0.96] | 2.1E-17 | FGF6 | chr12:4514858-4529272 | 14.4 | FGF6 |  |  |
| 10 | rs186166891 | T | 0.11 | 1.09 [1.07-1.12] | 9.7E-16 | C7orf10 | chr7:40360982-40477363 | 116.4 | C7orf10 |  | C7orf10 Glutaric aciduria III |
| 11 | rs10786156 | G | 0.45 | 0.95 [0.94-0.96] | 2.0E-14 | PLCE1 | chr10:95976903-96823366 | 846.5 | CYP2C8, CYP2C9, CYP2C19, CYP2C18, HELLS, TBC1D12, NOC3L, PLCE1 | BP pmid=21909115 p=7E-16; HTN pmid=21909115 p=9E09; Dengue shock syndrome pmid=22001756 p=3E-10; Esophageal cancer pmid=21642993 p=4E-20; Personality dimensions pmid=21368711 p=4E-08; Response to clopidogrel therapy pmid=19706858 $\mathrm{p}=2 \mathrm{E}-13$; Response to SSRIs pmid=24528284 p=2E-16; Warfarin maintenance dose pmid=19300499 p=3E-79; Acenocoumarol maintenance dosage pmid=19578179 $\mathrm{p}=8 \mathrm{E}-12$; Blood metabolite levels pmid=24816252 $p=9 \mathrm{E}-$ 65; Dehydroepiandrosterone sulphate levels pmid $=21533175 \mathrm{p}=2 \mathrm{E}-08$ | CYP2C19 Mephenytoin poor metabolizer; CYP2C19 Opremazole poor metabolizer; CYP2C19 Proguanil poor metabolizer; CYP2C19 Clopidogrel, impaired responsiveness to; PLCE1 Nephrotic syndrome, type 3; CYP2C8 Rhabdomyolysis, cerivastatin-induced; CYP2C9 Tolbutamide poor metabolizer; CYP2C9 Warfarin sensitivity |
| 12 | rs4910165 | C | 0.33 | 0.95 [0.93-0.96] | 3.7E-14 | MRVII | chr11:10654911-10699750 | 44.8 | MRVII |  |  |
| 13 | rs10456100 | T | 0.28 | 1.06 [1.04-1.07] | 6.9E-13 | KCNK5 | chr6:39117698-39187886 | 70.2 | KCNK5 |  |  |
| 14 | rs6478241 | A | 0.36 | 1.05 [1.04-1.07] | 1.2E-12 | ASTN2 | chr9:119157030-119479868 | 322.8 | TRIM32, ASTN2, PAPPAAS1, PAPPA | $\begin{aligned} & \text { Height pmid=20881960 } \mathrm{p}=7 \mathrm{E}- \\ & 10 \end{aligned}$ | TRIM32 Muscular dystrophy, limbgirdle, type 2H; TRIM32 Bardet-Biedl syndrome 11 |


| 15 | rs12260159 | A | 0.07 | 0.92 [0.89-0.94] | 3.2E-10 | HPSE2 | chr10:100600946-100792984 | 192.0 | HPSE2 |  | HPSE2 Urofacial syndrome 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | rs77505915 | G | 0.55 | 0.95 [0.94-0.97] | 3.3E-10 | CFDP1 | chr16:75304623-75504768 | 200.2 | CHST6, TMEM170A, CFDP1, BCAR1 | Pulmonary function pmid $=21946350 \mathrm{p}=2 \mathrm{E}-11$ | CHST6 Macular corneal dystrophy |
| 17 | rs17857135 | C | 0.17 | 1.06 [1.04-1.08] | 5.2E-10 | RNF213 | chr17:78235300-78269111 | 33.8 | RNF213, SLC26A11 | Moyamoya disease pmid $=21048783 \mathrm{p}=2 \mathrm{E}-08$ | RNF213 Moyamoya disease 2 |
| 18 | rs2506142 | G | 0.17 | 1.06 [1.04-1.07] | 1.5E-09 | NRP1 | chr10:33464928-33468456 | 3.5 | NRP1 |  |  |
| 19 | rs13078967 | C | 0.03 | 0.87 [0.83-0.91] | 1.8E-09 | GPR149 | chr3:153891622-154438050 | 546.4 | GPR149, DHX36, ARHGEF26 |  |  |
| 20 | rs111404218 | G | 0.34 | 1.05 [1.03-1.07] | 2.0E-09 | JAG1 | chr20:10658917-10698494 | 39.6 | JAG1 | Bone mineral density pmid $=22504420 \mathrm{p}=3 \mathrm{E}-19$ | JAG1 Alagille syndrome; JAG1 Tetralogy of Fallot; JAG1 Deafness, congenital heart defects, and posterior embryotoxon |
| 21 | rs7684253 | T | 0.55 | 1.04 [1.03-1.06] | 2.5E-09 | REST | chr4:57727311-57761417 | 34.1 | REST | ARMD pmid $=21909106 \mathrm{p}=2 \mathrm{E}-$ 08 |  |
| 22 | rs1268083 | C | 0.48 | 0.96 [0.95-0.97] | 5.3E-09 | HEY2 | chr6:125988964-126116953 | 128.0 | NCOA7, HEY2 | Brugada syndrome pmid=23872634 p=5E-17 |  |
| 23 | rs75213074 | T | 0.03 | 0.89 [0.86-0.93] | 7.1E-09 | WSCD1 | chr17:5603221-5621884 | 18.7 | NLRP1-WSCD1* |  | NLRP1 Vitiligo-associated multiple autoimmune disease susceptibility 1 ; NLRP1 Corneal intraepithelial dyskeratosis and ectodermal dysplasia |
| 24 | rs28455731 | T | 0.16 | 1.06 [1.04-1.08] | 7.3E-09 | GJA1 | chr6:121782750-121860207 | 77.5 | GJA1 | Heart rate pmid=23583979 $\mathrm{p}=7 \mathrm{E}-12$ | GJA1 Oculodentodigital dysplasia; GJA1 Syndactyly, type III; GJA1 Hypoplastic left heart syndrome 1; GJA1 Atrioventricular septal defect 3; GJA1 Oculodentodigital dysplasia, autosomal recessive; GJA1 Craniometaphyseal dysplasia, autosomal recessive |
| 25 | rs6791480 | T | 0.31 | 1.04 [1.03-1.06] | 7.8E-09 | TGFBR2 | chr3:30427287-30500279 | 73.0 | RBMS3-TGFBR2* | Breast cancer pmid=23535729 p=2E-08 | TGFBR2 Colorectal cancer, hereditary nonpolyposis, type 6; TGFBR2 <br> Esophageal cancer, somatic; TGFBR2 Loeys-Dietz syndrome, type 2 |
| 26 | rs11624776 | C | 0.31 | 0.96 [0.94-0.97] | 7.9E-09 | ITPK1 | chr14:93591673-93596315 | 4.6 | ITPK1 | Platelet counts <br> pmid=22139419 p=1E-10; |  |


|  |  |  |  |  |  |  |  |  |  | Thyroid hormone levels pmid=23408906 p=2E-09 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 27 | rs6693567 | C | 0.27 | 1.05 [1.03-1.06] | 1.2E-08 | ADAMTSL4 | chr1:150250636-150515021 | 264.4 | ADAMTSL4-AS1, <br> AL356356.1, ADAMTSL4, <br> ECM1, TARS2, RPRD2, <br> PRPF3, MRPS21, C1orf51, <br> C1orf54, APH1A, CA14 |  | TARS2 Combined oxidative phosphorylation deficiency 21; ADAMTSL4 Ectopia lentis, isolated, autosomal recessive; ADAMTSL4 Ectopia lentis et pupillae; ECM1 Urbach-Wiethe disease |
| 28 | rs10895275 | A | 0.33 | 1.04 [1.03-1.06] | 1.6E-08 | YAP1 | chr11:101990252-102135427 | 145.2 | YAP1 | Polycystic ovary syndrome pmid=22885925 p=1E-22 | YAP1 Coloboma, ocular, with or without hearing impairment, cleft lip/palate, and/or mental retardation; YAP1 Coloboma, ocular |
| 29 | rs12845494 | G | 0.27 | 0.96 [0.95-0.97] | 1.7E-08 | MED14 | chrX:40744847-40794520 | 49.7 | MED14-USP9X* |  | USP9X Mental retardation, X-linked 99 |
| 30 | rs10155855 | T | 0.05 | 1.08 [1.05-1.12] | 2.1E-08 | DOCK4 | chr7:111323799-111330237 | 6.4 | IMMP2L-DOCK4* | CRP and white cell count pmid=22788528 p=7E-11 |  |
| 31 | rs1572668 | A | 0.52 | 0.96 [0.95-0.98] | 2.1E-08 | LRRIQ3 | chr1:73458846-74098899 | 640.1 | NEGR1-LRRIQ3* | Schizophrenia <br> pmid=23974872 p=4E-10; <br> BMI pmid=20935630 p=2E- <br> 22; Obesity pmid=23563607 <br> $\mathrm{p}=2 \mathrm{E}-17$ |  |
| 32 | rs138556413 | T | 0.03 | 0.88 [0.84-0.92] | 2.3E-08 | CARF | chr2:203591540-204352252 | 760.7 | RAPH1, ABI2, CYP20A1, NBEAL1, CARF, WDR12, ICA1L, FAM117B | CAD pmid $=21378990 \mathrm{p}=1 \mathrm{E}-$ 09; Total cholesterol pmid=24097068 p=2E-09; Butyrylcholinesterase levels pmid=21862451 p=4E-18 |  |
| 33 | rs4081947 | G | 0.34 | 1.04 [1.03-1.06] | 2.5E-08 | ZCCHC14 | chr16:87576129-87579870 | 3.7 | ZCCHC14-JPH3* |  | JPH3 Huntington disease-like 2 |
| 34 | rs2223089 | C | 0.08 | 0.93 [0.91-0.95] | 3.0E-08 | ARMS2 | chr10:124126358-124232915 | 106.6 | HTRA1, ARMS2, PLEKHA1 | $\begin{aligned} & \text { ARMD pmid=23455636 } \\ & p=400 \mathrm{E}-540 \end{aligned}$ | PLEKHA1 Age-related maculopathy; HTRA1 Macular degeneration, agerelated, 7; HTRA1 Macular degeneration, age-related, neovascular type; HTRA1 CARASIL syndrome |


| 35 | rs561561 | T | 0.12 | 0.94 [0.92-0.96] | 3.4E-08 | IGSF9B | chr11:133813808-133846186 | 32.4 | IGSF9B |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 36 | rs11031122 | c | 0.24 | 1.04 [1.03-1.06] | 3.5E-08 | MPPED2 | chr11:30492070-30570596 | 78.5 | MPPED2 |  |  |
| 37 | rs140002913 | A | 0.06 | 0.91 [0.88-0.94] | 3.8E-08 | NOTCH4 | chr6:32200054-32206049 | 6.0 | NOTCH4 | Schizophrenia <br> pmid=19571808 p=2E-10; <br> Systemic sclerosis <br> pmid=21779181 p=9E-21; <br> Celiac disease <br> pmid=23936387 p=5E-21; UC <br> pmid=24837172 p=8E-10; RA <br> pmid=21505073 p=2E-38; <br> ARMD pmid=22694956 p=2E- <br> 11; Asthma pmid=21804548 <br> p=4E-23; Nephropathy <br> pmid=20595679 p=1E-09; <br> Prostate cancer <br> pmid=23535732 p=5E-09; <br> Myeloperoxidase levels <br> pmid=23620142 p=1E-08; <br> Complement C3 and C4 levels <br> pmid $=23028341 \mathrm{p}=4 \mathrm{E}-72$ |  |
| 38 | rs144017103 | T | 0.02 | 0.83 [0.78-0.89] | 4.3E-08 | CCM2L | chr20:30610164-30628982 | 18.8 | HCK, CCM2L, XKR7 |  |  |

Column 10 shows (1) all genes overlapping the locus after adding a 20 kb flank to capture regulatory effects; or (2) if no overlapping genes in (1), the nearest upstream and downstream genes within 500 kb are given (these loci are marked with an asterisk).

Column 11 shows intersections with the NHGRI GWAS catalog (http://www.genome.gov/gwastudies, downloaded February 2015) filtered for SNPs with P<5E-8 and retaining the SNP-phenotype entry with lowest $P$ value. For each entry, the trait, PubMed identifier and $P$ value are given.

Column 12 shows entries in the Online Mendelian Inheritance in Man (http://omim.org, downloaded February 2015), and gives gene name and corresponding disorder.
Abbreviations: ARMD=Age-related macular degeneration; $\mathrm{BMI}=$ Body mass index; $\mathrm{BP}=\mathrm{Blood}$ pressure; $\mathrm{CRP}=\mathrm{C}$-reactive protein; $\mathrm{HTN}=\mathrm{Hypertension;} \mathrm{RA=Rheumatoid} \mathrm{arthritis;} \mathrm{SSRI=Serotonin} \mathrm{reuptake}$ inhibitors; UC=Ulcerative colitis.

Supplementary Table 9. Genes in the 38 loci with previously reported associations to mechanisms or diseases that have hypothesized links to migraine.
Genes are grouped by the previously hypothesized mechanism or disease and pubmed IDs are given for each relevant publication.

| Mechanism/disease | $\begin{array}{c}\text { Annotating only one gene per locus } \\ \text { (the gene closest to index SNP) }\end{array}$ | Other genes in loci |
| :--- | :--- | :--- |
| Ion channels | $\begin{array}{l}\text { KCNK5 (PMID: 16239344) } \\ \text { TRPM8 (PMID: 23596210) }\end{array}$ |  |
| lon homeostasis | $\begin{array}{l}\text { KCNK5 (ion channel. PMID: 16239344) } \\ \text { TRPM8 (ion channel. PMID: 23596210) } \\ \text { SLC24A3 (exchanger. PMID: 11294880) }\end{array}$ | SLC26A11 (Cl- channel) |
|  | $\begin{array}{l}\text { ITPK1 (ion flux regulator. PMID: 8816834) }\end{array}$ | JPH3 |
|  | GJA1 (Ca2+ oscillations. PMID: 21654699) |  |$]$

## Supplementary Table 10. NHGRI GWAS catalog SNPs correlated with the migraine SNPs.

The table lists any National Human Genome Research Institute (NHGRI) GWAS catalog SNPs with previously reported associations ( $P$ $<5 \times 10^{-8}$ ) to other diseases/traits that are also in high LD (allelic $R^{2}>0.8$ ) with any of the 45 associated SNPs identified for migraine. Also shown is the risk-increasing allele reported for both the migraine SNP and the GWAS catalog SNP and the corresponding risk allele frequencies (RAF). The allelic $R^{2}$ is the square of Pearson's correlation coefficient between alleles at both SNPs (estimated using 1000 Genomes European individuals). The GWAS catalog data was downloaded on Jan $28^{\text {th }} 2016$.

| Locus | Migraine meta-analysis data |  |  |  |  | GWAS catalog data |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Migraine SNP | Risk <br> allele | RAF | OR [95\% CI] | $P$-value | DISEASE/TRAIT | GWAS catalog SNP | Allelic $R^{2}$ | Risk Allele | RAF | OR [95\% CI] | $P$-value | $\begin{aligned} & \text { PUBMED } \\ & \text { ID } \\ & \hline \end{aligned}$ |
| PHACTR1 | rs9349379 | A | 0.59 | 1.07 [1.06-1.09] | $5.8 \times 10^{-22}$ | Coronary artery calcification | rs9349379 | 1 | A | 0.59 | 1.22 [1.17-1.27] | 4.0E-22 | 22144573 |
| PHACTR1 | rs9349379 | A | 0.59 | 1.07 [1.06-1.09] | $5.8 \times 10^{-22}$ | Cervical artery dissection | rs9349379 | 1 | A | 0.60 | 1.30 [1.20-1.39] | 1.0E-11 | 25420145 |
| PHACTR1 | rs9349379 | A | 0.59 | 1.07 [1.06-1.09] | $5.8 \times 10^{-22}$ | Coronary heart disease | rs9349379 | 1 | G | 0.70 | 1.15 [1.10-1.21] | 2.0E-09 | 22751097 |
| ITPK1 | rs11624776 | A | 0.69 | 1.04 [1.03-1.06] | $7.9 \times 10^{-09}$ | Thyroid hormone levels | rs11624776 | 1 | A | 0.66 | 1.07 [1.04-1.09] | 2.0E-09 | 23408906 |
| LRP1 | rs11172113 | T | 0.58 | 1.11 [1.09-1.13] | $5.6 \times 10^{-49}$ | Pulmonary function | rs11172113 | 1 | T | 0.61 | 1.03 [1.02-1.04] | 1.0E-08 | 21946350 |
| PRDM16 | rs10218452 | G | 0.22 | 1.11 [1.10-1.13] | $5.3 \times 10^{-38}$ | Motion sickness | rs61759167 | 0.92 | T | 0.23 | 1.05 [1.03-1.06] | 4.0E-13 | 25628336 |
| CFDP1 | rs77505915 | T | 0.45 | 1.05 [1.03-1.06] | $3.3 \times 10^{-10}$ | Pulmonary function | rs2865531 | 0.81 | T | 0.42 | 1.03 [1.02-1.04] | 2.0E-11 | 21946350 |
| HEY2 | rs1268083 | T | 0.52 | 1.04 [1.03-1.06] | $5.3 \times 10^{-09}$ | Brugada syndrome | rs9388451 | 0.81 | C | 0.50 | 1.58 [1.42-1.75] | 5.0E-17 | 23872634 |

## Supplementary Table 11 The seven loci associated with the MO subtype.

Effect sizes and association P-values were obtained from the subset-analysis of the MO subtype ( 8,348 cases and 139,622 controls). The Q P-value is the P-value from Cochran's $Q$ test for heterogeneity and the i2 is the heterogeneity index. The No. Samples column shows the total number of samples with each marker present after quality control filtering. Likewise, the No. Studies column shows the total number GWA studies with each marker present after quality control filtering that could contribute data towards the final result.

| Nearest Gene | Chr | Pos | Index SNP | Allele | MAF | OR $[95 \% \mathrm{Cl}]$ | P | No. <br> Samples | No. <br> Studies | Q P-value | $i^{2}(\%)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TSPAN2 | 1 | 115677183 | rs2078371 | C | 0.11 | $1.18[1.12-1.25]$ | $7.4 \mathrm{E}-09$ | 144,801 | 11 | 0.61 |  |
| TRPM8 | 2 | 234820578 | rs6724624 | G | 0.20 | $0.86[0.82-0.90]$ | $1.1 \mathrm{E}-09$ | 144,703 | 11 | 0.003 | 62.4 |
| PHACTR1 | 6 | 12903957 | rs9349379 | G | 0.41 | $0.88[0.85-0.92]$ | $2.1 \mathrm{E}-09$ | 144,703 | 11 | 0.55 | 0 |
| FHL5 | 6 | 97056979 | rs7775721 | T | 0.33 | $1.15[1.11-1.20]$ | $1.1 \mathrm{E}-12$ | 144,702 | 11 | 0.26 | 19.3 |
| ASTN2 | 9 | 119252629 | rs6478241 | A | 0.35 | $1.14[1.09-1.18]$ | $1.2 \mathrm{E}-10$ | 144,703 | 11 | 0.50 | 0 |
| FGF6 | 12 | 4518140 | rs1024905 | G | 0.48 | $1.12[1.08-1.16]$ | $2.5 \mathrm{E}-09$ | 144,703 | 11 | 0.65 | 0 |
| LRP1 | 12 | 57527283 | rs11172113 | C | 0.45 | $0.85[0.82-0.89]$ | $4.3 \mathrm{E}-16$ | 144,703 | 11 | 0.77 | 0 |

Supplementary Table 12. Subsets of non-overlapping MA/MO samples used for the heterogeneity analysis.
Listed are the two subsets created for MA and MO that contained no overlapping control individuals. The new MA subset consisted of 4,837 cases and 49,174 controls and the new MO subset consisted of 4,833 cases and 106,834 controls, as outlined in the table. These GWA studies from both subsets were then all combined together using a subtype-differentiated meta-analysis that allows for different allelic affects between the two groups. The results from this analysis are presented in Supplementary Table 13.

| GWA study | MA subset |  | MO subset |  |
| :--- | :---: | :---: | :---: | :---: |
|  | Cases | Controls | Cases | Controls |
| Danish HC | - | - | 996 | 1,000 |
| DeCODE | - | - | 608 | 95,585 |
| Dutch MA | 734 | 5,211 | - | - |
| Dutch MO | - | - | 1,115 | 2,028 |
| EGCUT | 76 | 7,300 | - | - |
| Finnish MA | 933 | 2,715 | - | - |
| German MA | 1,071 | 1,010 | - | - |
| German MO | - | - | 1,160 | 1,647 |
| HUNT | 302 | 1,011 | - | - |
| NTR/NESDA | 544 | 3,819 | - | - |
| Rotterdam III | - | - | 381 | 2,175 |
| Twins UK | - | - | 416 | 2,334 |
| WGHS | 1,177 | 18,108 | - | - |
| YoungFinns | - | - | 157 | 2,065 |
| Total: | 4,837 | 39,174 | 4,833 | 106,834 |

## Supplementary Table 13. Testing for heterogeneity between MA and MO,

Taking the 44 identified migraine SNPs, the table lists the results from a sub-type differentiated meta-analysis using non-overlapping subsets of the MA and MO samples (Supplementary Table 12). A fixed effects meta-analysis of these two subtypes is also provided in the table for comparison. The combined sample of all studies from both subsets shows the results from the sub-type differentiated meta-analysis and test for heterogeneity, as implemented in GWAMA using a previously reported method ${ }^{59}$. The seven SNPs highlighted in bold showed evidence of heterogeneity (Heterogeneity $P<0.05$ ).

| Nearest Gene | Chr | SNP | MA subtype |  |  | MO subtype |  |  | Combined Sample (MA and MO) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | EAF | OR | P | EAF | OR | P | EAF | OR | P (fixedeffects) | $\begin{aligned} & \text { P (rand- } \\ & \text { effects) } \end{aligned}$ | Heterogeneity P |
| PRDM16 | 1 | rs10218452 | 0.25 | 1.11 | 2.2E-04 | 0.18 | 1.12 | 5.0E-04 | 0.20 | 1.11 | 3.9E-07 | 2.5E-06 | $8.5 \mathrm{E}-01$ |
| PRDM16 | 1 | rs12135062 | 0.24 | 1.06 | 2.5E-02 | 0.21 | 1.05 | 9.9E-02 | 0.22 | 1.06 | 5.6E-03 | $2.1 \mathrm{E}-02$ | $7.9 \mathrm{E}-01$ |
| LRRIQ3 | 1 | rs1572668 | 0.49 | 1.00 | 9.7E-01 | 0.48 | 1.05 | 6.2E-02 | 0.48 | 1.02 | 2.0E-01 | 1.8E-01 | 1.8E-01 |
| MEF2D | 1 | rs1925950 | 0.66 | 0.94 | 9.8E-03 | 0.63 | 0.86 | 4.2E-08 | 0.64 | 0.90 | 2.1E-08 | $1.0 \mathrm{E}-08$ | 2.1E-02 |
| TSPAN2 | 1 | rs2078371 | 0.11 | 1.10 | 6.8E-03 | 0.11 | 1.20 | 3.4E-06 | 0.11 | 1.15 | 2.8E-07 | 5.2E-07 | 1.1E-01 |
| ADAMTSL4 | 1 | rs6693567 | 0.74 | 0.98 | 4.6E-01 | 0.70 | 0.92 | 4.1E-03 | 0.71 | 0.95 | 1.2E-02 | 1.2E-02 | $1.1 \mathrm{E}-01$ |
| NGF | 1 | rs7544256 | 0.36 | 0.94 | 2.0E-02 | 0.33 | 0.91 | 9.2E-04 | 0.34 | 0.93 | 8.0E-05 | 2.7E-04 | 3.6E-01 |
| TRPM8 | 2 | rs10166942 | 0.19 | 0.87 | 1.7E-05 | 0.21 | 0.86 | 1.4E-05 | 0.20 | 0.87 | 9.8E-10 | 7.3E-09 | 8.1E-01 |
| CARF | 2 | rs138556413 | 0.03 | 0.99 | 9.0E-01 | 0.03 | 0.83 | 5.3E-02 | 0.03 | 0.89 | 1.2E-01 | $1.5 \mathrm{E}-01$ | $2.4 \mathrm{E}-01$ |
| HJURP | 2 | rs566529 | 0.15 | 0.88 | 3.3E-04 | 0.14 | 0.90 | 3.4E-03 | 0.14 | 0.89 | 3.8E-06 | 2.2E-05 | 7.8E-01 |
| GPR149 | 3 | rs13078967 | 0.03 | 0.85 | 4.1E-02 | 0.03 | 0.85 | 7.0E-02 | 0.03 | 0.85 | 6.3E-03 | $2.4 \mathrm{E}-02$ | 9.7E-01 |
| TGFBR2 | 3 | rs6791480 | 0.31 | 1.06 | 2.0E-02 | 0.31 | 1.07 | 2.2E-02 | 0.31 | 1.06 | 1.1E-03 | $4.8 \mathrm{E}-03$ | 9.0E-01 |
| SPINK2 | 4 | rs7684253 | 0.54 | 0.99 | 6.2E-01 | 0.56 | 1.12 | 1.3E-05 | 0.55 | 1.05 | 1.1E-02 | $6.3 \mathrm{E}-05$ | 3.3E-04 |
| KCNK5 | 6 | rs10456100 | 0.27 | 1.07 | 1.6E-02 | 0.30 | 1.08 | 7.9E-03 | 0.29 | 1.07 | 3.6E-04 | $1.6 \mathrm{E}-03$ | $7.5 \mathrm{E}-01$ |
| HEY2 | 6 | rs1268083 | 0.47 | 0.94 | 7.5E-03 | 0.49 | 0.97 | 2.1E-01 | 0.48 | 0.95 | 4.9E-03 | $1.3 \mathrm{E}-02$ | $3.8 \mathrm{E}-01$ |
| NOTCH4 | 6 | rs140002913 | 0.95 | 1.19 | 2.1E-02 | 0.95 | 1.15 | 5.6E-02 | 0.95 | 1.17 | $2.9 \mathrm{E}-03$ | $1.1 \mathrm{E}-02$ | 7.2E-01 |
| FUT9 | 6 | rs2223239 | 0.86 | 0.92 | 2.4E-02 | 0.86 | 0.89 | $1.6 \mathrm{E}-03$ | 0.86 | 0.91 | 1.4E-04 | $5.3 \mathrm{E}-04$ | $4.3 \mathrm{E}-01$ |
| GJA1 | 6 | rs28455731 | 0.15 | 1.07 | 3.6E-02 | 0.18 | 1.14 | 2.4E-04 | 0.17 | 1.10 | 5.4E-05 | $1.3 \mathrm{E}-04$ | 2.1E-01 |
| FHL5 | 6 | rs67338227 | 0.23 | 1.12 | 6.0E-05 | 0.22 | 1.18 | 8.4E-08 | 0.22 | 1.15 | 4.7E-11 | $1.8 \mathrm{E}-10$ | 2.2E-01 |
| PHACTR1 | 6 | rs9349379 | 0.43 | 0.98 | 3.3E-01 | 0.40 | 0.88 | 3.7E-06 | 0.41 | 0.93 | 1.0E-04 | $1.4 \mathrm{E}-05$ | 7.0E-03 |


| DOCK4 | 7 | rs10155855 | 0.05 | 1.08 | 1.4E-01 | 0.04 | 1.07 | $2.5 \mathrm{E}-01$ | 0.04 | 1.08 | 6.0E-02 | 1.7E-01 | 8.5E-01 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C7orf10 | 7 | rs186166891 | 0.11 | 1.12 | 2.8E-03 | 0.10 | 1.18 | 9.6E-05 | 0.10 | 1.15 | $1.3 \mathrm{E}-06$ | 5.7E-06 | 3.8E-01 |
| ASTN2 | 9 | rs6478241 | 0.64 | 0.94 | 1.7E-02 | 0.65 | 0.86 | $1.0 \mathrm{E}-08$ | 0.64 | 0.90 | $1.8 \mathrm{E}-08$ | 4.3E-09 | 9.3E-03 |
| PLCE1 | 10 | rs10786156 | 0.43 | 0.94 | 7.5E-03 | 0.45 | 0.92 | 1.7E-03 | 0.45 | 0.93 | 4.2E-05 | 2.0E-04 | 6.1E-01 |
| HPSE2 | 10 | rs12260159 | 0.07 | 0.97 | 5.3E-01 | 0.06 | 0.87 | $1.1 \mathrm{E}-02$ | 0.06 | 0.92 | 3.1E-02 | 3.3E-02 | 1.4E-01 |
| ARMS2 | 10 | rs2223089 | 0.08 | 0.93 | 1.2E-01 | 0.08 | 0.90 | $3.4 \mathrm{E}-02$ | 0.08 | 0.92 | 9.6E-03 | $3.0 \mathrm{E}-02$ | 6.0E-01 |
| NRP1 | 10 | rs2506142 | 0.17 | 1.08 | 2.3E-02 | 0.16 | 1.09 | $1.8 \mathrm{E}-02$ | 0.16 | 1.08 | $1.1 \mathrm{E}-03$ | 4.7E-03 | 8.2E-01 |
| PLCE1 | 10 | rs75473620 | 0.04 | 0.79 | 7.0E-04 | 0.05 | 0.97 | 6.4E-01 | 0.05 | 0.87 | 6.7E-03 | 2.8E-03 | 3.6E-02 |
| YAP1 | 11 | rs10895275 | 0.33 | 1.02 | 3.6E-01 | 0.31 | 1.05 | 1.1E-01 | 0.31 | 1.03 | 8.1E-02 | 1.9E-01 | 5.7E-01 |
| MPPED2 | 11 | rs11031122 | 0.25 | 1.12 | 1.7E-05 | 0.22 | 0.98 | 5.2E-01 | 0.23 | 1.06 | 4.9E-03 | 7.8E-05 | 9.2E-04 |
| MRVI1 | 11 | rs4910165 | 0.68 | 1.10 | 1.6E-04 | 0.65 | 1.11 | $2.4 \mathrm{E}-04$ | 0.66 | 1.11 | 1.4E-07 | 9.3E-07 | 8.8E-01 |
| IGSF9B | 11 | rs561561 | 0.12 | 0.93 | 9.1E-02 | 0.14 | 0.88 | 5.9E-03 | 0.14 | 0.91 | $2.0 \mathrm{E}-03$ | $5.4 \mathrm{E}-03$ | 3.6E-01 |
| FGF6 | 12 | rs1024905 | 0.53 | 0.94 | 5.5E-03 | 0.51 | 0.91 | 2.6E-04 | 0.52 | 0.92 | 6.6E-06 | 2.7E-05 | 4.0E-01 |
| LRP1 | 12 | rs11172113 | 0.41 | 0.90 | 2.1E-05 | 0.46 | 0.84 | 7.1E-10 | 0.45 | 0.88 | $3.7 \mathrm{E}-13$ | 6.5E-13 | 7.1E-02 |
| SDR9C7 | 12 | rs7961602 | 0.41 | 0.95 | 5.9E-02 | 0.46 | 0.93 | 6.0E-03 | 0.44 | 0.94 | 1.2E-03 | $3.8 \mathrm{E}-03$ | 4.4E-01 |
| ITPK1 | 14 | rs11624776 | 0.32 | 0.98 | 4.6E-01 | 0.29 | 0.95 | $7.8 \mathrm{E}-02$ | 0.30 | 0.97 | 8.3E-02 | 1.6E-01 | 4.2E-01 |
| ZCCHC14 | 16 | rs4081947 | 0.34 | 1.01 | 7.5E-01 | 0.34 | 1.03 | $3.3 \mathrm{E}-01$ | 0.34 | 1.02 | $3.7 \mathrm{E}-01$ | 5.9E-01 | 6.1E-01 |
| CFDP1 | 16 | rs77505915 | 0.54 | 0.95 | 6.9E-02 | 0.56 | 0.93 | 1.2E-02 | 0.56 | 0.94 | $2.4 \mathrm{E}-03$ | 8.1E-03 | 5.4E-01 |
| RNF213 | 17 | rs17857135 | 0.16 | 1.04 | 3.2E-01 | 0.18 | 1.14 | 6.9E-04 | 0.17 | 1.09 | $2.3 \mathrm{E}-03$ | $1.9 \mathrm{E}-03$ | 7.2E-02 |
| WSCD1 | 17 | rs75213074 | 0.04 | 0.85 | 2.1E-02 | 0.02 | 0.95 | 4.8E-01 | 0.03 | 0.90 | 3.2E-02 | 5.4E-02 | 2.6E-01 |
| JAG1 | 20 | rs111404218 | 0.32 | 1.06 | 2.8E-02 | 0.35 | 1.05 | $1.1 \mathrm{E}-01$ | 0.34 | 1.06 | 7.2E-03 | $2.5 \mathrm{E}-02$ | 7.1E-01 |
| CCM2L | 20 | rs144017103 | 0.02 | 0.92 | 5.3E-01 | 0.02 | 0.77 | $1.8 \mathrm{E}-02$ | 0.02 | 0.83 | $2.6 \mathrm{E}-02$ | $4.9 \mathrm{E}-02$ | 3.0E-01 |
| SLC24A3 | 20 | rs4814864 | 0.25 | 1.04 | 1.4E-01 | 0.25 | 1.09 | $3.9 \mathrm{E}-03$ | 0.25 | 1.06 | $2.4 \mathrm{E}-03$ | 5.1E-03 | $2.5 \mathrm{E}-01$ |
| MED14 | X | rs12845494 | 0.73 | 1.07 | 7.4E-03 | 0.75 | 0.99 | $6.9 \mathrm{E}-01$ | 0.74 | 1.04 | 6.5E-02 | 2.6E-02 | 4.7E-02 |

## Supplementary Table 14. List of credible set SNPs in each locus.

For each of the migraine loci, the table lists all SNPs included in the $99 \%$ credible sets that were calculated. The SNPs are ordered by posterior probability of being the causal SNP (highest first) with the corresponding posterior probability for each SNP given in brackets.

| Locus Rank | Nearest Gene | Index SNP | No. Credible Set SNPs | List of Credible Set SNPs (posterior probability in brackets) |
| :---: | :---: | :---: | :---: | :---: |
| 1 | LRP1 | rs11172113 | 1 | rs11172113 (0.996), |
| 2 | PRDM16 | rs10218452 | 8 | $\begin{aligned} & \text { rs10218452 (0.613), rs10797381 (0.288), rs7518255 (0.053), rs2075968 (0.011), rs10909886 (0.008), } \\ & \text { rs2376495 (0.007), rs61759167 (0.007), rs11587518 (0.004), } \end{aligned}$ |
| 3 | FHL5 | rs67338227 | 18 | $\begin{aligned} & \text { rs67338227 (0.240), rs2971603 (0.167), rs2983896 (0.099), rs9285393 (0.095), rs2971606 (0.090), } \\ & \text { rs3798293 (0.078), rs2983897 (0.075), rs2971608 (0.037), rs11751075 (0.034), rs11759769 (0.029), } \\ & \text { rs4486027 (0.013), rs3860229 (0.007), rs3860231 (0.007), rs3860230 (0.007), rs2971609 (0.005), } \\ & \text { rs6568392 (0.004), rs4265039 (0.004), rs4346856 (0.004), } \end{aligned}$ |
| 4 | TRPM8 | rs10166942 | 11 | $\begin{aligned} & \text { rs10166942 (0.142), rs1965629 (0.128), rs1985366 (0.128), rs10170399 (0.128), rs1003540 (0.118), } \\ & \text { rs6738979 (0.100), rs11563063 (0.084), rs6724624 (0.062), rs11892538 (0.050), rs4663983 (0.027), } \\ & \text { rs2362290 (0.025), } \end{aligned}$ |
| 5 | TSPAN2 | rs2078371 | 2 | rs2078371 (0.560), rs12134493 (0.440), |
| 6 | PHACTR1 | rs9349379 | 1 | rs9349379 (1.000), |
| 7 | MEF2D | rs1925950 | 22 | $\begin{aligned} & \text { rs1925950 (0.089), rs3790454 (0.083), rs6700679 (0.065), rs4450010 (0.062), rs2282286 (0.061), } \\ & \text { rs6658120 (0.059), rs2274317 (0.057), rs2274319 (0.057), rs12131289 (0.055), rs3790455 (0.051), } \\ & \text { rs2274316 (0.049), rs2274320 (0.048), rs3818463 (0.048), rs11264486 (0.040), rs12038396 (0.030), } \\ & \text { rs3790459 (0.028), rs3790457 (0.025), rs10908505 (0.023), rs1050316 (0.023), rs10908504 (0.020), } \\ & \text { rs1342442 (0.017), rs12136856 (0.012), } \end{aligned}$ |
| 8 | SLC24A3 | rs4814864 | 21 | $\begin{aligned} & \text { rs4814864 (0.159), rs4814863 (0.112), rs4814860 (0.109), rs6046139 (0.066), rs6035354 (0.054), } \\ & \text { rs4814861 (0.051), rs6046147 (0.046), rs1984571 (0.045), rs6035357 (0.044), rs6046144 (0.042), } \\ & \text { rs6046140 (0.042), rs6136756 (0.040), rs4814858 (0.032), rs6081613 (0.027), rs6046134 (0.025), } \\ & \text { rs6035353 (0.025), rs6081612 (0.023), rs3827986 (0.020), rs6046137 (0.014), rs3790228 (0.008), } \\ & \text { rs6035355 (0.007), } \end{aligned}$ |
| 9 | FGF6 | rs1024905 | 8 | $\begin{aligned} & \text { rs1024905 (0.284), rs10849061 (0.239), rs4766241 (0.163), rs2160875 (0.105), rs7957385 (0.097), } \\ & \text { rs1075550 (0.096), rs6489545 (0.006), rs7300066 (0.006), } \end{aligned}$ |
| 10 | C7orf10 | rs186166891 | 42 | rs186166891 (0.071), rs10234636 (0.049), rs77410344 (0.048), rs4723954 (0.039), rs12533531 $(0.035)$, rs12532479 (0.034), rs12670267 (0.033), rs144002785 (0.032), rs11531504 (0.031), |



|  |  |  |  | rs10514393 (0.005), rs11642921 (0.005), rs2161648 (0.005), rs7200616 (0.005), rs11862582 (0.005), rs4888405 (0.005), rs6564252 (0.005), rs8050059 (0.005), rs12149063 (0.005), rs34296964 (0.005), rs35937717 (0.005), rs4888389 (0.005), rs7203157 (0.005), rs7199132 (0.005), rs4146809 (0.005), rs8046000 (0.005), rs4888414 (0.005), rs8051407 (0.005), rs1109342 (0.005), rs12051326 (0.005), rs12928722 (0.005), rs11149829 (0.005), rs12051111 (0.005), rs12928898 (0.005), rs1109341 (0.004), rs4888409 (0.004), rs12051136 (0.004), rs12443834 (0.004), rs11149828 (0.004), rs4888391 (0.004), rs12933281 (0.004), rs8057849 (0.004), rs11640674 (0.004), rs12599361 (0.004), rs35415181 (0.004), rs7184525 (0.004), rs3851737 (0.004), rs4887822 (0.004), rs8054769 (0.004), rs2865530 (0.004), rs17696696 (0.004), rs1895490 (0.004), rs35263058 (0.004), rs34222958 (0.004), rs4888403 (0.004), rs4887821 (0.004), rs11862719 (0.004), rs12924920 (0.004), rs1549306 (0.004), rs4888387 (0.004), rs4888390 (0.004), rs7185640 (0.004), rs1364077 (0.004), rs4888410 (0.004), rs11858992 (0.004), rs4993969 (0.004), rs1544810 (0.004), rs4887823 (0.004), rs11865004 (0.004), rs4993970 (0.004), rs11860284 (0.004), rs62059845 (0.004), rs11149832 (0.004), rs56343285 (0.004), rs11864587 (0.004), rs35552529 (0.004), rs8057203 (0.004), rs2113232 (0.004), rs2865531 (0.004), rs113251659 (0.004), rs4887820 (0.004), rs3863442 (0.004), rs4888408 (0.004), rs1030261 (0.004), rs4888379 (0.004), rs4888388 (0.004), rs4888392 (0.004), rs11646044 (0.004), rs11641532 (0.004), rs12445726 (0.004), rs11644741 (0.004), rs12917651 (0.004), rs4887815 (0.004), rs4888413 (0.004), rs71394207 (0.004), rs12448947 (0.004), rs4888416 (0.004), rs4888421 (0.004), rs1808434 (0.004), rs4888380 (0.004), rs35787595 (0.004), rs8057535 (0.004), rs10871311 (0.003), rs12929908 (0.003), rs11149822 (0.003), rs11643209 (0.003), rs7194129 (0.003), rs12922951 (0.003), rs3851733 (0.003), rs3863445 (0.003), rs62062564 (0.003), rs11644639 (0.003), rs67409275 (0.003), rs12449170 (0.003), rs4888420 (0.003), rs2865528 (0.003), rs34029337 (0.003), rs12930452 (0.003), rs4888415 (0.003), rs12927562 (0.003), rs59686216 (0.003), rs8060955 (0.003), rs11862095 (0.003), rs4638613 (0.003), rs4888407 (0.003), rs7188231 (0.003), rs1808436 (0.002), rs4888404 (0.002), rs10431974 (0.002), rs60730309 (0.002), rs4887818 (0.002), rs59155720 (0.002), rs4888386 (0.002), rs10459859 (0.002), rs35952313 (0.002), rs4888406 (0.002), rs8046109 (0.002), rs62062568 (0.002), rs72787160 (0.002), rs1808435 (0.002), rs11149818 (0.002), rs12443904 (0.002), rs35737321 (0.002), rs10781976 (0.002), rs4888385 (0.002), rs10514396 (0.002), rs6564260 (0.002), rs10871312 (0.002), rs11149820 (0.002), rs17696749 (0.002), rs12929673 (0.002), rs7499872 (0.002), rs4146810 (0.002), rs4243111 (0.002), rs35209155 (0.002), rs1364079 (0.002), rs1559339 (0.002), rs3863447 (0.002), rs8055974 (0.002), rs8056080 (0.002), rs11646677 (0.002), rs1364078 (0.002), rs2059256 (0.002), rs3743609 (0.002), rs2161684 (0.002), rs4888372 (0.002), rs35261357 (0.002), rs62062567 (0.002), rs34996006 (0.002), rs56004344 (0.001), rs1030262 (0.001), rs11865296 (0.001), rs4888425 (0.001), rs35214308 (0.001), rs7200053 (0.001), rs34021527 (0.001), rs4888426 (0.001), rs7202567 (0.001), rs12928036 (0.001), rs4887825 (0.001), rs7202596 (0.001), rs59465235 (0.001), rs4888422 (0.001), rs59867374 (0.001), rs1542864 (0.001), rs7198873 (0.001), rs7204984 (0.001), rs60937209 (0.001), |
| :---: | :---: | :---: | :---: | :---: |
| 17 | RNF213 | rs17857135 | 16 | rs17857135 (0.280), rs34397069 (0.085), rs73444339 (0.085), rs12942629 (0.077), rs17853989 (0.073), rs17853713 (0.068), rs35573434 (0.066), rs11651637 (0.056), rs17853714 (0.051), |


|  |  |  |  | $\begin{aligned} & \text { rs34155220 (0.043), rs12939230 (0.042), rs34801706 (0.039), rs55971860 (0.010), rs9909720 (0.007), } \\ & \text { rs9891691 (0.006), rs9890495 (0.005), } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 18 | NRP1 | rs2506142 | 7 | $\begin{aligned} & \text { rs2506142 (0.213), rs2474737 (0.199), rs2474735 (0.185), rs2506144 (0.113), rs2506140 (0.104), } \\ & \text { rs2474733 (0.092), rs2506143 (0.092), } \end{aligned}$ |
| 19 | GPR149 | rs13078967 | 5 | ```rs13078967 (0.436), rs144029925 (0.276), rs34097149 (0.154), rs112346815 (0.120), rs71308496 (0.005),``` |
| 20 | JAG1 | rs111404218 | 4 | rs111404218 (0.899), rs6134000 (0.048), rs2057053 (0.028), rs8183037 (0.025), |
| 21 | REST | rs7684253 | 2 | rs7684253 (0.922), rs2412771 (0.078), |
| 22 | HEY2 | rs1268083 | 36 | rs1268083 (0.080), rs9321054 (0.074), rs1269175 (0.053), rs3799709 (0.053), rs3799711 (0.052), rs7753038 (0.046), rs1159974 (0.045), rs1811852 (0.039), rs3966775 (0.035), rs2144224 (0.034), rs10457469 (0.033), rs9398787 (0.032), rs3757217 (0.032), rs1268070 (0.031), rs13209968 (0.030), rs7739566 (0.030), rs4897155 (0.029), rs1268065 (0.026), rs1268064 (0.026), rs980014 (0.023), rs9388451 (0.018), rs1028481 (0.016), rs7764016 (0.016), rs4897157 (0.015), rs9388453 (0.015), rs9401845 (0.013), rs2008027 (0.013), rs9398791 (0.012), rs9388454 (0.011), rs9388446 (0.011), rs7758115 (0.011), rs1268069 (0.010), rs10457467 (0.009), rs9375411 (0.008), rs4897156 (0.007), rs11154331 (0.007), |
| 23 | WSCD1 | rs75213074 | 7 | rs75213074 (0.611), rs117584668 (0.179), rs79482790 (0.070), rs79022350 (0.064), rs76210292 (0.041), rs78383461 (0.018), rs111501524 (0.017), |
| 24 | GJA1 | rs28455731 | 14 | $\begin{aligned} & \text { rs28455731 (0.103), rs17083712 (0.098), rs9490315 (0.098), rs9320821 (0.096), rs34995334 (0.095), } \\ & \text { rs7757975 (0.080), rs9490310 (0.071), rs17083744 (0.065), rs9490314 (0.062), rs9490312 (0.061), } \\ & \text { rs9482172 (0.052), rs28581202 (0.050), rs9490308 (0.039), rs9490313 (0.023), } \end{aligned}$ |
| 25 | TGFBR2 | rs6791480 | 19 | rs6791480 (0.191), rs7371912 (0.186), rs4131728 (0.088), rs4075748 (0.084), rs4075749 (0.076), rs4508823 (0.065), rs34130299 (0.057), rs12496164 (0.051), rs4955308 (0.040), rs6790925 (0.037), rs79617173 (0.033), rs7649804 (0.019), rs1994987 (0.019), rs4955309 (0.017), rs7640543 (0.017), rs11129403 (0.004), rs78631748 (0.004), rs11129402 (0.002), rs75407597 (0.002), |
| 26 | ITPK1 | rs11624776 | 3 | rs11624776 (0.476), rs28540738 (0.448), rs2402246 (0.076), |
| 27 | ADAMTSL4 | rs6693567 | 7 | $\begin{aligned} & \text { rs6693567 (0.758), rs78976593 (0.135), rs4970996 (0.041), rs698915 (0.022), rs1260387 (0.019), } \\ & \text { rs12740679 (0.008), rs9436117 (0.008), } \end{aligned}$ |
| 28 | YAP1 | rs10895275 | 66 | rs10895275 (0.065), rs10895276 (0.064), rs11608234 (0.059), rs11225165 (0.043), rs11225167 (0.041), rs10895274 (0.038), rs1820455 (0.035), rs10895277 (0.034), rs12786272 (0.033), rs7122907 (0.032), rs17097547 (0.031), rs4475891 (0.030), rs7124247 (0.030), rs10895273 (0.029), rs1893498 (0.023), rs3858420 (0.022), rs12787996 (0.021), rs17097560 (0.020), rs10895278 (0.020), rs2282652 (0.017), rs8504 (0.017), rs2187525 (0.015), rs11225160 (0.015), rs58751289 (0.014), rs12790399 (0.014), rs11225156 (0.014), rs4447144 (0.014), rs11605954 (0.014), rs12421242 (0.013), rs11225174 (0.013), rs12223991 (0.012), rs7931576 (0.012), rs12226331 (0.011), rs11225163 (0.009), rs4754041 (0.009), rs10895272 (0.009), rs7110557 (0.008), rs10895280 (0.007), rs11225177 (0.007), rs12420287 (0.007), rs11225170 (0.007), rs12807220 (0.005), rs57027482 (0.004), rs12793501 (0.004), rs1895916 |


|  |  |  |  | (0.004), rs7104685 (0.004), rs12795624 (0.003), rs7110355 (0.003), rs1820454 (0.003), rs11225169 (0.003), rs10895270 (0.003), rs34083536 (0.003), rs10791569 (0.003), rs7942061 (0.002), rs718891 (0.002), rs4420227 (0.002), rs61280272 (0.002), rs12787825 (0.002), rs2114308 (0.002), rs7112802 (0.002), rs7107909 (0.001), rs7120067 (0.001), rs12222063 (0.001), rs2846837 (0.001), rs4561174 (0.001), rs11225153 (0.001), |
| :---: | :---: | :---: | :---: | :---: |
| 30 | DOCK4 | rs10155855 | 15 | ```rs10155855 (0.201), rs11770473 (0.188), rs10262821 (0.152), rs57369558 (0.078), rs58145389 (0.075), rs7808745 (0.064), rs7789527 (0.031), rs10156055 (0.030), rs28626025 (0.029), rs10229093 (0.028), rs112078904 (0.027), rs10272370 (0.027), rs10263444 (0.025), rs57519933 (0.022), rs60103724 (0.022),``` |
| 31 | LRRIQ3 | rs1572668 | 147 | rs12037168 (0.020), rs1572668 (0.020), rs11210247 (0.020), rs11210251 (0.014), rs4113049 (0.014), rs4287126 (0.013), rs12747728 (0.013), rs4113050 (0.013), rs12033505 (0.013), rs35101879 (0.013), rs2095794 (0.013), rs4369181 (0.012), rs11210242 (0.012), rs11210244 (0.012), rs12026485 (0.012), rs6672225 (0.011), rs1923243 (0.011), rs61605983 (0.011), rs2341392 (0.011), rs12742409 (0.011), rs12718437 (0.011), rs6679389 (0.011), rs6669843 (0.011), rs10493517 (0.011), rs2173735 (0.010), rs7416650 (0.010), rs1338653 (0.010), rs7522217 (0.010), rs7532462 (0.010), rs12028720 (0.010), rs1021756 (0.010), rs61765512 (0.009), rs12406253 (0.009), rs7555507 (0.009), rs7553998 (0.009), rs1885250 (0.009), rs11210243 (0.008), rs1885251 (0.008), rs4463622 (0.008), rs10493518 (0.008), rs7528128 (0.008), rs11210276 (0.008), rs1338650 (0.008), rs11210232 (0.008), rs1316718 (0.008), rs12565386 (0.008), rs61765513 (0.008), rs11210266 (0.008), rs12039430 (0.007), rs1338647 (0.007), rs11210239 (0.007), rs1338648 (0.007), rs11210236 (0.007), rs1416266 (0.007), rs4636406 (0.007), rs1538376 (0.007), rs7519030 (0.007), rs11210235 (0.007), rs1538375 (0.007), rs1338656 (0.007), rs4354497 (0.007), rs61765511 (0.007), rs12562533 (0.007), rs1416274 (0.007), rs7521446 (0.007), rs10465868 (0.007), rs10465869 (0.007), rs1361244 (0.007), rs11210237 (0.007), rs4557913 (0.007), rs12044316 (0.007), rs1338649 (0.007), rs35641559 (0.007), rs11210263 (0.006), rs2340402 (0.006), rs11210261 (0.006), rs12759031 (0.006), rs911493 (0.006), rs7546305 (0.006), rs7549372 (0.006), rs6672818 (0.006), rs6424544 (0.006), rs10493515 (0.006), rs12077046 (0.006), rs12754690 (0.006), rs10890030 (0.006), rs4998957 (0.006), rs4361942 (0.005), rs1923226 (0.005), rs7513593 (0.005), rs11210218 (0.005), rs61765637 (0.005), rs11210191 (0.005), rs12033140 (0.005), rs12142515 (0.005), rs10890025 (0.005), rs10890029 (0.005), rs11210193 (0.005), rs12023347 (0.005), rs12044218 (0.005), rs6684341 (0.005), rs11210241 (0.005), rs2224494 (0.005), rs11210196 (0.005), rs11210259 (0.005), rs11210257 (0.005), rs3845343 (0.005), rs1120980 (0.005), rs10789368 (0.005), rs2180945 (0.005), rs35851404 (0.005), rs11210195 (0.004), rs11210258 (0.004), rs12564425 (0.004), rs12737087 (0.004), rs1923225 (0.004), rs1923217 (0.004), rs10890031 (0.004), rs12569115 (0.004), rs1923204 (0.004), rs7523734 (0.004), rs4406595 (0.004), rs12036558 (0.004), rs7513375 (0.003), rs1923240 (0.003), rs12239956 (0.003), rs11210188 (0.003), rs56060088 (0.003), rs12049376 (0.002), rs57578100 (0.002), rs6682579 (0.002), rs6692884 (0.002), rs12404978 (0.002), rs6684841 (0.002), rs8179409 (0.001), rs4129350 (0.001), rs138672342 (0.001), rs11210184 (0.001), rs4475699 (0.001), rs4650199 (0.001), rs4274014 (0.001), rs7518008 (0.001), rs4288548 (0.001), rs12034885 (0.001), |


|  |  |  |  | rs11210177 (0.001), rs28585577 (0.001), rs13376454 (0.001), |
| :---: | :---: | :---: | :---: | :---: |
| 32 | CARF | rs138556413 | 2 | rs138556413 (0.595), rs72926788 (0.405), |
| 33 | ZCCHC14 | rs4081947 | 3 | rs4081947 (0.504), rs8052831 (0.440), rs9929116 (0.050), |
| 34 | ARMS2 | rs2223089 | 31 | rs2223089 (0.251), rs7915081 (0.144), rs7898343 (0.097), rs80232578 (0.078), rs12571363 (0.074), rs78973239 ( 0.062 ), rs55928386 (0.041), rs117634244 (0.014), rs78438709 (0.014), rs75178961 (0.014), rs184800107 (0.014), rs74620354 (0.014), rs76568359 (0.013), rs2421015 (0.012), rs78986650 (0.012), rs76047227 (0.012), rs79581661 (0.012), rs4598609 (0.012), rs76432564 (0.011), rs12571218 (0.011), rs4551693 (0.011), rs78832427 (0.010), rs79508005 (0.009), rs41306858 (0.009), rs76797659 (0.008), rs80123520 (0.007), rs12571580 (0.006), rs111266031 (0.006), rs2281674 (0.006), rs74672221 (0.006), rs76579910 (0.006), |
| 35 | IGSF9B | rs561561 | 7 | $\begin{aligned} & \text { rs561561 (0.390), rs79071988 (0.192), rs493888 (0.169), rs678495 (0.104), rs12418760 (0.094), } \\ & \text { rs329661 (0.040), rs665448 (0.011), } \end{aligned}$ |
| 36 | MPPED2 | rs11031122 | 17 | $\begin{aligned} & \text { rs11031122 (0.131), rs11031125 (0.099), rs11031126 (0.098), rs10835685 (0.088), rs11031127 } \\ & (0.085), \text { rs12361781 (0.077), rs35695296 (0.060), rs11031128 (0.058), rs11031129 (0.058), } \\ & \text { rs10835687 (0.050), rs11031133 (0.048), rs1458729 (0.028), rs12797142 (0.026), rs11606309 (0.025), } \\ & \text { rs11606078 (0.025), rs10835676 (0.021), rs61884730 (0.021), } \end{aligned}$ |
| 37 | NOTCH4 | rs140002913 | 15 | $\begin{aligned} & \text { rs140002913 ( } 0.572 \text { ), rs140467810 (0.036), rs116131534 (0.034), rs114097260 (0.034), rs143655257 } \\ & (0.033), \text { rs116807651 (0.033), rs115424290 (0.033), rs141370868 (0.033), rs151052195 (0.033), } \\ & \text { rs116637827 (0.032), rs140584153 (0.032), rs115741290 (0.032), rs145716761 (0.032), rs116322711 } \\ & (0.015), \text { rs115214125 (0.014), } \end{aligned}$ |
| 38 | CCM2L | rs144017103 | 2 | rs144017103 (0.506), rs76627106 (0.494), |

## Supplementary Table 15. Credible-set genic overlap analysis.

Here we tested if SNPs in the $99 \%$ credible-sets from each locus overlapped with gene coding transcripts from Gencode. The 'consequence' columns indicate the most severe impact predicted for the variant out of all overlapping transcripts. SNPs highlighted in bold indicate variants that result in missense mutations. Three loci contain genes with credibly causal missense polymorphisms (PLCE1, MRVI1, and RNF213). Genes in each locus that were identified as significant (false discovery rate $<0.05$ ) by DEPICT's geneprioritization function ${ }^{60}$ are also shown. Two prioritized genes match those with credibly causal missense variants (PLCE1 and MRVI1).

| Locus Index SNP | Index SNP genic overlap |  |  | Credible-Set genic overlap |  |  |  |  | DEPICT-prioritized genes |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nearest gene | Distance <br> (kb) | Consequence | Total SNPs in Locus | No. SNPs in Credible-set | Overlapping genes | Consequence | Exonic credibleset SNPs | Gene | P-value | FDR |
| rs11172113 | LRP1 | 0 | Intronic | 658 | 1 | LRP1 | Intronic | - | LRP1 | 0.00007 | <0.005 |
| rs10218452 | PRDM16 | 0 | Intronic | 191 | 8 | PRDM16 | Intronic | - | PRDM16 | 0.004 | 0.01 |
| rs67338227 | FHL5 | 0 | Intronic | 851 | 18 | FHL5 | Intronic | - | - | - | - |
| rs10166942 | TRPM8 | 1.0 | Upstream | 480 | 11 | TRPM8 | Intronic | - | - | - | - |
| rs2078371 | TSPAN2 | 45.1 | Intergenic | 712 | 2 | - | - | - | NGF | 0.0007 | <0.005 |
| rs9349379 | PHACTR1 | 0 | Intronic | 474 | 1 | PHACTR1 | Intronic | - | - | - | - |
| rs1925950 | MEF2D | 0 | Synonymous | 196 | 22 | MEF2D | Synonymous | rs1925950, rs2274317 | - | - | - |
| rs4814864 | SLC24A3 | 0 | Intronic | 422 | 21 | SLC24A3 | Intronic | - | - | - | - |
| rs1024905 | FGF6 | 19.2 | Intergenic | 41 | 8 | - | - | - | FGF6 | 0.01 | 0.04 |
| rs186166891 | C7orf10 | 0 | Intronic | 223 | 42 | C7orf10 | Intronic | - | - | - | - |
| rs10786156 | PLCE1 | 0 | Intronic | 206 | 6 | PLCE1 | Missense | rs2274224 | PLCE1 | 0.0001 | <0.005 |
| rs4910165 | MRVII | 0 | Intronic | 152 | 9 | MRVI1 | Missense | rs4909945 | MRVI1 | 0.002 | 0.01 |
| rs10456100 | KCNK5 | 0 | Intronic | 283 | 4 | KCNK5 | Intronic | - | - | - | - |
| rs6478241 | ASTN2 | 0 | Intronic | 950 | 3 | ASTN2 | Intronic | - | - | - | - |
| rs12260159 | HPSE2 | 0 | Intronic | 372 | 59 | HPSE2 | Intronic | - | HPSE2 | 0.001 | 0.006 |
| rs77505915 | CFDP1 | 0 | Intronic | 745 | 238 | CFDP1, TMEM170A | Intronic | - | - | - | - |
| rs17857135 | RNF213 | 0 | Missense | 113 | 16 | RNF213 | Missense | rs17857135, rs17853714, rs17853989, rs17853713 | - | - | - |
| rs2506142 | NRP1 | 0 | 3-prime UTR | 29 | 7 | NRP1 | 3-prime UTR | - | NRP1 | 0.003 | 0.008 |
| rs13078967 | GPR149 | 142.4 | Intergenic | 527 | 5 | - | - | - | ARHGEF26 | 0.008 | 0.03 |
| rs111404218 | JAG1 | 29.5 | Intergenic | 89 | 4 | - | - | - | JAG1 | 0.00002 | <0.005 |
| rs7684253 | SPINK2 | 39.4 | Intergenic | 186 | 2 | - | - | - | REST | 0.002 | 0.005 |


| rs1268083 | HEY2 | 19.8 | Intergenic | 291 | 36 | HEY2, NCOA7 | Intronic | - | HEY2 | 0.002 | 0.006 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| rs75213074 | WSCD1 | 62.9 | Intergenic | 96 | 7 | - | - | - | - | - | - |
| rs28455731 | GJA1 | 75.2 | Intergenic | 255 | 14 | - | - | - | GJA1 | 0.002 | 0.008 |
| rs6791480 | TGFBR2 | 167.4 | Intergenic | 218 | 19 | - | - | - | TGFBR2 | 0.005 | 0.02 |
| rs11624776 | ITPK1 | 12.9 | Intergenic | 29 | 3 | - | - |  | - | - | - |
| rs6693567 | $\begin{gathered} \text { ADAMTS } \\ \text { L4 } \end{gathered}$ | 11.2 | Intergenic | 766 | 7 | RPRD2 | Intronic | - | ECM1 | 0.003 | 0.01 |
| rs10895275 | YAP1 | 0 | Intronic | 285 | 66 | YAP1 | Intronic | - | YAP1 | 0.0009 | 0.007 |
| rs12845494 | MED14 | 169.6 | Upstream | - | - | - | - | - | - | - | - |
| rs10155855 | DOCK4 | 37.8 | Intergenic | 31 | 15 | - | - | - | - | - | - |
| rs1572668 | LRRIQ3 | 592.0 | Intergenic | 1176 | 147 | - | - | - | - | - | - |
| rs138556413 | CARF | 0 | Intronic | 669 | 2 | CARF | Intronic | - | NBEAL1 | 0.0005 | <0.005 |
| rs4081947 | ZCCHC14 | 54.2 | Intergenic | 13 | 3 | - | - | - | ZCCHC14 | 0.02 | 0.05 |
| rs2223089 | ARMS2 | 0.4 | Upstream | 295 | 31 | PLEKHA1, HTRA1 | Intronic | - | HTRA1 | 0.003 | 0.007 |
| rs561561 | IGSF9B | 2.8 | Upstream | 111 | 7 | IGSF9B | Intronic | - | - | - | - |
| rs11031122 | MPPED2 | 0 | Intronic | 125 | 17 | MPPED2 | Intronic | - | - | - | - |
| rs140002913 | NOTCH4 | 14.2 | Intergenic | 65 | 15 | - | - | - | - | - | - |
| rs144017103 | CCM2L | 0.9 | Intergenic | 36 | 2 | CCM2L | Intronic | - | CCM2L | 0.0008 | <0.005 |

Supplementary Table 16. Number of samples per tissue in the GTEx collection. Tissues with available gene expression data in the GTEx collection. The number of samples collected for individual tissue categories was sometimes small ( $\mathrm{N}<10$ ) so we combined samples into four tissue groups: brain, vascular, gastrointestinal, and other.

| Tissue group | Tissue label | Tissue full name | Sample N |
| :---: | :---: | :---: | :---: |
| Brain | BRNACC | Anterior cingulate cortex (BA24) | 17 |
| Brain | BRNAMY | Amygdala | 23 |
| Brain | BRNCDT | Caudate (basal ganglia) | 36 |
| Brain | BRNCHA | Cerebellum | 30 |
| Brain | BRNCHB | Cerebellar Cortex | 24 |
| Brain | BRNCTXA | Cortex | 23 |
| Brain | BRNCTXB | Frontal Cortex (BA9) | 24 |
| Brain | BRNHPP | Hippocampus | 24 |
| Brain | BRNHPT | Hypothalamus | 23 |
| Brain | BRNNCC | Nucleus accumbens | 28 |
| Brain | BRNPTM | Putamen | 20 |
| Brain | BRNSNG | Substantia nigra | 25 |
| Brain | BRNSPC | Spinal cord (Cervical C1) | 16 |
| Brain | PTTARY | Pituitary Gland | 13 |
| Vascular | ARTAORT | Aorta | 24 |
| Vascular | ARTCRN | Coronary Artery | 9 |
| Vascular | ARTTBL | Tibial Artery | 112 |
| Vascular | HRTAA | Heart - Atrial Appendage | 25 |
| Vascular | HRTLV | Heart - Left Ventricle | 83 |
| Gastrointestinal | CLNTRN | Colon - Transverse | 12 |
| Gastrointestinal | ESPMCS | Esophageal Mucosa | 18 |
| Gastrointestinal | ESPMSL | Esophagus Muscularis | 20 |
| Gastrointestinal | LIVER | Liver | 5 |
| Gastrointestinal | PNCREAS | Pancreas | 19 |
| Gastrointestinal | STMACH | Stomach | 12 |
| Other | ADPSBQ | Adipose - Subcutaneous | 94 |
| Other | ADPVSC | Adipose - Visceral (Omentum) | 19 |
| Other | ADRNLG | Adrenal Gland | 12 |
| Other | BREAST | Mammary Tissue | 27 |
| Other | FIBRBLS | Skin Cells - Transformed Fibroblasts | 14 |
| Other | FLLPNT | Fallopian Tube | 1 |
| Other | KDNCTX | Kidney Cortex | 3 |
| Other | LCL | LCL | 39 |
| Other | LUNG | Lung | 119 |
| Other | MSCLSK | Skeletal Muscle | 138 |
| Other | NERVET | Nerve - Tibial | 88 |
| Other | OVARY | Ovary | 6 |


| Other | PRSTTE | Prostate | 9 |
| :--- | :--- | :--- | :---: |
| Other | SKINNS | Skin - not sun exposed | 23 |
| Other | SKINS | Skin - sun exposed | 96 |
| Other | TESTIS | Testis | 14 |
| Other | THYROID | Thyroid | 105 |
| Other | UTERUS | Uterus | 7 |
| Other | VAGINA | Vagina | 6 |
| Other | WHLBLD | Whole Blood | 156 |

## Supplementary Table 17. Overlap of the migraine and eQTL credible sets in peripheral blood.

For each migraine locus we created credible sets of SNPs and then using blood eQTL data from 3,754 individuals, we searched for significant eQTLs ( $P<1 \times 10^{-4}$ ) found to genes within a 1 Mb window of each migraine credible set. The table lists 23 migraine and eQTL loci that were found to have overlapping credible sets. We tested if there was a significant Spearman's Rank correlation between the association test-statistics in each migraine credible set compared to the expression test-statistics in each overlapping eQTL credible set. Only one eQTL credible set (highlighted in bold), was nominally significant ( $P=0.01$, Supplementary Figure 10) when tested for a significant correlation with the migraine credible set at the MRVII locus but does not survive Bonferroni correction for 23 independent tests.

| Migraine SNP nearest gene | $\begin{aligned} & \text { Migraine index } \\ & \text { SNP } \end{aligned}$ | Migraine locus region | eQTL index SNP | eQTL locus region | eQTL Pval | eQTL Gene |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADAMTSL4 | rs6693567 | chr1:150250636-150515021 | rs12131376 | chr1:150262094-150514149 | 1.68E-10 | FAM63A |
| ADAMTSL4 | rs6693567 | chr1:150250636-150515021 | rs72700829 | chr1:150345558-150776123 | 1.55E-15 | CTSS |
| ADAMTSL4 | rs6693567 | chr1:150250636-150515021 | chr1_150512316_D | chr1:150387139-150513534 | 9.20E-13 | RPRD2 |
| ADAMTSL4 | rs6693567 | chr1:150250636-150515021 | rs145402324 | chr1:150495327-150495327 | $8.34 \mathrm{E}-84$ | MRPS21 |
| MEF2D | rs1925950 | chr1:156403681-156507704 | rs6662838 | chr1:156403701-156467309 | $2.26 \mathrm{E}-05$ | NTRK1 |
| MEF2D | rs1925950 | chr1:156403681-156507704 | rs115307473 | chr1:156470422-156470422 | $1.60 \mathrm{E}-06$ | GPATCH4 |
| CARF | rs138556413 | chr2:203639395-204040296 | rs34349435 | chr2:203505125-203864114 | $4.17 \mathrm{E}-07$ | ABI2 |
| CARF | rs138556413 | chr2:203639395-204040296 | rs145743318 | chr2:203696281-203778245 | $1.36 \mathrm{E}-05$ | AC079354.1 |
| TRPM8 | rs10166942 | chr2:234726966-234874402 | rs7596472 | chr2:234722065-234737045 | $2.26 \mathrm{E}-06$ | TRPM8 |
| REST | rs7684253 | chr4:57727311-57761417 | rs28545156 | chr4:57709199-57939027 | 8.02E-17 | REST |
| PHACTR1 | rs9349379 | chr6:12768218-12948388 | rs6934996 | chr6:12855262-12855262 | 5.46E-05 | EDN1 |
| FHL5 | rs67338227 | chr6:96767685-97092478 | rs4240553 | chr6:96854444-97067028 | $1.71 \mathrm{E}-27$ | UFL1 |
| DOCK4 | rs10155855 | chr7:111323799-111330237 | rs60607828 | chr7:111269793-111387274 | $4.22 \mathrm{E}-05$ | DOCK4 |
| ASTN2 | rs6478241 | chr9:119181794-119479868 | rs809170 | chr9:119266109-119469941 | $1.24 \mathrm{E}-06$ | TRIM32 |
| NRP1 | rs2506142 | chr10:33464928-33468456 | rs1015025 | chr10:33423206-33485537 | $1.91 \mathrm{E}-05$ | ITGB1 |
| PLCE1 | rs10786156 | chr10:95976903-96074157 | rs35348430 | chr10:96042893-96345888 | 5.96E-56 | NOC3L |
| ARMS2 | rs2223089 | chr10:124126358-124232915 | rs11200595 | chr10:124127990-124198585 | 3.07E-147 | PLEKHA1 |
| MRVI1 | rs4910165 | chr11:10654911-10699750 | rs1544861 | chr11:10660840-10699750 | $2.97 \mathrm{E}-05$ | EIF4G2 |
| LRP1 | rs11172113 | chr12:57249600-57545756 | rs183314994 | chr12:57272508-57272527 | 5.95E-05 | ERBB3 |
| LRP1 | rs11172113 | chr12:57249600-57545756 | rs4559 | chr12:57489648-57489648 | <1.0E-147 | STAT6 |
| CFDP1 | rs77505915 | chr16:75304623-75504768 | rs247451 | chr16:75312136-75490409 | 1.05E-05 | TMEM170A |
| CFDP1 | rs77505915 | chr16:75304623-75504768 | rs4888397 | chr16:75332603-75489026 | 3.81E-13 | CFDP1 |
| CCM2L | rs144017103 | chr20:30610164-30628982 | rs12479792 | chr20:30593642-30645680 | $1.36 \mathrm{E}-09$ | HCK |

## Supplementary Table 18. Overlap of the migraine and eQTL credible sets in brain tissue.

For each migraine locus we created credible sets of SNPs and then using eQTL data from the human brain cortex of 550 individuals, we searched for significant eQTLs ( $P<1 \times 10^{-4}$ ) found to genes within a 1 Mb window of each migraine credible set. The table lists 29 migraine and eQTL loci that were found to have overlapping credible sets. We tested if there was a significant Spearman's Rank correlation between the association test-statistics in each migraine credible set compared to the expression test-statistics in each overlapping eQTL credible set. None showed significant correlation when comparing the overlap of credible sets.

| Migraine SNP nearest gene | Migraine index SNP | Migraine locus region | eQTL index SNP | eQTL locus region | eQTL Pval | eQTL Gene |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRDM16 | rs10218452 | chr1:3065568-3112278 | rs2817140 | chr1:3106397-3108496 | $6.01 \mathrm{E}-05$ | MORN1 |
| PRDM16 | rs10218452 | chr1:3065568-3112278 | rs116525159 | chr1:3104972-3107384 | $2.31 \mathrm{E}-05$ | CCDC27 |
| TSPAN2 | rs2078371 | chr1:115630981-115829943 | rs147406142 | chr1:115697124-115788614 | $1.73 \mathrm{E}-05$ | CD2 |
| ADAMTSL4 | rs6693567 | chr1:150250636-150515021 | rs7511649 | chr1:150270791-150482738 | $7.78 \mathrm{E}-05$ | ENSA |
| ADAMTSL4 | rs6693567 | chr1:150250636-150515021 | chr1_150375425_D | chr1:150247311-150512346 | $1.18 \mathrm{E}-06$ | Rprd2 |
| ADAMTSL4 | rs6693567 | chr1:150250636-150515021 | rs74335909 | chr1:150266559-150470296 | $3.71 \mathrm{E}-05$ | MRPS21 |
| MEF2D | rs1925950 | chr1:156403681-156507704 | rs114210236 | chr1:156358051-156532657 | 7.19E-05 | DAP3 |
| MEF2D | rs1925950 | chr1:156403681-156507704 | rs7364455 | chr1:156495177-156603422 | $3.08 \mathrm{E}-05$ | KIAA0907 |
| CARF | rs138556413 | chr2:203639395-204040296 | rs182823259 | chr2:203982049-203982049 | $3.96 \mathrm{E}-06$ | CD28 |
| CARF | rs138556413 | chr2:203639395-204040296 | rs185726277 | chr2:203904306-203904306 | $3.51 \mathrm{E}-05$ | ORC2L |
| CARF | rs138556413 | chr2:203639395-204040296 | rs190660781 | chr2:203770182-203770182 | $1.64 \mathrm{E}-08$ | BZW1 |
| CARF | rs138556413 | chr2:203639395-204040296 | rs182405143 | chr2:204013299-204013299 | $1.93 \mathrm{E}-09$ | FASTKD2 |
| CARF | rs138556413 | chr2:203639395-204040296 | rs182405143 | chr2:204013299-204013299 | $6.72 \mathrm{E}-08$ | WDR12 |
| CARF | rs138556413 | chr2:203639395-204040296 | rs182823259 | chr2:203982049-203982049 | $1.86 \mathrm{E}-08$ | C2orf69 |
| KCNK5 | rs10456100 | chr6:39117698-39187886 | rs79894111 | chr6:39091790-39130651 | $9.63 \mathrm{E}-06$ | ZFAND3 |
| KCNK5 | rs10456100 | chr6:39117698-39187886 | rs149096878 | chr6:39089907-39152137 | $1.14 \mathrm{E}-06$ | PTCRA |
| KCNK5 | rs10456100 | chr6:39117698-39187886 | rs13213552 | chr6:39114475-39157865 | $6.47 \mathrm{E}-05$ | KIF6 |
| FHL5 | rs67338227 | chr6:96767685-97092478 | rs60752088 | chr6:96702496-97040674 | $6.33 \mathrm{E}-05$ | POU3F2 |
| FHL5 | rs67338227 | chr6:96767685-97092478 | rs73488608 | chr6:96702496-97040674 | $1.56 \mathrm{E}-05$ | SFRS18 |
| PLCE1 | rs10786156 | chr10:95976903-96074157 | rs35084709 | chr10:96002360-96293504 | $1.37 \mathrm{E}-05$ | NOC3L |
| HPSE2 | rs12260159 | chr10:100600946-100792984 | rs72838828 | chr10:100610752-101042293 | 9.80E-06 | FRAT1 |
| HPSE2 | rs12260159 | chr10:100600946-100792984 | rs147998049 | chr10:100785193-100785193 | $8.58 \mathrm{E}-05$ | ARHGAP19 |
| HPSE2 | rs12260159 | chr10:100600946-100792984 | rs182329697 | chr10:100773286-100835791 | $1.28 \mathrm{E}-06$ | DHDPSL |
| IGSF9B | rs561561 | chr11:133813808-133846186 | rs78510304 | chr11:133843529-133843529 | $3.15 \mathrm{E}-05$ | B3GAT1 |
| LRP1 | rs11172113 | chr12:57249600-57545756 | rs10506346 | chr12:57330858-57330858 | 4.57E-06 | INHBC |
| LRP1 | rs11172113 | chr12:57249600-57545756 | rs34484591 | chr12:57290245-57764923 | $1.95 \mathrm{E}-05$ | RAB5B |


| LRP1 | rs11172113 | chr12:57249600-57545756 | rs3024974 | chr12:57399556-57492745 | 9.05E-06 | STAT6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LRP1 | rs11172113 | chr12:57249600-57545756 | rs7134373 | chr12:57306224-57493727 | $9.77 \mathrm{E}-05$ | ZВТВ39 |
| LRP1 | rs11172113 | chr12:57249600-57545756 | rs58801386 | chr12:57272865-57394635 | $1.74 \mathrm{E}-05$ | GDF11 |

## Supplementary Table 19. Overlap of the migraine and eQTL credible sets in GTEx tissues.

The table lists the migraine loci whose credible set contained SNPs that overlapped with an eQTL credible set from any tissues in the GTEx catalog ( 42 tissues and 3 cell lines from 1,641 samples). We considered only significant ( $P<2 \times 10^{-13}$ ) cis-eQTLs identified in GTEx within a 1 Mb window of each transcript and created credible sets for each eQTL locus identified in each tissue. We for a significant Spearman's Rank correlation between the meta-analysis test-statistics in each migraine credible set compared to the expression test-statistics in each overlapping eQTL credible set. After applying Bonferroni correction ( $P<7.1 \times 10^{-3}$ ) the correlation was significant from eQTLs to four tissues (Lung, Thyroid, Tibial Artery, and Aorta) at two migraine loci (HPSE2 and HEY2). Companion plots of the four significantly correlated credible sets are presented in Supplementary Figure 15.

| Locus | Chr | Locus <br> Index SNP | Migraine <br> $P$-value | eQTL <br> Index SNP | eQTL <br> P-value | eQTL Gene | GTEx Tissue | Spearman's <br> rho | Correlation <br> $P$-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HPSE2 | 10 | rs12260159 | $3.20 \mathrm{E}-10$ | rs12260159 | $7.065 \mathrm{E}-14$ | HPSE2 | Lung | 0.89 |  |
| HEY2 | 6 | rs1268083 | $5.25 \mathrm{E}-09$ | rs3799711 | $5.632 \mathrm{E}-18$ | HEY2 | Thyroid | $0.2 \mathrm{E}-14$ |  |
| HPSE2 | 10 | rs12260159 | $3.20 \mathrm{E}-10$ | rs10883234 | $2.438 \mathrm{E}-18$ | HPSE2 | Artery; Tibial | 0.59 | $1.7 \mathrm{E}-07$ |
| HPSE2 | 10 | rs12260159 | $3.20 \mathrm{E}-10$ | rs10883234 | $2.899 \mathrm{E}-28$ | HPSE2 | Artery; Aorta | 0.58 | $2.8 \mathrm{E}-03$ |
| ADAMTSL4 | 1 | rs6693567 | $1.21 \mathrm{E}-08$ | rs6693567 | $4.653 \mathrm{E}-33$ | ADAMTSL4 | Esophagus Mucosa | 0.8 | 0.33 |
| HEY2 | 6 | rs1268083 | $5.25 \mathrm{E}-09$ | rs9401845 | $2.176 \mathrm{E}-19$ | HEY2 | Testis | -0.38 | 0.09 |
| HPSE2 | 10 | rs12260159 | $3.20 \mathrm{E}-10$ | rs7091740 | $1.007 \mathrm{E}-14$ | HPSE2 | Artery Coronary | 0.06 | 0.71 |

Supplementary Table 20. DEPICT gene-expression enrichment in tissue annotations.
Expression enrichment of genes from the migraine loci in any of 209 Medical Subject Heading (MeSH) tissue and cell type annotations. Expression data was obtained from 37,427 human microarray samples and then genes in the migraine loci were assessed for high expression in each of the annotation categories. Enrichment $P$-values were determined by comparing the expression pattern from the migraine loci to 500 randomly generated loci and the false discovery rate (FDR) was estimated to control for multiple testing (see Online Methods). A plot of these results is provided in the main text, Figure 3.

| MeSH ID | Name | MeSH first level term | MeSH second level term | $P$ value | FDR | Genes from asscociated loci |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A07.231.114 | Arteries | Cardiovascular System | Blood Vessels | $1.58 \times 10^{-5}$ | <0.033 | $\begin{aligned} & \text { HEY2 (2.02), FHL5 (1.73), BCAR1 (1.35), GJA1 } \\ & \text { (1.32), C1orf54 (1.3) } \end{aligned}$ |
| A03.556.875 | Upper Gastrointestinal Tract | Digestive System | Gastrointestinal Tract | 0.003 | 0.05 | MRVI1 (1.57), CYP2C18 (1.55), ECM1 (1.04), CYP2C9 (1.01), IGSF9B (1.01) |
| A05.360.319.679.690 | Myometrium | Urogenital System | Genitalia | 0.003 | 0.03 | FHL5 (2.73), SLC24A3 (2.55), TSPAN2 (2.52), CCM2L (2.38), MRVI1 (2.1) |
| A03.556.875.875 | Stomach | Digestive System | Gastrointestinal Tract | 0.003 | 0.04 | MRVI1 (1.73), CYP2C18 (1.45), CYP2C9 (1.1), IGSF9B (1.03), KCNK5 (0.95) |
| A03.556.249.124 | Ileum | Digestive System | Gastrointestinal Tract | 0.009 | 0.19 | MYO1A (4.92), CYP2C18 (2.23), KCNK5 (1.33), BCAR1 (1.26), CFDP1 (1.09) |
| A07.541.510.110 | Aortic Valve | Cardiovascular System | Heart | 0.01 | 0.18 | $\begin{aligned} & \text { CHST6 (2.82), HEY2 (2.24), C1orf54 (2.15), PLCE1 } \\ & \text { (1.9), RAPH1 (1.66) } \end{aligned}$ |
| A07.541.510 | Heart Valves | Cardiovascular System | Heart | 0.01 | 0.15 | CHST6 (2.82), HEY2 (2.24), C1orf54 (2.15), PLCE1 (1.9), RAPH1 (1.66) |
| A05.360.319.887 | Vulva | Urogenital System | Genitalia | 0.01 | 0.22 | SDR9C7 (3.38), ECM1 (1.47), GJA1 (1.41), CYP2C18 (1.26), SLC24A3 (1.01) |
| A10.615.789 | Serous Membrane | Tissues | Membranes | 0.01 | 0.19 | MPPED2 (1.3), GJA1 (1.17), HTRA1 (1.03), C1orf54 (0.83), FHL5 (0.77) |
| A10.690.467 | Muscle Smooth | Tissues | Muscles | 0.01 | 0.18 | PAPPA (2.43), C7orf10 (1.93), NGF (1.91), MRVI1 (1.58), C1orf54 (1.49) |
| A03.556.875.500 | Esophagus | Digestive System | Gastrointestinal Tract | 0.01 | 0.17 | CYP2C18 (1.95), ECM1 (1.69), MRVI1 (1.43), CYP2C9 (0.95), PLEKHA1 (0.94) |
| A10.165.114 | Adipose Tissue | Tissues | Connective Tissue | 0.02 | 0.18 | CCM2L (3.23), FHL5 (2.48), SLC24A3 (1.78), NRP1 (1.56), TGFBR2 (1.49) |
| A14.549.167.646 | Periodontium | Stomatognathic System | Mouth | 0.02 | 0.21 | CYP2C18 (3.82), SDR9C7 (3.46), SLC24A3 (2.14), ECM1 (1.71), FAM117B (1.44) |
| A10.165.114.830 | Adipose Tissue White | Tissues | Connective Tissue | 0.02 | 0.22 | CCM2L (3.51), FHL5 (2.56), SLC24A3 (1.96), NRP1 (1.62), TGFBR2 (1.52) |
| A10.165.114.830.750 | Subcutaneous Fat | Tissues | Connective Tissue | 0.02 | 0.20 | CCM2L (3.51), FHL5 (2.56), SLC24A3 (1.96), NRP1 |


|  |  |  |  |  |  | (1.62), TGFBR2 (1.52) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A07.541 | Heart | Cardiovascular System | Heart | 0.02 | 0.21 | $\begin{aligned} & \hline \text { HEY2 (2.52), CCM2L (2.48), PLCE1 (1.7), FHL5 } \\ & \text { (1.69), HPSE2 (1.65) } \end{aligned}$ |
| A07.231 | Blood Vessels | Cardiovascular System | Blood Vessels | 0.02 | 0.20 | TGFBR2 (1.87), BCAR1 (1.64), CCM2L (1.48), DOCK4 (1.34), C1orf54 (1.29) |
| A03.556.124.684 | Intestine Small | Digestive System | Gastrointestinal Tract | 0.02 | 0.22 | MYO1A (3.13), CYP2C18 (1.36), KCNK5 (1.0), BCAR1 (0.88), CYP2C9 (0.83) |
| A06.407.071.140 | Adrenal Cortex | Endocrine System | Endocrine Glands | 0.03 | 0.21 | C7orf10 (1.74), GJA1 (1.36), ZCCHC14 (1.33), CCM2L (1.05), MRPS21 (0.95) |
| A05.360.319.679 | Uterus | Urogenital System | Genitalia | 0.03 | 0.23 | MPPED2 (1.55), GJA1 (1.12), SLC24A3 (1.07), HEY2 (1.03), PLCE1 (0.98) |
| A05.360.319.679.256 | Cervix Uteri | Urogenital System | Genitalia | 0.03 | 0.22 | GJA1 (1.08), CHST6 (0.85), YAP1 (0.71), HTRA1 (0.67), JAG1 (0.65) |
| A05.360 | Genitalia | Urogenital System | Genitalia | 0.03 | 0.23 | MPPED2 (1.37), GJA1 (0.98), YAP1 (0.98), HTRA1 (0.84), HEY2 (0.75) |
| A05.810.890 | Urinary Bladder | Urogenital System | Urinary Tract | 0.04 | 0.23 | $\begin{aligned} & \text { MROH2A (1.27), TAC3 (1.25), GJA1 (1.03), BCAR1 } \\ & (0.97), \text { PLCE1 (0.95) } \end{aligned}$ |
| $\begin{aligned} & \text { A10.165.114.830.500 } \\ & .750 \\ & \hline \end{aligned}$ | Subcutaneous Fat Abdominal | Tissues | Connective Tissue | 0.04 | 0.23 | CCM2L (3.82), SLC24A3 (2.12), FHL5 (1.86), NRP1 (1.69), TGFBR2 (1.55) |
| A10.165.114.830.500 | Abdominal Fat | Tissues | Connective Tissue | 0.04 | 0.22 | CCM2L (3.82), SLC24A3 (2.12), FHL5 (1.86), NRP1 (1.69), TGFBR2 (1.55) |
| A03.734 | Pancreas | Digestive System | Pancreas | 0.04 | 0.21 | PLCE1 (1.37), FHL5 (0.94), YAP1 (0.86), HTRA1 (0.75), NBEAL1 (0.71) |
| A07.541.560 | Heart Ventricles | Cardiovascular System | Heart | 0.04 | 0.24 | $\begin{aligned} & \text { HEY2 (2.72), CCM2L (2.56), HPSE2 (1.88), FHL5 } \\ & \text { (1.79), FGF6 (1.71) } \end{aligned}$ |
| A07.541.358 | Heart Atria | Cardiovascular System | Heart | 0.04 | 0.23 | $\begin{aligned} & \text { PLCE1 (2.75), CCM2L (2.42), GJA1 (1.44), FHL5 } \\ & \text { (1.24), ZCCHC14 (1.1) } \end{aligned}$ |
| A05.810 | Urinary Tract | Urogenital System | Urinary Tract | 0.04 | 0.22 | C7orf10 (1.14), KCNK5 (1.1), PLEKHA1 (1.09), FHL5 (0.98), NRP1 (0.88) |
| A17.815 | Skin | Integumentary System | Skin | 0.04 | 0.22 | SDR9C7 (4.24), FHL5 (1.54), GJA1 (1.38), ECM1 (1.29), C1orf51 (1.13) |
| A05.360.319 | Genitalia Female | Urogenital System | Genitalia | 0.04 | 0.21 | MPPED2 (1.38), GJA1 (1.01), YAP1 (1.01), HTRA1 (0.98), HEY2 (0.94) |
| A06.407.071 | Adrenal Glands | Endocrine System | Endocrine Glands | 0.05 | 0.23 | C7orf10 (1.49), ZCCHC14 (1.15), GJA1 (1.07), CCM2L (1.05), MRPS21 (0.89) |
| A05.360.319.114.373 | Fallopian Tubes | Urogenital System | Genitalia | 0.05 | 0.23 | MPPED2 (1.76), YAP1 (1.19), HEY2 (1.12), HTRA1 (0.95), GJA1 (0.85) |
| A05.810.453 | Kidney | Urogenital System | Urinary Tract | 0.05 | 0.23 | C7orf10 (1.25), KCNK5 (1.2), PLEKHA1 (1.15), FHL5 (1.06), CFDP1 (0.95) |
| A03.620 | Liver | Digestive System | Liver | 0.05 | 0.22 | CYP2C8 (6.14), CYP2C9 (5.51), CYP2C19 (5.21), RDH16 (5.15), CYP2C18 (3.58) |


| A10.336 | Exocrine Glands | Tissues | Exocrine Glands | 0.05 | 0.22 | TRPM8 (4.09), ARHGEF26 (2.43), ASTN2 (2.03), MPPED2 (1.76), SLC24A3 (1.06) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A10.336.707 | Prostate | Tissues | Exocrine Glands | 0.06 | 0.25 | TRPM8 (4.42), ARHGEF26 (2.64), ASTN2 (2.16), MPPED2 (1.81), SLC24A3 (1.1) |
| A14.549 | Mouth | Stomatognathic System | Mouth | 0.06 | 0.25 | SDR9C7 (3.46), CYP2C18 (3.06), ECM1 (2.2), SLC24A3 (2.01), C1orf51 (1.5) |
| A04.411 | Lung | Respiratory System | Lung | 0.07 | 0.25 | ARHGEF26 (0.9), NBEAL1 (0.85), YAP1 (0.8), PLCE1 (0.72), RAPH1 (0.7) |
| A05.360.319.679.490 | Endometrium | Urogenital System | Genitalia | 0.07 | 0.26 | MPPED2 (1.83), HEY2 (1.57), ECM1 (1.37), SLC24A3 (1.26), CHST6 (1.18) |
| A07.541.358.100 | Atrial Appendage | Cardiovascular System | Heart | 0.07 | 0.26 | PLCE1 (2.87), CCM2L (2.33), GJA1 (1.47), FHL5 (1.4), ZCCHC14 (1.14) |
| A14.549.167 | Dentition | Stomatognathic System | Mouth | 0.07 | 0.26 | $\begin{aligned} & \text { CYP2C18 (2.44), SDR9C7 (2.12), ECM1 (1.78), NGF } \\ & \text { (1.5), GJA1 (1.33) } \end{aligned}$ |
| A03.556 | Gastrointestinal Tract | Digestive System | Gastrointestinal Tract | 0.08 | 0.30 | MYO1A (2.1), CYP2C18 (1.1), PLCE1 (0.95), ECM1 (0.8), SLC24A3 (0.73) |
| A10.615.550.599 | Mouth Mucosa | Tissues | Membranes | 0.09 | 0.31 | ```SDR9C7 (5.89), CYP2C18 (4.23), ECM1 (3.31), SLC24A3 (2.59), C1orf51 (2.26)``` |
| A05.810.453.324 | Kidney Cortex | Urogenital System | Urinary Tract | 0.09 | 0.31 | C7orf10 (3.16), PAPPA (1.81), TRIM32 (1.45), CCM2L (1.37), NGF (1.2) |
| A05.360.444 | Genitalia Male | Urogenital System | Genitalia | 0.10 | 0.35 | TRPM8 (3.21), ARHGEF26 (2.09), ASTN2 (1.81), MPPED2 (1.39), GJA1 (0.92) |
| A11.872.580 | Mesenchymal Stem Cells | Cells | Stem Cells | 0.10 | 0.35 | PAPPA (2.61), NGF (2.37), C7orf10 (2.03), TRIM32 (2.01), HTRA1 (1.56) |
| A05.360.319.114 | Adnexa Uteri | Urogenital System | Genitalia | 0.11 | 0.36 | MPPED2 (1.33), YAP1 (1.06), HTRA1 (1.05), HEY2 (0.92), GJA1 (0.91) |
| A02.835.583.443 | Joint Capsule | Musculoskeletal System | Skeleton | 0.11 | 0.36 | PAPPA (2.24), NGF (2.0), ZCCHC14 (1.99), TBC1D12 (1.82), ECM1 (1.57) |
| A02.835.583 | Joints | Musculoskeletal System | Skeleton | 0.11 | 0.35 | PAPPA (2.24), NGF (2.0), ZCCHC14 (1.99), TBC1D12 (1.82), ECM1 (1.57) |
| A02.835.583.443.800 | Synovial Membrane | Musculoskeletal System | Skeleton | 0.11 | 0.35 | PAPPA (2.24), NGF (2.0), ZCCHC14 (1.99), TBC1D12 (1.82), ECM1 (1.57) |
| A06.407 | Endocrine Glands | Endocrine System | Endocrine Glands | 0.11 | 0.34 | MPPED2 (1.2), YAP1 (0.95), HTRA1 (0.93), GJA1 (0.88), C1orf51 (0.74) |
| A05.360.319.114.630 | Ovary | Urogenital System | Genitalia | 0.11 | 0.34 | MPPED2 (1.32), YAP1 (1.06), HTRA1 (1.05), HEY2 (0.91), GJA1 (0.91) |
| A06.407.900 | Thyroid Gland | Endocrine System | Endocrine Glands | 0.11 | 0.34 | PRDM16 (1.34), MPPED2 (1.34), PLCE1 (1.18), GJA1 (1.17), RAPH1 (1.14) |
| A11.620 | Muscle Cells | Cells | Muscle Cells | 0.11 | 0.36 | PAPPA (2.96), C7orf10 (2.71), NGF (2.35), TGFBR2 <br> (1.59), ECM1 (1.59) |
| A11.620.520 | Myocytes Smooth | Cells | Muscle Cells | 0.11 | 0.35 | PAPPA (2.96), C7orf10 (2.71), NGF (2.35), TGFBR2 |


|  | Muscle |  |  |  |  | (1.59), ECM1 (1.59) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A03.556.124.526.767 | Rectum | Digestive System | Gastrointestinal Tract | 0.11 | 0.35 | MYO1A (2.54), MRVI1 (0.89), KCNK5 (0.88), PLCE1 (0.85), BCAR1 (0.8) |
| A03.556.500.760.464 | Parotid Gland | Digestive System | Gastrointestinal Tract | 0.12 | 0.37 | BCAR1 (1.97), ENSG00000237781 (1.81), MPPED2 (1.5), NGF (1.39), ZCCHC14 (1.1) |
| A06.407.312 | Gonads | Endocrine System | Endocrine Glands | 0.13 | 0.42 | MPPED2 (1.31), YAP1 (1.04), HTRA1 (1.02), HEY2 (0.93), GJA1 (0.92) |
| A11.436.275 | Endothelial Cells | Cells | Epithelial Cells | 0.14 | 0.45 | CCM2L (2.08), TGFBR2 (1.98), BCAR1 (1.68), DOCK4 (1.64), GJA1 (1.17) |
| A07.231.908 | Veins | Cardiovascular System | Blood Vessels | 0.14 | 0.44 | CCM2L (2.38), DOCK4 (1.98), TGFBR2 (1.86), BCAR1 (1.71), C1orf54 (1.42) |
| A10.690 | Muscles | Tissues | Muscles | 0.14 | 0.44 | C1orf51 (1.78), SLC24A3 (1.7), FGF6 (1.48), C7orf10 (1.37), NGF (1.16) |
| A11.329.629 | Osteoblasts | Cells | Connective Tissue Cells | 0.15 | 0.47 | PAPPA (3.45), NGF (2.93), C7orf10 (2.22), HTRA1 (1.85), TBC1D12 (1.71) |
| A03.556.249 | Lower Gastrointestinal Tract | Digestive System | Gastrointestinal Tract | 0.15 | 0.46 | MYO1A (2.53), PLCE1 (0.97), KCNK5 (0.8), BCAR1 (0.76), YAP1 (0.7) |
| A03.556.124 | Intestines | Digestive System | Gastrointestinal Tract | 0.16 | 0.49 | MYO1A (2.75), PLCE1 (1.2), KCNK5 (0.86), BCAR1 (0.74), YAP1 (0.65) |
| A02.165 | Cartilage | Musculoskeletal System | Cartilage | 0.16 | 0.48 | NGF (6.02), PAPPA (2.04), RAPH1 (1.74), KCNK5 (1.45), IGSF9B (1.27) |
| $\begin{aligned} & \text { A03.556.249.249.356 } \\ & .668 \end{aligned}$ | Colon Sigmoid | Digestive System | Gastrointestinal Tract | 0.17 | 0.49 | MYO1A (2.73), KCNK5 (0.97), PLCE1 (0.89), MRVI1 (0.85), CYP2C18 (0.84) |
| A03.556.249.249 | Intestine Large | Digestive System | Gastrointestinal Tract | 0.17 | 0.50 | MYO1A (2.45), PLCE1 (0.99), KCNK5 (0.78), BCAR1 (0.74), YAP1 (0.7) |
| A03.556.500.760 | Salivary Glands | Digestive System | Gastrointestinal Tract | 0.17 | 0.50 | BCAR1 (1.89), ENSG00000237781 (1.69), MPPED2 (1.48), NGF (1.27), ZCCHC14 (0.98) |
| $\begin{aligned} & \hline \text { A08.186.211.730.885 } \\ & .287 .249 .487 \end{aligned}$ | Corpus Striatum | Nervous System | Central Nervous System | 0.18 | 0.51 | HPSE2 (3.11), C1orf61 (3.02), TBC1D12 (2.75), MRVI1 (2.4), CHST6 (2.01) |
| A03.556.249.249.356 | Colon | Digestive System | Gastrointestinal Tract | 0.18 | 0.51 | MYO1A (2.45), PLCE1 (1.0), KCNK5 (0.78), BCAR1 (0.75), YAP1 (0.71) |
| A10.615 | Membranes | Tissues | Membranes | 0.18 | 0.50 | PLCE1 (1.5), MYO1A (1.5), CYP2C18 (1.44), SDR9C7 (1.05), CHST6 (0.93) |
| A07.231.908.670.874 | Umbilical Veins | Cardiovascular System | Blood Vessels | 0.20 | 0.56 | CCM2L (2.39), DOCK4 (2.13), TGFBR2 (1.99), BCAR1 (1.73), C1orf54 (1.43) |
| A07.231.908.670 | Portal System | Cardiovascular System | Blood Vessels | 0.20 | 0.55 | CCM2L (2.39), DOCK4 (2.13), TGFBR2 (1.99), BCAR1 (1.73), C1orf54 (1.43) |
| A03.556.249.249.209 | Cecum | Digestive System | Gastrointestinal Tract | 0.22 | 0.61 | MYO1A (2.43), TAC3 (1.01), MRVI1 (1.01), PLCE1 (0.85), YAP1 (0.75) |
| A15.382.520.604.700 | Spleen | Hemic and Immune Systems | Immune System | 0.23 | 0.64 | CCM2L (3.39), GPR182 (2.32), ENSG00000258442 (1.85), RNF213 (1.0), NOC3L (0.84) |


| A02.835.232.834.151 | Cervical Vertebrae | Musculoskeletal System | Skeleton | 0.26 | 0.71 | PAPPA (1.39), TRIM32 (1.23), GJA1 (1.15), NGF (1.04), C7orf10 (1.03) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A14.549.885 | Tongue | Stomatognathic System | Mouth | 0.26 | 0.72 | CYP2C18 (2.36), SLC24A3 (1.76), MRPS21 (1.29), GJA1 (1.23), CCM2L (1.08) |
| A02.835.232.834 | Spine | Musculoskeletal System | Skeleton | 0.26 | 0.71 | PAPPA (1.38), TRIM32 (1.23), GJA1 (1.15), C7orf10 (1.04), NGF (1.04) |
| A11.329.830 | Stromal Cells | Cells | Connective Tissue Cells | 0.28 | 0.76 | NGF (2.49), PAPPA (2.15), TRIM32 (1.67), ECM1 (1.52), C7orf10 (1.42) |
| $\begin{aligned} & \text { A08.186.211.730.885 } \\ & .287 .249 \end{aligned}$ | Basal Ganglia | Nervous System | Central Nervous System | 0.30 | 0.80 | C1orf61 (3.15), HPSE2 (2.29), MRVI1 (2.14), IGSF9B (2.02), TBC1D12 (1.78) |
| A03.556.124.369 | Intestinal Mucosa | Digestive System | Gastrointestinal Tract | 0.30 | 0.80 | MYO1A (4.31), PLCE1 (2.77), CFDP1 (1.41), KCNK5 (1.25), CYP2C18 (1.05) |
| A10.615.550 | Mucous Membrane | Tissues | Membranes | 0.30 | 0.79 | MYO1A (1.9), CYP2C18 (1.82), PLCE1 (1.64), SDR9C7 (1.31), CHST6 (1.14) |
| A10.690.552.500 | Muscle Skeletal | Tissues | Muscles | 0.33 | 0.86 | $\begin{aligned} & \text { C1orf51 (2.32), SLC24A3 (2.16), FGF6 (1.83), HEY2 } \\ & \text { (1.55), MEF2D (1.48) } \end{aligned}$ |
| A10.690.552 | Muscle Striated | Tissues | Muscles | 0.33 | 0.85 | C1orf51 (2.32), SLC24A3 (2.16), FGF6 (1.83), HEY2 (1.55), MEF2D (1.48) |
| A11.872.653 | Neural Stem Cells | Cells | Stem Cells | 0.34 | 0.87 | NAB2 (2.29), MPPED2 (1.87), SLC24A3 (1.61), PRDM16 (1.52), C1orf61 (1.49) |
| A11.329.171 | Chondrocytes | Cells | Connective Tissue Cells | 0.37 | 0.94 | NGF (2.72), PAPPA (1.77), PLCE1 (1.74), HTRA1 (1.62), CHST6 (1.33) |
| A11.436.348 | Hepatocytes | Cells | Epithelial Cells | 0.38 | 0.96 | CYP2C9 (2.53), CYP2C8 (2.2), CYP2C18 (2.17), CYP2C19 (2.1), WDR12 (1.31) |
| A02.633.567.850 | Quadriceps Muscle | Musculoskeletal System | Muscles | 0.39 | 0.97 | $\begin{aligned} & \text { C1orf51 (2.42), SLC24A3 (2.24), FGF6 (1.87), HEY2 } \\ & \text { (1.56), MEF2D (1.5) } \end{aligned}$ |
| A15.382.490.315.583 | Neutrophils | Hemic and Immune Systems | Immune System | 0.41 | 1.01 | ENSG00000237781 (4.23), TSPAN2 (2.7), <br> PHACTR1 (2.44), NLRP1 (2.09), MRVI1 (1.72) |
| A10.165.450.300.425 | Keloid | Tissues | Connective Tissue | 0.41 | 1.02 | NGF (4.77), PAPPA (2.75), ECM1 (1.67), HTRA1 (1.59), TRIM32 (1.53) |
| $\begin{aligned} & \text { A08.186.211.730.885 } \\ & .287 .500 .670 \end{aligned}$ | Parietal Lobe | Nervous System | Central Nervous System | 0.42 | 1.02 | ```C1orf61 (2.77), MRVI1 (1.9), CHST6 (1.86), HTRA1 (1.62), GJA1 (1.38)``` |
| A11.118.637.415 | Granulocytes | Cells | Blood Cells | 0.44 | 1.09 | ENSG00000237781 (3.85), TSPAN2 (2.61), PHACTR1 (2.22), NLRP1 (1.83), MRVI1 (1.57) |
| A11.329.114 | Adipocytes | Cells | Connective Tissue Cells | 0.48 | 1.16 | $\begin{aligned} & \text { CCM2L (1.54), HTRA1 (1.46), LRP1 (1.32), YAP1 } \\ & \text { (1.08), NRP1 (1.04) } \end{aligned}$ |
| A09.371.060 | Anterior Eye Segment | Sense Organs | Eye | 0.49 | 1.17 | CFDP1 (1.16), HEY2 (1.11), CHST6 (0.83), YAP1 (0.76), PLEKHA1 (0.76) |
| A11.497.497.600 | Oocytes | Cells | Germ Cells | 0.49 | 1.17 | $\begin{aligned} & \text { HEY2 (2.42), HPSE2 (1.87), PAPPA (1.6), MPPED2 } \\ & \text { (1.44), GJA1 (1.18) } \end{aligned}$ |
| A05.360.490.690 | Ovum | Urogenital System | Genitalia | 0.49 | 1.16 | HEY2 (2.42), HPSE2 (1.87), PAPPA (1.6), MPPED2 |


|  |  |  |  |  |  | (1.44), GJA1 (1.18) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A09.371.337 | Eyelids | Sense Organs | Eye | 0.49 | 1.15 | $\begin{aligned} & \text { CFDP1 (1.15), HEY2 (1.13), CHST6 (0.86), YAP1 } \\ & \text { (0.77), PLEKHA1 ( } 0.76 \text { ) } \end{aligned}$ |
| A09.371.337.168 | Conjunctiva | Sense Organs | Eye | 0.49 | 1.14 | CFDP1 (1.15), HEY2 (1.13), CHST6 (0.86), YAP1 (0.77), PLEKHA1 (0.76) |
| A11.329.228 | Fibroblasts | Cells | Connective Tissue Cells | 0.50 | 1.15 | PAPPA (2.22), NGF (2.15), TRIM32 (1.58), ECM1 (1.4), C7orf10 (1.32) |
| A08.186.211.653 | Mesencephalon | Nervous System | Central Nervous System | 0.50 | 1.15 | C1orf61 (3.44), CHST6 (2.43), HPSE2 (2.08), MRVI1 (1.55), HTRA1 (1.51) |
| A02.835.232.043 | Bones of Lower Extremity | Musculoskeletal System | Skeleton | 0.51 | 1.14 | CFDP1 (1.03), HEY2 (1.0), CHST6 (0.8), PLEKHA1 (0.76), YAP1 (0.67) |
| A10.615.284.473 | Chorion | Tissues | Membranes | 0.52 | 1.14 | PAPPA (4.84), GJA1 (1.32), BCAR1 (1.13), YAP1 (1.11), NRP1 (0.99) |
| A10.615.284 | Extraembryonic Membranes | Tissues | Membranes | 0.52 | 1.13 | PAPPA (4.84), GJA1 (1.32), BCAR1 (1.13), YAP1 (1.11), NRP1 (0.99) |
| $\begin{aligned} & \hline \text { A02.835.232.043.300 } \\ & .710 \\ & \hline \end{aligned}$ | Tarsal Bones | Musculoskeletal System | Skeleton | 0.52 | 1.13 | HEY2 (1.04), CFDP1 (1.03), CHST6 (0.78), PLEKHA1 (0.77), MPPED2 (0.67) |
| A02.835.232.043.300 | Foot Bones | Musculoskeletal System | Skeleton | 0.52 | 1.12 | HEY2 (1.04), CFDP1 (1.03), CHST6 (0.78), PLEKHA1 (0.77), MPPED2 (0.67) |
| A05.360.444.492 | Penis | Urogenital System | Genitalia | 0.54 | 1.15 | SDR9C7 (2.74), ECM1 (1.4), GJA1 (1.38), PAPPA (1.35), TBC1D12 (1.24) |
| A10.165.450 | Granulation Tissue | Tissues | Connective Tissue | 0.54 | 1.14 | NGF (3.27), PAPPA (2.68), ECM1 (1.71), HTRA1 (1.63), NRP1 (1.43) |
| A10.165.450.300 | Cicatrix | Tissues | Connective Tissue | 0.54 | 1.13 | $\begin{aligned} & \text { NGF (3.27), PAPPA (2.68), ECM1 (1.71), HTRA1 } \\ & \text { (1.63), NRP1 (1.43) } \end{aligned}$ |
| A08.186.211.464.405 | Hippocampus | Nervous System | Central Nervous System | 0.58 | 1.18 | SLC24A3 (2.78), C1orf61 (2.41), CHST6 (1.74), HTRA1 (1.45), DOCK4 (1.43) |
| A11.872.190 | Embryonic Stem Cells | Cells | Stem Cells | 0.58 | 1.18 | $\begin{aligned} & \text { ZBTB39 (1.81), GJA1 (1.43), CHST6 (1.32), CFDP1 } \\ & \text { (1.24), TAC3 (1.24) } \end{aligned}$ |
| A11.436.397 | Keratinocytes | Cells | Epithelial Cells | 0.60 | 1.20 | SDR9C7 (4.51), CYP2C18 (1.7), TRIM32 (1.26), ECM1 (1.07), YAP1 (1.06) |
| A05.360.444.492.362 | Foreskin | Urogenital System | Genitalia | 0.61 | 1.21 | SDR9C7 (2.76), PAPPA (1.39), ECM1 (1.39), GJA1 (1.39), TBC1D12 (1.31) |
| A11.872.190.260 | Embryoid Bodies | Cells | Stem Cells | 0.63 | 1.24 | PAPPA (2.57), BCAR1 (1.52), TAC3 (1.34), GJA1 (1.24), YAP1 (1.06) |
| A05.360.490 | Germ Cells | Urogenital System | Genitalia | 0.64 | 1.24 | HEY2 (2.14), PAPPA (1.73), HPSE2 (1.7), MPPED2 (1.26), GJA1 (1.14) |
| A15.382.680 | Phagocytes | Hemic and Immune Systems | Immune System | 0.65 | 1.24 | ENSG00000237781 (1.17), PHACTR1 (1.12), DOCK4 (1.03), STAT6 (1.01), ITPK1 (0.79) |
| $\begin{aligned} & \text { A11.118.637.555.567 } \\ & .569 .200 .700 \\ & \hline \end{aligned}$ | T Lymphocytes Regulatory | Cells | Blood Cells | 0.65 | 1.24 | NLRP1 (1.64), ZCCHC14 (1.57), IGSF9B (1.55), RPRD2 (1.13), RNF213 (0.98) |


| $\begin{aligned} & \text { A08.186.211.730.885 } \\ & .287 .500 .571 .735 \end{aligned}$ | Visual Cortex | Nervous System | Central Nervous System | 0.65 | 1.23 | C1orf61 (2.34), PLEKHA1 (1.75), IGSF9B (1.39), PRDM16 (1.38), GJA1 (1.33) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A15.378.316 | Bone Marrow Cells | Hemic and Immune Systems | Hematopoietic System | 0.66 | 1.22 | ENSG00000237781 (1.4), PHACTR1 (1.19), STAT6 (0.91), MEF2D (0.76), NLRP1 (0.75) |
| A15.378 | Hematopoietic System | Hemic and Immune Systems | Hematopoietic System | 0.66 | 1.21 | ENSG00000237781 (1.4), PHACTR1 (1.19), STAT6 (0.91), MEF2D (0.76), NLRP1 (0.75) |
| A08.186.211.730.885 | Telencephalon | Nervous System | Central Nervous System | 0.66 | 1.21 | C1orf61 (2.61), SLC24A3 (1.58), MRVI1 (1.4), HTRA1 (1.38), GJA1 (1.31) |
| A15.145.300 | Fetal Blood | Hemic and Immune Systems | Blood | 0.67 | 1.21 | ENSG00000237781 (1.36), FGF6 (0.66), TSPAN2 (0.64), STAT6 ( 0.62 ), NLRP1 (0.61) |
| $\begin{aligned} & \text { A08.186.211.730.885 } \\ & .287 \\ & \hline \end{aligned}$ | Cerebrum | Nervous System | Central Nervous System | 0.67 | 1.20 | C1orf61 (2.6), SLC24A3 (1.59), MRVI1 (1.4), HTRA1 (1.38), GJA1 (1.31) |
| A15.145.846 | Serum | Hemic and Immune Systems | Blood | 0.67 | 1.19 | NGF (1.9), BCAR1 (1.67), DOCK4 (1.59), TRIM32 (1.35), NRP1 (1.2) |
| A08.186.211.730 | Prosencephalon | Nervous System | Central Nervous System | 0.68 | 1.19 | C1orf61 (2.5), SLC24A3 (1.49), HTRA1 (1.4), MRVI1 (1.33), CHST6 (1.29) |
| A08.186.211.464 | Limbic System | Nervous System | Central Nervous System | 0.68 | 1.19 | C1orf61 (2.57), SLC24A3 (1.91), MRVI1 (1.42), <br> HTRA1 (1.39), CHST6 (1.34) |
| A11.872.700 | Pluripotent Stem Cells | Cells | Stem Cells | 0.68 | 1.18 | HEY2 (1.94), CHST6 (1.94), HELLS (1.75), GJA1 (1.52), TAC3 (1.51) |
| A11.872.700.500 | Induced Pluripotent Stem Cells | Cells | Stem Cells | 0.68 | 1.17 | HEY2 (1.94), CHST6 (1.94), HELLS (1.75), GJA1 (1.52), TAC3 (1.51) |
| A09.371 | Eye | Sense Organs | Eye | 0.70 | 1.18 | MPPED2 (0.94), YAP1 (0.73), PLEKHA1 (0.6), TRIM32 (0.58), NBEAL1 (0.57) |
| $\begin{aligned} & \text { A15.145.229.637.555 } \\ & .567 .569 .200 \end{aligned}$ | CD4 Positive T Lymphocytes | Hemic and Immune Systems | Blood | 0.70 | 1.17 | IGSF9B (1.76), ZCCHC14 (1.58), NLRP1 (1.49), RNF213 (0.93), RPRD2 (0.92) |
| A11.627 | Myeloid Cells | Cells | Myeloid Cells | 0.70 | 1.17 | ENSG00000237781 (1.1), PHACTR1 (1.06), DOCK4 (0.93), STAT6 (0.9), ITPK1 (0.71) |
| $\begin{aligned} & \text { A08.186.211.730.885 } \\ & .287 .500 .571 \end{aligned}$ | Occipital Lobe | Nervous System | Central Nervous System | 0.70 | 1.16 | C1orf61 (2.4), PLEKHA1 (1.73), IGSF9B (1.48), GJA1 (1.31), NCOA7 (1.26) |
| A08.186.211 | Brain | Nervous System | Central Nervous System | 0.70 | 1.15 | C1orf61 (2.48), HTRA1 (1.31), SLC24A3 (1.26), GJA1 (1.16), ASTN2 (1.11) |
| $\begin{aligned} & \text { A08.186.211.730.885 } \\ & .287 .500 \end{aligned}$ | Cerebral Cortex | Nervous System | Central Nervous System | 0.70 | 1.15 | C1orf61 (2.56), SLC24A3 (1.65), HTRA1 (1.37), MRVI1 (1.34), GJA1 (1.31) |
| A08.186 | Central Nervous System | Nervous System | Central Nervous System | 0.70 | 1.14 | C1orf61 (2.46), HTRA1 (1.3), SLC24A3 (1.23), GJA1 (1.15), ASTN2 (1.1) |
| A15.378.316.580 | Monocytes | Hemic and Immune Systems | Hematopoietic System | 0.71 | 1.15 | NAB2 (1.18), STAT6 (0.89), DOCK4 (0.84), C1orf54 (0.73), LRP1 (0.7) |
| A03.734.414 | Islets of Langerhans | Digestive System | Pancreas | 0.71 | 1.14 | YAP1 (1.3), BCAR1 (0.86), HJURP (0.81), PLCE1 (0.77), PLEKHA1 (0.69) |
| A11.329 | Connective Tissue | Cells | Connective Tissue Cells | 0.72 | 1.14 | NRP1 (1.11), PAPPA (0.91), NGF (0.9), TBC1D12 |


|  | Cells |  |  |  |  | (0.88), ECM1 (0.77) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A08.186.211.730.317 | Diencephalon | Nervous System | Central Nervous System | 0.74 | 1.18 | IGSF9B (1.97), C1orf61 (1.71), HTRA1 (1.5), HPSE2 (1.27), ASTN2 (1.24) |
| A15.382.812 | Mononuclear Phagocyte System | Hemic and Immune Systems | Immune System | 0.74 | 1.17 | TBC1D12 (1.06), DOCK4 (1.01), C1orf54 (0.97), NAB2 (0.91), NRP1 (0.89) |
| A11.066 | Antigen Presenting Cells | Cells | Antigen-Presenting Cells | 0.75 | 1.17 | C1orf54 (1.68), TMEM194A (1.2), TBC1D12 (1.19), NRP1 (1.01), DOCK4 (0.95) |
| A15.382.812.260 | Dendritic Cells | Hemic and Immune Systems | Immune System | 0.75 | 1.16 | C1orf54 (1.68), TMEM194A (1.2), TBC1D12 <br> (1.19), NRP1 (1.01), DOCK4 (0.95) |
| $\begin{aligned} & \text { A08.186.211.464.710 } \\ & .225 \end{aligned}$ | Entorhinal Cortex | Nervous System | Central Nervous System | 0.75 | 1.16 | C1orf61 (2.68), MRVI1 (1.51), HTRA1 (1.39), TAC3 (1.39), GJA1 (1.35) |
| A08.186.211.464.710 | Parahippocampal Gyrus | Nervous System | Central Nervous System | 0.75 | 1.15 | $\begin{aligned} & \text { C1orf61 (2.68), MRVI1 (1.51), HTRA1 (1.39), TAC3 } \\ & \text { (1.39), GJA1 (1.35) } \end{aligned}$ |
| A09.371.729 | Retina | Sense Organs | Eye | 0.75 | 1.14 | MPPED2 (4.06), ARHGEF26 (2.45), CFDP1 (1.53), PLEKHA1 (1.33), HEY2 (1.3) |
| $\begin{aligned} & \hline \text { A08.186.211.730.885 } \\ & .287 .500 .863 \end{aligned}$ | Temporal Lobe | Nervous System | Central Nervous System | 0.75 | 1.13 | C1orf61 (2.72), TAC3 (1.5), MRVI1 (1.48), HTRA1 (1.39), PLEKHA1 (1.35) |
| A06.407.312.782 | Testis | Endocrine System | Endocrine Glands | 0.76 | 1.14 | ZBTB39 (2.03), ASTN2 (1.99), C1orf54 (1.29), HEY2 (1.19), TRIM32 (1.19) |
| $\begin{aligned} & \hline \text { A02.835.583.443.800 } \\ & .800 \end{aligned}$ | Synovial Fluid | Musculoskeletal System | Skeleton | 0.77 | 1.14 | C1orf54 (2.46), TSPAN2 (1.69), CYP20A1 (1.27), NLRP1 (1.25), TMEM170A (0.8) |
| $\begin{aligned} & \text { A11.118.637.555.567 } \\ & .569 \end{aligned}$ | T Lymphocytes | Cells | Blood Cells | 0.78 | 1.14 | IGSF9B (1.26), NLRP1 (1.18), RNF213 (0.99), DHX36 (0.77), CYP2OA1 (0.71) |
| A15.382.812.522 | Macrophages | Hemic and Immune Systems | Immune System | 0.78 | 1.14 | NRP1 (1.29), DOCK4 (1.24), TBC1D12 (1.18), C1orf54 (0.87), NAB2 (0.76) |
| A11.436.294.064 | Glucagon Secreting Cells | Cells | Epithelial Cells | 0.79 | 1.13 | YAP1 (1.45), HJURP (1.22), TMEM194A (0.99), PLCE1 (0.94), PLEKHA1 (0.87) |
| A11.382.625 | Enteroendocrine Cells | Cells | Endocrine Cells | 0.79 | 1.13 | YAP1 (1.45), HJURP (1.22), TMEM194A (0.99), PLCE1 (0.94), PLEKHA1 (0.87) |
| A15.382.520 | Lymphatic System | Hemic and Immune Systems | Immune System | 0.79 | 1.12 | GPR182 (1.7), C1orf54 (0.78), CCM2L (0.73), ENSG00000258442 (0.71), NOC3L (0.58) |
| A10.549 | Lymphoid Tissue | Tissues | Lymphoid Tissue | 0.79 | 1.11 | GPR182 (1.7), C1orf54 (0.78), CCM2L (0.73), ENSG00000258442 (0.71), NOC3L (0.58) |
| A04.623.603 | Oropharynx | Respiratory System | Pharynx | 0.79 | 1.11 | FAM117B (1.16), PHACTR1 (0.87), C7orf10 (0.73), PRPF3 (0.71), NLRP1 (0.68) |
| A15.382.520.604.800 | Palatine Tonsil | Hemic and Immune Systems | Immune System | 0.79 | 1.11 | FAM117B (1.16), PHACTR1 (0.87), C7orf10 (0.73), PRPF3 (0.71), NLRP1 (0.68) |
| A11.872.378.294 | Lymphoid Progenitor Cells | Cells | Stem Cells | 0.80 | 1.11 | FAM117B (1.46), PHACTR1 (1.35), NLRP1 (1.33), CYP20A1 (1.27), TMEM170A (1.14) |
| $\begin{aligned} & \text { A11.118.637.555.567 } \\ & .562 .440 \\ & \hline \end{aligned}$ | Precursor Cells B Lymphoid | Cells | Blood Cells | 0.80 | 1.10 | FAM117B (1.46), PHACTR1 (1.35), NLRP1 (1.33), CYP20A1 (1.27), TMEM170A (1.14) |


| A11.627.624.249 | Monocyte <br> Macrophage Precursor <br> Cells | Cells | Myeloid Cells | 0.80 | 1.09 | PRPF3 (1.06), KCNK5 (0.97), WDR12 (0.93), TARS2 (0.72), TMEM170A (0.71) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A15.145.229.188 | Blood Platelets | Hemic and Immune Systems | Blood | 0.81 | 1.10 | SLC24A3 (3.81), TSPAN2 (3.23), FGF6 (1.94), ENSG00000258442 (1.68), MEF2D (1.48) |
| A15.145 | Blood | Hemic and Immune Systems | Blood | 0.83 | 1.11 | NLRP1 (1.15), ENSG00000237781 (0.81), <br> PHACTR1 ( 0.66 ), RNF213 ( 0.57 ), MEF2D ( 0.55 ) |
| A11.436 | Epithelial Cells | Cells | Epithelial Cells | 0.83 | 1.10 | $\begin{aligned} & \text { CHST6 (0.87), CFDP1 (0.6), YAP1 (0.52), TBC1D12 } \\ & \text { (0.51), BCAR1 (0.49) } \end{aligned}$ |
| A09.531 | Nose | Sense Organs | Nose | 0.85 | 1.12 | CHST6 (3.77), NBEAL1 (1.53), PLCE1 (1.47), CYP2C18 (0.97), STAT6 (0.96) |
| A04.531.520 | Nasal Mucosa | Respiratory System | Nose | 0.85 | 1.11 | CHST6 (3.77), NBEAL1 (1.53), PLCE1 (1.47), CYP2C18 (0.97), STAT6 (0.96) |
| A10.615.550.760 | Respiratory Mucosa | Tissues | Membranes | 0.85 | 1.11 | CHST6 (3.77), NBEAL1 (1.53), PLCE1 (1.47), CYP2C18 (0.97), STAT6 (0.96) |
| A10.549.400 | Lymph Nodes | Tissues | Lymphoid Tissue | 0.85 | 1.10 | GPR182 (1.94), C1orf54 (1.2), ENSG00000258442 <br> (0.64), RNF213 (0.59), CCM2L (0.58) |
| $\begin{aligned} & \text { A05.360.319.114.630 } \\ & .535 \end{aligned}$ | Ovarian Follicle | Urogenital System | Genitalia | 0.86 | 1.10 | PAPPA (2.6), HTRA1 (1.91), GJA1 (1.64), CFDP1 (1.54), HEY2 (1.26) |
| A11.436.329 | Granulosa Cells | Cells | Epithelial Cells | 0.86 | 1.09 | $\begin{aligned} & \text { PAPPA (2.6), HTRA1 (1.91), GJA1 (1.64), CFDP1 } \\ & \text { (1.54), HEY2 (1.26) } \end{aligned}$ |
| $\begin{aligned} & \text { A06.407.312.497.535 } \\ & .300 .500 \end{aligned}$ | Cumulus Cells | Endocrine System | Endocrine Glands | 0.86 | 1.09 | PAPPA (2.6), HTRA1 (1.91), GJA1 (1.64), CFDP1 (1.54), HEY2 (1.26) |
| A11.872 | Stem Cells | Cells | Stem Cells | 0.87 | 1.08 | PAPPA (0.81), WDR12 (0.79), C7orf10 (0.65), NOC3L (0.63), TRIM32 (0.62) |
| A08.186.211.132 | Brain Stem | Nervous System | Central Nervous System | 0.87 | 1.09 | C1orf61 (2.62), IGSF9B (2.33), CHST6 (1.6), ASTN2 (1.43), SLC24A3 (1.42) |
| A15.145.229 | Blood Cells | Hemic and Immune Systems | Blood | 0.88 | 1.08 | NLRP1 (0.96), PHACTR1 (0.63), RNF213 (0.58), ENSG00000237781 (0.58), MEF2D (0.51) |
| A11.872.040 | Adult Stem Cells | Cells | Stem Cells | 0.88 | 1.08 | CHST6 (1.46), HEY2 (1.29), GJA1 (1.27), HELLS (1.25), C1orf51 (1.23) |
| A11.118.637 | Leukocytes | Cells | Blood Cells | 0.88 | 1.08 | ENSG00000237781 (0.81), PHACTR1 (0.8), MEF2D (0.75), NLRP1 (0.72), ENSG00000258442 (0.6) |
| A10.272.497 | Epidermis | Tissues | Epithelium | 0.88 | 1.07 | SDR9C7 (4.79), ECM1 (2.76), ARHGEF26 (2.17), GJA1 (1.38), SLC24A3 (1.37) |
| A11.329.372.600 | Macrophages Alveolar | Cells | Connective Tissue Cells | 0.89 | 1.07 | TBC1D12 (1.95), NRP1 (1.77), DOCK4 (1.33), PHACTR1 (1.19), TMEM170A (0.99) |
| $\begin{aligned} & \text { A08.186.211.730.885 } \\ & .287 .500 .270 \end{aligned}$ | Frontal Lobe | Nervous System | Central Nervous System | 0.89 | 1.06 | C1orf61 (2.53), TAC3 (2.01), ITPK1 (1.54), IGSF9B (1.48), GJA1 (1.35) |
| $\begin{aligned} & \hline \text { A08.186.211.730.317 } \\ & .357 \\ & \hline \end{aligned}$ | Hypothalamus | Nervous System | Central Nervous System | 0.90 | 1.06 | IGSF9B (2.16), C1orf51 (1.57), HTRA1 (1.42), ASTN2 (1.22), MPPED2 (1.11) |


| A11.382 | Endocrine Cells | Cells | Endocrine Cells | 0.90 | 1.06 | PAPPA (1.31), HTRA1 (1.3), YAP1 (1.23), CFDP1 <br> (1.14), BCAR1 (0.91) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A08.186.211.865.428 | Metencephalon | Nervous System | Central Nervous System | 0.90 | 1.06 | IGSF9B (2.77), C1orf61 (2.25), SLC24A3 (1.66), <br> ASTN2 (1.56), NAB2 (1.5) |
| A08.186.211.865 | Rhombencephalon | Nervous System | Central Nervous System | 0.90 | 1.05 | IGSF9B (2.77), C1orf61 (2.25), SLC24A3 (1.66), <br> ASTN2 (1.56), NAB2 (1.5) |
| A11.872.378.590.635 | Granulocyte <br> Macrophage <br> Progenitor Cells | Cells | Stem Cells | 0.91 | 1.05 | KCNK5 (0.98), WDR12 (0.97), TSPAN2 (0.94), <br> PRPF3 (0.88), TARS2 (0.69) |
| A08.186.211.132.810 <br> .428 .200 | Cerebellum | Nervous System | Central Nervous System | 0.91 | 1.04 | IGSF9B (2.85), C1orf61 (2.11), SLC24A3 (1.74), <br> NAB2 (1.73), ASTN2 (1.54) |
| A15.382.490.555.567 <br> .537 | Killer Cells Natural | Hemic and Immune <br> Systems | Immune System | 0.92 | 1.05 | RNF213 (1.2), DHX36 (0.94), HELLS (0.77), <br> CYP20A1 (0.68), TMEM170A (0.65) |
| A10.165 | Connective Tissue | Tissues | Connective Tissue | 0.93 | 1.05 | SPINK2 (1.15), MEF2D (0.74), PHACTR1 (0.63), <br> FGF6 (0.55), |
| A15TB39 (0.51) |  |  |  |  |  |  |


| A11.063 | Antibody Producing <br> Cells | Cells | Antibody-Producing Cells | 0.97 | 1.01 | CYP20A1 (1.51), HEY2 (1.34), FGF6 (0.93), MEF2D <br> (0.83), ZBTB39 (0.8) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A11.118.637.555.567 <br> .562 | B Lymphocytes | Cells | Blood Cells | 0.97 | 1.00 | CYP20A1 (1.51), HEY2 (1.34), FGF6 (0.93), MEF2D <br> (0.83), ZBTB39 (0.8) |
| A15.382.490.555.567 <br> .622 | Lymphocytes Null | Hemic and Immune <br> Systems | Immune System | 0.97 | 1.00 | HELLS (1.65), TARS2 (1.63), HJURP (1.55), RNF213 <br> (1.34), NOC3L (1.13) |
| A11.627.635 | Myeloid Progenitor <br> Cells | Cells | Myeloid Cells | 0.97 | 1.00 | WDR12 (1.26), KCNK5 (1.01), TMEM194A (0.91), <br> TARS2 (0.82), PRPF3 (0.8) |
| A11.872.378 | Hematopoietic Stem <br> Cells | Cells | Stem Cells | 0.98 | 1.00 | WDR12 (1.0), PRPF3 (0.8), KCNK5 (0.8), <br> TMEM194A (0.73), NOC3L (0.71) |
| A11.872.378.590.817 | Megakaryocyte <br> Erythroid Progenitor <br> Cells | Cells | Stem Cells | 0.99 | 1.00 | WDR12 (1.92), TMEM194A (1.88), HJURP (1.36), <br> NOC3L (1.14), TARS2 (1.11) |
| A15.378.316.378.590 <br> .837 .250 | Erythroid Precursor <br> Cells | Hemic and Immune <br> Systems | Hematopoietic System | 0.99 | 1.00 | WDR12 (1.92), TMEM194A (1.88), HJURP (1.36), <br> NOC3L (1.14), TARS2 (1.11) |
| A15.145.229.334 | Erythrocytes | Hemic and Immune <br> Systems | Blood | 0.99 | 0.99 | WDR12 (1.14), HJURP (1.0), TSPAN2 (0.92), <br> SLC24A3 (0.91), KCNK5 (0.85) |
| A11.443 | Crythroid Cells | Cells | Stomatognathic <br> System | Pharynx | 0.99 | 0.99 |
| A14.724.557 | Nasopharynx | Stomatognathic <br> System | Pharynx | WDR12 (1.16), HJURP (0.98), TSPAN2 (0.89), <br> SLC24A3 (0.88), TAC3 (0.88) |  |  |
| A14.724 | Pharynx | 0.99 | 0.99 | ENSG00000258442 (1.63), CYP2C18 (1.41), <br> CYP2C19 (1.38), TAC3 (1.31), ZBTB39 (1.27) |  |  |

## Supplementary Table 21. Enhancer analysis list of tissues and cell lines.

The table lists the 56 tissues and cell lines that were used for the enhancer enrichment analysis. A description is given for each tissue/cell line, along with the anatomical group and how it was derived. ESC is embryonic stem cells, IPSC is induced pluripotent stem cells, and GI is gastrointestinal. Epigenetic data (H3K27ac histone marks) identifying the genomic locations of active enhancers in each tissue/cell type was obtained from http://www.roadmapepigenomics.org. We then mapped credible sets from the migraine loci to sets of enhancers in each tissue and assessed enrichment empirically using a by randomly generating a background set of matched loci for comparison ( 10,000 replicates). No tissue/cell type was significant after adjusting for multiple testing. The results are plotted in Figure 4.

| Tissue no. | Tissue label | Tissue description | Anatomic Group | Type | Enrichment P-value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Hippocampus middle | Brain Hippocampus Middle | BRAIN | PrimaryTissue | 0.01 |
| 2 | Anterior caudate | Brain Anterior Caudate | BRAIN | PrimaryTissue | 0.49 |
| 3 | Substantia nigra | Brain Substantia Nigra | BRAIN | PrimaryTissue | 0.68 |
| 4 | Cingulate gyrus | Brain Cingulate Gyrus | BRAIN | PrimaryTissue | 0.17 |
| 5 | Mid frontal lobe | Brain Dorsolateral Prefrontal Cortex | BRAIN | PrimaryTissue | 0.01 |
| 6 | Angular gyrus | Brain Angular Gyrus | BRAIN | PrimaryTissue | 0.53 |
| 7 | Inferior temporal lobe | Brain Inferior Temporal Lobe | BRAIN | PrimaryTissue | 0.99 |
| 8 | Neurosphere | Primary cultured neurospheres | BRAIN | PrimaryCulture | 0.09 |
| 9 | HUES 6 | HUES6 Cells | ESC | PrimaryCulture | 0.64 |
| 10 | HUES64 | HUES64 Cells | ESC | PrimaryCulture | 0.49 |
| 11 | hiPS-20b | iPS-20b Cells | IPSC | PrimaryCulture | 0.99 |
| 12 | hiPS-18a | iPS-18 Cells | IPSC | PrimaryCulture | 0.43 |
| 13 | H1 | H1 Cells | ESC | PrimaryCulture | 0.72 |
| 14 | Kidney | Fetal Kidney | KIDNEY | PrimaryTissue | 0.21 |
| 15 | Pancreatic Islets | Pancreatic Islets | PANCREAS | PrimaryTissue | 0.61 |
| 16 | Liver | Liver | LIVER | PrimaryTissue | 0.43 |
| 17 | Duodenum mucosa | Duodenum Mucosa | GI | PrimaryTissue | 0.27 |
| 18 | Colonic mucosa | Colonic Mucosa | GI | PrimaryTissue | 0.16 |
| 19 | Rectal mucosa | Rectal Mucosa Donor | GI | PrimaryTissue | 0.51 |


| 20 | AdiposeNuclei | Adipose Nuclei |
| :--- | :--- | :--- |
| 21 | Skeletal muscle | Skeletal Muscle |
| 22 | Smooth muscle, Duodenum | Duodenum Smooth Muscle |
| 23 | Smooth muscle, rectal | Rectal Smooth Muscle |
| 24 | Smooth muscle, stomach | Stomach Smooth Muscle |
| 25 | Smooth muscle, colon | Colon Smooth Muscle |
| 26 | BM-MSC | Bone Marrow Derived Cultured Mesenchymal Stem Cells |
| 27 | Chondrogenic dif cells | Mesenchymal Stem Cell Derived Chondrocyte Cultured Cells |
| 28 | NH-Osteoblast | Osteoblast Primary Cells |
| 29 | NHDF | NHDF-Ad Adult Dermal Fibroblast Primary Cells |
| 30 | NHLF | NHLF Lung Fibroblast Primary Cells |
| 31 | NH-A | NH-A Astrocytes Primary Cells |
| 32 | HSMM-myotube | HSMM cell derived Skeletal Muscle Myotubes Cells |
| 33 | HSMM | HSMM Skeletal Muscle Myoblasts Cells |
| 34 | SK-N-MC | Neuroepithelioma derived from human brain tumor |
| 35 | A673 | Human muscle sarcoma cell line |
| 36 | K562 | K562 Leukemia Cells |
| 37 | HepG2 | HepG2 Hepatocellular Carcinoma Cell Line |
| 38 | Huvec | HUVEC Umbilical Vein Endothelial Primary Cells |
| 39 | NHEK | NHEK-Epidermal Keratinocyte Primary Cells |
| 40 | HMEC | HMEC Mammary Epithelial Primary Cells |
| 41 | HeLaS3 | HeLa-S3 Cervical Carcinoma Cell Line |
| 42 | DND-41 | Dnd41 TCell Leukemia Cell Line |
| 43 | Mobilized CD34+ | Primary hematopoietic stem cells G-CSF-mobilized Male |
| 44 | CD14+ | Monocytes-CD14+ RO01746 Primary Cells |
| 45 | GM12878 lymphoblastoid | GM12878 Lymphoblastoid Cells |
| 46 | CD20+ | B cells (CD20+) |
| 47 | CD19+ | B cells (CD19+) |
| 48 | Th2 Tcells | Thelper type 2 cells |
| 49 | Th1 Tcells | Thelper type 1 cells |
| 50 | Th0 Tcells | Thelper type 0 cells |
| 51 | CD25- IL17- Th stim MACS | Primary T helper cells PMA-I stimulated |
|  | Tcells |  |
| 20 |  |  |


| FAT | PrimaryTissue | 0.15 |
| :---: | :---: | :---: |
| MUSCLE | PrimaryTissue | 0.11 |
| GI | PrimaryTissue | 0.01 |
| GI | PrimaryTissue | 0.39 |
| GI | PrimaryTissue | 0.28 |
| GI | PrimaryTissue | 0.24 |
| STROMAL_CONNECTIVE | PrimaryCulture | 0.05 |
| STROMAL_CONNECTIVE | PrimaryCulture | 0.22 |
| BONE | PrimaryCulture | 0.11 |
| SKIN | PrimaryCulture | 0.93 |
| LUNG | PrimaryCulture | 0.97 |
| BRAIN | PrimaryCulture | 0.17 |
| MUSCLE | PrimaryCulture | 0.12 |
| MUSCLE | PrimaryCulture | 0.20 |
| BRAIN | Cellline | 0.91 |
| MUSCLE | Cellline | 0.81 |
| BLOOD | PrimaryCulture | 0.99 |
| LIVER | Cellline | 0.94 |
| VASCULAR | PrimaryCulture | 0.90 |
| SKIN | PrimaryCulture | 0.97 |
| BREAST | PrimaryCulture | 0.98 |
| CERVIX | Cellline | 0.96 |
| BLOOD | Cellline | 0.80 |
| BLOOD | PrimaryCell | 0.79 |
| BLOOD | PrimaryCell | 0.70 |
| BLOOD | PrimaryCulture | 0.80 |
| BLOOD | PrimaryCell | 0.50 |
| BLOOD | PrimaryCell | 0.72 |
| BLOOD | PrimaryCell | 0.74 |
| BLOOD | PrimaryCell | 0.73 |
| BLOOD | PrimaryCell | 0.84 |
| BLOOD | PrimaryCell | 0.89 |


| 52 | CD25- IL17+ Th17 stim Tcells | Primary T helper 17 cells PMA-I stimulated | PrimaryCell |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 53 | CD25int CD127+ memory Tcells | Primary T cells effector/memory enriched from peripheral <br> blood | BLOOD |
| 54 | CD25+ CD127- reg Tcells | Primary T regulatory cells from peripheral blood | PrimaryCell |
| 55 | CD25- CD45RA+ naive Tcells | Primary T helper naive cells from peripheral blood | BLOOD |
| 56 | CD3+ Tcells | Primary T cells from peripheral blood | BLOOD |
| PrimaryCell |  |  |  |
| PrimaryCell |  |  |  |
| PrimaryCell | 0.95 |  |  |
| 0.99 |  |  |  |

## Supplementary Table 22. Gene Ontology enrichment analysis.

The set of 38 genes that are nearest to the index SNP in each migraine locus was chosen and tested for over-representation in Gene Ontology (GO) annotations. The PANTHER ${ }^{61}$ analysis tool (also available at http://geneontology.org/page/go-enrichment-analysis) was used to perform the analysis which implements a binomial test to determine if the number of genes from the migraine test set found in each GO Pathway is likely to have occurred by chance alone. In the table, the background frequency is the total number of genes out of all genes in the genome that annotated in a particular GO Pathway. The migraine set frequency is the number of genes from the set of 38 genes nearest to the migraine index SNP that are in each GO Pathway. The expected frequency is the number of genes from the migraine set that would be expected by chance to appear in each GO Pathway. The P-values from the binomial test were adjusted for the number of independent test by Bonferroni correction.

| Go Pathway | GO Term | Background <br> frequency | Migraine set <br> frequency | Expected <br> frequency | P-value <br> (adjusted) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Circulatory system development | GO:0072359 | 758 | 12 | 1.32 | $2.7 \times 10^{-5}$ |
| Cardiovascular system development | GO:0072358 | 758 | 12 | 1.32 | $2.7 \times 10^{-5}$ |
| Blood vessel morphogenesis | GO:0048514 | 368 | 9 | 0.64 | $8.7 \times 10^{-5}$ |
| Heart development | GO:0007507 | 432 | 9 | 0.75 | $3.4 \times 10^{-4}$ |
| Blood vessel development | GO:0001568 | 439 | 9 | 0.77 | $3.9 \times 10^{-4}$ |
| Vasculature development | GO:0001944 | 460 | 9 | 0.80 | $5.8 \times 10^{-4}$ |
| Endothelium development | GO:0003158 | 84 | 5 | 0.15 | $2.9 \times 10^{-3}$ |
| Artery morphogenesis | GO:0048844 | 51 | 4 | 0.09 | $1.6 \times 10^{-2}$ |
| Stem cell development | GO:0048864 | 232 | 6 | 0.40 | $2.2 \times 10^{-2}$ |
| Single-multicellular organism process | GO:0044707 | 5874 | 24 | 10.24 | $2.4 \times 10^{-2}$ |
| Artery development | GO:0060840 | 59 | 4 | 0.10 | $2.8 \times 10^{-2}$ |
| Tissue morphogenesis | GO:0048729 | 566 | 8 | 0.99 | $3.8 \times 10^{-2}$ |

Supplementary Table 23. Selected pathways from the DEPICT analysis with previously hypothesized roles in migraine. For each of five previously hypothesized migraine mechanisms (ion homeostasis, glutamate signaling, serotonin signaling, nitric oxide signaling, and oxidative stress) below are shown the lowest $P$-value scoring reconstituted gene sets from the DEPICT gene set enrichment analysis (Online Methods), among all sets related to each of the mechanisms. None of the gene sets were even nominally significant. A list of the significant results from the DEPICT analysis are provided in Supplementary Table 24.

| Reconstituted gene set ID | Reconstituted gene set name | P-value | FDR | Top migraine loci genes in reconstituted gene sets |
| :---: | :--- | :---: | :--- | :--- |
| REACTOME METABOLISM OF <br> NITRIC OXIDE | Metabolism Of Nitric Oxide | 0.07 | 0.54 | NLRP1 (3.14), C20orf160 (3.0), NBEAL1 (2.34), ECM1 (2.33), GPR182 (2.28) |
| REACTOME GLUTAMATE <br> NEUROTRANSMITTER <br> RELEASE CYCLE | Glutamate Neurotransmitter Release <br> Cycle | 0.19 | 0.84 | MEF2D (3.57), SLC24A3 (3.01), ABI2 (2.9), IGSF9B (2.75), RAPH1 (2.33) |
| MP:0005322 | Abnormal Serotonin Level | 0.25 | 0.92 | MYO1A (3.26), ASTN2 (2.97), DOCK4 (2.31), CYP2C19 (2.27), NRP1 (2.23) |
| GO:2000021 | Regulation Of Ion Homeostasis | 0.30 | 0.96 | TAC3 (2.85) |
| GO:0034599 | Cellular Response To Oxidative Stress | 0.46 | 1.00 | NCOA7 (2.59), TGFBR2 (2.04), REST (1.84) |

## Supplementary Table 24. DEPICT enrichment analysis in reconstituted gene sets.

The table lists 67 reconstituted gene sets that were identified by DEPICT to be significantly enriched for genes within the 38 migraine loci. To control Type I error due to multiple testing we estimated the false discovery rate (FDR) and applied a threshold for significance at $F D R<5 \%$. The 67 significant gene sets were then clustered by similarity into 10 groups (shaded by similar color in the table) and each cluster is named after the most representative gene set in the group (Online Methods). The gene set type column specifies the database where the original gene set was annotated, i.e. Canonical, Mouse Genome Informatics (MGI), and ProteinProtein Interaction (PPI). Note that an association identified to one particular gene set (ENSG00000056345 PPI, $P=1.7 \times 10^{-4}, F D R=$ 0.04 ) has been removed from the table as it is no longer part of the Ensembl database.

| Cluster | Reconstituted gene set ID | Reconstituted gene set name | Gene set type | Part of cluster | P | FDR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | MP:0004883 | Abnormal Vascular Wound Healing | MGI | ITGB1 PPI | $1.86 \times 10^{-6}$ | < 0.01 |
| 1 | ENSG00000082781 | ITGB5 PPI | PPI | ITGB1 PPI | $9.19 \times 10^{-6}$ | 0.013 |
| 1 | GO:0032403 | Protein Complex Binding | Canonical | ITGB1 PPI | $1.95 \times 10^{-5}$ | 0.008 |
| 1 | ENSG00000087303 | NID2 PPI | PPI | ITGB1 PPI | $4.17 \times 10^{-5}$ | 0.011 |
| 1 | MP:0003091 | Abnormal Cell Migration | MGI | ITGB1 PPI | $4.83 \times 10^{-5}$ | 0.013 |
| 1 | ENSG00000139626 | ITGB7 PPI | PPI | ITGB1 PPI | $8.56 \times 10^{-5}$ | 0.023 |
| 1 | ENSG00000132470 | ITGB4 PPI | PPI | ITGB1 PPI | $9.07 \times 10^{-5}$ | 0.024 |
| 1 | ENSG00000123159 | GIPC1 PPI | PPI | ITGB1 PPI | $9.57 \times 10^{-5}$ | 0.026 |
| 1 | GO:0005178 | Integrin Binding | Canonical | ITGB1 PPI | 0.000112 | 0.026 |
| 1 | ENSG00000150093 | ITGB1 PPI | PPI | ITGB1 PPI | 0.000133 | 0.035 |
| 1 | REACTOME INTEGRIN CELL SURFACE INTERACTIONS | Integrin Cell Surface Interactions | Canonical | ITGB1 PPI | 0.000136 | 0.035 |
| 1 | ENSG00000161638 | ITGA5 PPI | PPI | ITGB1 PPI | 0.000143 | 0.033 |
| 1 | ENSG00000056345 | ENSG00000056345 PPI | PPI | ITGB1 PPI | 0.000166 | 0.038 |
| 1 | MP:0000250 | Abnormal Vasoconstriction | MGI | ITGB1 PPI | 0.000172 | 0.037 |
| 1 | GO:0005518 | Collagen Binding | Canonical | ITGB1 PPI | 0.000239 | 0.041 |
| 2 | ENSG00000196411 | EPHB4 PPI | PPI | Adherens Junction | $1.42 \times 10^{-5}$ | 0.013 |
| 2 | GO:0005912 | Adherens Junction | CC | Adherens Junction | $5.94 \times 10^{-5}$ | 0.017 |
| 2 | GO:0005089 | Rho Guanyl-Nucleotide Exchange Factor Activity | Canonical | Adherens Junction | $8.83 \times 10^{-5}$ | 0.023 |
| 2 | GO:0005925 | Focal Adhesion | CC | Adherens Junction | 0.000138 | 0.034 |


| 2 | ENSG00000176105 | YES1 PPI | PPI | Adherens Junction | 0.000175 | 0.038 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | GO:0005924 | Cell-Substrate Adherens Junction | CC | Adherens Junction | 0.000191 | 0.038 |
| 2 | GO:0045445 | Myoblast Differentiation | Canonical | Adherens Junction | 0.000195 | 0.037 |
| 2 | GO:0070161 | Anchoring Junction | CC | Adherens Junction | 0.000205 | 0.039 |
| 2 | GO:0017048 | Rho Gtpase Binding | Canonical | Adherens Junction | 0.000231 | 0.042 |
| 2 | GO:0016323 | Basolateral Plasma Membrane | CC | Adherens Junction | 0.000296 | 0.049 |
| 2 | GO:0030055 | Cell-Substrate Junction | CC | Adherens Junction | 0.000323 | 0.047 |
| 3 | GO:0045765 | Regulation Of Angiogenesis | Canonical | Blood Vessel Development | $7.66 \times 10^{-6}$ | 0.017 |
| 3 | MP:0003227 | Abnormal Vascular Branching Morphogenesis | MGI | Blood Vessel Development | $5.09 \times 10^{-5}$ | 0.012 |
| 3 | GO:0001568 | Blood Vessel Development | Canonical | Blood Vessel Development | $8.26 \times 10^{-5}$ | 0.024 |
| 3 | GO:0048514 | Blood Vessel Morphogenesis | Canonical | Blood Vessel Development | $8.63 \times 10^{-5}$ | 0.022 |
| 3 | MP:0000291 | Enlarged Pericardium | MGI | Blood Vessel Development | $9.06 \times 10^{-5}$ | 0.025 |
| 3 | GO:0022603 | Regulation Of Anatomical Structure Morphogenesis | Canonical | Blood Vessel Development | 0.00011 | 0.026 |
| 3 | GO:0001525 | Angiogenesis | Canonical | Blood Vessel Development | 0.000139 | 0.033 |
| 3 | MP:0002270 | Abnormal Pulmonary Alveolus Morphology | MGI | Blood Vessel Development | 0.000166 | 0.039 |
| 3 | GO:0001944 | Vasculature Development | Canonical | Blood Vessel Development | 0.000177 | 0.037 |
| 3 | GO:0045766 | Positive Regulation Of Angiogenesis | Canonical | Blood Vessel Development | 0.000208 | 0.041 |
| 3 | GO:0019838 | Growth Factor Binding | Canonical | Blood Vessel Development | 0.000314 | 0.048 |
| 4 | ENSG00000171475 | WIPF2 PPI | PPI | Transcription Factor Binding | $9.89 \times 10^{-6}$ | 0.02 |
| 4 | GO:0000981 | Sequence-Specific Dna Binding Rna Polymerase li Transcription Factor Activity | Canonical | Transcription Factor Binding | $1.21 \times 10^{-5}$ | 0.014 |
| 4 | GO:0031490 | Chromatin Dna Binding | Canonical | Transcription Factor Binding | $2.15 \times 10^{-5}$ | 0.012 |
| 4 | ENSG00000136352 | NKX2-1 PPI | PPI | Transcription Factor Binding | $5.35 \times 10^{-5}$ | 0.014 |
| 4 | ENSG00000096717 | SIRT1 PPI | PPI | Transcription Factor Binding | 0.000108 | 0.027 |
| 4 | GO:0003705 | Rna Polymerase li Distal Enhancer Sequence-Specific Dna Binding Transcription Factor Activity | Canonical | Transcription Factor Binding | 0.000135 | 0.035 |
| 4 | ENSG00000100393 | EP300 PPI | PPI | Transcription Factor Binding | 0.000143 | 0.033 |
| 4 | GO:0008134 | Transcription Factor Binding | Canonical | Transcription Factor Binding | 0.000179 | 0.036 |
| 4 | ENSG00000100603 | SNW1 PPI | PPI | Transcription Factor Binding | 0.000189 | 0.038 |
| 4 | GO:0042826 | Histone Deacetylase Binding | Canonical | Transcription Factor Binding | 0.000217 | 0.04 |


| 5 | MP:0011086 | Partial Postnatal Lethality | MGI | Partial Postnatal Lethality | $9.92 \times 10^{-6}$ | 0.017 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | MP:0001935 | Decreased Litter Size | MGI | Partial Postnatal Lethality | $1.84 \times 10^{-5}$ | 0.009 |
| 5 | ENSG00000111676 | ATN1 PPI | PPI | Partial Postnatal Lethality | $4.85 \times 10^{-5}$ | 0.013 |
| 5 | MP:0011101 | Partial Prenatal Lethality | MGI | Partial Postnatal Lethality | $7.71 \times 10^{-5}$ | 0.023 |
| 5 | MP:0001923 | Reduced Female Fertility | MGI | Partial Postnatal Lethality | 0.000216 | 0.04 |
| 5 | MP:0011108 | Partial Embryonic Lethality During Organogenesis | MGI | Partial Postnatal Lethality | 0.000238 | 0.042 |
| 6 | MP:0005140 | Decreased Cardiac Muscle Contractility | MGI | Decreased Cardiac Muscle Contractility | $1.83 \times 10^{-5}$ | 0.01 |
| 6 | MP:0002833 | Increased Heart Weight | MGI | Decreased Cardiac Muscle Contractility | 0.00017 | 0.036 |
| 6 | MP:0005333 | Decreased Heart Rate | MGI | Decreased Cardiac Muscle Contractility | 0.000183 | 0.037 |
| 6 | MP:0000280 | Thin Ventricular Wall | MGI | Decreased Cardiac Muscle Contractility | 0.000243 | 0.041 |
| 7 | GO:0004675 | Transmembrane Receptor Protein Serine/Threonine Kinase Activity | Canonical | Transforming Growth Factor BetaActivated Receptor Activity | $2.89 \times 10^{-5}$ | 0.011 |
| 7 | GO:0005024 | Transforming Growth Factor BetaActivated Receptor Activity | Canonical | Transforming Growth Factor BetaActivated Receptor Activity | $7.41 \times 10^{-5}$ | 0.024 |
| 7 | GO:0007179 | Transforming Growth Factor Beta Receptor Signaling Pathway | Canonical | Transforming Growth Factor BetaActivated Receptor Activity | $8.84 \times 10^{-5}$ | 0.023 |
| 8 | GO:0035924 | Cellular Response To Vascular Endothelial Growth Factor Stimulus | Canonical | Cellular Response To Vascular Endothelial Growth Factor Stimulus | $3.12 \times 10^{-5}$ | 0.009 |
| 8 | GO:0048010 | Vascular Endothelial Growth Factor Receptor Signaling Pathway | Canonical | Cellular Response To Vascular Endothelial Growth Factor Stimulus | 0.000165 | 0.039 |
| 9 | ENSG00000007264 | MATK PPI | PPI | Integrin Complex | $3.63 \times 10^{-5}$ | 0.012 |
| 9 | GO:0008305 | Integrin Complex | CC | Integrin Complex | 0.000128 | 0.033 |
| 9 | ENSG00000103653 | CSK PPI | PPI | Integrin Complex | 0.000195 | 0.038 |
| 10 | GO:0010770 | Positive Regulation Of Cell Morphogenesis Involved In Differentiation | Canonical | Positive Regulation Of Cell Morphogenesis Involved In Differentiation | $5.94 \times 10^{-5}$ | 0.017 |
| 10 | GO:0010718 | Positive Regulation Of Epithelial To Mesenchymal Transition | Canonical | Positive Regulation Of Cell Morphogenesis Involved In Differentiation | 0.00012 | 0.029 |

## Supplementary Table 25. Specificity of individual gene expression in GTEx tissues.

The genes selected were the nearest gene to the index SNP at each migraine locus. Tissues from the GTEx collection were grouped into four categories (brain, vascular, gastrointestinal, and other). For each gene, we used a 1-tailed t-test to assess if the expression level was significantly higher in the brain, vascular, or gastrointestinal tissue groups compared to the control group ("other tissues"). To adjust for multiple testing we used Bonferroni correction for 114 independent tests ( $P<1.3 \times 10^{-3}$ ). Overall, 13 genes showed significantly high expression in brain, 18 in vascular, and 4 in gastrointestinal tissues. We further defined a gene as tissue-specific if it was significantly expressed in only one tissue group. Of these we identified four in brain and eight in vascular ( $P$-values highlighted in bold).

| Selected Gene | Other tissues (reference) <br> Mean RPKM (SE) | Brain <br> Mean RPKM (SE) | $P$-value | Vascular <br> Mean RPKM (SE) | $P$-value | Gastrointestinal |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Mean RPKM (SE) | $P$-value |
| PRDM16 | 1.81 (0.09) | 1.40 (0.06) | 1 | 6.35 (0.28) | 1.4E-39 | 1.69 (0.26) | 0.67 |
| LRRIQ3 | 0.14 (0.02) | 0.07 (0.004) | 1 | 0.03 (0.002) | 1 | 0.05 (0.004) | 1 |
| TSPAN2 | 3.29 (0.19) | 0.85 (0.05) | 1 | 11.29 (0.66) | 1.8E-26 | 7.29 (0.93) | 3.0E-05 |
| ADAMTSL4 | 22.04 (0.56) | 1.67 (0.18) | 1 | 20.32 (0.70) | 0.97 | 24.31 (2.25) | 0.17 |
| MEF2D | 22.84 (0.44) | 16.6 (0.56) | 1 | 38.33 (1.32) | 7.6E-25 | 16.63 (1.11) | 1 |
| TRPM8 | 0.08 (0.03) | 0.05 (0.01) | 0.82 | 0.001 (4e-4) | 0.99 | 0.45 (0.20) | 0.033 |
| TGFBR2 | 63.21 (1.62) | 7.55 (0.30) | 1 | 65.35 (2.01) | 0.20 | 38.45 (2.82) | 1 |
| GPR149 | 0.01 (0.001) | 0.61 (0.06) | 4.4E-20 | 0.001 (2e-4) | 1 | 0.004 (0.001) | 1 |
| REST | 4.08 (0.06) | 1.33 (0.04) | 1 | 3.58 (0.07) | 1 | 3.85 (0.12) | 0.95 |
| PHACTR1 | 1.25 (0.08) | 5.02 (0.27) | 1.2E-33 | 3.43 (0.16) | 9.4E-31 | 0.57 (0.10) | 1 |
| NOTCH4 | 10.14 (0.38) | 3.16 (0.12) | 1 | 6.49 (0.32) | 1 | 4.42 (0.45) | 1 |
| KCNK5 | 6.48 (0.36) | 0.09 (0.01) | 1 | 0.65 (0.07) | 1 | 7.71 (0.63) | 0.05 |
| FHL5 | 8.51 (0.38) | 2.00 (0.13) | 1 | 80.26 (6.14) | 9.5E-26 | 2.63 (0.33) | 1 |
| GJA1 | 53.73 (2.42) | 100.77 (4.78) | 1.2E-17 | 49.78 (2.58) | 0.87 | 46.94 (7.28) | 0.81 |
| HEY2 | 2.82 (0.10) | 3.47 (0.10) | 2.0E-06 | 28.07 (1.49) | 7.2E-44 | 1.32 (0.07) | 1 |
| C7orf10 | 0.60 (0.04) | 0.35 (0.01) | 1 | 1.89 (0.11) | 1.3E-23 | 0.91 (0.10) | $2.4 \mathrm{E}-03$ |
| DOCK4 | 3.46 (0.13) | 9.32 (0.29) | 1.7E-56 | 1.76 (0.05) | 1 | 1.59 (0.09) | 1 |
| ASTN2 | 0.77 (0.04) | 4.02 (0.10) | 8.0E-107 | 1.38 (0.11) | 2.1E-07 | 0.80 (0.08) | 0.38 |
| NRP1 | 13.56 (0.45) | 2.51 (0.11) | 1 | 13.17 (0.38) | 0.75 | 5.39 (0.35) | 1 |
| PLCE1 | 3.20 (0.11) | 1.86 (0.06) | 1 | 7.64 (0.37) | 1.1E-25 | 4.76 (0.44) | 3.9E-04 |


| HPSE2 | 0.53 (0.05) | 2.15 (0.12) | 7.1E-30 | 3.02 (0.29) | 3.6E-16 | 3.74 (0.73) | 1.6E-05 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ARMS2 | 0.10 (0.01) | 0.10 (0.01) | 0.62 | 0.10 (0.01) | 0.41 | 0.08 (0.01) | 0.93 |
| MRVI1-AS1 | 1.52 (0.26) | 0.91 (0.03) | 0.99 | 1.88 (0.10) | 0.10 | 0.89 (0.10) | 0.99 |
| MPPED2 | 1.12 (0.08) | 2.36 (0.09) | 5.0E-24 | 0.66 (0.04) | 1 | 0.42 (0.06) | 1 |
| YAP1 | 24.28 (0.51) | 6.44 (0.22) | 1 | 44.53 (1.90) | 1.3E-21 | 24.8 (1.55) | 0.38 |
| IGSF9B | 0.43 (0.02) | 1.47 (0.11) | 8.5E-18 | 2.39 (0.11) | 6.3E-48 | 1.64 (0.23) | 6.9E-07 |
| FGF6 | 0.21 (0.03) | 0.005 (7e-4) | 1 | 0.009 (0.005) | 1 | 0.002 (9e-4) | 1 |
| LRP1 | 40.44 (1.24) | 25.86 (0.74) | 1 | 51.45 (2.07) | 3.3E-06 | 26.20 (1.84) | 1 |
| ITPK1 | 17.90 (0.40) | 45.23 (0.92) | 2.7E-98 | 21.13 (0.56) | 1.4E-06 | 16.44 (1.31) | 0.86 |
| CFDP1 | 11.23 (0.19) | 16.98 (0.26) | 3.5E-59 | 10.03 (0.22) | 1 | 11.25 (0.41) | 0.48 |
| ZCCHC14 | 8.06 (0.17) | 8.81 (0.30) | 0.016 | 9.37 (0.29) | 6.4E-05 | 6.96 (0.17) | 1 |
| WSCD1 | 0.74 (0.03) | 5.67 (0.19) | 3.7E-84 | 1.57 (0.10) | 8.2E-14 | 0.82 (0.12) | 0.28 |
| RNF213 | 12.29 (0.23) | 4.16 (0.14) | 1 | 6.23 (0.18) | 1 | 8.94 (0.37) | 1 |
| JAG1 | 17.64 (0.50) | 4.17 (0.13) | 1 | 40.29 (2.06) | 5.4E-23 | 15.85 (1.40) | 0.88 |
| SLC24A3 | 4.29 (0.15) | 9.21 (0.55) | 5.1E-17 | 8.74 (0.55) | 4.9E-14 | 4.43 (0.46) | 0.38 |
| MED14 | 6.40 (0.10) | 3.91 (0.09) | 1 | 5.07 (0.13) | 1 | 4.51 (0.15) | 1 |

