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ABSTRACT 
Objectives: Accurate gestational age (GA) estimation, preferably by ultrasound measurement 
of fetal crown rump length before 14 weeks’ gestation, is an important component of high-
quality antenatal care.  The objective was to determine how GA can best be estimated by fetal 
ultrasound for women who present for the first time late in pregnancy with uncertain or 
unknown menstrual dates. 

Methods: INTERGROWTH-21st was a large, prospective, multicentre, population-based project 
performed in eight geographically defined urban populations.  One of its principal 
components, the Fetal Growth Longitudinal Study (FGLS), aimed to develop international fetal 
growth standards. Each participant had certain menstrual dates confirmed by first trimester 
ultrasound. Fetal head circumference (HC), biparietal diameter (BPD), occipitofrontal diameter 
(OFD), abdominal circumference (AC) and femur length (FL) were measured every 5 weeks 
from 14 weeks’ gestation until birth. For each participant, a single, randomly selected 
ultrasound examination was used to explore all candidate biometric variables and 
permutations to build models to predict GA. Regression equations were ranked based upon 
minimization of the mean prediction error, goodness of fit and model complexity. An 
automated machine learning algorithm, the Genetic Algorithm, was adapted to evaluate 
>64,000 potential polynomial equations as predictors. 

Results: Of the 4607 eligible women, 4321 (94%) had a pregnancy without major complications 
and delivered a live singleton without congenital malformations. After other exclusions 
(missing measurements in GA window and outliers), the final sample comprised 4229 women. 
Two skeletal measures, HC and FL, produced the best GA prediction, given by the equation  

loge (GA) = 0.03243 x [loge(HC)]2 + 0.001644 x FL x logeHC + 3.813 

When FL is not available, the best equation based on HC alone is 

loge(GA) = 0.05970 x [loge(HC)]2 + 0.000000006409 x HC3 + 3.3258 

The estimated uncertainty of GA prediction (95% interval) was 6 to 7 days at 14 weeks’ 
gestation, 12 to 14 days at 26 weeks’ gestation, and over 14 days in the third trimester. The 
addition of FL to HC leads to improved prediction intervals over just using HC, but no further 
improvement in prediction is afforded by adding AC, BPD or OFD. Equations that included 
other measurements (BPD, OFD and AC) did not perform better. 

Conclusions: Among women initiating antenatal care late in pregnancy a single set of 
ultrasound measurements combining HC and FL in the second trimester can be used to 
estimate GA with reasonable accuracy. We recommend this tool for underserved populations 
but considerable efforts should be implemented to improve early initiation of antenatal care 
worldwide.  
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INTRODUCTION   

Reliable estimation of gestational age (GA) is essential as it allows appropriate scheduling of a 

woman’s antenatal care, informs obstetric management decisions and facilitates the correct 

interpretation of fetal growth assessment [1]. Abnormal fetal growth patterns such as growth 

restriction or macrosomia may be missed or incorrectly diagnosed if GA is unknown or 

incorrect. Reliable GA estimation is also important at a population level to calculate rates of 

preterm birth and small for gestational age (SGA) at birth. The lack of accurate GA estimation, 

particularly in geographical regions at greatest risk of these conditions, means that preterm 

birth and SGA rates are mere approximations in many parts of the world [2, 3]. 

Traditionally, GA is estimated using the first day of the last menstrual period (LMP), which 

assumes that ovulation occurs on day 14 of the menstrual cycle. Irregular menses, unknown or 

uncertain dates, oral contraceptive use or recent pregnancy or breastfeeding may all influence 

the accuracy of this method - issues that occur in a large proportion of women [4-6].  In such 

cases, early (<14 weeks’ gestation) ultrasound measurement of fetal crown rump length (CRL) 

is recommended [7,8]. First trimester GA assessment is more accurate than dating in late 

pregnancy because, with advancing gestation, fetal ultrasound measurements have a larger 

absolute error [9] and growth disturbances become more noticeable, resulting in potential 

underestimation of GA for an abnormally small fetus and overestimation for a macrosomic 

fetus.  

Unfortunately, in many settings where high-risk pregnancies are prevalent, women attend 

their first antenatal care visit late in pregnancy or even at the time of delivery. This makes it 

difficult to manage complications, evaluate fetal growth and implement evidence-based 

interventions, such as the administration of corticosteroids for fetal lung maturation in cases 

of threatened preterm labour.  

The present analysis of the Fetal Growth Longitudinal Study (FGLS), one of the main 

components of the INTERGROWTH-21st Project, aims to complement our previous work of 

early GA estimation by ultrasound measurement of CRL [10]. We have explored a set of 

equations to estimate GA using fetal biometry acquired during a single ultrasound scan 

performed between 14 and 34 weeks’ gestation.     
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METHODS 

INTERGROWTH-21st is a multicentre, multiethnic, population-based project, conducted 

between 2009 and 2014 in eight countries [11]. Its primary aim was to study growth, health, 

nutrition and neurodevelopment from <14 weeks’ gestation to 2 years of age, using the same 

conceptual framework as the WHO Multicentre Growth Reference Study (MGRS) [12,13].  

Eight urban areas located at low altitude (≤1,600m) were chosen as study sites, within which 

we selected all institutions providing pregnancy and intrapartum care where >80% of 

deliveries occurred. Women receiving antenatal care had to plan to deliver in these institutions 

or in a similar hospital located in the same geographical area and there had to be an absence 

or low levels of major, known, non-microbiological contamination such as pollution, domestic 

smoke, radiation or any other toxic substances [14].    

Women from these populations, with a singleton pregnancy that was conceived naturally, and 

who met the individual inclusion criteria, were recruited prospectively and consecutively into 

FGLS.  The study methods have been described in detail elsewhere [11,15].   

The true gestational age (GAtrue) was defined by the woman’s LMP determined at the first visit 

at <14+0 weeks’ gestation, provided that: (1) the date was certain; (2) she had a regular 24–32 

day menstrual cycle; (3) she had not been using hormonal contraception or breastfeeding in 

the preceding 2 months, and (4) it was in agreement (within 7 days) with a measurement of 

fetal CRL at 9+0 to 13+6 weeks’ gestation [15].   

A single ultrasound machine (Philips HD-9; Philips Ultrasound, Bothell, WA, USA) with 

curvilinear abdominal transducers (C5-2, C6-3, V7-3) was used for all fetal measurements ≥14+0 

weeks’ gestation. To reduce expected value bias, the ultrasound machines were specially 

adapted so that the measurements were not visible on the screen. However, as women 

presented for their first visit at different clinics within the geographical area, for those 

ultrasound scans done <14+0 weeks’ gestation (CRL measures only), it was considered 

acceptable to use other, locally available, machines provided they were evaluated and 

approved by the study team.  All ultrasonographers (n=39) at the eight study sites underwent 

rigorous training and standardization. In accordance with the protocol, CRL and fetal biometry 

measures were assessed for quality; the former were also reviewed blindly by our 

collaborators at the Société Française pour l'Amélioration des Pratiques Echographiques 

(SFAPE) [16,17]. 
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Women were invited for follow-up ultrasound scans every 5 weeks (within one week either 

side) after the initial dating scan, so that the possible ranges after the dating scan were 14-18, 

19-23, 24-28, 29-33, 34-38 and 39-42 weeks’ gestation.  At each visit, fetal head circumference 

(HC), biparietal diameter (BPD), occipitofrontal diameter (OFD), abdominal circumference (AC) 

and femur length (FL) were measured three times from three separately obtained ultrasound 

images of each structure [18].  

Head measurements were taken in an axial view at the level of the thalami, with an angle of 

insonation as close as possible to 90°. The head had to be oval in shape, symmetrical, centrally 

positioned and filling at least 30% of the monitor. The midline echo (representing the falx 

cerebri) had to be broken anteriorly, at one-third of its length, by the cavum septi pellucidi. 

The thalami had to be located symmetrically on either side of the midline. Callipers were then 

placed on the outer border of the parietal bones (‘outer to outer’) at the widest or longest part 

of the skull for the BPD and OFD, respectively; the HC was measured using the ellipse facility 

on the outer border of the skull.  

The measurements of the fetal abdomen were taken in a cross-sectional view (as close as 

possible to a circle), with the umbilical vein in the anterior third of the abdomen (at the level of 

the portal sinus), and the stomach bubble visible. The operator was instructed to avoid 

applying too much pressure with the transducer as this can distort the circular shape of the 

fetal abdomen. The abdomen had to fill at least 30% of the monitor screen; the spine had 

preferably to be positioned at either 3 or 9 o'clock to avoid internal shadowing; the kidneys 

and bladder had not to be visible. For the measurements, the contour of the ellipse was placed 

on the outer border of the abdomen.  

Finally, the FL was measured using a longitudinal view of the fetal thigh closest to the probe 

and with the femur as close as possible to the horizontal plane. The angle of insonation of the 

ultrasound beam was approximately 90° with the full length of the bone visualised, 

unobscured by shadowing from adjacent bony parts, and the femur had to fill at least 30% of 

the monitor screen. The intersection of the callipers was placed on the outer borders of the 

edges of the femoral diaphysis (outer to outer) ensuring clear femoral edges.  

Detailed measurement protocols, standardization procedures and quality control methods 

employed across all sites are described in detail elsewhere [15,19-21].  
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Statistical analysis 

For each woman included in the study, a single ultrasound scan between 14+0 and 40+0  

weeks’ gestation was randomly selected using the ‘sample’ function in Stata (version 13). At 

each scan, the routinely measured fetal biometric variables were recorded. To overcome the 

problem of data truncation at the lower end of gestation (<14+0 weeks), we followed the same 

approach previously described and applied to CRL data [22]. Using the international fetal 

growth equations for head circumference, abdominal circumference, femur length, biparietal 

diameter and occipito-frontal diameter [18], we simulated 20 observations for each day 

between 12+0 and 13+6 weeks’ gestation (n=280), which is approximately the same number of 

observations for each day of GA in the un-truncated data set. After simulation, we restricted 

the data based on head circumference by excluding values below 85mm or above 330mm and 

visually inspecting a plot of the data to assess that the truncation problem had been 

overcome.  Using the augmented data set, fractional polynomial regression analyses were 

employed using the Xrigls function in Stata to model the mean and standard deviation (SD) of 

GA for each biometric variable [22].  

In order to establish the relationship of fetal biometric variables and gestational age we used 

an automated machine learning, ‘Genetic Algorithm’ (see Appendix). This method was chosen 

because a more traditional fractional polynomial approach, which is well suited to modelling a 

single variable, has limited scope when used with multiple biometric variables that are highly 

correlated. By virtue of the automated approach, the Genetic Algorithm is able to evaluate 

large numbers (in this case over 64,000) of potential combinations of biometric variables that 

are used to build polynomial equations as predictors of GA; this would not be feasible using 

conventional approaches. By specifying a mathematical definition of optimal performance, 

based upon minimization of the mean prediction error (root mean squared error, RMSE), the 

first stage of model development was entirely automated with the capacity to assemble, 

evaluate and modify equations. We were, therefore, able to use the data themselves to 

generate preliminary models in an entirely objective manner.  

Briefly, a large number of preliminary candidate equations were developed using combinations 

of all candidate biometric variables (including powers (0.5, 1, 2 and 3), their logs and their 

products). Each of the candidate equations was used to obtain for each fetus a predicted 

gestational age (GApredicted) as an estimate of their true gestational age (GAtrue). After 

preliminary analysis it was clear that the predicted values GApredicted were not normally 
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distributed; this was addressed by predicting the natural logarithm of GApredicted (logeGApredicted). 

The equations were then ranked to assess which had the lowest uncertainty based on the 95% 

prediction interval. 

We used a 4-step approach to determine our final equation (see Appendix for more detailed 

explanation):  

1. Equation discovery using the Genetic Algorithm: The automated Genetic Algorithm 

was used to determine the equation providing the best prediction of GA using 

combinations of fetal biometric variables. Briefly, the model initiated itself by assigning 

polynomial equations linking fetal biometry within the dataset and GAtrue. Model 

terms, coefficients and powers were randomly selected within specified limits. Once 

defined, the individual equations were each used to predict GAtrue using the observed 

fetal biometry data. The performance of individual equations was measured by 

calculating the RMSE between the true and predicted GA at each iteration of the 

genetic algorithm. For each combination of biometric variables, the equation with the 

lowest RMSE was selected automatically and modified by methods that mimic the 

genetic principles of mutation and cross-over. Thus, a second generation of equations 

was developed with the ‘positive predictive qualities’ of the first generation preserved 

in their structure. Furthermore, random variation was introduced as ‘mutations’ into 

the best performing equations in order to assess whether such mutations conferred an 

advantage in prediction, evaluated using the RMSE. By repeating the process over 

many iterations, the structure of equations was continuously refined until there was 

convergence upon the equation, or series of equations, that most accurately predicted 

GAtrue. All data processing at this stage was performed using the `GAPolyfitn’ function 

in MATLAB version R2014b.  

2. Goodness of fit.   

Visual inspection of scatter plots was used to compare GAtrue with GApredicted for each 

candidate equation obtained from the genetic algorithm.  Quantile-Quantile (QQ) plots 

were used to compare the distributions.  Well-fitting models were identified by a QQ 

plot with minimal deviation from the line of equality. 

For each equation, absolute residuals between GAtrue – GApredicted were regressed on GA 

using fractional polynomial methods (powers +/- 0.5, 1, 2 and 3) to provide an 

equation that approximated the SD, and multiplied by a constant to estimate the 2.5th 
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and 97.5th centiles using the Xrigls function in Stata (Altman DG. Construction of age-

related reference centiles using absolute residuals. Stat Med 1993;12:917-924).. The 

goodness of fit of these estimated SDs was assessed by calculating the proportion of 

predicted GAs that were outside the 95% prediction intervals (±1.96SD), which should 

be 5%.   

3. Evaluation of model complexity 

To facilitate a suitable balance between parsimony and model performance, estimates 

of Akaike’s Information Criterion (AIC) [23] were calculated and compared.  The AIC 

combines an estimate of the goodness of fit of a model with a penalty for increasing 

model complexity. In addition, candidate equations with similar indices were 

compared in terms of number of terms and complexity, defined as the sum of the 

powers of each variable). Where two equations demonstrated similar performance, 

the equation with a less complex structure was preferred.  

4. Post-production model refinement 

After examining the model complexity, it appeared that most of the contribution to 

the prediction of GA was based on HC. Therefore, simplified models were constructed, 

restricted to biometry of the fetal head (HC, OFD and BPD).   

The INTERGROWTH-21st Project was approved by the Oxfordshire Research Ethics Committee 

“C” (ref: 08/H0606/139), the research ethics committees of the individual participating 

institutions, as well as the corresponding regional health authorities where the project was 

implemented. 
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Results 

Of the 4,607 women recruited into FGLS, 4,321 delivered live singletons without congenital 

malformations (Figure 1). Exclusions were women with missing fetal measurements (n=84), 

and outliers defined as fetal measurements >5 SD above/below the mean (n=7). We further 

restricted the actual data at the top end by excluding head circumference values above 

330mm (n=1) resulting in a total of 4,229 women who contributed a single, randomly selected 

ultrasound scan between 14+0 and 40+0 weeks’ gestation (Figure 1). Of the 280 observations 

simulated and added to actual data, we similarly excluded head circumference values below 

85mm (n=148) to obtain the final analysis sample of 4,361 observations. The baseline 

characteristics and perinatal events of the study population (n=4,229 excluding simulated 

observations) are shown in Table 1.  

The equations that best estimated GAtrue based on lowest RMSE, best fit and optimal AIC are 

shown in Table 2. Equations selected were based on HC alone, and a combination of HC and 

FL; despite including multiple measures (HC, BPD, OFD, AC, FL) in the models, only HC and FL 

were retained after the selection process. 

Overall, based on a model using HC only, the uncertainty of estimated GA gradually  with 

advancing GA, from 6 to 7 days in either direction at 14+0 weeks to 14 to 18 days at 32+0 weeks’ 

gestation (Table 3). Inclusion of FL led to an improvement in prediction throughout gestation 

of about 1-3 days. Inclusion of the other parameters led to no further improvement, and so 

none were included in the equations resulting from the Genetic Algorithm search. 

The plots of GApredicted versus GAtrue between 14+0 and 34+0 weeks’ gestation demonstrated 

good model fitting (Figures 2 and 3 for the scatterplots and Figures S4 and S5 for the QQ plots). 

Apart from estimating the most likely GA (by using GApredicted for a set of measurements), we 

also present the lower and upper bounds of the estimation of GA (Table 4). The lower bound 

can be used in clinical management for women who present in late pregnancy: it is an estimate 

of the likely “least GA”, e.g. 97.5% likely to be at least X weeks. 
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Discussion 

Main findings 

We have shown that a single set of basic ultrasound measurements of HC and FL in the second 

trimester can be used to estimate GA with reasonable accuracy. The estimation is best at 

lower GAs where the 95% prediction interval is within 6 days, but is just over 12 days at 26+0 

weeks’ gestation. The addition of FL to HC leads to considerable improvement over just using 

HC, but no further improvement in prediction is afforded by adding AC, BPD or OFD.  

Strengths and weaknesses 

We have produced equations for GA assessment that are more precise than those currently 

used in routine clinical practice (Table 5). This may be due to the prospective nature of the 

study; a large sample size; accurately dated pregnancies; a clearly defined measurement 

protocol; quality control measures, and a statistical approach that searched for the optimal 

combination of factors iteratively, rather than relying upon a user-controlled search. The 

multicentre, international setting of the study with measurements taken by a large group of 

ultrasonographers provides external validity.  

There is an intrinsic limitation when estimating GA by fetal anthropometric based equations: 

namely that what is measured is fetal size not GA. Fetal size may vary for reasons other than 

differences in GA especially as factors conditioning abnormal fetal growth are more prevalent 

in the populations where the equation is most likely to be used. In other words, it is important 

to take into account the impact of pathology (fetal growth restriction and overgrowth) on GA 

estimation. This is true for any equation estimating GA – the accuracy at an individual level will 

depend on the ‘normality’ of the fetal size and, at the population level, on the prevalence of 

abnormal growth patterns. Thus, efforts should focus on modifying health systems and referral 

pathways to prevent late presentation in pregnancy, rather than simply achieving 

technological advances in fetal size-based dating. 

Interpretation 

Ultrasound assessment of GA is performed assuming that fetal size can be used as a proxy for 

GA. This assumption depends on: a) the GA at which biometry is performed (at earlier GAs 

growth is more uniform and there is less measurable growth impairment); b) the choice of 

biometric variable, and c) the accuracy of the measurement, which is affected by technical 

aspects of imaging and operator skill.  
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The most accurate way to estimate GA is by measuring fetal CRL between 8+0 and 14+0 weeks’ 

gestation, which is associated with a 95% prediction interval of 2.7 days [24,10]. This method is 

the basis of recommended pregnancy dating policies throughout much of the developed world 

[25]. Beyond 14+0 weeks’ gestation, fetal flexion limits the accuracy of CRL measurements for 

dating purposes and GA estimates are based on measurement of the HC, BPD, AC, FL or a 

combination of these [8, 26].  

Our results demonstrate the relative inaccuracy of late GA assessment, which is due to the 

increasing biological variability in fetal size as well as the increasing absolute error of fetal 

measurements with advancing GA [9]. Therefore, all information (clinical and imaging) should 

be considered when dating pregnancies and providing obstetric care – particularly after late 

pregnancy dating. Thus, we recommend that the following principles should be applied in 

clinical practice:  - Assessment of fetal age should be based on the earliest available ultrasound 

measurement after 8+0 weeks’ gestation, provided the measurements are technically 

adequate. CRL should be used before 14+0 weeks’ gestation and equation 2 (HC and FL) 

after 14+0 weeks but before 26+0 weeks’ gestation. In settings where HC only is 

available then equation 1 can be used. - If menstrual dates are reliable and within the prediction limits of the fetal 

measurement, ultrasound should merely confirm the GA assessed by LMP.  - When menstrual dates are reliable and fall outside the prediction interval of 

ultrasound assessment there are two interpretations: the menstrual dates are 

incorrect and GA should be based on ultrasound measurement; or the GA is correct as 

assessed by LMP and the fetus is an abnormal size for that GA (or both). Clinical 

features of growth restriction, e.g. reduced amniotic fluid or abnormal uterine or 

umbilical artery blood flow, should be taken into consideration, as should factors that 

may lead to overgrowth, e.g. maternal diabetes. An interval ultrasound scan should 

then be carried out to confirm GA.  - When menstrual dates are unknown, GA estimation should be based on ultrasound, 

which has reasonable accuracy until 26+0 weeks’ gestation; and a further ultrasound 

scan should be carried out.  
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Finally, when GA is estimated in the third trimester, the possible error is large and must be 

taken into account to ensure safe obstetric practice. The use of the concept of a “minimum” 

GA, by using the lower limit of the prediction interval from the equation can be useful in this 

instance (Table 4). For example, if a woman presents in threatened preterm labour and the 

ultrasound examination suggests a median GA of 34+6 based on HC and FL, it should be 

appreciated that the GA could be as low as 32+6 weeks. i.e. “it is most likely that the GA is 34+6 

weeks, but we are 95% certain that the GA is at least 32+6 weeks. However, if the fetus is 

growth restricted, the GA could be as much as 36+5 weeks.” This analysis is very relevant to 

clinical decision making: for example, when administering prophylactic corticosteroids or 

transferring a neonate to a higher level of care. In contrast, labour induction may be 

considered at 40+0 weeks’ gestation based on late assessment, as the GA could be more 

advanced. Such a clinically cautious approach is particularly important as it is known that 

unreliable reporting of LMP and late antenatal care are both associated with adverse 

pregnancy outcomes [5, 27].  

Conclusion 

We have shown that a single set of ultrasound measurements in the second trimester can be 

used to estimate GA with relative accuracy. We recommend these tools for the management 

of women who present late in pregnancy. However, we strongly encourage as a priority the 

promotion of early antenatal care in regions and sub-populations that are not yet benefitting 

from this practice.  
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Figure 1: Flow chart of recruitment through the study. 
 
Figure 2: Scatterplot showing the estimation of gestational age based on fetal head 

circumference at 14 to 34 weeks of true gestational age. The black line is the line of equality; 

the red lines are ±2SD.   

Figure 3: Scatterplot showing estimation of gestational age based on fetal head circumference 

and femur length at 14 to 34 weeks of true gestational age. The black line is the line of 

equality; the red lines are ±2SD.   

Supplementary figures S4-S5: Q-Q plots to assess the goodness of fit of the models for head 

circumference (S4); and head circumference and femur length (S5). 
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78 excluded due to miscarriage,  pregnancy 
termination or stillbirth 

Number enrolled and consented 
into FGLS
(n=4,607)

Women with pregnancy
and delivery information

(n=4,500)

Livebirths
(n=4,422)

Born alive without congenital 
malformation                                      

(n=4,321)

71 Lost to follow-up or withdrew consent
36 Excluded due to severe maternal disorders 
(29), smoking (6), recreational drug use (1)

At least 1 eligible scan between 
14-40 weeks                           

(n=4,229)

101 livebirths with congenital
malformation

• 84 with no fetal measurements
• 7 outliers (> 5SD of the respective mean 

fetal measurement)
• 1 subject with head circumference >330mm
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Table 1: Baseline characteristics and perinatal events of the study population of 4229 women 
 

Characteristic Mean (SD) or n (%) 
Maternal age, years 27.8 (3.8) 
Maternal height, cm  162.2 (5.8) 
Maternal weight, kg 61.5 (9.2)
Body mass index, kg/m2 23.2 (3.0) 
Gestational age at first visit, weeks  11.3 (1.4) 
Nulliparous 2815 (68.6%) 
Pre-eclampsia  31 (<1%)
Preterm birth (<37 weeks) 189 (4.5%) 
Term LBW less than 2500g (≥37 weeks)  127 (3%) 
Male sex 2101 (49.7%) 
Birth weight (≥37 weeks), kg 3.3 (0.4)
 
 
Maternal baseline characteristics were measured at less than 14 weeks’ gestation. LBW = low birth 
weight.  
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Table 2: Selected equations for late gestational age estimation  
 
 
 
 
 
 
 
 
 
 
 
 
 

GA: exact estimated gestational age (days) 
HC: Head Circumference (mm)   
FL: Femur Length (mm) 
loge = Logarithm to base e (natural logarithm) 
SD = standard deviation    
 
For example, to calculate gestational age using equation 1: 
If HC is 250mm  
median GA  = exp (0.05970* [loge(250)]2 + 0.000000006409*2503 + 3.3258 
  = exp (5.245986506) 
  = 189.8 days (equivalent to 27.1 weeks) 
 
To calculate gestational age using equation 2,  
If HC is 250mm and FL is 55mm 
median GA  = exp 0.03243 x [loge(250)]2 + 0.001644 x 55 x loge(250) + 3.813 
  = exp (5.300929) 
  = 200.5 days (equivalent to 28.6 weeks) 
 
Using equations of the median and standard deviation one can easily compute any desired centiles 
using the relation Pth centile = Median + KSD, where K is the normal equivalent deviate (z score) 
corresponding to a particular centile, e.g. K = 1.88 for the 97th centile and −1.88 for the 3rd cenƟle. 
The SDs in this equation are the predicted estimates from the regression analysis. 
 
For example, 3rd centile for GA = exp (0.05970*(logeHC)2 + 0.000000006409*HC3 + 3.3258) + (-
1.88*(0.6492* (Median GA*0.01)3 + 2.991)) 

ID Variables 
(mm) 

Equation to estimate logeGA (days) 

1 HC  loge(GA) = 0.05970 x [loge(HC)]2 + 0.000000006409 x HC3 + 3.3258 

2 HC, FL loge(GA) = 0.03243 x [loge(HC)]2 + 0.001644 x FL x loge(HC) + 3.813 

 

ID Variables 
(mm) 

Equation to estimate the standard deviation of GApredicted (days) 

1 HC  SD = 0.6492 x (GA x 0.01)3 + 2.991 

2 HC, FL SD = 0.04009 x GA – 1.149 
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Table 3: Selected equations: goodness of fit characteristics of gestational age assessment in days. 
 

Equation ID  1 2 
Variables  in equation HC HC, FL 
RMSE (log days) 0.0423 0.0352 
R-squared 0.98 0.99 
Goodness of fit (%) 5.21 6.20 
AIC 16.33 14.69 
Variation around the mean of 
GA estimate (half width of 95% 
prediction interval (days), at:  

  

14 weeks 7.1 5.4 
16 weeks 7.7 6.5 
18 weeks 8.4 7.6 
20 weeks 9.4 8.7 
22 weeks 10.5 9.8 
24 weeks 11.9 10.9 
26 weeks 13.5 12.0 
28 weeks 15.4 13.2 
30 weeks 17.6 14.3 
32 weeks 20.1 15.4 
34 weeks 23.0 16.5 

RMSE = root mean squared error.  Goodness of fit = the percentage of predicted estimates of GA 
outside the 95% prediction interval across all gestational ages.  AIC = the Akaike Information Criterion.   
  



A
cc

ep
te

d 
A

rti
cl

e 

 

 
Table 4: Prediction of gestational age using the two equations. The median (50th centile) is the most likely gestational age in the absence of pathology. The true 
gestational age is unlikely to be below the lower limit of the prediction interval (2.5th centile). Data shown in weeks+days 
 
 
 
Most likely value (50th centile) Lower limit of prediction interval (2.5th centile) Upper limit of prediction interval (97.5th centile) 
 Equation 1 (HC) Equation 2 (HC, FL) Equation 1 (HC) Equation 2 (HC, FL) 
14+0 12+6 13+1 15+0 14+5 
14+1 13+0 13+2 15+1 14+6 
14+2 13+1 13+3 15+2 15+0 
14+3 13+2 13+4 15+3 15+1 
14+4 13+3 13+5 15+4 15+2 
14+5 13+4 13+6 15+5 15+3 
14+6 13+5 14+0 15+6 15+4 
15+0 13+6 14+1 16+0 15+5 
15+1 14+0 14+1 16+1 16+0 
15+2 14+1 14+2 16+2 16+1 
15+3 14+2 14+3 16+3 16+2 
15+4 14+3 14+4 16+4 16+3 
15+5 14+4 14+5 16+5 16+4 
15+6 14+5 14+6 16+6 16+5 
16+0 14+6 15+0 17+0 16+6 
16+1 15+0 15+1 17+1 17+0 
16+2 15+1 15+2 17+2 17+1 
16+3 15+2 15+3 17+3 17+2 
16+4 15+3 15+4 17+4 17+3 
16+5 15+4 15+5 17+5 17+4 
16+6 15+5 15+5 17+6 17+6 
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17+0 15+5 15+6 18+1 18+0 
17+1 15+6 16+0 18+2 18+1 
17+2 16+0 16+1 18+3 18+2 
17+3 16+1 16+2 18+4 18+3 
17+4 16+2 16+3 18+5 18+4 
17+5 16+3 16+4 18+6 18+5 
17+6 16+4 16+5 19+0 18+6 
18+0 16+5 16+6 19+1 19+0 
18+1 16+6 17+0 19+2 19+1 
18+2 17+0 17+1 19+3 19+2 
18+3 17+1 17+2 19+4 19+3 
18+4 17+2 17+3 19+5 19+4 
18+5 17+3 17+3 19+6 19+6 
18+6 17+4 17+4 20+0 20+0 
19+0 17+5 17+5 20+1 20+1 
19+1 17+6 17+6 20+2 20+2 
19+2 18+0 18+0 20+3 20+3 
19+3 18+0 18+1 20+5 20+4 
19+4 18+1 18+2 20+6 20+5 
19+5 18+2 18+3 21+0 20+6 
19+6 18+3 18+4 21+1 21+0 
20+0 18+4 18+5 21+2 21+1 
20+1 18+5 18+6 21+3 21+2 
20+2 18+6 19+0 21+4 21+3 
20+3 19+0 19+1 21+5 21+4 
20+4 19+1 19+1 21+6 21+6 
20+5 19+2 19+2 22+0 22+0 
20+6 19+3 19+3 22+1 22+1 
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21+0 19+4 19+4 22+2 22+2 
21+1 19+5 19+5 22+3 22+3 
21+2 19+5 19+6 22+5 22+4 
21+3 19+6 20+0 22+6 22+5 
21+4 20+0 20+1 23+0 22+6 
21+5 20+1 20+2 23+1 23+0 
21+6 20+2 20+3 23+2 23+1 
22+0 20+3 20+4 23+3 23+2 
22+1 20+4 20+5 23+4 23+3 
22+2 20+5 20+5 23+5 23+5 
22+3 20+6 20+6 23+6 23+6 
22+4 21+0 21+0 24+0 24+0 
22+5 21+1 21+1 24+1 24+1 
22+6 21+1 21+2 24+3 24+2 
23+0 21+2 21+3 24+4 24+3 
23+1 21+3 21+4 24+5 24+4 
23+2 21+4 21+5 24+6 24+5 
23+3 21+5 21+6 25+0 24+6 
23+4 21+6 22+0 25+1 25+0 
23+5 22+0 22+1 25+2 25+1 
23+6 22+1 22+2 25+3 25+2 
24+0 22+2 22+3 25+4 25+3 
24+1 22+3 22+3 25+6 25+5 
24+2 22+3 22+4 26+0 25+6 
24+3 22+4 22+5 26+1 26+0 
24+4 22+5 22+6 26+2 26+1 
24+5 22+6 23+0 26+3 26+2 
24+6 23+0 23+1 26+4 26+3 
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25+0 23+1 23+2 26+5 26+4 
25+1 23+2 23+3 26+6 26+5 
25+2 23+3 23+4 27+0 26+6 
25+3 23+3 23+5 27+2 27+0 
25+4 23+4 23+6 27+3 27+1 
25+5 23+5 24+0 27+4 27+2 
25+6 23+6 24+1 27+5 27+3 
26+0 24+0 24+1 27+6 27+5 
26+1 24+1 24+2 28+0 27+6 
26+2 24+2 24+3 28+1 28+0 
26+3 24+3 24+4 28+2 28+1 
26+4 24+3 24+5 28+4 28+2 
26+5 24+4 24+6 28+5 28+3 
26+6 24+5 25+0 28+6 28+4 
27+0 24+6 25+1 29+0 28+5 
27+1 25+0 25+2 29+1 28+6 
27+2 25+1 25+3 29+2 29+0 
27+3 25+2 25+4 29+3 29+1 
27+4 25+2 25+5 29+5 29+2 
27+5 25+3 25+6 29+6 29+3 
27+6 25+4 25+6 30+0 29+5 
28+0 25+5 26+0 30+1 29+6 
28+1 25+6 26+1 30+2 30+0 
28+2 26+0 26+2 30+3 30+1 
28+3 26+1 26+3 30+4 30+2 
28+4 26+1 26+4 30+6 30+3 
28+5 26+2 26+5 31+0 30+4 
28+6 26+3 26+6 31+1 30+5 
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29+0 26+4 27+0 31+2 30+6 
29+1 26+5 27+1 31+3 31+0 
29+2 26+6 27+2 31+4 31+1 
29+3 27+0 27+3 31+5 31+2 
29+4 27+0 27+3 32+0 31+4 
29+5 27+1 27+4 32+1 31+5 
29+6 27+2 27+5 32+2 31+6 
30+0 27+3 27+6 32+3 32+0 
30+1 27+4 28+0 32+4 32+1 
30+2 27+5 28+1 32+5 32+2 
30+3 27+5 28+2 33+0 32+3 
30+4 27+6 28+3 33+1 32+4 
30+5 28+0 28+4 33+2 32+5 
30+6 28+1 28+5 33+3 32+6 
31+0 28+2 28+6 33+4 33+0 
31+1 28+2 29+0 33+6 33+1 
31+2 28+3 29+1 34+0 33+2 
31+3 28+4 29+1 34+1 33+4 
31+4 28+5 29+2 34+2 33+5 
31+5 28+6 29+3 34+3 33+6 
31+6 29+0 29+4 34+4 34+0 
32+0 29+0 29+5 34+6 34+1 
32+1 29+1 29+6 35+0 34+2 
32+2 29+2 30+0 35+1 34+3 
32+3 29+3 30+1 35+2 34+4 
32+4 29+4 30+2 35+3 34+5 
32+5 29+4 30+3 35+5 34+6 
32+6 29+5 30+4 35+6 35+0 
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33+0 29+6 30+5 36+0 35+1 
33+1 30+0 30+6 36+1 35+2 
33+2 30+1 30+6 36+2 35+4 
33+3 30+1 31+0 36+4 35+5 
33+4 30+2 31+1 36+5 35+6 
33+5 30+3 31+2 36+6 36+0 
33+6 30+4 31+3 37+0 36+1 
34+0 30+4 31+4 37+2 36+2 
34+1 30+5 31+5 37+3 36+3 
34+2 30+6 31+6 37+4 36+4 
34+3 31+0 32+0 37+5 36+5 
34+4 31+1 32+1 37+6 36+6 
34+5 31+1 32+2 38+1 37+0 
34+6 31+2 32+3 38+2 37+1 
35+0 31+3 32+3 38+3 37+3 
35+1 31+4 32+4 38+4 37+4 
35+2 31+4 32+5 38+6 37+5 
35+3 31+5 32+6 39+0 37+6 
35+4 31+6 33+0 39+1 38+0 
35+5 32+0 33+1 39+2 38+1 
35+6 32+1 33+2 39+3 38+2 
36+0 32+1 33+3 39+5 38+3 
36+1 32+2 33+4 39+6 38+4 
36+2 32+3 33+5 40+0 38+5 
36+3 32+4 33+6 40+1 38+6 
36+4 32+4 34+0 40+3 39+0 
36+5 32+5 34+1 40+4 39+1 
36+6 32+6 34+1 40+5 39+3 
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37+0 33+0 34+2 40+6 39+4 
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Table 5 Commonly used dating equations and imprecision of gestational age assessment (half width of 95% prediction intervals) in days.  
 

Reference 
R-squared 12 - 18 

weeks 
18 - 24 
weeks 

24 - 30 
weeks 

30 - 36 
weeks 

Hadlock 
(1984)28 
BPD 0.967 8.3 12.1 15.3 21.6 
HC 0.973 8.3 10.4 14.4 20.9 
AC 0.969 11.6 14.4 15.3 20.7 
FL 0.971 9.7 12.6 14.6 20.7 
HC, BPD 0.974 7.6 10.4 13.9 20.0 
HC, FL 0.976 8.4 10.6 13.9 18.8 
HC, AC 0.98 7.6 9.4 13.0 17.6 
HC, FL, BPD 0.981 7.3 9.5 12.7 17.6 
HC, AC, FL 0.981 8.0 10.2 13.2 17.6 
HC, BPD, AC, FL 0.981 7. 6 9.8 12.6 17.1 
Altman and 
Chitty (1997)29 
HC NR 8.0 13.0 17.0 22.0 

BPD = Biparietal Diameter. HC = Head Circumference.  AC = Abdominal Circumference. FL = Femur Length. NR = Not Reported.  
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Appendix: Details of statistical analytical strategy 

Prediction equations were developed using the ‘Genetic Algorithm’, an iterative, automated machine-

learning methodology, whose source code is readily available (Clegg, 2005)  

http://uk.mathworks.com/matlabcentral/fileexchange/25499-gapolyfitn.  Whilst conventional 

approaches employing fractional polynomial regression are ideally suited for predicting a continuous 

non-linear relationship using single variables (e.g. HC and GA), these methods do not translate easily to 

datasets with multiple variables.  The purpose of the genetic algorithm was to construct and evaluate 

a large number of candidate equations, comprising terms based upon subsets of variables from the 

whole dataset; evaluate their fit of GAtrue automatically, and to present a single, simplified equation 

offering the best fit of GAtrue for a specified number of input variables.     

 

In brief, the process initiated by assembling a generation of 1000 polynomial forms, whose terms 

comprised random combinations of biometric variables.  In accordance with previous work, the 

powers of terms used to construct equations were limited to 0.5, 1, 2 and 3; with equations 

subsequently comprising 2, 3 or 4 terms.  Individual terms were assembled as random combinations of 

variables such that a term with power 2 could either comprise the square of a single variable or the 

product of two separate variables.  

 

The algorithm used a least squares fit to evaluate the coefficients of terms for each equation by 

minimizing the error between GApredict and GAtrue.  The overall model fit for each equation was assessed 

using the RMSE, and a generation of equations compared by ranking according to the RMSE.  Once 

ranked, the top 20 percent of equations were selected for modification and iteration within a second 

round of the algorithm; and the remainder discarded.  The genetic algorithm modified the structure of 

equations using processes designed to mimic natural selection.  Whole terms were exchanged 

between equations (recombination) and the structure of terms was changed at random in 10 percent 

of equations (point mutation), before the fit of equations was re-assessed, as described elsewhere 

(Leardi, 1992; Inza 2001; Clegg, 2005; Gutell 2006).  When the modification of equations provided a 

better fit of GAtrue, equations were conserved and entered a subsequent iteration using the same 

methods.  The search was halted when equation variants failed to improve the RMSE by >10-8 

(specified arbitrarily).    Thus, over many cycles, the genetic algorithm converged upon a single 

polynomial equation that optimally predicted GA for the specified input variables. 

The following data structures were assembled from the INTERGROWTH-21st dataset. Each set of 

candidate variables (A-J) was processed by the genetic algorithm to determine the multivariable 

polynomial equation that produced the lowest RMSE for predicting GA for that specific combination of 

input biometry.  It is emphasized that the models increment by the number of terms and the order 
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with which each variable  is entered has no impact upon the selection of terms featuring in the final 

dataset.    

 

A  HC 

B HC+logeHCx 

C  HC+logeHC+BPD 

D HC+logeHC+BPD+logeBPD 

E  HC+logeHC+BPD+logeBPD+OFD 

F HC+logeHC+BPD+logeBPD+OFD+logeOFD 

G HC+logeHC+BPD+logeBPD+OFD+logeOFD+AC 

H HC+logeHC+BPD+logeBPD+OFD+logeOFD+AC+logeAC 

I HC+logeHC+BPD+logeBPD+OFD+logeOFD+AC+logeAC+FL 

J  HC+logeHC+BPD+logeBPD+OFD+logeOFD+AC+logeAC+FL+logeFL 

 

Variables were entered in their natural and natural log state.  Generic equations were therefore 

generated in the form logeGA = aXbi +bXb+1j +cXb+2k..., with the limits of Xb restricted to produce 

equations of 2, 3 or 4 terms. Hence, the structures of the polynomial equations derived were: 

logeGA = aX10−3 + bX20−3 + constant    (1)  

logeGA = aX10−3 + bX20−3 + cX30−3 + constant   (2)  

logeGA = aX10−3 + bX20−3 + cX30−3 + dX40−3 + constant  (3) 

where: 

a, b, c, d : Coefficients determined by genetic algorithm. 

X1, ...  X4 : Combinations of variables determined by the genetic algorithm.   In the case of Xn, X can 

take the form of a single variable (HCn) or a combination of variables (HCi FLj) where i+j=n.  
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Equations of the forms (1) to (3) were constructed for each combination A-J with the terms of each 

equation restricted to power 2 and subsequently to power 3. Hence, each combination A-J was 

processed to construct a 2 term, 2 power equation as well as a 2 term, 3 power and a 3 term, 2 power 

equation, and so on.  

The output of the modeling process consisted of a polynomial equation and respective performance 

indicators including the RMSE, and regression coefficient (r
2
). For each equation, absolute residuals 

between GAtrue – GApredicted were regressed on predicted GA to provide an equation to 

approximate the SD, and multiplied by the constant 1.96√(π/2), (Altman 1993) to estimate the 2.5th 

and 97.5th centiles using the Xrigls function in Stata. 

The Genetic Algorithm methodology was tested extensively before running analyses.  Specifically, 40 

test datasets were assembled within which single and multiple combinations of the constituent 

variables were replaced by random data generated within the same range as the observed data using 

the ‘runiform’ random number generator in Stata. As an indicator of the robustness of search 

algorithm, the test datasets were used to determine if any of the random variables would be selected 

as predictors of GA by the model. This was not the case.  Repeated cycles of the whole process were 

run to assess the reproducibility of results with identical equations resolved each time. 
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