
Accepted Manuscript

Methamphetamine abstinence induces changes in μ-opioid receptor, oxytocin and
CRF systems: Association with an anxiogenic phenotype

Polymnia Georgiou, Panos Zanos, Juan-Antonio Garcia-Carmona, Susanna Hourani,
Ian Kitchen, Maria-Luisa Laorden, Alexis Bailey

PII: S0028-3908(16)30047-8

DOI: 10.1016/j.neuropharm.2016.02.012

Reference: NP 6172

To appear in: Neuropharmacology

Received Date: 4 November 2015

Revised Date: 14 January 2016

Accepted Date: 14 February 2016

Please cite this article as: Georgiou, P., Zanos, P., Garcia-Carmona, J.-A., Hourani, S., Kitchen, I.,
Laorden, M.-L., Bailey, A., Methamphetamine abstinence induces changes in μ-opioid receptor, oxytocin
and CRF systems: Association with an anxiogenic phenotype, Neuropharmacology (2016), doi: 10.1016/
j.neuropharm.2016.02.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.neuropharm.2016.02.012


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

1 

 

Title page 
 

Methamphetamine abstinence induces changes in µ-opioid receptor, oxytocin and CRF 
systems: Association with an anxiogenic phenotype  

Polymnia Georgioua1 (Ph.D), Panos Zanosa1 (Ph.D), Juan-Antonio Garcia-Carmonab, Susanna Hourania 

(Ph.D), Ian Kitchena (Ph.D), Maria-Luisa Laordenb (Ph.D), Alexis Baileya,c* (Ph.D) 

aSchool of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, 

Guildford, GU2 7XH, Surrey, UK 

bDepartment of Pharmacology, School of Medicine, University of Murcia, Spain 
 
c Institute of Medical and Biomedical Education, St George's University of London, London SW17 0RE, 

UK 

 

 

 

 

*Correspondence: Alexis Bailey 

Institute of Medical and Biomedical Education 

St George's University of London 

London SW17 0RE, UK  

Tel: +44 (0)1483682564 

Fax: +44(0)1483686401 

Email: abailey@sgul.ac.uk 

 

 

 

 

 

                                                           
1
 Current address: Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, 21201, USA. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

2 

 

Abstract 

The major challenge in treating methamphetamine addicts is the maintenance of a drug free-state since 

they experience negative emotional symptoms during abstinence, which may trigger relapse. The 

neuronal mechanisms underlying long-term withdrawal and relapse are currently not well-understood. 

There is evidence suggesting a role of the oxytocin (OTR), µ-opioid receptor (MOPr), dopamine D2 

receptor (D2R), corticotropin-releasing factor (CRF) systems and the hypothalamic-pituitary-adrenal 

(HPA)-axis in the different stages of methamphetamine addiction. In this study, we aimed to characterize 

the behavioral effects of methamphetamine withdrawal in mice and to assess the modulation of the OTR, 

MOPr, D2R, CRF and HPA-axis following chronic methamphetamine administration and withdrawal. 

Ten-day methamphetamine administration (2 mg/kg) increased OTR binding in the amygdala, whilst 7 

days of withdrawal induced an upregulation of this receptor in the lateral septum. Chronic 

methamphetamine treatment increased plasma OT levels that returned to control levels following 

withdrawal.  In addition, methamphetamine administration and withdrawal increased striatal MOPr 

binding, as well as c-Fos+/CRF+ neuronal expression in the amygdala, whereas an increase in plasma 

corticosterone levels was observed following METH administration, but not withdrawal. No differences 

were observed in the D2R binding following METH administration and withdrawal. The alterations in the 

OTR, MOPr and CRF systems occurred concomitantly with the emergence of anxiety-related symptoms 

and the development of psychomotor sensitization during withdrawal. Collectively, our findings indicate 

that chronic methamphetamine use and abstinence can induce brain-region specific neuroadaptations of 

the OTR, MOPr and CRF systems, which may, at least, partly explain the withdrawal-related anxiogenic 

effects.  

 

Keywords: methamphetamine withdrawal, oxytocin, µ-opioid receptor, CRF, anxiety 
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Highlights: 

• METH withdrawal induces anxiety-related symptoms in mice 

• METH administration and withdrawal causes neuroadaptations in the OT system 

• Persistent increase in striatal MOPr following METH treatment 

• Amygdalar c-Fos+/CRF+ neurons are increased in METH-treated/withdrawn mice 
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1. Introduction 

Methamphetamine (METH) is a potent psychostimulant drug with a high prevalence of worldwide abuse 

(Eslami-Shahrbabaki et al., 2015). Chronic METH use has been shown to induce emotional impairment 

including anxiety and depression, as well as psychotic behaviors in humans (see Panenka et al., 2013). 

Even after long-term abstinence from METH use, former addicts suffer from cognitive and emotional 

symptoms, which may act as a motivational trigger to re-administer the drug and relapse (Zorick et al., 

2010). Currently, there is no effective pharmacotherapy for the treatment of METH addiction. 

Although several mechanisms have been suggested, the mechanisms underpinning METH 

addiction/withdrawal and its behavioral and emotional consequences remain unclear. Recent evidence has 

implicated the oxytocin (OT) system in the modulation of several METH addiction processes (see 

McGregor and Bowen, 2012). In particular, pre-clinical studies in rodents showed that 

intracerebroventricular (i.c.v.) OT administration reduces METH-induced hyper-locomotion (Qi et al., 

2008) and intra-nucleus accumbens core (AcbC) oxytocin administration attenuates METH-induced 

conditioned place preference (CPP) (Qi et al., 2009). Moreover, i.c.v. administration of oxytocin 

facilitated the extinction of METH-induced CPP and i.c.v. (Qi et al., 2009) as well as intra-hippocampal 

and intra-medial prefrontal cortex (Han et al., 2014) administration of OT prevented stress-induced 

reinstatement of METH-seeking. Similarly, intra-AcbC (Baracz et al., 2014), as well as peripheral 

(Carson et al., 2010; Cox et al., 2013) administration of OT attenuated METH-primed reinstatement in 

rodents. In addition, Hicks et al. (2014) showed that a 10-day oxytocin administration during adolescence 

was able to decrease the motivation to self-administer METH and to attenuate priming-induced 

reinstatement of METH-seeking during adulthood in rats. The involvement of the oxytocinergic system in 

METH addiction is also supported by biochemical findings showing that systemic administration of OT 

decreases METH-induced enhancement in Fos expression in the subthalamic nucleus and AcbC in rats 

(see McGregor and Bowen, 2012) and that OTR binding is increased in the amygdala following a 10-day 

METH administration regimen in mice (Zanos et al., 2014b). Together, these findings provide evidence 
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for a key role of OT in METH addiction and highlight OT’s “antireward/anticraving” and relapse 

prevention potential in METH addiction. 

A possible mechanism underlying the effects of OT on METH addiction might involve its direct effects 

on the dopaminergic system in the brain. Indeed, it has been shown that systemic OT administration 

directly facilitates dopamine turnover in the striatum of treatment-naïve and cocaine-treated rats (see 

Sarnyai and Kovacs, 1994). Furthermore, Qi et al. (2008) demonstrated that i.c.v OT administration 

reduces METH-induced increase in dopamine turnover in the striatum of mice. Since METH use has been 

associated with lower levels of dopamine D2 receptor (D2R) availability in striatum (Wang et al., 2012), 

and OTR are co-localized and functionally interact with D2R in striatum (Romero-Fernandez et al., 2013), 

it can be postulated that these two receptor systems might functionally interact to also regulate several 

METH addiction processes.  

Numerous studies have also implicated the CRF system in METH addiction. CRF mRNA levels are 

increased in Acb following a single METH injection (Martin et al., 2012). Likewise, increased CRF levels 

were observed in the amygdala and plasma of rats undergoing withdrawal from METH self-

administration (Nawata et al., 2012).  Furthermore, administration of a non-selective CRF receptor 

antagonist attenuated stress-induced reinstatement of METH-seeking (Nawata et al., 2012) and 

administration of CRF-R1 antagonists decreased both cue-and priming-induced reinstatement of METH-

seeking (Moffett and Goeders, 2007). Interestingly, alterations in the CRF system have been shown to be 

associated with increased anxiety-like behavior and stress-induced reinstatement of METH-seeking in 

rodents (Nawata et al., 2012), indicating that the CRF system might be involved in the behavioral 

consequences of METH addiction, including anxiety and stress. CRF is considered as an important 

integrator of the hypothalamic-pituitary-adrenal (HPA) axis in the modulation of stress responses (Bale et 

al., 2002). METH administration has been also shown to induce a dysregulation of the hypothalamic-

pituitary-adrenal (HPA) axis. Specifically, adolescent METH users have higher cortisol levels following 
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exposure to stress (King et al., 2010) and METH administration increases plasma corticosterone levels in 

rodents (Grace et al., 2010).   

The MOPr system has been also shown to be involved in METH addiction processes. In particular, MOPr 

knockout mice exhibit decreased METH-induced hyper-locomotion and stereotypy and do not manifest 

behavioral sensitization to METH (Shen et al., 2010). Chiu et al. (2006) demonstrated a down-regulation 

of MOPr binding in brain membranes following an 8-day withdrawal period from chronic METH 

administration, which was followed by a rebound increase after 21 days of withdrawal in mice suggesting 

involvement of the MOPr system during METH abstinence. Conversely, MOPr gene expression and 

protein levels were reduced in the frontal cortex of mice following long-term withdrawal from repeated 

METH administration (Yamamoto et al., 2011). 

Therefore, in the present study we aimed to characterize the behavioral consequences of METH 

abstinence in a mouse model of chronic METH use and withdrawal. Specifically, we hypothesized that 

withdrawal from chronic METH administration induces emotional impairment (i.e., anxiety and/or 

depression). We then investigated whether a 10-day METH administration and 7 days of withdrawal 

induce alterations on the central OT, D2R, and MOPr systems, as well as on the HPA axis and the 

amygdalar CRF.  This study assesses a whole range of different CNS systems in a mouse model of 

METH abstinence. Our findings shed light into brain region-specific neuroadaptations, which might be 

involved in driving specific METH abstinence-induced behaviors.   
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2. Materials and Methods 

2.1 Animals 

Male C57BL/6J mice (8-week old at the beginning of the experiments, Charles River, UK), were housed 

individually in a temperature-controlled environment with a 12-hour light/dark cycle (lights on: 06:00 

am). Food and water were available ad-libitum. All experimental procedures were conducted in 

accordance with the U.K. Animal Scientific Procedures Act (1986). 

2.2 Chronic steady-dose methamphetamine administration paradigm 

Mice for all the experiments (see Figure 1 for experimental timelines) were randomly divided into four 

groups; saline-, METH-treated, saline-withdrawn and METH-withdrawn animals. Chronic METH-treated 

animals were injected i.p. for 10 days with METH (2 mg/kg) (Sigma-Aldrich, UK), once per day (09:00), 

in accordance with Zanos et al., (2014b).  The chronic saline-treated group was administered with saline 

(10 ml/kg, i.p.) for 10 days, once per day (09:00). Saline-withdrawn and METH-withdrawn animals were 

treated with the same administration paradigm and left to spontaneously withdraw in their home-cages for 

a period of 7 days (unless otherwise stated), as previously described (Lu et al., 2010). 

2.3 Behavioral characterization (experiment 1) 

Mice were treated with chronic saline or a steady-dose METH administration paradigm (as described 

above) and then assessed for memory impairments (5 days withdrawal), anxiety- (7 days withdrawal) and 

depressive-like behaviors (8 days withdrawal) using the novel object recognition (NOR), elevated plus-

maze (EPM) and forced-swim test (FST) respectively. These tests were performed in the same animals. 

The order of testing was determined by the degree of anxiety inducing properties of each test with the 

least stressful conducted first and the most potentially distressing test last (Clemens et al., 2007).  The 

NOR and EPM were performed in dim lighting conditions (NOR 30 lux; EPM, 10 lux) and the FST was 

performed under normal lighting (300 lux). 
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Novel object recognition 

The NOR was performed as previously described by Bevins and Besheer (2006) with minor 

modifications. Briefly, mice were habituated to the NOR arena (30cm x 20cm x 20cm; Linton 

Instrumentation, U.K.)  for 20 minutes to reduce the novelty-induced stress. During the acquisition phase 

two identical objects (either dice or marbles stuck on a plastic square block) were placed in the arena and 

mice left to explore both objects for 20 minutes. The order of the objects was alternated between mice to 

avoid bias towards any of the objects. Following the acquisition phase mice were returned to their home 

cages for a retention time of 35 minutes. During the testing phase a familiar object and a novel object 

were placed in the arena and the mouse was re-introduced and left to explore for 2 minutes. All the three 

phases of the NOR (habituation, acquisition and testing) were performed on the same day. The sessions 

were recorded using a digital video-camera (Sony Handycam CX-250, Sony, Japan) and the time spent 

interacting (directly sniffing) with each object was scored by two observers blind to the treatment groups.  

Elevated plus-maze  

The elevated plus-maze was carried out as previously described in Zanos et al. (2014a). The time spent in 

the open and closed arms of the EPM during the 5-min test was measured by an automated tracking 

system (EthoVision v.3.0, Noldus Information Technology, Netherlands). Anxiety-like behavior was 

determined by calculating the amount of time spent and number of entries each mouse made in the open 

and closed arms and reported as the total time and the percentage number of entries in the open arms 

respectively.  

Forced-swim test  

The FST was carried out as previously described (Zanos et al., 2015a).  Briefly, mice were placed 

individually into clear glass cylinders (25cm height x 17cm diameter) filled with 2.5 liters of water at 

room temperature (24±1oC) for 6 minutes. The test session was recorded using a digital video-camera 

(Sony Handycam CX-250, Sony, Japan). Immobility time, defined as passive floating with no additional 
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activity other than that needed to keep the mouse head above water, was scored by two observers blind to 

the treatment groups for the last 4 minutes of the 6-min test. Latency to the first encounter of immobility 

was also measured.  Fecal boli of the animals were counted at the end of the FST.  

2.4 Locomotor and stereotypic activity measurements (experiment 2) 

Locomotor activity of each mouse was measured daily (8:00 am) in locomotor chambers (40cm x 20cm x 

20cm; Linton Instrumentation, U.K.) as previously described (Zanos et al. 2014a). During the 

administration period, mice were habituated in locomotor chambers for 60 minutes prior to saline/METH 

injections in order to assess basal activity. Then, mice received an i.p. injection of saline or METH (2 

mg/kg) and were returned immediately to the locomotor chambers. Locomotor responses were measured 

immediately following the injection of the drugs. Horizontal and vertical (i.e., rearing) activities were 

measured for further 90 minutes. Locomotor responses of animals were monitored daily for the 10-day 

duration of the treatment and 7 days after the last treatment injection (withdrawal; day 17 – without any 

injections). Horizontal and vertical activities were recorded as the number of sequential infrared beam 

breaks, every 5 mins. The average activity, during both basal and stimulated activities, was calculated 

daily.  

2.5 Biochemical and Neurochemical analysis (experiments 3-4) 

Separate cohorts of male C57BL/6J mice were treated with an identical chronic saline and METH 

administration paradigm as described above, and some were left to spontaneously withdraw in their home 

cages for 7 days following their last treatment injection (4 treatment groups in total); where we observed 

the anxiety-like symptoms. Mice were euthanized by a 30-sec CO2 exposure followed by decapitation 2.5 

hours post-final injection for the chronic saline/METH administration groups or 7 days post-final 

injection for the withdrawal groups. For the withdrawal groups, mice were placed in the previously drug-

associated locomotor chambers for a period of 1 hour prior to euthanasia. 
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2.5.1 Quantitative Receptor Autoradiography (experiment 3) 

Coronal brain sections were cut (20 µm thick; 300 µm apart) using a cryostat (Zeiss Microm 505E, U.K.), 

thaw-mounted onto gelatin subbed ice-cold microscope slides and processed for autoradiography. 

µ-opioid receptor binding. MOPr autoradiography was carried out in accordance with Georgiou et al., 

(2015a). For the determination of total binding, slides were incubated for 60 minutes in 4 nM [3H]-

tyrosyl-3,5-3H(N) (DAMGO) (PerkinElmer, 1905.5 GBq/mmol) in Tris-HCl (pH 7.4, room temperature).  

Adjacent sections were incubated in [3H]DAMGO (4nM) in the presence of 1µM naloxone (Sigma-

Aldrich, UK), to determine non-specific binding (NSB).  

Oxytocin receptor binding. OTR autoradiography was carried out as previously described (Zanos et al., 

2014a; Zanos et al., 2014b). For the determination of total binding, slides were incubated in 50pM [125I]-

ornithine vasotocin (OVTA) (PerkinElmer, 81.4 TBq/mmol) in an incubation buffer medium (50mM 

Tris–HCl, 10 mM MgCl2, 1mM EDTA, 0.1% w/v bovine serum albumin, 0.05% w/v bacitracin; pH 7.4 at 

room temperature) for 60 minutes. For the determination of NSB, adjacent sections were incubated with 

[125I]-OVTA (50pM) in the presence of 50µM unlabelled (Thr4, Gly7)-oxytocin (Bachem, Germany).   

Dopamine D2 receptor binding. Dopamine D2R autoradiography was performed as detailed (Wright et al., 

2015). For the determination of total binding, slides were incubated with 4nM [3H]raclopride 

(PerkinElmer, Belgium) in Tris-HCl (pH 7.4, room temperature) for 90 minutes.   For the determination 

of NSB, adjacent sections were incubated with [3H]raclopride (4nM) in the presence of 10µM sulpiride 

(Tocris Biosciences, Bristol, UK).  

Slides with brain sections from all the treatment groups were apposed on the same film (Kodak BioMax; 

Sigma-Aldrich, UK) along with appropriate 3H and 14C microscale standards (Amersham Pharmacia 

Biotech, U.K.) to allow quantification. Different apposition times were used depending on the 

autoradiographic binding (MOPr binding-10 weeks; OTR binding-3 days; D2R binding–5 weeks).   
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2.5.2 Plasma corticosterone levels (experiment 3) 

Trunk blood from saline- and METH-treated/withdrawn mice was collected in EDTA-containing tubes 

and spun for 15 min at 2000 x g at 4oC.  Plasma was collected and corticosterone levels were measured 

using a rat/mouse corticosterone [125I] kit (MP Biomedicals, USA), according to the manufacturer’s 

instructions; also see Georgiou et al. (2015b).  

2.5.3 Immunohistochemical measurement of CRF+ neurons, c-Fos neuronal activity marker and c-
Fos+/CRF+ co-labelled neurons (experiment 3) 

CRF+, c-Fos and c-Fos+/CRF+ immunohistochemical analysis in brain sections (20 µm thick; bregma -

1.82mm; amygdala) was carried out as previously described (Garcia-Carmona et al., 2013).  Briefly, for 

the double-labelling process, following the blocking of the samples with H2O2 and with 0.3% normal goat 

serum (Vector Laboratories, USA), tissue sections were incubated overnight at room temperature with a 

rabbit anti-c-Fos antibody (Santa Cruz Biotechnology). This was followed by application of a biotinylated 

anti-rabbit IgG (Vector Laboratories). Antigens were visualized using an avidin–biotin 

immunoperoxidase protocol according to manufacturer’s instructions (Vectastasin ABC Elite kit, Vector 

Laboratories). 3,3′-diaminobenzidine (DAB) nickel-intensification (Sigma, USA) was used as a 

chromogen for c-Fos (black color). Then, sections were rinsed with PBS and were processed for CRF 

measurement using a rabbit anti-CRF antibody and revealed with DAB (brown color).  

CRF+ and c-Fos immunostaining as well as c-Fos+/CRF+ co-labelled neurons in the amygdala were 

quantified bilaterally for each mouse, for all treatment groups by an observer blind to the treatment 

groups. The density of CRF+, c-Fos+ and cFos+/CRF+ immunoreactivities was determined using a 

computer assisted image analysis system (Qwin; Leica, Spain). A square field (195 µm side) was 

superimposed upon the captured image (×10 magnification) to use as a reference area. 
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2.5.4 Oxytocin peptide levels in the brain and plasma (experiment 4) 

Brains from a separate cohort of chronic saline/METH and withdrawn mice, treated with identical 

administration regimen as described above, were collected and hypothalamus, amygdala and striatum 

(Acb + CPu) were dissected and immediately preserved in dry ice and stored in -80oC. Peptides were 

extracted as previously described (Zanos et al., 2014a). Briefly, tissues were mixed with 1M acetic acid, 

heated to 95oC for 10 min, homogenized and stored in -80oC overnight. The following day, samples were 

thawed on ice and centrifuged at 9000 x g for 20 min (4 oC) and the supernatant was collected and 

lyophilized. In all the extracted samples, OT content was measured by radioimmunoassay using iodinated 

tracer as previously described (Landgraf, 1981). 

For plasma oxytocin level measurements, trunk blood from mice was collected in tubes containing EDTA 

and aprotinin (500 KIU/ml of blood). The samples were centrifuged at 1600 x g for 15 min (4oC) and 

supernatants stored in -80oC. Extraction of the peptide from plasma was carried out according to Landgraf 

(1981). The eluent from the extraction process was collected and lyophilized. Oxytocin brain and plasma 

peptide levels were measured by Prof. Landgraf’s laboratory (Max Planck Institute of Psychiatry, 

Munich, Germany) using iodinated tracer in accordance with Landgraf (1981) and is reported as % of 

control (chronic saline group) 

2.6 Statistical analysis 

All values are expressed as the mean ± SEM. All statistical analyses were performed using GraphPad v6 

(GraphPad software Inc., La Jolla, CA, USA). Differences in locomotor and stereotypic (rearing) 

activities were analyzed using repeated measures two-way ANOVA with factors ‘treatment 

(saline/METH)’ and ‘time (days; repeated factor)’. For assessing the development of locomotor 

sensitization, one-way repeated measures ANOVA (‘time’ as the repeated factor) was performed 

specifically for METH-treated mice. Fecal boli production during the FST was analyzed with non-

parametric Mann-Whitney U-test. For the analysis of the effects of METH withdrawal on memory, 
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anxiety- and depressive-like behavior, unpaired Student’s unpaired t-tests was used. For analysis of the 

relative OT levels and OTR, MOPr and D2R binding, two-way ANOVA was performed in each 

individual brain region and plasma for factors ‘treatment (saline/METH)’ and ‘experimental phase 

(chronic/withdrawal)’. Corticosterone, CRF+, c-Fos+, and c-Fos+/CRF+ levels were analyzed using a two-

way ANOVA for factors ‘treatment (saline/METH)’ and ‘experimental phase (chronic/withdrawal)’. 

ANOVAs were followed by Holm-Šídák post-hoc test when significance was reached (i.e., p<0.05). All 

statistical analyses, as well as the number of animals per group for each experiment are provided in Table 

1. 
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Table 1: Statistical Analyses 
        Statistical test Treatment effect Experimental phase    Interaction effect  

Overall effects for Figure 2           
Novel object recognition (n=6)  Factor 'treatment'   

 Discrimination ratio   unpaired t-test p>0.05        

Elevated plus-maze (n=6)  Factor 'treatment'   

 Open-arm time   unpaired t-test p>0.05        

 % open-arm entries   unpaired t-test p<0.05*        

Forced-swim test (n=6)  Factor 'treatment'   

 Immobility time   unpaired t-test p>0.05        

 Latency to first immobility   unpaired t-test p>0.05        

 Fecal boli   Mann Whitney U-test p<0.05*        

Overall effects for Figure 3           

METH effects on locomotor activity (n=13)  Factor 'treatment' Factor 'time (days)'  Factor 'treatment' x 'time'  

 Stimulated horizontal activity two-way RM ANOVA F[1,24]=492.80;  p<0.001* F[9,216]=1.35  p=0.32  F[9, 216] = 3.48  p<0.001*  

 Stimulated vertical activity two-way RM ANOVA F[1,24]=16.10;  p<0.001* F[9,216]=3.44  p<0.001*  F[9, 216] = 0.34  p>0.05  

 Basal horizontal activity (Days 1-10) two-way RM ANOVA F[1, 24]= 9.66 p<0.01* F[9, 216]= 31.83 p<0.001*  F[9, 216]=3.16 p<0.01*  

 Basal horizontal activity (Day 17) unpaired t-test  p<0.05*       

 Basal vertical activity (Days 1-10) two-way RM ANOVA F[1, 24]= 15.56 p<0.001* F[9, 216]= 11.34 p<0.001*  F[9, 216]=2.16 p<0.05*  

 Basal vertical activity (Day 17) unpaired t-test  p<0.05*       

Overall effects for Figure 4           

OTR autoradiography (n=5-6)   Factor 'treatment' Factor 'experimental phase' Factor 'treatment' x 'experimental phase' 

 AOM   two-way ANOVA F[1,20]=1.21 p=0.28 F[1,20]=1.12 p=0.30  F[1,20]=0.03 p=0.87  

 AOV   two-way ANOVA F[1,19]=0.23 p=0.64 F[1,19]=1.067 p=0.31  F[1,19]=1.71 P=0.21  

 AOL   two-way ANOVA F[1,19]=1.55 p=0.23 F[1,19]=0.78 p=0.39  F[1,19]=0.77 p=0.39  

 CgCx   two-way ANOVA F[1,19]=0.51 p=0.48 F[1,19]=0.19 p=0.67  F[1,19]=0.90 p=0.36  

 Pir   two-way ANOVA F[1,20]=1.64 p=0.21 F[1,20]=2.39 p=0.14  F[1,20]=0.65 p=0.43  

 AcbC   two-way ANOVA F[1,19]=0.24 p=0.63 F[1,19]=0.001 p=0.98  F[1,19]=0.07 p=0.80  

 AcbSh   two-way ANOVA F[1,19]=0.07 p=0.79 F[1,19]=0.54 p=0.47  F[1,19]=0.67 p=0.43  

 CPu   two-way ANOVA F[1,19]=0.46 p=0.51 F[1,19]=0.03 p=0.86  F[1,19]=1.00 p=0.33  

 MS   two-way ANOVA F[1,19]=0.58 p=0.46 F[1,19]=0.0007 p=0.98  F[1,19]=1.50 p=0.24  

 VDB   two-way ANOVA F[1,18]=1.17 p=0.29 F[1,18]=0.49 p=0.49  F[1,18]=3.35 p=0.08  

 LS   two-way ANOVA F[1,20]=8.61 p<0.01* F[1,20]=7.35 p<0.05*  F[1,20]=7.00 p<0.05*  

 Hip   two-way ANOVA F[1,19]=5.03 p<0.05* F[1,19]=1.12 p=0.30  F[1,19]=1.46 p=0.24  

 Th   two-way ANOVA F[1,19]=2.73 p=0.12 F[1,19]=2.97 p=0.10  F[1,19]=0.26 p=0.62  

 Hyp   two-way ANOVA F[1,19]=0.00002 p=0.99 F[1,19]=0.17 p=0.68  F[1,19]=1.19 p=0.16  

 Amy   two-way ANOVA F[1,19]=0.13 p=0.76 F[1,19]=0.90 p=0.36  F[1,19]=8.94 p<0.01*  

OT levels (n=6-7)    Factor 'treatment' Factor 'experimental phase' Factor 'treatment' x 'experimental phase' 

 Striatum   two-way ANOVA F[1,23]=0.02 p=0.88 F[1,23]=0.06 p=0.81  F[1,23]=0.06 p=0.81  

 Hyp  two-way ANOVA F[1,23]=0.03 p=0.85 F[1,23]=2.38 p=0.14  F[1,23]=2.38 p=0.14  

 Amy   two-way ANOVA F[1,23]=0.27 p=0.61 F[1,23]=3.46 p=0.08  F[1,23]=3.46 p=0.08  

 Plasma   two-way ANOVA F[1,23]=1.99 p=0.17 F[1,23]=3.77 p=0.06  F[1,23]=3.77 p=0.06  

Plasma corticosterone levels (n=5-6)  Factor 'treatment' Factor 'experimental phase' Factor 'treatment' x 'experimental phase' 

    two-way ANOVA F[1,19]=5.20 p<0.05* F[1,19]=11.35 p<0.01*  F[1,19]=6.60 p<0.05*  

Overall effects for Figure 5           

MOPr autoradiography (n=5-6)  Factor 'treatment' Factor 'experimental phase' Factor 'treatment' x 'experimental phase' 

 MtCx   two-way ANOVA F[1,18]=0.91 p=0.35 F[1,18]=0.82 p=0.38  F[1,18]=1.47 p=0.24  

 CgCx   two-way ANOVA F[1,19]=1.95 p=0.18 F[1,19]=0.17 p=0.69  F[1,19]=1.43 p=0.25  

 Pir   two-way ANOVA F[1,19]=1.04 p=0.32 F[1,19]=3.17 p=0.09  F[1,19]=0.17 p=0.68  

 AcbC   two-way ANOVA F[1,20]=16.96 p<0.001* F[1,20]=0.02 p=0.90  F[1,20]=1.02 p=0.33  

 AcbSh   two-way ANOVA F[1,20]=15.55 p<0.001* F[1,20]=0.0005 p=0.98  F[1,20]=0.62 p=0.44  

 CPu   two-way ANOVA F[1,20]=6.05 p<0.05* F[1,20]=0.04 p=0.84  F[1,20]=0.07 p=0.79  

 MS   two-way ANOVA F[1,19]=2.46 p=0.13 F[1,19]=1.79 p=0.20  F[1,19]=0.01 p=0.92  

 VDB   two-way ANOVA F[1,19]=1.76 p=0.20 F[1,19]=2.75 p=0.11  F[1,19]=0.82 p=0.38  

 LS   two-way ANOVA F[1,19]=0.34 p=0.56 F[1,19]=1.29 p=0.27  F[1,19]=0.001 p=0.98  

 Th   two-way ANOVA F[1,19]=0.41 p=0.53 F[1,19]=0.25 p=0.62  F[1,19]=0.10 p=0.75  

 Hyp   two-way ANOVA F[1,19]=0.04 p=0.84 F[1,19]=0.31 p=0.59  F[1,19]=0.0001 p=0.99  

 Hip   two-way ANOVA F[1,19]=0.17 p=0.69 F[1,19]=0.17 p=0.68  F[1,19]=0.07 p=0.79  

 Amy   two-way ANOVA F[1,19]=0.06 p=0.81 F[1,19]=0.09 p=0.77  F[1,19]=2.78 p=0.11  

             

D2 autoradiography (n=5-6)   Factor 'treatment' Factor 'experimental phase' Factor 'treatment' x 'experimental phase' 

 AcbC   two-way ANOVA F[1,19]=1.11 p=0.31 F[1,19]=1.01 p=0.33  F[1,19]=0.02 p=0.90  

 AcbSh   two-way ANOVA F[1,19]=0.71 p=0.41 F[1,19]=0.26 p=0.62  F[1,19]=0.05 p=0.83  

 CPu   two-way ANOVA F[1,19]=0.57 p=0.46 F[1,19]=0.97 p=0.34  F[1,19]=0.02 p=0.90  

             

Overall effects for Figure 6           

Amygdalar CRF levels (n=6)   Factor 'treatment' Factor 'experimental phase' Factor 'treatment' x 'experimental phase' 

 CRF
+ 

  two-way ANOVA F[1,20]=40.27 p<0.001* F[1,20]=12.01 p<0.01*  F[1,20]=7.80 p<0.05*  

 c-Fos
+ 

  two-way ANOVA F[1,20]=2.39 p=0.14 F[1,20]=0.001 p=0.97  F[1,20]=0.47 p=0.50  

 c-Fos
+
/CRF

+ 
  two-way ANOVA F[1,20]=23.15 p<0.001* F[1,20]=6.79 p<0.05*  F[1,20]=2.06 p=0.18  
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3. Results 

3.1 Effects of METH withdrawal on memory, anxiety- and depressive-like behavior in mice 

Novel object recognition. Memory performance was assessed using the NOR test following a 5-day 

abstinence from chronic METH treatment. METH-withdrawn animals did not manifest object recognition 

impairment, since there was no significant difference in the NOR discrimination ratio compared to saline 

controls (Figure 2A). No difference was observed in the distanced travelled (mm) during the habituation 

phase between the saline and METH withdrawal animals (Saline withdrawal: 3255 ± 188.2 vs METH 

withdrawal: 3060 ± 154.8). 

Elevated plus-maze. Anxiety-related behavior in saline- and METH-withdrawn mice was assessed with 

the use of the EPM following the 7-day METH withdrawal period.  Although, time spent in the open 

arms was not significantly different between METH-withdrawn and saline-withdrawn animals 

(Figure 2B), a significant decrease in the percentage of entries in the open arms of METH-

withdrawn mice compared to saline-withdrawn controls was observed (Figure 2C), indicating an 

anxiogenic-like phenotype. There was no difference in total arm entries between saline and METH 

withdrawal groups (239.7±6.67 vs 241.0±5.25 respectively) 

Forced-swim test. Depressive-like behavior in saline- and METH-withdrawn mice was assessed with the 

use of the FST following 8-day withdrawal from chronic METH administration. METH-withdrawn 

animals did not have any differences in their immobility time (Figure 2D) or latency to the first 

immobility count compared to saline-withdrawn animals (Figure 2E). However, METH-withdrawn mice 

produced significantly more fecal boli during the FST compared to saline-withdrawn mice (Figure 2F), 

indicative of increased anxiety-related emotionality (Craft et al., 2010; Marti and Armario, 1993). 
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3.2 Effects of chronic METH administration and withdrawal on basal and stimulated locomotor 
and stereotypic rearing activity in mice 

METH pre-treatment significantly increased basal (non-injected) horizontal activity on Days 2-4; this 

effect did not persist throughout the 10-day METH administration paradigm (Figure 3A). Following the 

7-day withdrawal period (day 17; no injections), animals that were receiving METH during the chronic 

phase showed an increase in their horizontal activity compared to their respective saline controls (Figure 

3A). Horizontal locomotor activity on Day 17 was less than shown in Day 1 for the saline-treated mice 

(p<0.001; Day 17 vs Day 1), but not for the METH-treated mice (p=0.1; Day 17 vs Day 1), further 

suggesting a contextual- and possibly neuroplasticity-related METH-induced conditioned sensitization, 

without the presence of the drug (Figure 3A). 

Horizontal stimulated activity of mice was increased following METH treatment throughout the 10-day 

administration paradigm compared with saline-treated mice (Figure 3B). From the second day of the 

administration paradigm, there was a significant increase in METH-stimulated horizontal activity which 

persisted until the end of the administration paradigm (i.e., Days 2-10) compared to Day 1, indicating the 

acquisition of behavioral sensitization to the acute locomotor-stimulating effect of MAP (Figure 3B).   

Pre-treatment with METH increased basal (non-injected) vertical activity from day 2 of the administration 

paradigm and was statistically significant on days 3,4,5,6,8 and 9 of METH administration compared to 

the saline controls (Figure 3C). Following the 7-day withdrawal period (day 17; no injections), animals 

receiving METH during the chronic phase showed an increase in their vertical activity compared to their 

respective saline controls (Figure 3C). Vertical (rearing) activity on Day 17 was less than Day 1 for 

control mice (p<0.05; Day 17 vs Day 1), but not for the METH-treated animals (p=0.9; Day 17 vs Day 1; 

Figure 3C). 

Vertical stimulated activity was increased in METH-treated compared to saline-treated controls 

throughout the 10-day METH administration paradigm (Figure 3D).  
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3.3 Effect of METH administration and 7-day withdrawal on the OT system  

Quantitative analysis of OTR binding showed a significant ‘treatment’ effect in the lateral septum (LS) 

and hippocampus (Figure 3A,B). An ‘experimental phase’ effect was also observed in LS. Moreover, a 

significant ‘treatment’ x ‘experimental phase’ interaction was identified in the LS and amygdala. LSD 

post-hoc test revealed a significant increase in OTR binding in the amygdala following the 10-day METH 

administration, which was normalized following the 7-day withdrawal period (Figure 4A,B). While 

chronic METH administration did not alter OTR binding in the LS, METH withdrawal induced a 

significant increase in OTR binding in that region (Figure 4A,B). 

Chronic METH administration and withdrawal did not induce any alterations in the OT content in the 

striatum (Figure 4C), hypothalamus (Figure 4D) and amygdala (Figure 4E) compared to their respective 

controls. Chronic administration of METH increased plasma OT levels, which were normalized to control 

(saline withdrawal) levels following the 7-day METH withdrawal period (Figure 4F).  

3.4 Effect of METH administration and 7-day withdrawal on the HPA-axis  

A significant effect of ‘treatment’, ‘experimental phase’ and an interaction between ‘treatment’ x 

‘experimental phase’ was observed in plasma corticosterone levels. Chronic METH treatment increased 

plasma corticosterone levels compared to saline controls (Figure 4G). However, corticosterone levels 

were comparable to the control group following a 7-day METH withdrawal period (Saline withdrawal vs 

METH withdrawal; Figure 4G).  

3.5 Effect of the 10-day METH administration and 7-day withdrawal on MOPr binding in mice 

Quantitative analysis of MOPr binding showed a significant ‘treatment’ effect in the nucleus accumbens 

core (AcbC), nucleus accumbens shell (AcbSh) and caudate putamen (CPu). No significant ‘experimental 

phase’ effect or ‘treatment’ x ‘experimental phase’ interaction was observed in any of the regions 

analyzed (Figure 5A,B). 
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3.6 Effect of the 10-day METH administration and 7-day withdrawal on dopamine D2 receptor 
binding in mice 

Quantitative analysis dopamine D2R binding did not reveal any significant differences induced by METH 

administration or withdrawal in any of the regions analyzed (Figure 5C,D). 

3.7 Effect of the 10-day METH administration and 7-day withdrawal on CRF levels in the 
amygdala in mice 

Immunohistochemical analysis of CRF+ neurons and c-Fos+/CRF+ neurons in the amygdala showed a 

significant ‘treatment’ and ‘experimental phase’ effect following METH administration and withdrawal 

(Figure 6A-G). Two-way ANOVA revealed a significant ‘treatment’ x ‘experimental phase’ interaction in 

amygdalar CRF+ neurons. Chronic METH treatment and withdrawal induced an increase in both 

amygdalar CRF+ neurons (Figure 6A-D,E) and c-Fos+/CRF+ neurons in METH–treated animals compared 

to saline-treated animals, which persisted during withdrawal (Figure 6A-D,G). No significant difference 

was observed in the number of c-Fos+ neurons between the METH- and saline-treated, as well as between 

the METH-withdrawn and saline-withdrawn animals (Figure 6A-D,F). 
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4. Discussion 

In the present study we demonstrated that a 10-day METH administration induced a significant increase 

in OTR binding in the amygdala and caused an increase in the MOPr binding in the AcbC, AcbSh and 

CPu. These receptor changes were accompanied by an increase in plasma corticosterone and OT, as well 

as amygdalar CRF levels. Following a 7-day withdrawal period, while plasma corticosterone levels and 

amygdalar OTR binding returned to baseline levels, an up-regulation of OTR binding was observed in the 

LS. Increased striatal MOPr binding and amygdalar CRF levels persisted during METH withdrawal. 

These alterations during METH withdrawal were concomitant with an anxiogenic-like phenotype. 

We firstly behaviorally characterized a mouse model of METH abstinence from chronic steady-dose 

METH administration regimen. Although METH withdrawal did not induce memory impairments, or 

depressive-like behaviors in our mouse model, anxiety-like symptoms were observed, including 

decreased open-arm entries in the EPM and increased defecation during the FST session, which has been 

previously associated with measures of anxiety (Walf and Frye, 2007) and emotionality (Craft et al., 

2010; Marti and Armario, 1993) respectively. These findings are in line with previous studies showing 

anxiety-like symptoms following withdrawal from METH self-administration (Nawata et al., 2012) and 

following a steady-dose injection regimen of METH (Kitanaka et al., 2010) in rodents, and anxiety traits 

in METH-abstinent individuals (London et al., 2004), highlighting the translational value of our model 

and a direct link between METH abstinence and the emergence of a negative emotional state. 

Interestingly, anxiety symptoms were observed in METH users during the first two weeks of abstinence; a 

period considered being critical for relapse to METH administration (Mancino et al., 2011). Therefore, it 

has been postulated that the observed anxiety-related symptoms during withdrawal might act as a 

motivational trigger to re-administer the drug and relapse (Zorick et al., 2010). These anxiety-related 

symptoms were not associated with memory deficits as assessed by the novel object recognition task in 

our study.  
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Similar to a previous study demonstrating early withdrawal (i.e., 2 days withdrawal) but not protracted 

withdrawal (i.e., 15 days withdrawal) depressive-like symptoms in rats (Jang et al., 2013), we did not 

observe a depressive-like phenotype in the forced-swim test in METH-withdrawn mice.  In agreement, 

Zorick et al. (2010) demonstrated that depressive symptoms resolved within a week of abstinence in 

METH-dependent humans. Administration of methamphetamine induced environment-specific increase 

in basal locomotor activity of mice, indicative of a conditioned/contextual sensitization to the drug-paired 

environment in anticipation for the METH injection. While METH-treated mice did not show contextual 

sensitization following 4 days of treatment, plausibly due to learning-related habituation to the drug-

associated environment, they express higher locomotor activity in the previously METH-paired 

environment even 7 days following withdrawal, at a time point which METH (2 mg/kg) has been shown 

to be undetectable in both the brain and plasma of mice (Zombeck et al., 2009). Increased locomotor 

activity in the previously drug-paired environment has been linked with contextual sensitization 

(Robinson et al., 1998) and these long-lasting behavioral changes have been associated with persistent 

molecular neuroadaptations/neuronal plasticity (Ron and Jurd, 2005). Such long-term brain 

neuroadaptations have been hypothesized to contribute to drug craving following abstinence (Robinson 

and Berridge, 2008; Ron and Jurd, 2005; Sato, 1992; Sato et al., 1983). Interestingly, we have not only 

observed increased horizontal locomotor activity in the previously drug-paired compartment following 

withdrawal, but also increased stereotyped-movement (rearing behavior). Notably, memory impairment is 

unlikely to underlie these locomotor changes, since we show intact memory performance in the NOR task 

during METH abstinence. Increased psychostimulant-induced repetitive stereotypic/rearing behavior has 

been previously associated with psychotic properties of drugs of abuse (Reeves et al., 2003) and general 

psychotic symptoms in animals (see Forrest et al., 2014). Additionally, disruptions of pre-pulse inhibition 

were reported in mice following a similar administration/withdrawal paradigm used in the present study 

(7-day METH (1 mg/kg) administration and 7-day withdrawal; (Arai et al., 2008)). Taken together, 

increased baseline stereotypic/rearing behavior following the 7-day abstinence period observed in the 

present study might be possibly related to the prolonged psychotomimetic properties of METH. 
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Additionally, increased rearing activity has been also shown to reflect increased anxiety-like behaviors in 

mice (Lever et al., 2006), which indeed might be the case here too, since it is in line with the behavioral 

changes observed in the elevated plus-maze. 

Evidence has implicated MOPr in the regulation of psychostimulant-induced behavioral sensitization. In 

particular, Shen et al., (2010)  has demonstrated that MOPr knockout mice do not develop METH-

induced locomotor sensitization and MOPr binding was shown to be increased in mouse brain tissue 

membranes 14 days following withdrawal from a METH sensitization protocol (Chiu et al., 2006), 

suggesting a clear involvement of MOPr in METH-induced sensitization. In the present study we 

demonstrated increased MOPr binding in the Acb and CPu following METH administration and 

withdrawal, which might be associated with the observed behavioral sensitization to the METH-

associated environment during abstinence. Although it is not clear whether this receptor upregulation is 

associated with increased relapse potential following abstinence, the fact that Gorelick et al. (2008) have 

shown a positive correlation between MOPr binding in frontal and temporal cortices with relapse 

potential of cocaine use in former cocaine addicts along with our results point towards the need for further 

investigation for a possible role of the MOPr system in the modulation of psychostimulant craving during 

abstinence. 

Chronic methamphetamine administration induced an upregulation of the OTR binding specifically in the 

amygdala and hippocampus, suggesting region-specific neuroadaptations of the oxytocinergic system 

following chronic methamphetamine treatment. An increase in amygdalar OTR binding was previously 

observed following chronic administration of other drugs of abuse, including cocaine (Georgiou et al., 

2015a), morphine (Zanos et al., 2014a) and nicotine (Zanos et al., 2015b), highlighting a possible 

common mechanism of multiple drugs of abuse on the oxytocinergic system, which might be involved in 

several behavioral consequences of chronic drug use.  However, in the present study amygdalar OTR 

binding returned to control levels following the 7-day withdrawal period, suggesting that this brain region 

specific neuroadaptation of the oxytocinergic system is not persistent after discontinuation of drug 
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administration and thus, unlikely to be involved in the methamphetamine withdrawal-induced anxiogenic 

phenotype. Similarly, chronic METH administration induced an upregulation of plasma oxytocin levels, 

which returned to control levels following 7 days of withdrawal. While the effects of acute METH 

administration on the central OTR system and plasma oxytocin levels are yet to be determined, it is 

unlikely that the observed upregulation of amygdalar OTR and plasma OT levels to reflect the acute 

effects of the drug since Sarnyai et al., 1992 has previously reported no effects of acute cocaine (another 

psychostimulant drug) on oxytocin content in plasma and amygdala. In support, acute doses of 

methamphetamine did not alter plasma OT levels in healthy adults (Bershad et al., 2015). In contrast to 

the normalized levels of plasma OT and amygdalar OTR binding following methamphetamine abstinence, 

we observed an increase in hippocampal OTR binding, which persisted following withdrawal (treatment 

effect). Interestingly, dysregulation of the hippocampal OT system has been also reported following 

chronic administration of cocaine (Sarnyai et al., 1992). 

Importantly, METH withdrawal, but not chronic METH administration, triggered an increase in OTR 

binding in the LS, a region known to be involved in emotionality (see Sheehan et al., 2004).  

Interestingly, an increase in OTR in LS was also observed following a 7-day morphine withdrawal in 

mice and this was shown to be associated with withdrawal-induced anxiety (Zanos et al., 2014a). 

Considering that the septum is a brain region hypothesized to be responsible for the anxiolytic effects of 

OT (Lukas et al., 2013), it is likely that the dysregulation of the OTR system in the LS to be a possible 

mechanism underlying the anxiety-related symptoms observed in the present study. In fact, we have 

previously shown that decreased OT content in the brain was concomitant with an increase in the OTR in 

the lateral septum (Zanos et al., 2014). In addition, Zoicas et al., (2014) have demonstrated that social fear 

conditioning was associated with an increase in OTR binding in the septum of rodents, whereas i.c.v. 

administration of OT prevented social fear conditioning, suggesting a possible decreased local OT 

neurotransmission in that brain region to account for the increased OTR binding. However, further studies 
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investigating the effects of intra-LS administration of OT are needed to shed light in the exact role of this 

OT system dysregulation and its correlation with the METH abstinence-induced anxiety.  

Anxiety-related behaviors have also been extensively linked with changes in both the HPA axis activity 

(see Faravelli et al., 2012), as well as hyper-activation of the CRF system in the brain in rodents (see 

Zorrilla et al., 2014). Here, an increase in plasma corticosterone levels was observed following chronic 

METH treatment, which was normalized after withdrawal. These findings suggest that METH 

withdrawal-induced anxiety-like symptoms are likely not associated with a dysregulation of the peripheral 

arm of the HPA-axis. In contrast, a persistent increase in amygdalar CRF+ and c-Fos+/CRF+ neurons was 

demonstrated following the 10-day METH administration, and this effect was even enhanced during 

withdrawal, highlighting an important role of persistent neuroadaptations in the amygdalar CRF system to 

underlie behavioral changes occurring during METH abstinence. Interestingly, it has been previously 

suggested that increase activity of the CRF system in the amygdala is associated with drug abstinence-

induced anxiety (see Zorrilla et al., 2014), suggesting a possible involvement of the increased amygdalar 

CRF levels in the development of anxiety-like behaviors in METH-withdrawn animals. However, more 

work needs to be carried out to verify the role of increased CRF in drug–withdrawal induced anxiety.  

While we have previously shown that chronic administration of METH does not change D2R binding in 

mice (Wright et al., 2015),   in the present study we observed no alterations of the D2R binding following 

7 days of withdrawal, possibly suggesting that alterations in the D2R are not involved in the observed 

anxiogenic phenotype. However, neuroadaptations on the D2R system occurring downstream the receptor 

level cannot be precluded.  

Conclusions: Overall, this study demonstrated alterations on the OTR, MOPr and CRF systems following 

chronic METH administration and withdrawal in brain regions functionally associated with the observed 

anxiety-related symptoms during abstinence. Our findings provide further insight into the specific 

neurobiological mechanisms underlying METH use and abstinence and provide information for potential 
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targets for the development of novel and effective pharmacotherapies for the treatment of METH 

addiction and prevention of relapse and comorbid anxiety.  
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9. Figure legends 

Figure 1: Behavioral and tissue/plasma collection experimental timelines. Experimental timelines for 

the (A) behavioral characterization, (B) locomotor and stereotypic activity, (C) OTR, MOPr, D2R, CRF 

and corticosterone, as well as (D) oxytocin content measurements. Abbreviations: CRF, corticotropin-

releasing factor; D2R, dopamine D2 receptor; EPM, elevated plus-maze; FST, forced-swim test; METH, 

methamphetamine; MOPr, µ-opioid receptor; NOR, novel object recognition; OT, oxytocin; OTR, 

oxytocin receptor. 

Figure 2: Anxiety-like behaviors and following 7 days methamphetamine withdrawal. Male 

C57BL/6J mice were treated with either saline or 10- day steady-dose methamphetamine (METH) 

administration paradigm (2 mg/kg, i.p. per day), followed by 5-8 days withdrawal. (A) Memory of the 

saline- and methamphetamine-withdrawn mice (5 days of withdrawal) was assessed in in the novel object 

recognition task. The discrimination ratio represents the time spent interacting with novel object/ total 

interaction time with both objects. (B) Open-arm time in the elevated plus-maze (EPM) (7 days of 

withdrawal) and (C) percentage open arm entries were measured to assess anxiety-like behaviors 

following 7 days of methamphetamine withdrawal. (D) Immobility time and (E) latency to first 

immobility count were assessed in the forced-swim test (FST) following 8 days methamphetamine 

withdrawal. (F) Fecal boli in the FST were counted as a measure of emotionality of methamphetamine- 

and saline-withdrawn mice. Data are expressed as the mean ± SEM. *p<0.05 (Student’s unpaired t-test). 

Figure 3: Effect of chronic METH administration and withdrawal on horizontal and vertical 

locomotor activity. Male C57BL/6J mice were treated with either saline or methamphetamine (METH) 

with a 10- day steady-dose administration paradigm (2 mg/kg, i.p. per day) and left to spontaneously 

withdrawal for 7 days. Average basal (A) horizontal and (C) vertical activities (representing stereotypic 

rearing) were measured daily in 5-min bins for 60 minutes pre-METH or saline injection during the 10-

day steady-dose METH and saline administration paradigm (Days 1-10), as well as 7 days post-last 

injection (Day 17). Average stimulated (B) horizontal and (D) vertical activity were measured daily in 5-
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min bins for 90 minutes post-METH or saline injection during the 10-day steady-dose METH and saline 

administration paradigm (Days 1-10). Data are expressed as mean ± SEM. *p<0.05, ** p<0.01, 

*** p<0.001 vs saline; ## p<0.01; ### p<0.001 vs Day 1 (repeated measures two-way ANOVA followed 

by LSD post-hoc test). 

Figure 4: Effect of chronic methamphetamine administration and withdrawal on [ 125I]-OVTA 

binding to OTR, OT content and plasma corticosterone levels. Male C57BL/6J mice were treated 

either with saline or methamphetamine (METH) with a 10-day steady-dose administration paradigm (2 

mg/kg, i.p. per day) and left to spontaneously withdraw for a period of 7 days. (A) Computer-enhanced 

representative OTR autoradiograms of adjacent coronal brain sections from chronic saline-, METH-

treated, saline-withdrawn and METH-withdrawn mice at the level of the caudate putamen (Bregma 

0.86mm, first row) and the thalamus (Bregma -2.06mm, second row). OTRs were labelled with [125I]-

OVTA (50pM). The color bar illustrates a pseudo-color interpretation of black and white film images in 

fmol/mg tissue equivalent. Representative images for the non-specific binding (50pM [125I]-OVTA in the 

presence of 50µM unlabelled oxytocin) are shown for all the treatment groups. (B) Quantitative oxytocin 

receptor autoradiographic binding in brain regions of mice treated with a chronic 10-day steady-dose 

METH administration paradigm and in mice-withdrawn for 7 days. Oxytocin levels in (C) striatum, (D) 

hypothalamus, (E) amygdala and (F) plasma. (G) Plasma corticosterone levels. Data are expressed as 

mean ± SEM. *p<0.05, **p<0.01, ***p<0.001 Two-way ANOVA followed by LSD post-hoc test. 

Abbreviations: AcbC, nucleus accumbens core; AcbSh, nucleus accumbens shell; Amy, amygdala; AOL, 

anterior olfactory nucleus-lateral; AOM, anterior olfactory nucleus-medial; AOV, anterior olfactory 

nucleus-ventral; CgCx, cingulate cortex; CPu, caudate-putamen; Hip, hippocampus; Hyp, hypothalamus; 

LS, lateral septum; MS, medial septum; OT, oxytocin; OTR, oxytocin receptor; Pir, piriform cortex; Th, 

thalamus; VDB, vertical limb of the diagonal band of Broca. 

Figure 5: Effect of chronic methamphetamine administration and withdrawal on [ 3H]DAMGO 

binding to MOPr and [ 3H]Raclopride binding to D2R . Male C57BL/6J mice were treated either with 
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saline or methamphetamine (METH) with a 10-day steady-dose administration paradigm (2 mg/kg, i.p. 

per day) and left to spontaneously withdraw for a period of 7 days. (A) Computer-enhanced representative 

MOPr autoradiograms of adjacent coronal brain sections from chronic saline-, METH-treated, saline-

withdrawn and METH-withdrawn mice at the level of the caudate putamen (Bregma 0.86mm). MOPrs 

were labelled with [3H]DAMGO (4nM). The color bar illustrates a pseudo-color interpretation of black 

and white film images in fmol/mg tissue equivalent. (B) Quantitative MOPr autoradiographic binding in 

brain regions of mice treated and withdrawn form METH. (C) Computer-enhanced representative D2R 

autoradiograms of adjacent coronal brain sections from chronic saline-, METH-treated, saline-withdrawn 

and METH-withdrawn mice at the level of the caudate putamen (Bregma 0.86mm). D2R were labelled 

with [3H]-Raclopride (4nM). The color bar illustrates a pseudo-color interpretation of black and white 

film images in fmol/mg tissue equivalent. (D) Quantitative D2R autoradiographic binding in brain regions 

of mice treated and withdrawn form METH.  Data are expressed as mean ± SEM. Two-way ANOVA was 

performed in each individual brain region. Abbreviations: AcbC, nucleus accumbens core; AcbSh, 

nucleus accumbens shell; Amy, amygdala; CgCx, cingulate cortex; CPu, caudate-putamen; D2R, 

dopamine D2 receptor; Hip, hippocampus; Hyp, hypothalamus; LS, lateral septum; MS, medial septum; 

MOPr, µ-opioid receptor; MtCx, motor cortex;  Pir, piriform cortex; Th, thalamus; VDB, vertical limb of 

the diagonal band of Broca. 

Figure 6: Effect of chronic METH administration and withdrawal on CRF+, c-Fos+ and c-

Fos+/CRF+ neurons in the amygdala. Male C57BL/6J mice were treated either with saline or 

methamphetamine (METH) with a 10-day steady-dose administration paradigm (2 mg/kg, i.p. per day) 

and left to spontaneously withdraw for a period of 7 days. Representative immunohistochemical images 

of c-Fos+/CRF+ neurons from the amygdala from chronic (A) saline-, (B) METH-treated, (C) saline-

withdrawn and (D) METH-withdrawn mice (Scale bar: 200µm). Quantitative immunohistochemical 

analysis of (E) CRF+, (F) c-Fos+ and (G) c-Fos+/CRF+ neurons in the amygdala of mice treated with a 10-

day steady-dose METH administration paradigm and in mice-withdrawn for 7 days.  Data are expressed 
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as mean ± SEM. *p<0.05, **p<0.01, ***p<0.001. Two-way ANOVA followed by LSD post-hoc test. 

CRF, corticotropin-releasing factor. 
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Highlights: 

• METH withdrawal induces anxiety-related symptoms in mice 

• METH administration and withdrawal causes neuroadaptations in the OT system 

• Persistent increase in striatal MOPr following METH treatment 

• Amygdalar c-Fos+/CRF+ neurons are increased in METH-treated/withdrawn mice 
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