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Summary
Background Maternal vitamin D status has been associated with bone mass of off spring in many, but not all, 
observational studies. However, maternal vitamin D repletion during pregnancy has not yet been proven to improve 
off spring bone mass in a randomised controlled trial. We aimed to assess whether neonates born to mothers 
supplemented with vitamin D during pregnancy have greater whole-body bone mineral content (BMC) at birth than 
those of mothers who had not received supplementation.

Methods The Maternal Vitamin D Osteoporosis Study (MAVIDOS) was a multicentre, double-blind, randomised, 
placebo-controlled trial that recruited pregnant women from three study sites in the UK (Southampton, Oxford, and 
Sheffi  eld). Eligible participants were older than 18 years, with a singleton pregnancy, gestation of less than 17 weeks, 
and a serum 25-hydroxyvitamin D (25[OH]D) concentration of 25–100 nmol/L at 10–17 weeks’ gestation. Participants 
were randomly assigned (1:1), in randomly permuted blocks of ten, to either cholecalciferol 1000 IU/day or matched 
placebo, taken orally, from 14 weeks’ gestation (or as soon as possible before 17 weeks’ gestation if recruited later) 
until delivery. Participants and the research team were masked to treatment allocation. The primary outcome was 
neonatal whole-body BMC, assessed within 2 weeks of birth by dual-energy x-ray absorptiometry (DXA), analysed in 
all randomly assigned neonates who had a usable DXA scan. Safety outcomes were assessed in all randomly assigned 
participants. This trial is registered with the International Standard Randomised Controlled Trial registry, ISRCTN 
82927713, and the European Clinical Trials Database, EudraCT 2007–001716–23.

Findings Between Oct 10, 2008, and Feb 11, 2014, we randomly assigned 569 pregnant women to placebo and 565 to 
cholecalciferol 1000 IU/day. 370 (65%) neonates in the placebo group and 367 (65%) neonates in the cholecalciferol 
group had a usable DXA scan and were analysed for the primary endpoint. Neonatal whole-body BMC of infants born 
to mothers assigned to cholecalciferol 1000 IU/day did not signifi cantly diff er from that of infants born to mothers 
assigned to placebo (61·6 g [95% CI 60·3–62·8] vs 60·5 g [59·3–61·7], respectively; p=0·21). We noted no signifi cant 
diff erences in safety outcomes, apart from a greater proportion of women in the placebo group with severe post-
partum haemorrhage than those in the cholecalciferol group (96 [17%] of 569 mothers in the placebo group vs 65 
[12%] of 565 mothers in the cholecalciferol group; p=0·01). No adverse events were deemed to be treatment related.

Interpretation Supplementation of women with cholecalciferol 1000 IU/day during pregnancy did not lead to 
increased off spring whole-body BMC compared with placebo, but did show that 1000 IU of cholecalciferol daily is 
suffi  cient to ensure that most pregnant women are vitamin D replete, and it is safe.  These fi ndings support current 
approaches to vitamin D supplementation in pregnancy. Results of the ongoing MAVIDOS childhood follow-up study 
are awaited. 
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Introduction
Osteoporosis is a devastating disease, and its high 
prevalence makes it eminently suitable for population-
wide public health interventions aimed at optimising 
bone health.1 There is increasing evidence that early 
growth, and factors acting in utero or during early 
infancy, can aff ect the trajectory of long-term skeletal 
accrual to peak bone mass.1 In particular, maternal serum 
25-hydroxyvitamin D (25[OH]D) concentrations in 

pregnancy have been associated with off spring bone 
morphology2–5 and bone mass6,7 up to young adulthood.8 
The main determinant of 25(OH)D concentrations in 
most populations is ultraviolet B (UVB) exposure to the 
skin, which varies markedly by season in temperate 
climes.9 Seasonal diff erences in neonatal bone mineral 
content (BMC) have been reported,10,11 with eff ects 
potentially modifi ed by vitamin D supplementation,11 and 
maternal UVB exposure during pregnancy has been 
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positively associated with bone mass in childhood.6,12 
However, not all studies have shown a benefi t of higher 
maternal 25(OH)D concentrations in pregnancy on 
childhood skeletal health.13–15

Whole-body BMC is the recommended measure of 
bone mass in children. Although dual-energy x-ray 
absorptiometry (DXA) is of limited clinical utility in 
neonates because of the absence of normative data,16 
infant DXA has been widely used in research studies17–20 in 
which comparisons are done within the same study. 
Childhood BMC is inversely related to childhood fracture 
risk,21 and although data spanning from conception to 
peak bone mass in a single cohort are yet to be obtained, 
the evidence base supports tracking of BMC over this time 
period,22–25 and the magnitude of peak bone mass achieved 
is an important determinant of future fracture risk.26

The aim of the Maternal Vitamin D Osteoporosis Study 
(MAVIDOS) was therefore to test the hypothesis that 
neonates born to mothers supplemented with vitamin D 
during pregnancy would have greater whole-body BMC 
at birth than those of mothers who had not received 
supplementation.27 Given the previously documented 

importance of season for both 25(OH)D concentrations 
and childhood bone mass, we further hypothesised that 
there would be an interaction between season of birth 
and treatment eff ect.

Methods
Study design and participants
A detailed description of the aims and methods of 
MAVIDOS has been previously published.27 Briefl y, 
MAVIDOS is a multicentre, double-blind, randomised, 
placebo-controlled trial of vitamin D supplementation in 
pregnancy in the UK. Pregnant women were recruited 
when attending early pregnancy ultrasound screening at 
three study sites (University Hospital Southampton 
National Health Service [NHS] Foundation Trust, 
Southampton, UK; Oxford University Hospitals NHS 
Trust, Oxford, UK; Sheffi  eld Hospitals NHS Trust 
[University of Sheffi  eld], Sheffi  eld, UK). Women were 
eligible if they were older than 18 years, had a singleton 
pregnancy, had gestation of less than 17 weeks based on 
last menstrual period and ultrasound measurements, and 
were aiming to give birth at the local maternity hospital. 

Research in context

Evidence before this study
We did a systematic review of studies relating maternal vitamin 
25-hydroxyvitamin D (25[OH]D) concentrations, UVB 
exposure, dietary vitamin D intake, or use of vitamin D 
supplements during pregnancy to maternal and off spring 
health outcomes.1 Major electronic databases (including, but 
not limited to, PubMed, Embase, and Web of Science) were 
searched for articles published from the databases’ inception 
until June, 2012. This search was complemented by 
interrogation of grey literature and manual searching of 
reference lists. Two independent reviewers undertook all 
assessments, and the review was done in accordance with 
PRISMA guidelines. We identifi ed eight observational studies 
relating maternal gestational vitamin D status to off spring 
bone mass, all of which were assessed as having a medium to 
low risk of bias. Of these, fi ve reported a signifi cant positive 
relation between maternal vitamin D status and off spring bone 
outcomes, which included whole-body, lumbar, femoral, and 
tibial bone mineral content (BMC), and whole-body and lumbar 
spine bone mineral density (BMD). Of the remaining studies, no 
signifi cant association was reported between maternal vitamin 
D status and off spring radial and whole-body BMC. Diff erences 
in study design did not permit meta-analysis. We identifi ed one 
small intervention study, judged to be at high risk of bias, which 
found no diff erence in off spring forearm BMC (measured within 
5 days of birth) between supplemented and unsupplemented 
mothers. We subsequently updated the search in August, 2014, 
identifying two further observational studies, both judged to 
have a low to medium risk of bias; one, using the Avon 
Longitudinal Study of Parents and Children cohort, found no 
association between maternal 25(OH)D concentrations in 

pregnancy and off spring bone mass at 9 years. By contrast, the 
second study, from the Western Australian Pregnancy Cohort 
(RAINE), documented positive associations between maternal 
gestational 25(OH)D concentrations and off spring bone mass 
at 20 years.

Added value of this study
We found no diff erence in the primary outcome (neonatal 
whole-body BMC) between off spring born to mothers assigned 
to a vitamin D supplement during pregnancy compared with 
mothers assigned to placebo. However, among the prespecifi ed 
secondary analyses, we noted an interaction between treatment 
and season, with the suggestion of a benefi t for off spring 
neonatal BMC with treatment for deliveries during winter 
months. Although biologically plausible, this intriguing fi nding 
clearly needs to be replicated in further studies before it can 
provide a basis for alterations to clinical care. This study thus 
complements previous observational data and is the fi rst 
randomised trial to show a potential benefi t of vitamin D 
supplementation during pregnancy for off spring bone mass.

Implications of all the available evidence
Vitamin D supplementation during pregnancy is already 
recommended in many countries, including the UK. 
Observational studies have provided confl icting evidence 
regarding associations between maternal 25(OH)D status and 
off spring intrauterine bone development. The MAVIDOS study, 
although negative for its primary outcome, has shown that 
1000 IU of cholecalciferol daily is suffi  cient to ensure that most 
pregnant women are replete in 25(OH)D, and that such a 
strategy is safe. 
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Women were excluded if they had known metabolic bone 
disease, renal stones, hyper parathyroidism, or hyper-
calciuria, had been diagnosed with cancer in the previous 
10 years, were unable to give informed consent or comply 
with the protocol, were taking drugs known to interfere 
with fetal growth, had fetal anomalies on ultrasonography, 
or were taking more than 400 IU/day vitamin D 
supplementation. A screening blood sample was obtained 
and analysed at local NHS laboratories and only women 
with a serum 25-hydroxyvitamin D (25[OH]D) 
concentration of 25–100 nmol/L and serum calcium of 
less than 2·75 mmol/L were eligible to enrol in the study. 
All three laboratories (Southampton, Oxford, and 
Sheffi  eld) were accredited by the Vitamin D External 
Quality Assessment Scheme (DEQAS).

The study was done in accordance with guidelines laid 
down in the Declaration of Helsinki and was approved by 
the Southampton and South West Hampshire Research 
Ethics Committee. The study protocol has been published 
previously.27 Full approval from the UK Medicines and 
Healthcare Products Regulatory Agency was granted, 
and written, informed consent was obtained from all 
participants.

Randomisation and masking
Women were randomly assigned at 14 weeks’ gestation 
(or as soon as possible before 17 weeks’ gestation if 
recruited later) to either cholecalciferol 1000 IU/day or 
matched placebo (Merck KGaA, Darmstadt, Germany). 
Packs of study treatment were randomly assigned in a 
1:1 ratio by Sharp Clinical Services (Crickhowell, UK; 
previously DHP-Bilcare) by a computer-generated 
sequence in randomly permuted blocks of ten, starting 
randomly midway through the block, and sequentially 
numbered, before delivery to the study sites, and then 
dispensed in order by each study pharmacist. Each pack 
contained suffi  cient capsules for the study duration and 
both the participant and research team were masked to 
treatment allocation throughout the study duration.

Procedures
Women assigned to cholecalciferol took 1000 IU/day, 
orally as a single capsule until delivery; women assigned 
to placebo also took matched capsules orally until 
delivery. All participants received standard antenatal 
care, and were able to continue self-administration of 
antenatal multivitamins containing up to 400 IU/day of 
vitamin D. Women were assessed in detail at 14 weeks’ 
and 34 weeks’ gestation to investigate diet (including 
calcium and vitamin D intake), smoking status, alcohol 
consumption, change in health status, physical activity, 
medication intake, supplement intake (all by interviewer-
led questionnaires), and anthropometric variables.27 
Anthro pometric measure ments of the neonates were 
obtained within 14 days after delivery, and information 
about obstetric com plications was extracted from 
maternity records.

Study blood samples were collected from the mother 
at 14 weeks’ and 34 weeks’ gestation, and stored at 
–80°C after processing. Measurement of plasma 
25(OH)D (Liaison RIA automated platform, Diasorin, 
Stillwater, MN, USA), calcium, alkaline phosphatase, 
and albumin was undertaken centrally (MRC Human 
Nutrition Research, Cambridge, UK) in a single batch 
at the end of the study. Measurement of vitamin D 
binding protein is ongoing and the results will be 
published separately. Details of assay performance and 
quality control through participation in the DEQAS, 
National Institute of Standards and Technology, and 
UK National External Quality Assessment Service are 
presented elsewhere.28,29

All neonates underwent DXA assessment at whole-
body and lumbar spine sites (Hologic Discovery, Hologic 
Inc, Bedford, MA, USA, or GE-Lunar iDXA, GE-Lunar, 
Madison, WI, USA, with neonatal software) within 
2 weeks after birth. To maximise scan quality, the infant 
was undressed, clothed in a standard towel, fed, and 
pacifi ed before the assessment. Each instrument 
underwent daily quality control, with cross-calibration 
between sites. The total radiation dose was estimated to 
be 0·04 mSv, equivalent to about 7 days’ exposure to 
background radiation in the UK. All DXA images were 
reviewed for movement artefacts and quality by two 
operators (NCH and RJM), who were masked to 
treatment allocation.

Follow-up assessments of the children at 1, 2, 3, and 
4 years are ongoing.

Outcomes
The primary outcome was whole-body BMC of the 
neonate, assessed within 2 weeks of birth by DXA. 
Although we had originally planned to use whole-body 
BMC adjusted for age, after further statistical review 
(before completion of the trial), in this randomised 
controlled trial setting, it was judged to be more appropriate 
to include off spring age in a sensitivity analysis, rather 
than as the primary outcome. Secondary outcomes 
included neonatal whole-body bone area, bone mineral 
density (BMD), size-corrected BMC, and body composition. 
To preserve statistical power, rather than do separate 
analyses (as planned in the original protocol) for 
participants who completed the protocol, complied with 
treatment, and had a rise in 25(OH)D, and for stratifi cation 
by baseline 25(OH)D, we explored these potential eff ect 
modifi ers via their incorporation as interaction terms in 
regression models.

Safety outcomes included the frequency of adverse 
events, such as infection, nausea and vomiting, 
diarrhoea, abdominal pain, headache, hypertension, and 
hypercalcaemia (≥2·75 mmol/L) in the mother at 
34 weeks’ gestation, as well as intrauterine growth 
restriction, preterm birth (<37 weeks’ gestation), 
instrumental delivery, severe post-partum haemorrhage, 
stillbirth or neonatal death, and congenital abnormalities.

For more on DEQAS see 
http://www.deqas.org/
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Statistical analysis
We estimated the required sample size using results 
from the Princess Anne Hospital Study,6 in which a 
diff erence of 0·42 SD in whole-body BMC was reported 
between the infants of mothers who had been vitamin D 
defi cient and those of mothers who had been vitamin D 
replete during pregnancy. Given this was a single 
observational study, we powered the trial conservatively, 
calculating that to detect 50% of this diff erence in 
whole-body BMC at birth between the neonates of 
mothers who were defi cient in vitamin D versus those 
replete in pregnancy (0·21 SD or 3·5 g), at the 5% 

signifi cance level with 90% power, would require 
recruitment of 477 neonates in each group.

For the primary analyses, we analysed all participants 
with a neonatal DXA assessment and a usable DXA scan 
(without movement artefact); although our original 
protocol, published before unblinding of the study,27 
stipulated that the analysis would be on an intention-to-
treat basis, we subsequently revised the terminology used 
(before unblinding) because the analysis had to be based 
on available neonatal DXA assessments, a continuous 
outcome, and methods to account for missing data would 
not have been applicable in this setting. Safety outcomes 
were analysed in all randomly assigned participants.

At the request of the data monitoring committee, an 
interim safety analysis of serum calcium concentration 
was requested after 2 years of recruitment (April 23, 
2010), but no analysis of DXA outcomes was undertaken 
until follow-up of all participants had been completed. 
This analysis showed that no participant had serum 
calcium concentrations above 2·75 mmol/L, permitting 
study progression.

We checked all data for normality by visual inspection of 
histograms. Missing data were assumed to be missing at 
random. We compared treatment groups using the 
Student’s t test and Mann-Witney U test for normally and 
non-normally distributed outcomes, respectively. We 
compared categorical outcomes using the χ² test.

DXA indices included neonatal whole-body bone area, 
BMC, BMD, lean mass, and fat mass. To assess bone 
mass independent of body size, we used BMC adjusted 
for birth length in a regression model. Given the seasonal 
change in 25(OH)D concentrations reported in many 
previous studies, we hypothesised, a priori, that an 
interaction might be noted between treatment eff ect and 
season of birth. We defi ned season of birth using the UK 
Meteorological Offi  ce classifi cation, as winter (December 
to February), spring (March to May), summer (June to 
August), and autumn (September to November), and also 
explored diff erences in treatment eff ect by individual 
month of birth. We also investigated prespecifi ed 
interactions between treatment eff ect and off spring sex, 
and between treatment eff ect and ethnic origin, because 
both these factors have been associated with variations in 
vitamin D metabolism. Since the evidence of diff erences 
in body composition between fi rst and subsequent 
off spring is clear,1 and BMI has been shown to be 
inversely related to 25(OH)D concentration, we 
hypothesised that interactions might be apparent 
between each of these two variables and treatment. 
Finally, we reasoned that treatment might be more 
eff ective in mothers who fully complied with the protocol 
and were compliant with study treatment, who had low 
concentrations of 25(OH)D at baseline, or who had a 
greater change in 25(OH)D from 14 weeks to 34 weeks, 
and that for a combination of reasons, diff erences by 
study centre might be apparent, providing the basis for 
further interaction analyses. In summary, the interactions 

Figure 1: Trial profi le
25(OH)D=25-hydroxyvitamin D. DXA=dual-energy x-ray absorptiometry. *Assessments could be done in both the 
whole body and spine within the same neonate.

1449 potential participants screened

1134 randomly assigned

569 assigned placebo 565 assigned cholecalciferol

86 discontinued study
 37 withdrawn
 27 unwilling/unable to take 
 study drug
 10 25(OH) supplement 
 >400 IU/day
 4 too busy
 3 clinical complications
 2 moved away
 2 DXA concerns
 1 miscarriage

83 discontinued study
 32 withdrawn
 24 unwilling/unable to take 
 study drug
 11 clinical complication 
 6 25(OH) supplement 
 >400 IU/day
 5 too busy
 4 miscarriage
 1 moved away

63 discontinued study
 19 reason unknown
 15 unable to contact
 15 did not attend
 8 refused
 4 clinical reason
 2 withdrawn

66 discontinued study
 18 unable to contact
 17 reason unknown
 15 did not attend
 7 refused
 5 withdrawn
 4 clinical reason

486 births 479 births

420 neonatal DXA assessment*
 387 whole body
 383 spine

416 neonatal DXA assessment*
 382 whole body
 375 spine

370 usable DXA*
 327 whole body
 323 spine

367 usable DXA*
 338 whole body
 305 spine

49 unusable DXA due to 
 movement artefact

50 unusable DXA due to 
 movement artefact

315 not randomised
 59 25(OH)D >100 nmol/L
 89 25(OH)D <25 nmol/L
 167 withdrew



Articles

www.thelancet.com/diabetes-endocrinology   Vol 4   May 2016 397

tested were with study centre, maternal ethnic origin, 
parity, treatment compliance, protocol completion, 
baseline maternal BMI, baseline maternal 25(OH)D, 
change in 25(OH)D from 14 weeks to 34 weeks, off spring 
sex, and season of birth. All these interactions were 
explored in multivariable linear regression (with 
the independent variables—eg, treatment; season; 
treatment*season—and inclusion of no other covariates).

In further prespecifi ed sensitivity analyses we adjusted 
bone outcomes for postnatal age at DXA. Given that the 
secondary analyses were prespecifi ed and hypothesis-
based, and that the study was powered for the primary 
outcome, correction for multiple testing was not judged 
to be appropriate, recognising that any statistically 
signifi cant results from the secondary analyses would 
require further confi rmation in future studies. With ten 
analyses and an α of 0·05, we calculated that the 
probability of observing one or more false positive 
associations was 40% (equal to [1–0·95¹⁰] × 100). SD’A, 
SRC, and HMI undertook all analyses using Stata, 
version 13.1. A p value of less than 0·05 was accepted as 
statistically signifi cant.

This trial is registered with the International Standard 
Randomised Controlled Trial registry, ISRCTN 82927713, 
and the European Clinical Trials Database, EudraCT 
2007–001716–23.

Role of the funding source
The study was funded by Arthritis Research UK, UK 
Medical Research Council, UK National Institute for 
Health Research, and the Bupa Foundation. The original 
protocol incorporated suggestions from the Arthritis 
Research UK Clinical Trials Collaboration. The funders 
had no role in data collection, data analysis, data 
interpretation, or writing of the report. The corresponding 
author had full access to all of the data in the study and 
had fi nal responsibility for the decision to submit for 
publication.

Results
Between Oct 6, 2008, and Feb 11, 2014, we recruited 
1449 women who were initially eligible after screening 
and who consented to a blood test to determine early 
pregnancy 25(OH)D status. Of these, 148 were ineligible 
to participate because they had a 25(OH)D concentration 
of less than 25 nmol/L (n=89) or greater than 100 nmol/L 
(n=59). No participants had a plasma calcium 
concentration of greater than 2·75 mmol/L. A further 
167 women withdrew before randomisation. Thus, 
1134 pregnant women were randomised (fi gure 1), of 
whom 965 (85%) remained in the study until delivery. 
836 (87%) of 965 neonates had a DXA scan. After 
excluding scans with substantial movement artefact, 
DXA scan data were available for 737 (76%) neonates, 
consisting of 665 assessments of the whole body and 
628 at the lumbar spine (fi gure 1), meaning that numbers 
were somewhat lower than specifi ed in the original power 

calculation. 317 (56%) women in the placebo group and 
312 (55%) in the cholecalciferol group completed the full 
study protocol; 411 (72%) and 401 (71%) women, 
respectively, took 75% or more of the study medication.

Women in the cholecalciferol and placebo groups at 
randomisation were of similar age, and a similar 
proportion were nulliparous, had educational attainment 
to A level or higher, were current smokers, participated 

Placebo (N=569) Cholecalciferol 
1000 IU/day (N=565)

Age, years 30·5 (5·2) 30·5 (5·2)

White ethnic origin 497/527 (94%) 499/531 (94%)

Nulliparous 230/524 (44%) 232/532 (44%)

Current smoker 43/526 (8%) 44/533 (8%)

Educational attainment 
≥A level

393/522 (75%) 414/531 (78%)

Walking speed at least 
fairly brisk

205/500 (41%) 193/505 (38%)

Strenuous exercise ≥once 
per week

70/499 (14%) 79/503 (16%)

Height, cm* 165·8 (6·6) 165·6 (6·4)

Weight, kg† 71·4 (63·3–81·8) 68·4 (60·9–79·5)

BMI, kg/m²‡ 25·7 (23·0–30·0) 24·7 (22·3–28·6)

Sum of skinfold 
thicknesses, mm§

84·0 (27·8) 79·8 (27·9)

25(OH)D, nmol/L¶ 45·9 (17·0) 46·7 (17·7)

25(OH)D >50 nmol/L 199/533 (37%) 218/535 (41%)

Data are mean (SD), number (%), or median (IQR). Percentages calculated 
accounting for missing observations. 25(OH)D=25-hydroxyvitamin D. *N=523 
(placebo); N=533 (cholecalciferol). †N=528 (placebo); N=534 (cholecalciferol). 
‡N=523 (placebo); N=533 (cholecalciferol). §N=472 (placebo); N=473 
(cholecalciferol). ¶N=533 (placebo); N=535 (cholecalciferol). 

Table 1: Baseline characteristics in randomly assigned pregnant women 

Placebo Cholecalciferol 1000 IU/day p value

Neonatal characteristics*

N 486 479

Male 251 (51%) 258 (54%) 0·49

Birthweight, g 3518 (3472–3564) 3481 (3432–3530) 0·28

Crown–heel length, cm 50·8 (50·6–51·0) 50·6 (50·4–50·8) 0·31

Head circumference, cm 35·5 (35·3–35·6) 35·4 (35·3–35·5) 0·62

Abdominal circumference, cm 32·7 (32·4–32·9) 32·9 (32·7–33·1) 0·16

Whole-body DXA results

N 327 338

Age at DXA, days 7 (6·1–7·4) 8 (6.8–8.4) 0·12

BMC, g 60·5 (59·3–61·7) 61·6 (60·3–62·8) 0·21

Bone area, cm² 297·8 (293·7–301·9) 301·6 (297·8–305·4) 0·18

BMD, g/cm² 0·203 (0·200–0·205) 0·203 (0·200–0·205) 0·96

Lean mass, g 3014 (2965–3062) 3055 (3008–3101) 0·23

Median fat mass, g (IQR) 374 (244–517) 355 (235–564) 0·97

Data are N, n (%), or mean (95% CI), unless otherwise stated. DXA=dual-energy x-ray absorptiometry. BMC=bone 
mineral content. BMD=bone mineral density.  *Data obtained within 14 days of delivery. 

Table 2: Anthropometry and whole-body bone mineralisation and composition in neonates 
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in strenuous exercise at least once per week, and were 
white (table 1). Height was also similar between the two 
groups, but median weight, median BMI, and mean sum 
of skinfold thicknesses were nominally greater in the 
placebo group than in the cholecalciferol group (table 1). 
Compared with those who withdrew, the women who 
remained in the trial until their baby was born were 
signifi cantly older (mean 30·7 years [SD 5·2] in women 
who stayed in the study vs 28·9 years [5·1] in those who 
withdrew, p=0·0002) and more likely to be white (880 
[95%] of 928 vs 116 [89%] of 130, p=0·01; denominators 
exclude women with no ethnic origin recorded). Women 
whose infants underwent DXA scanning tended to be 
older, less likely to smoke, and have lower skinfold 
thicknesses than mothers of infants who did not undergo 
DXA (appendix p 2).

Neonatal whole-body BMC of infants born to mothers 
assigned to cholecalciferol 1000 IU/day, measured within 
2 weeks of birth, was no diff erent to that of infants born to 
mothers assigned to placebo (mean 61·6 g [95% CI 
60·3–62·8] vs 60·5 g [59·3–61·7], respectively; p=0·21). 
Similarly, we found no diff erence between treatment 
groups with respect to bone area, BMD, fat mass, or lean 
mass of the neonate (table 2), or neonatal BMC adjusted 
for birth length (appendix p 11). We found no signifi cant 
diff erence in neonatal bone indices at the spine (data not 
shown), or birthweight, length, or head or abdominal 
circumference between the two treatment groups (table 2).

Maternal baseline characteristics by treatment group 
and season of off spring delivery are presented in the 
appendix, p 3. The formal interaction term between 
treatment group and season of birth on off spring BMC 
was statistically signifi cant (pinteraction=0·04) and the eff ect 
of treatment was substantially greater for winter births 
(mean diff erence in BMC between treatment groups of 
5·5 g [95% CI 1·8–9·1]; p=0·004) than in the remaining 
seasons (fi gure 2A). A similar winter-birth eff ect was 
observed for off spring whole-body bone area (mean 
diff erence 11·5 cm² [95% CI 0·1–22·9]; p=0·05; 
fi gure 2B), BMD (mean diff erence 0·01 g/cm² 

[0·00–0·02]; p=0·04; fi gure 2C), BMC adjusted for length 
(mean diff erence 3·7 g [0·3–7·2]; p=0·03; appendix p 12) 
and whole-body fat mass (mean diff erence 113·6 g 
[30·7–196·4]; p=0·008; appendix p 13), but not whole-
body lean mass (appendix p 14). BMC results were 
similar in each of the three winter months, and 
diff erences were still noted between treatment groups 
(appendix p 5), albeit with the statistical signifi cance 
limited by the reduced sample sizes when stratifi ed by 
individual month of delivery. Results did not change 
substantially after bone indices were adjusted for 
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Figure 2: Neonatal whole-body bone mineral content (A), bone area (B), and 
bone mineral density (C) by intervention group and season of birth
Data shown are mean and 95% CI. Winter is December to February, spring is 
March to May, summer is June to August, and autumn is September to 
November. BMC=bone mineral content. BMD=bone mineral density.
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postnatal age at DXA (data not shown). No interaction 
between treatment eff ect and season was noted for 
off spring birth length (pinteraction=0·95) or birthweight 
(pinteraction=0·19).

Further prespecifi ed interactions for neonatal BMC 
between treatment and off spring sex (pinteraction=0·92), 
baseline maternal BMI (pinteraction=0·91), maternal parity 
(pinteraction=0·95), recruitment centre (pinteraction=0·67), maternal 
ethnic origin (pinteraction=0·12), protocol completion 
(pinteraction=0·60), treatment compliance (pinteraction=0·70), 
baseline maternal 25(OH)D concentration (pinteraction=0·67; 
appendix p 6), and change in maternal 25(OH)D 
concentration from 14 weeks to 34 weeks (pinteraction=0·91) 
were not statistically signifi cant. A further post-hoc analysis 
of the eff ect of baseline maternal 25(OH)D concentration 
on treatment effi  cacy for neonates born in the winter also 
had no statistically signifi cant interaction (pinteraction=0·31).

Baseline maternal 25(OH)D concentration was similar 
in both groups (table 1) and varied by season 
(appendix p 7, 15–16). Mean maternal 25(OH)D 
concentration at 34 weeks’ gestation was signifi cantly 
higher in the women who received cholecalciferol 
(67·8 nmol/L [SD 22·1]) than in those who received 
placebo (43·3 nmol/L [22·3]; p<0·0001). The proportion 
of pregnant women with insuffi  cient 25(OH)D 
(≤50 nmol/L) was similar at baseline (table 1), but was 
signifi cantly lower at 34 weeks’ gestation in the 
cholecalciferol group than in the placebo group (73 [17%] 
of 425 vs 281 [64%] of 440, respectively; p<0·0001). 
Furthermore, when the eff ect of cholecalciferol on 
maternal 25(OH)D concentration was explored by season 
of birth, the decline in 25(OH)D from 14 weeks’ to 
34 weeks’ gestation noted in women in the placebo group 
who delivered in winter and spring was not evident in the 
women, delivering in these same months, who received 
cholecalciferol (fi gure 3). The frequency of participants 
taking a non-protocol vitamin D-containing supplement 

did not vary by treatment group or season (appendix p 8) 
and we noted no eff ect of treatment on maternal adiposity 
(weight or skinfold thicknesses) at 34 weeks, irrespective 
of season (appendix p 9).

A greater proportion of women in the placebo group 
had severe post-partum haemorrhage than did those in 
the cholecalciferol group (96 [17%] of 569 mothers in the 
placebo group vs 65 [12%] of 565 mothers in the 
cholecalciferol group; p=0·01; appendix p 10). We noted 
no other signifi cant diff erences in safety outcomes 
(appendix p 10). No adverse events were deemed to be 
treatment related.

Discussion
Overall, we found no eff ect of maternal supplementation 
with cholecalciferol 1000 IU/day during pregnancy on 
the primary outcome of off spring neonatal BMC. 
However, the intervention clearly achieved maintenance 
of vitamin D repletion, and was safe. Furthermore, in a 
prespecifi ed secondary analysis we showed that there 
was an interaction between treatment eff ect and season 
of birth such that, for births in the winter, neonatal BMC, 
bone area, BMD, and body fat, but not birthweight or 
birth length, were greater in off spring of mothers who 
had received cholecalciferol than in the off spring of 
mothers who had not. To our knowledge, this is the fi rst 
published randomised controlled trial of vitamin D 
supplementation in pregnancy to include objective 
measures of off spring neonatal bone mass by DXA.

However, our study had some limitations that must be 
considered. First, we could not, as a result of stipulations 
made during the ethics approval process, include 
participants with baseline 25(OH)D concentrations of 
less than 25 nmol/L. Additionally, our study population 
did not include many women who were not white. If 
anything, both of these considerations are likely to bias 
towards the null hypothesis, but might reduce the 
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generalisability of our fi ndings. Furthermore, DXA 
assessment in neonates presents some diffi  culties, 
because newborn babies are prone to move and have low 
absolute BMC. However, appropriate software was used 
on each DXA instrument, DXA indices were cross-
calibrated, and the validity of the technique in small 
animals has been documented.30 Additionally, although 
we cannot exclude the possibility that some participants 
were taking vitamin D in addition to the study drug, 
supplement use was recorded at interview and did not 
diff er between the treatment groups. Fourth, although 
the secondary analyses were prespecifi ed and the 
interaction between treatment eff ect and season that we 
noted is consistent with previous medical literature and 
biologically plausible, the possibility of false positive 
results remains. This fi nding should therefore be 
interpreted with caution pending replication in other 
populations.

We identifi ed only one previously published 
intervention study in which neonatal bone outcomes 
were measured,31 although its null result is diffi  cult to 
interpret given the small sample size (n=64) and 
methodological limitations.7 Results of a study by Javaid 
and colleagues6 showed that whole-body bone area, BMC, 
and BMD, but not height or weight, at 9 years of age in 
children born to mothers with a 25(OH)D concentration 
of less than 25 nmol/L in late pregnancy, were lower than 
those of children born to 25(OH)D-replete mothers. 
Following this report, other observational studies 
documented positive associations between 25(OH)D 
status in pregnancy and newborn bone indices assessed 
by DXA,32,33 peripheral quantitative CT at birth4 and 
18 months,5 and ultrasound measures of fetal femoral 
morphology.2,3 The persistence of such associations into 
adulthood has been shown in the Western Australian 
Pregnancy Cohort (RAINE).8 By contrast, four other 
studies15,34–36 reported no association between maternal 
25(OH)D and infant bone mass, highlighting the need 
for our randomised controlled trial.

Variation of 25(OH)D with season has been well 
documented37,38 and was also observed in our cohort 
(appendix). UVB exposure to the skin is a major 
determinant of circulating 25(OH)D concentrations in 
temperate climates such as the UK, and since 25(OH)D 
has a half-life of around 3 weeks, the nadir occurs in late 
winter or early spring.37,38 In the present study, we 
observed a distinct fall in 25(OH)D concentration from 
14 weeks to 34 weeks of pregnancy in the placebo group, 
but a rise in the treatment group, when delivery occurred 
during winter or spring. Indeed, cholecalciferol 
1000 IU/day had a statistically signifi cant eff ect on 
neonatal bone area, BMC, and BMD for births between 
December and February, consistent with relations 
observed between maternal gestational UVB exposure 
and infant bone mass in our previous cohort study.6 
Although fat mass was greater in neonates born in winter 
months to mothers in the cholecalciferol group than 

those born to mothers in the placebo group, we noted no 
treatment-by-season interaction for birth length or 
birthweight; although we did note a treatment-by-season 
eff ect for BMC adjusted for birth length, suggesting that 
cholecalciferol 1000 IU/day had a specifi c eff ect on bone 
development rather than simply a generalised eff ect on 
birth size.

Most calcium mineral is accrued during the last 
trimester of pregnancy,1 and our previous work has 
suggested that maternal factors (eg, adiposity, physical 
activity, smoking, 25[OH]D status) within the last 
trimester are associated with off spring BMC, by contrast 
with exposures in early pregnancy, for which associations 
tend to be much weaker.1 Furthermore, data from the 
Southampton Women’s Survey show a seasonal diff erence 
in neonatal whole-body BMC by season of birth, with 
winter births associated with lower neonatal BMC than 
summer births.39 Low 25(OH)D is therefore likely to be 
most important during the period of rapid bone mineral 
accrual in late pregnancy, consistent with eff ects of 
supplementation observed in the current study when 
delivery occurred in the months when maternal 25(OH)D 
concentrations are lowest. We therefore hypothesise that 
vitamin D supplementation, which reversed the drop in 
maternal 25(OH)D concentrations from 14 weeks to 
34 weeks in women who gave birth in spring and, 
particularly, winter, therefore ameliorates the adverse 
eff ect of this decline in maternal 25(OH)D on off spring 
BMC, with the overall eff ect being one of removal of 
defi cit rather than overall improvement. However, 
conversely, we did not fi nd a statistically signifi cant eff ect 
of treatment among spring births, which would have been 
expected from the timing of the 25(OH)D nadir. Given the 
relatively arbitrary nature of seasonal defi nitions in 
relation to objectively measured UVB exposure, we feel 
that the best reconciliation of the fi ndings relating to late 
pregnancy 25(OH)D concentrations in spring and winter 
with those relating to off spring bone in these seasons is 
that vitamin D supplementation has the greatest eff ect in 
participants with an absolute decline in 25(OH)D above a 
notional threshold. Overall, our fi ndings should be 
interpreted with caution, and replication of the treatment-
by-season interaction in further studies will be needed to 
delineate any messages for clinical care. Results of the 
ongoing MAVIDOS childhood follow-up study might also 
help to clarify this issue.

Notwithstanding, our fi ndings inform public health 
policy, providing the fi rst data from a large, blinded, 
randomised controlled trial with bone outcomes assessed 
by DXA, and showing that overall, gestational 
supplementation with 1000 IU/day of vitamin D does not 
benefi t neonatal bone mass of off spring. The intervention 
seemed to be safe, and although vitamin D supple-
mentation seemed to be associated with a reduced 
incidence of severe post-partum haemorrhage, we suspect 
that this is a false positive fi nding as a result of 
misclassifi cation, since these events were not adjudicated 
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and it is very diffi  cult to accurately assess post-partum 
blood loss in the typical clinical situation. This fi nding will 
therefore be the subject of further investigation. Although 
neonatal BMD was lower in births occurring in autumn in 
the cholecalciferol group than in the placebo group, the 
diff erence was not statistically signifi cant (p=0·07) and 
such diff erences were not consistent across other DXA 
indices. Finally, although the dose used in our study is 
2·5 times the standard UK recommendation of 400 IU 
daily in pregnancy, it is much lower than the highest doses 
used in several US studies (up to 4000 IU daily)7 and our 
results clearly show that such high doses are not needed to 
achieve good levels of 25(OH)D repletion.

In conclusion, we found that supplementation of 
pregnant women with cholecalciferol 1000 IU/day from 
14 weeks’ gestation until delivery of the baby does not 
lead to increased off spring neonatal BMC overall. Our 
demonstration of an interaction between treatment eff ect 
and season of delivery is consistent with previous data 
and biologically plausible, and suggests the potential for 
benefi cial eff ects of supplementation in pregnant women 
due to deliver in winter months. This fi nding should be 
replicated in further populations before its signifi cance 
for public health can be fully appreciated. The overall 
safety of vitamin D supplementation during pregnancy is 
supported by our results.
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