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ABSTRACT
During pregnancy, a specialized type of NK cell accu-

mulates in the lining of the uterus (decidua) and interacts

with semiallogeneic fetal trophoblast cells. dNK cells are

functionally and phenotypically distinct from PB NK and

are implicated in regulation of trophoblast transformation

of the uterine spiral arteries, which if inadequately

performed, can result in pregnancy disorders. Here, we

have used uterine artery Doppler RI in the first trimester

of pregnancy as a proxy measure of the extent of

transformation of the spiral arteries to identify pregnan-

cies with a high RI, indicative of impaired spiral artery

remodeling. We have used flow cytometry to examine

dNK cells isolated from these pregnancies compared

with those from pregnancies with a normal RI. We report

a reduction in the proportion of dNK cells from high RI

pregnancies expressing KIR2DL/S1,3,5 and LILRB1,

receptors for HLA-C and HLA-G on trophoblast. De-

creased LILRB1 expression in the decidua was examined

by receptor blocking in trophoblast coculture and altered

dNK expression of the cytokines CXCL10 and TNF-a,

which regulate trophoblast behavior. These results in-

dicate that dNK cells from high RI pregnancies may

display altered interactions with trophoblast via de-

creased expression of HLA-binding cell-surface recep-

tors, impacting on successful transformation of the uterus

for pregnancy. J. Leukoc. Biol. 97: 79–86; 2015.

Introduction

During the first trimester of pregnancy, maternal NK cells
accumulate in the lining of the pregnant uterus (decidua). dNK
cells are functionally and phenotypically distinct from their PB

counterparts, and the role they play in pregnancy is still
unknown; however, they are implicated in regulation of invasion of
the semiallogeneic fetal placenta [1–3]. Disruptions in these
interactions have been implicated in the pathology of pregnancy
disorders, including pre-eclampsia and recurrent miscarriage [4–7].
The fetal placenta develops from the trophectoderm outer layer

of the blastocyst and forms a villous branching structure, from
which EVT cells differentiate and invade deeply into the decidua.
Within the decidua, EVT remodel the coiled, low-flow, spiral
arteries, transforming them into wide-diameter conduits, allowing
a greater flow of blood to the fetus [8]. EVTs achieve this through
a combination of induced apoptosis and de-differentiation of
vascular cells [9–11], eventually replacing the vascular cells they
have displaced [12]. To accomplish this aim, EVT must avoid an
adverse immune reaction by the dNK cells. This is thought to be
achieved partially by the atypical EVT MHC repertoire, as they
express the classic polymorphic HLA-C and the nonclassic HLA-E
and HLA-G [13]. The unique maternal-fetal immune interaction
may additionally be enhanced by the dissimilar phenotype of dNK
cells to PB NK cells; dNK cells are predominantly CD56brightCD16–,
noncytotoxic, and cytokine-secreting cells [1]. They also express
a different repertoire of inhibitory and activatory receptors to PB
NK cells, which includes higher expression of the KIRs KIR2DL1/
S1 and KIR2DL2/S2 [14]; the 3 NCRs NKp46, NKp30, and NKp44;
and LILRB1 [15].
A failure by EVT to completely remodel spiral arteries and

subsequent poor placentation can be an underlying cause of
pregnancy disorders, including pre-eclampsia and intrauterine
growth restriction [8, 16, 17]. The interaction between dNK and
EVT has been implicated in this process [4, 7]. However, the
study of first-trimester interactions between dNK cells and EVT
and their relationship to disorders of pregnancy are made
challenging by a number of factors, including the lack of access
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to first-trimester human pregnancy tissue with a known outcome
at term. Uterine artery Doppler RI, in the first trimester of
pregnancy, can be used as a proxy measure of the extent of
remodeling of the spiral arteries [18, 19]. We have used this
technique to identify pregnancies with a high RI, indicative of
impaired spiral artery remodeling, to demonstrate differences in
dNK cells isolated from high RI pregnancies in their interactions
with vascular cells and trophoblasts compared with dNK cells
isolated from pregnancies with a normal RI [7, 20].
Here, we have investigated the receptor expression and

cytotoxicity of dNK cells isolated from pregnancies with normal
and high RI and the implications of an altered receptor repertoire.
We provide evidence that dNK cells from high RI pregnancies may
show alterations in their interactions with fetal HLA-C and HLA-G,
which may have implications for the regulation of EVT-induced
remodeling of the decidua by maternal immune cells.

MATERIALS AND METHODS

Doppler ultrasound characterization
Determination of the uterine artery RI was performed in women attending
a clinic for termination of pregnancy in the first trimester, as described
previously [21] at the Fetal Medicine Unit, St George’s Hospital. The
Wandsworth Local Research Ethics Committee approval was in place for the
Doppler ultrasound and use of first-trimester tissue after surgical termination,
and all women gave informed, written consent (reference numbers: 01.96.8;
01.78.5; 02.6.8). Inclusion criteria were singleton pregnancy, gestational age
9–14 weeks, normal fetal anatomy, and nuchal translucency thickness with no
known maternal medical condition or history of recurrent miscarriage.
High-resistance cases were defined as those with bilateral uterine diastolic
notches and a mean RI above the 95th percentile. Normal resistance cases
had no diastolic notches and a mean RI below the 95th percentile. These
resistance groups represent cases most (21%) and least (,1%) likely to have
developed pre-eclampsia, respectively, had the pregnancy progressed [18, 19].

dNK cell isolation
dNK cells were isolated, as described previously [7]. In brief, decidual tissue
was minced and digested in serum-free M199 media containing 2 mg/ml
collagenase and 0.1 mg/ml DNase overnight, with constant agitation at
room temperature. The resultant tissue digest was passed sequentially
through 100 and 70 mm filters and layered onto Ficoll-Paque (GE Healthcare
Life Sciences, Buckinghamshire, United Kingdom). The buffy layer was
collected, and cells were resuspended in 10 ml dNK cell-culture media
[Phenol Red Free RPMI 1640, supplemented with 10% (v/v) FBS,
containing 2 mmol/L L-glutamine, 100 IU/ml penicillin, 100 mg/ml
streptomycin, and 2.5 mg/ml amphotericin] and plated in a 37°C incubator
for 15 min. Nonadherent cells, containing the dNK cell fraction, were
purified by use of negative selection with a MagCellect Human NK Cell
Isolation Kit (R&D Systems, Abingdon, United Kingdom), according to the
manufacturer’s instructions. Purity, as measured by CD56+ cells, was, on
average, 95.7 6 0.92% (n = 33), and viability, immediately upon isolation,
was 96.5 6 0.38% (n = 33), as assessed by fixable viability dye (eBioscience,
Hatfield, United Kingdom). There was no difference in viability or purity
between dNK cells isolated from normal RI or high RI pregnancies.
Gestational ages between the two datasets did not differ significantly
(normal = 76.4 6 2.1 days; high = 71.1 6 1.4 days).

PB NK cell isolation
PB was taken from healthy volunteers, and PB NK cells, isolated from total
mononuclear cells, separated after centrifugation on Ficoll-Paque Plus (GE
Healthcare Life Sciences) for 30 min at 400 g. PB NK cells were isolated by use
of a MagCellect Human NK Cell Isolation kit (R&D Systems), according to the
manufacturer’s instructions.

Cell culture
dNK cells were cultured in dNK culture media as above. K562 cells and sHLA-
G-transfected SGHPL-4 were maintained in RPMI 1640 Phenol Red Free,
supplemented with 10% (v/v) FBS, containing 2 mmol/L L-glutamine,
100 IU/ml penicillin, and 100 mg/ml streptomycin.

Flow cytometry
Freshly isolated dNK cells were resuspended in 1 ml PBS and stained with
fixable viability dye eFluor 780, according to the manufacturer’s instructions
(eBioscience). dNK cells were then washed in FACS buffer (PBS with 0.5% w/v
BSA, 0.05% w/v sodium azide) and blocked in 1 mg/ml human IgG. Cells
(23 105) were resuspended in 100 ml FACS buffer, and cells were labeled by use
of the following antibodies: mouse anti-human CD56-Alexa Fluor 488 (B159)
0.5 mg, mouse anti-human CD158b (KIR2DL2/S2)-PE (CH-L) 0.125 mg,
mouse anti-human CD69-APC (FN50) 0.015 mg, mouse anti-human NKG2D-
APC (1D11) 1 mg, mouse anti-human CD9-PE (M-L13) 0.125 mg, mouse anti-
human NKp44-PE (p44-8.1) 0.125 mg, mouse anti-human NKp46-PE (9E2)
0.25 mg, and mouse anti-human NKp30-PE (p30-15) 1 mg (BD PharMingen,
Oxford, United Kingdom); mouse anti-human CD3-PerCP (SK-7) 0.125 mg
and mouse anti-human KIR2DL1/S1/L3/S3/L5/S5-APC (KIR2DS/L1,3,5;
MA4) 0.125 mg (eBioscience); mouse anti-human CD160-PE (688327)
0.25 mg, mouse anti-human NKG2A-APC (131411) 0.1 mg, mouse anti-human
LILRB1/ILT2/CD85j-APC (292305) 0.1 mg, and mouse anti-human NKG2C-
APC (134591) 0.5 mg (R&D Systems). The following isotype controls were
used: mouse IgG1 k-Alexa Fluor 488, mouse IgG2b k-PE, mouse IgG2a k-APC,
mouse IgG2b k-APC, mouse IgG1 k-APC, and mouse IgG1 k-PE (eBioscience)
and mouse IgG1 k-PerCP (BD PharMingen). Flow cytometry was carried out
on a LSR II flow cytometer (BD Biosciences, San Jose, CA, USA). Analysis was
carried out by use of FlowJo software (Tree Star, Ashland, OR, USA).
Histograms shown were gated on viable cells, which were CD56+CD3–.

Cytotoxicity assay
Cytotoxicity of NK cells was assessed by lysis of K562 target cells, loaded with
the fluorescent dye calcein-AM (Life Technologies, Paisley, United Kingdom).
K562 cells were incubated and loaded with 10 mM calcein-AM for 30 min at
37°C, before washing in K562 maintenance media and serum-free media for
15 min. K562 cells and freshly isolated dNK cells or PB NK cells were
cocultured in serum-free dNK culture media in V-bottom, 96-well plates
(Corning Life Sciences, The Netherlands) for 4 h at ratios of 1:1–20:1 E:T.
Calcein-AM released into the supernatant was assessed by use of a GloMax-
Multi+ microplate spectrofluorimeter (Promega, Southampton, United
Kingdom) with excitation filter 485 and emission filter 530. Data are
expressed as fold lysis over control, containing no NK cells but matched
numbers of target cells.

LILRB1 blocking
Receptor blocking was achieved by incubating freshly isolated dNK cells for
30 min at 37°C with 10 mg/ml mouse anti-human LILRB1/ILT2/CD85j mAb
(clone 292319; R&D Systems) or isotype-matched control (R&D Systems) [22]
before coculture in media containing 10 mg/ml mouse anti-human LILRB1
with SGHPL-4 cells overexpressing sHLA-G [23] for 6 h.

PCR
Cytokine expression in dNK cells was assessed by RT-PCR. dNK RNA samples
(n = 6) were reverse transcribed by use of the Tetro cDNA Synthesis kit,
according to the manufacturer’s instructions (Bioline, London, United
Kingdom). cDNA (40 ng) was used in duplicate samples for qRT-PCR by use
of Power SYBR Green PCR Master Mix (Applied Biosystems, Life Technol-
ogies, Pittsburgh, PA, USA), as per the manufacturer’s instructions, by use of
the following sequence-specific primers: 18S, ACA-CGT-TCC-ACC-TCA-TCC-
TC and CTT-TGC-CAT-CAC-TGC-CAT-TA; CXCL10, TTC-AAG-GAG-TAC-
CTC-TCT-CTA-G and CTG-GAT-TCA-GAC-ATC-TCT-TCT-C; PLGF, GTC-TCC-
TCC-TTT-CCG-GCT-T and TGC-AGC-TCC-TAA-AGA-TCC-GTT; IFN-g,
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ACT-GAC-TTG-AAT-GTC-CAA-CGC-A and ATC-TGA-CTC-CTT-TTT-CGC-
TTC-C; IL-8, CAG-AGA-CAG-CAG-CAC-AC and AGC-TTG-GAA-GTC-ATG-
TTT-ACA-C; TNF, AGG-TTC-TCT-TCC-TCT-CAC-ATA-C and ATC-ATG-CTT-
TCA-GTG-CTC-ATG. qPCR was carried out by use of a CFX96 Real-Time PCR
Detection System (Bio-Rad Laboratories, Hemel Hempstead, United King-
dom). Expression of analyzed genes was normalized to RNA loading for each
sample by use of the 18S rRNA as an internal standard, and each LILRB1-
blocked sample was compared with isotype-matched control.

Statistical analysis
Where appropriate, data were analyzed by one-way ANOVA or Student’s t-test
by use of GraphPad Prism (v6.01; GraphPad Software, La Jolla, CA, USA).
Data are presented as mean 6 SEM.

RESULTS

Receptor repertoire of dNK cells isolated from high RI
differs from dNK cells isolated from normal
RI pregnancies
dNK cells have been shown previously to express the following
receptors: KIR2DL1/S1, KIR2DL2/S2, NKp30, NKp46, LILRB1,
NKG2A, NKG2C, NKG2D, CD160, CD9, and CD69 [14, 15, 24, 25].
Examination of dNK cells (gating strategy; Fig. 1A), from normal

RI and high RI pregnancies (indicative of poor spiral artery
remodeling), determined that these receptors were present in
each group (Fig. 1B; representative flow data from normal RI
individual). All receptors were expressed in the same proportion
in high RI and normal RI pregnancies, with the exception of
KIR2DL/S1,3,5 and LILRB1, which were expressed on a signifi-
cantly lower proportion of dNK cells from high RI pregnancies
(P , 0.05; Fig. 2). Likewise, significantly decreased expression of
KIR2DL/S1,3,5 and LILRB1 was found by analysis of mean
fluorescence intensity data (P , 0.05; Supplemental Fig. 1).

dNKR repertoire varies with gestational age
Percentages of dNK cells expressing receptors, including
KIR2DL1/S1, LILRB1, and NKG2D, have been demonstrated to
alter throughout the first trimester of pregnancy [26, 27]. The
function of dNK cells has also been demonstrated to alter
between early gestation and after loosening of trophoblast plugs
of spiral arteries, which occurs at ;10 weeks gestation, for
example, in secreted cytokines and interactions with trophoblast
[28, 29]. Therefore, we examined the expression of KIR2DL/
S1,3,5, KIR2DL2/S2, NKp30, NKp46, LILRB1, NKG2A, NKG2C,
NKG2D, CD160, and CD69 in the first trimester of pregnancy,

Figure 1. Representative flow cytometry data of
cell-surface receptor expression on first-trimester
dNK cells. (A) Gating strategy. Cell population was
automatically gated on forward (FSC)/side-scatter
(SSC). This population was gated further as dNK
cells on viability as assessed by negativity for eFluor
dye, CD56 positivity and CD3 negativity. (B)
Typical dNKR expression. Data are of a normal RI
sample, gestational age 9 + 0 weeks. Compensated
(Comp) fluorescence intensity for the gated area is
shown. Gray line indicates IgG control, and darker
line indicates test antibody to stated receptor.
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before and after 10 weeks of gestation (44–98 gestational days,
separated into ,10 weeks or .10 weeks; n = at least 33). To
eliminate any confounding factors of decreased expression of
KIR2DL/S1,3,5 and LILRB1 on high RI cells, these were
excluded from the analysis. We found that the majority of
receptors did not alter in numbers of dNK cells with gestational
age (Fig. 3). Expression of NKp30 increased as gestational age
increased (P = 0.01).

dNK cells from normal RI and high RI pregnancies are
not cytotoxic
dNK cells are not thought to be cytotoxic in vivo. To determine if
any differences in receptor phenotype altered the cytotoxic capacity
of dNK cells, the target cell K562 was loaded with fluorescent dye.
The ability of dNK cells from normal RI and high RI pregnancies to
lyse target cells was compared with the lytic capacity of PB NK cells
used as a technical control (Fig. 4). dNK showed no significant lytic
ability over a control containing no effector cells and was
significantly less cytotoxic than PB NK cells (P , 0.05).

dNK cells with lowered LILRB1 binding capacity
demonstrate altered cytokine production
A decrease in expression of LILRB1 may lead to a decreased
capacity to bind ligand on trophoblast. To determine if this
altered dNK cell activity, dNK cells from normal RI pregnancies

(to ensure a larger proportion of LILRB1-expressing dNK cells)
were cocultured with an EVT cell line overexpressing HLA-G
[23], and the LILRB1 blocked with a blocking antibody. Cytokine
production in dNK cells was measured by PCR (Fig. 5).
Expression of TNF-a was found to be increased in dNK cells with
decreased LILRB1 binding capacity (Fig. 5A; P , 0.05), and
expression of CXCL10 was found to be decreased (Fig. 5B;
P , 0.05). Expression of three other cytokines shown to be
important in dNK-trophoblast interactions—IFN-g, PLGF, and
IL-8—did not alter (Fig. 5C–E).

DISCUSSION

During the first trimester of pregnancy, dNK cells interact with
fetal trophoblast through secreted factors and cell–cell inter-
actions [3]. The pattern of inhibitory and activating receptors
on dNK cells is distinct to that of PB NK and is thought to be
crucial in the interaction with fetal trophoblast [30]. We have
demonstrated that the levels of HLA-interacting receptors,
LILRB1 and KIR2DL/S1,3,5, are reduced on populations of
dNK cells from pregnancies with a high RI, indicative of poor
spiral artery remodeling. This has implications for interactions
of dNK with trophoblast in these pregnancies and in the
development of the pathology of pregnancy disorders, such as
pre-eclampsia.

Figure 2. Percentage of dNK cells isolated from normal RI pregnancies and high RI pregnancies positive for receptors listed, as assessed by flow
cytometry. Data shown are individual patient samples, mean 6 SEM; n = at least 19 normal RI; n = at least 10 high RI. *P , 0.05.
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A number of receptors were expressed on equal proportions of
dNK cells from normal RI and high RI pregnancies. This
includes NKp46, an NCR that has been shown to lead to cytotoxic
granule release upon engagement, which is negatively regulated
by NKG2A [24]. A second natural cytoxicity receptor, NKp30, was
also expressed; however, engagement of this on dNK cells has
been demonstrated previously to be noncytotoxic and induces
cytokine production, including TNF-a and GM-CSF [15]. NKp30
is not found in endometrial NK cells from nonpregnant
individuals, and this corresponds with our finding that this
receptor is expressed on increasing proportions of dNK cells as
gestation increases [31]. High expression of CD9 and a mean
expression of 19–28% of CD69 are also consistent with previous
reports of dNK cell phenotype [24, 26, 27] as is the low or absent
expression of CD160 reported [15], and the varied levels of
NKG2A [26, 32]. We found comparable expression of NKG2D in
dNK cells from normal RI and high RI pregnancies. NKG2D,
a NCR, has been implicated in cytokine production [33] and may
be involved in cytotoxicity in certain situations, including viral
infection [34].
The decreased expression of KIR2DL/S1,3,5 is intriguing, as

this has implications for recognition of fetal HLA-C. It has been
found that mothers with a KIR-A genotype are at increased risk of
pregnancy disorders, including pre-eclampsia and recurrent
miscarriage, particularly when paired with a fetus with a HLA-C2
genotype [4–6]. The KIR genotype of the mother determines
expression of KIRs; there are two forms of the KIR2DL1/S1
receptor: the long cytoplasmic-tailed inhibitory form L1 and the

short cytoplasmic-tailed activatory form S1. A decrease in the S1
form may lead to less cytokine secretion by dNK cells, as dNK
cells coexpressing L1 or expressing L1 alone demonstrate
dramatic reduction in secretion of cytokines, potentially leading
to decreased trophoblast invasion and spiral artery remodeling
[35]. As KIR-A mothers have less activating KIRs, this reduced
cytokine production and hence, decreased trophoblast invasion
are proposed to underlie the association with pregnancy
disorders. During preparation of this manuscript, the antibody
clone used to distinguish KIR2DL1/S1 was found to recognize

Figure 3. dNKR expression during the first trimester of pregnancy. Percentage expression of the named receptors was analyzed by flow cytometry on
dNK cells between 6 and 13 weeks of pregnancy (44–98 days) and separated into before and after 10 weeks gestation. Data shown are mean 6 SEM;
*P , 0.05; n = at least 33 in each group.

Figure 4. Cytotoxicity of dNK cells from normal RI and high RI
pregnancies. The target cell K562 was loaded with fluorescent dye, and
the ability of dNK cells from normal RI and high RI pregnancies to lyse
target cells was compared with the lytic capacity of PB NK cells. *P, 0.05,
data shown are mean 6 SEM expressed over control containing no
effector cells (n = 3).
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L3/S3 and L5/S5 also. Therefore, it will be interesting in future
investigations to determine whether expression of S1 or L1 or
both is decreased in the populations of high RI dNK cells and
additionally, the HLA-C status of the fetus. We have previously
demonstrated altered, secreted factors in the high RI dNK cell
population, resulting in decreased trophoblast chemotaxis and
explant outgrowth [7]; however, whether the finding in this study
of altered KIR2DL1/S1 expression on these two groups is
connected to decreased cytokine secretion and trophoblast
chemotaxis remains to be determined. Interestingly, KIR2DL2/
S2 was not found to be decreased in the population of dNK cells
in high RI pregnancies. KIR2DL2/S2 binds with a higher affinity
to HLA-C1, as opposed to HLA-C2, and whether it has a role in
pregnancy disorders remains to be determined.
We have also demonstrated a decreased proportion of

LILRB1-expressing dNK cells in the group of pregnancies with
a high RI. LILRB1 is an inhibitory receptor that binds to a wide
spectrum of HLA molecules but preferentially, to HLA-G [36]
and has been demonstrated to bind to HLA-G, expressed on
trophoblast [37], and to sHLA-G [22]. The restricted expression
of HLA-G in the body to fetal trophoblast indicates that it may
have important functions in pregnancy. HLA-G-LILRB1 binding

has been demonstrated previously to alter cytokine secretion in
decidual leukocytes [37], as well as inhibit formation of the
cytotoxic immune synapse [38]. A decreased proportion of dNK
cells expressing this receptor could indicate altered immune
interactions at the maternal–fetal interface. Therefore, we
used an EVT cell line expressing HLA-G and sHLA-G [23],
cocultured with dNK cells, and blocked LILRB1 to model the
outcome of decreased signaling via this mechanism in the high
RI group. The blocking of LILRB1 via this mechanism has been
demonstrated previously in PB NK cells [22] and the NK-92 cell
line [39]. We found increased expression of TNF-a and
decreased expression of CXCL10 in the LILRB1-blocked group,
although at low levels, which may be representative of the small
subset of cells expressing this receptor. This is in contrast to Li
et al. [40], who did not demonstrate altered TNF-a expression
by dNK cells upon blocking of LILRB1; however, this may be
reflective of the cell types used for coculture or assays. Similarly
to the findings of others, we found no difference in gene
expression of IFN-g or IL-8 [41] or of PLGF after blocking
LILRB1. A decrease in CXCL10 expression upon interaction
with EVT could indicate the potential for decreased induction
of EVT migration [2]. Similarly increased TNF-a signaling could

Figure 5. Cytokine mRNA expression in normal RI dNK cells in coculture with SGHPL-4 cells after blocking of LILRB1. Normal RI dNK cells were
cocultured with sHLA-G-SGHPL-4 cells for 6 h and collected. Cytokine expression was analyzed by qRT-PCR of (A) TNF, (B) CXCL10, (C) IFN-g,
(D) PLGF, (E) IL-8. Data shown are mean fold change 6 SEM relative to IgG control. *P , 0.05; n = 6.
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inhibit EVT invasion [42, 43] and integration of EVT into
decidual spiral arteries [44] and induce EVT apoptosis [42].
These features could impact on vessel transformation in high RI
pregnancies.
The decrease in LILRB1 and KIR2DL/S1,3,5-expressing dNK

cells is particularly interesting, as these receptors interact with
the unusual MHC repertoire of the EVT. Despite this decrease in
inhibitory receptors in the high RI group, we found no
difference in cytotoxicity between the two groups. dNK cells have
been shown previously to be cytotoxic only in the presence of
nonphysiologic IL-2 stimulation [45], and we found that dNK
cells isolated from normal RI and high RI pregnancies exhibited
a similarly low level of cytotoxicity to the classic target cell K562
compared with PB NK cells, indicating any difference in cell-
surface receptor phenotype was not altering cytotoxicity. In-
creased expression of LILRB1 is more common on cells with
increased KIR2DL1/S1 [41], and therefore, it may be a subset of
cells that is decreased in the high RI group. As interactions with
KIRs and LILRB1 in dNK cells have been demonstrated to be
important in cytokine secretion, it may be that a decrease in this
subset of cells leads to an overall suppression of dNK-induced
trophoblast invasion and therefore, transformation of spiral
arteries. Further investigation into the phenotype of dNK cells
from this high-risk group of pregnancies will provide additional
insights into maternal-mediated effects on spiral artery remod-
eling in the first trimester of pregnancy.
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