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Abstract

Age at menarche is a marker of timing of puberty in females. It varies widely between individuals,

is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease,

breast cancer and all-cause mortality1. Studies of rare human disorders of puberty and animal

models point to a complex hypothalamic-pituitary-hormonal regulation2,3, but the mechanisms

that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using

genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from

57 studies, we found robust evidence (P<5×10−8) for 123 signals at 106 genomic loci associated

with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there

was substantial overlap with genes implicated in body mass index and various diseases, including

rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci

(DLK1/WDR25, MKRN3/MAGEL2 and KCNK9) demonstrating parent-of-origin specific

associations concordant with known parental expression patterns. Pathway analyses implicated

nuclear hormone receptors, particularly retinoic acid and gamma-aminobutyric acid-B2 receptor

signaling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest

a genetic architecture involving at least hundreds of common variants in the coordinated timing of

the pubertal transition.
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Genome-wide array data were available on up to 132,989 women of European descent from

57 studies, and data on up to ~25,000 single nucleotide polymorphisms (SNPs), or their

proxy markers, that showed sub-genome-wide significant associations (P<0.0022) with age

at menarche in our previous genome-wide association study (GWAS)4 were available on an

additional 49,427 women (Supplementary Table 1). Association statistics for 2,441,815

autosomal SNPs that passed quality control measures (including minor allele frequency

>1%) were combined across all studies by meta-analysis.

3,915 SNPs reached the genome-wide significance threshold (P<5×10−8) for association

with age at menarche (Figure 1). Using GCTA5, which approximates a conditional analysis

adjusted for the effects of neighbouring SNPs (Extended Data Figure 1 and Supplementary

Table 2), we identified 123 independent signals for age at menarche at 106 genomic loci,

including 11 loci containing multiple independent signals (Extended Data Tables 1-4; plots

of all loci are available at www.reprogen.org). Of the 42 previously reported independent

signals for age at menarche4, all but one (rs2243803, SLC14A2, P=2.3×10−6) remained

genome-wide significant in the expanded dataset.

To estimate their overall contribution to the variation in age at menarche, we analysed an

additional sample of 8,689 women. 104/123 signals showed directionally-concordant

associations or trends with menarche timing (binomial sign test PSign=2.2×10−15), of which

35 showed nominal significance (PSign<0.05) (Supplementary Table 3). In this independent

sample, the top 123 SNPs together explained 2.71% (P<1×10−20) of the variance in age at

menarche, compared to 1.31% (P=2.3×10−14) explained by the previously reported 42

SNPs. Consideration of further SNPs with lower levels of significance resulted in modest

increases in the estimated variance explained with increasingly larger SNP sets, until we

included all autosomal SNPs (15.8%, S.E. 3.6%, P=2.2×10−6), indicating a highly polygenic

architecture (Extended Data Figure 2).

To test the relevance of menarche loci to the timing of related pubertal characteristics in

both sexes, we examined their further associations with refined pubertal stage assessments in

an overlapping subset of 10 to 12 years old girls (n=6,147). A further independent sample of

3,769 boys had similar assessments at ages 12 to 15 years. 90/106 menarche loci showed

consistent directions of association with Tanner stage in boys and girls combined

(PSign=1.1×10−13), 86/106 in girls only (PSign=6.2×10−11) and 72/106 in boys only

(PSign=0.0001), suggesting that the menarche loci are highly enriched for variants that

regulate pubertal timing more generally (Supplementary Table 4).

Six independent signals were located in imprinted gene regions6, which is an enrichment

when compared to all published genome-wide-significant signals for any trait/disease7

(6/123, 4.8% vs 75/4332, 1.7%; Fisher’s Exact test P=0.017). Departure from Mendelian

inheritance of pubertal timing has not been previously suspected, therefore we sought

evidence for parent-of-origin specific allelic associations in the deCODE Study, which

included 35,377 women with parental origins of alleles determined by a combination of

genealogy and long-range phasing6.
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Two independent signals (#85a-b; rs10144321 and rs7141210) lie on chromosome 14q32

harbouring the reciprocally imprinted genes DLK1 and MEG3, which exhibit paternal-

specific or maternal-specific expression, respectively, and may underlie the growth

retardation and precocious puberty phenotype of maternal uniparental disomy-148. In

deCODE, for both signals the paternally-inherited alleles were associated with age at

menarche (rs10144321, Ppat=3.1×10−5; rs7141210, Ppat=2.1×10−4), but the maternally-

inherited alleles were not (Pmat=0.47 and 0.12, respectively), and there was significant

heterogeneity between paternal and maternal effect estimates (rs10144321, Phet=0.02;

rs7141210, Phet=2.2×10−4) (Figure 2; Supplementary Table 5). Notably, rs7141210 is

reportedly a cis-acting methylation-QTL in adipose tissue9 (Extended Data Table 5) and the

menarche age-raising allele was also associated with lower transcript levels of DLK1

(Supplementary Tables 6 and 7)10, which encodes a transmembrane protein involved in

adipogenesis and neurogenesis. In deCODE data, the maternally-inherited rs7141210 allele

was correlated with blood transcript levels of the maternally-expressed genes MEG3

(Pmat<5.6×10−53), MEG8 (Pmat=4.9×10−41) and MEG9 (Pmat=5.4×10−5); however, lack of

any correlation with the paternally-inherited alleles (Ppat=0.18, Ppat=0.87 and Ppat=0.37,

respectively) suggests that these genes do not explain this paternal-specific menarche signal.

Signal #86 (rs12148769) lies in the imprinted critical region for Prader Willi Syndrome

(PWS), which is caused by paternal-specific deletions of chromosome 15q11-13 and

includes clinical features of hypogonadotropic hypogonadism and hypothalamic obesity11;

conversely a small proportion of cases have precocious puberty. For rs12148769, only the

paternally-inherited allele was associated with age at menarche (Ppat=2.4×10−6), but the

maternally-inherited allele was not (Pmat=0.43; Phet=5.6×10−3) (Figure 2). Recently,

truncating mutations of MAGEL2 affecting the paternal alleles were reported in PWS; all

four reported cases had hypogonadism or delayed puberty11, whereas paternally-inherited

deleterious mutations in MKRN3 were found in patients with central precocious puberty3. It

is as yet unclear which of these paternally-expressed genes explains this menarche signal.

Signal #57 (rs1469039) is intronic in KCNK9, which shows maternal-specific expression in

mouse and human brain12. Concordantly, only the maternally-inherited allele was associated

with age at menarche (Pmat=5.6×10−6), but the paternally-inherited allele was not

(Ppat=0.76; Phet=3.7×10−3) (Figure 2). The menarche age-increasing allele was associated

with lower transcript levels of KCNK9 in deCODE’s blood expression data when

maternally-inherited (Pmat=0.003), but not when paternally-inherited (Ppat=0.31). KCNK9

encodes TASK-3, which belongs to a family of two-pore domain potassium channels that

regulate neuronal resting membrane potential and firing frequency.

The two remaining signals located within imprinted regions (rs2137289 and rs947552) did

not demonstrate either paternal or maternal-specific association. We then systematically

tested all 117 remaining independent menarche signals for parent-of-origin specific

associations with menarche timing and found only 4 (3.4%) with at least nominal

associations (Phet<0.05; Supplementary Table 5), which was proportionately fewer than

signals at imprinted regions (4/6 (67.0%), Wilcoxon rank sum test P=0.009).
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Three menarche signals were in genes encoding JmjC-domain-containing lysine-specific

demethylases (enrichment P=0.006 for all genes in this family); signal #1 (rs2274465) is

intronic in KDM4A, signal #37 (rs17171818) is intronic in KDM3B, and signal #59b

(rs913588) is a missense variant in KDM4C. Notably, KDM3B, KDM4A, and KDM4C all

encode activating demethylases for Lysine-9 on histone H3, which was recently identified as

the chromatin methylation target that mediates the remarkable long-range regulatory effects

of IPW, a paternally-expressed long noncoding RNA in the imprinted PWS region on

chromosome 15q11-13, on maternally-expressed genes at the imprinted DLK1-MEG3 locus

on chromosome 14q3213. Examination of sub-genome-wide signals showed another

potential locus intronic in KDM4B (rs11085110, P=2.3×10−6). Pubertal onset in female mice

is reportedly triggered by DNA methylation of the Polycomb group silencing complex of

genes (including CBX7 near signal #105) leading to enrichment of activating lysine

modifications on histone H314. Specific histone demethylases could potentially regulate

cross-links between imprinted regions to influence pubertal timing.

Menarche signals also tended to be enriched in/near genes that underlie rare Mendelian

disorders of puberty (enrichment P=0.05)2,3. As well as rs12148769 near to MKRN3, signals

were found near LEPR/LEPROT (signal #2; rs10789181), which encodes the leptin receptor,

and immediately upstream of TACR3 (signal #32; rs3733631), which encodes the receptor

for Neurokinin B. A further variant ~10 kb from GNRH1 approached genome-wide

significance (rs1506869, P=1.8×10−6) and was also associated with GNRH1 expression in

adipose tissue (P=3.7×10−5). Signals #34 (rs17086188) and #103 (rs852069) lie near PCSK1

and PCSK2, respectively, indicating a common function of the type 1 and 2 prohormone

convertases in pubertal regulation. Signals in/near several further genes with relevance to

pituitary development/function included: signal #20 (rs7642134) near POU1F1, signal #39

(rs9647570) within TENM2, and signal #42 (rs2479724) near FRS3. Furthermore, signals

#71 (rs7103411) and #92 (rs1129700) are cis-eQTLs for LGR4 and TBX6, respectively, both

of which encode enhancers for the pituitary development factor SOX2. Signals #52

(rs6964833 intronic in GTF2I) and #104 (rs2836950 intronic in BRWD1) were found in

critical regions for complex conditions that include abnormal reproductive phenotypes,

Williams-Beuren syndrome (early puberty)15, and Down syndrome (hypogonadism in boys),

respectively16.

Including signals described above, we identified 29 menarche signals in/near genes with

possible roles in hormonal functions (Figure 3, Supplementary Table 8), many more than the

three signals we described previously (INHBA, PCSK2 and RXRG)4. Two signals were

found in/near genes related to steroidogenesis. Signal 35 (rs251130) was a cis-eQTL for

STARD4, which encodes a StAR-related lipid transfer protein involved in the regulation of

intra-cellular cholesterol trafficking. Signal #9 (rs6427782) is near NR5A2, which encodes a

nuclear receptor with key roles in steroidogenesis and estrogen-dependent cell proliferation.

We observed that SNPs in/near a custom list of genes that encode nuclear hormone

receptors, co-activators or co-repressors were enriched for associations with menarche

timing (enrichment P=6×10−5). Individually, nine genome-wide significant signals mapped

to within 500 kb of these genes, including those encoding the nuclear receptors for

oestrogen, progesterone, thyroid hormone and 1,25-dihydroxyvitamin D3. Several nuclear
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hormone receptors are involved in retinoic acid (RA) signaling. SNPs in/near RXRG and

RORA reached genome-wide significance, and three other genes contained sub-genome-

wide signals (RXRA [rs2520094, P=4×10−7], RORB [rs4237264, P=9.4×10−6], RXRB

[rs241438, P=7.1×10−5]). Two other genome-wide significant signals mapped to genes with

roles in RA function (#67 CTBP2 and #101 RDH8). The active metabolites of vitamin A,

all-trans-RA and 9-cis-RA, have differential effects on GnRH expression and secretion17.

Other possible mechanisms linking RA signaling to pubertal timing include inhibition of

embryonic GnRH neuron migration, and enhancement of steroidogenesis and gonadotrophin

secretion18. The relevance of our findings to observations of low circulating vitamin A

levels and use of dietary vitamin A in delayed puberty19 are yet unclear.

To identify other mechanisms that regulate pubertal timing, we tested all SNPs genome-

wide for collective enrichment across any biological pathway defined in publicly available

databases. The top ranked pathway reaching study-wise significance (FDR=0.009) was

gamma-aminobutyric acid (GABAB) receptor II signaling (Extended Data Table 6); each of

the nine genes in this pathway contained a SNP with sub-genome-wide significant

association with menarche (Extended Data Table 7). Notably, GABAB receptor activation

inhibits hypothalamic GnRH secretion in animal models20.

Regarding the relevance of our findings to other traits, we confirmed4 and extended the

overlap between genome-wide significant loci for menarche and adult BMI21. At all nine

loci (in/near FTO, SEC16B, TMEM18, NEGR1, TNNI3K, GNPDA2, BDNF, BCDIN3D and

GPRC5B) the menarche age-raising allele was also associated with lower adult BMI

(Supplementary Table 9). Three menarche signals overlapped known loci for adult height22.

The menarche age-raising alleles at signals #47c (rs7759938, LIN28B) and #83 (rs1254337,

SIX6) were also associated with taller adult height, which is directionally concordant with

epidemiological observations. Conversely, the menarche age-raising allele at signal #48

(rs4895808, CENPW/NCOA7) was associated with shorter adult height (Supplementary

Table 9).

Further menarche signals overlapped reported GWAS loci for other traits, but in each case at

only a single locus, therefore possibly reflecting small-scale pleiotropy rather than a broader

shared genetic aetiology. Signal #26 (rs900400) was a cis-eQTL for LEKR1, and is the same

lead SNP associated with birth weight23. The menarche age-raising allele was also

associated with higher birth weight, directionally concordant with epidemiological

observations24. Signal #48 (rs4895808, a cis-eQTL for CENPW) is in LD (r2=0.90) with the

lead SNP for the autoimmune disorder type 1 diabetes, rs938848925, which also showed

robust association with menarche timing (P=6.49×10−12). Signal #41 (rs16896742) is near

HLA-A, which encodes the class I, A major histocompatibility complex, and is a known

locus for various immunity or inflammation-related traits7. Signal #50 (rs6933660) is near

ESR1, which encodes the oestrogen receptor, a known locus for breast cancer26 and bone

mineral density27. Notably, the menarche age-raising allele at rs6933660 was associated

with higher femoral neck bone mineral density (P=6×10−5)27, which is directionally

discordant with the epidemiological association28. Signal #70 (rs11022756) is intronic in

ARNTL, a known locus for circulating plasminogen activator inhibitor type 1 (PAI-1)
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levels29; the reported lead SNP (rs6486122) for PAI-129 also showed robust association with

menarche timing (P=9.3×10−10).

Our findings indicate both BMI-related and BMI-independent mechanisms that could

underlie the epidemiological associations between early menarche and higher risks of adult

disease1.These include actions of LIN28B on insulin sensitivity through the mTOR pathway,

GABAB receptor signaling on inhibition of oxidative stress-related ß-cell apoptosis, and

SIRT3 (mitochondrial sirtuin 3), which could link early life nutrition to metabolism and

ageing. Finally, only few parent-of-origin specific allelic associations at imprinted loci have

been described for complex traits6. Our findings implicate differential pubertal timing, a trait

with putative selection advantages30, as a potential additional target for the evolution of

genomic imprinting.

METHODS

GWAS meta-analysis

We performed an expanded GWAS meta-analysis for self-reported age at menarche in up to

182,416 women of European descent from 58 studies (Supplementary Table 1). All

participants provided written informed consent and the studies were approved by the

respective Local Research Ethics committees or Institutional Review Boards. Consistent

with our previous analysis protocol4, women who reported their age at menarche as < 9

years or > 17 years were excluded from the analysis; birth year was included as the only

covariate to allow for the secular trends in menarche timing. Genome-wide SNP array data

were available on up to 132,989 women from 57 studies. Each study imputed genotype data

based on HapMap Phase II CEU build 35 or 36. Data on an additional 49,427 women from

the Breast Cancer Association Consortium (BCAC) were generated on the Illumina iSelect

"iCOGS" array31. This array included up to ~25,000 SNPs, or their proxy markers, that

showed sub-genome-wide associations (P<0.0022) with age at menarche in our earlier

GWAS4. SNPs were excluded from individual study datasets if they were poorly imputed or

were rare (MAF <1%). Test statistics for each study were adjusted using study-specific

genomic control inflation factors and where appropriate individual studies performed

additional adjustments for relatedness (Supplementary Table 1). Association statistics for

each of the 2,441,815 autosomal SNPs that passed QC in at least half of the studies were

combined across studies in a fixed effects inverse-variance meta-analysis implemented in

METAL32.

On meta-analysis, 3,915 SNPs reached the genome-wide significance threshold (P<5×10−8)

for association with age at menarche (Figure 1). The overall GC inflation factor was 1.266,

consistent with an expected high yield of true positive findings in large-scale GWAS meta-

analysis of highly polygenic traits33.

Selection of independent signals

Given the genome-wide results of the meta-analysis, SNPs showing evidence for association

at genome-wide significant P-values were selected and clumped based on a physical (kb)
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threshold <1 Mb. The lead SNPs of the 105 clumps formed constitute the list of SNPs

independently associated with age at menarche (Extended Data Tables 1-4).

To augment this list we performed approximate conditional analysis using GCTA

software34, where the LD between variants was estimated from the Northern Finland Birth

Cohort (NFBC66) consisting of 5,402 individuals of European ancestry with GWAS data

imputed using CEU haplotypes from Hapmap Phase II. Assuming that the LD correlations

between SNPs more than 10 Mb away or on different chromosomes are zero, we performed

the GCTA model selection to select SNPs independently associated with age at menarche at

genome-wide significant P-values. This software selected as independently associated with

age at menarche 115 SNPs at 98 loci, 11 of which had two or more signals of association

(six loci contained two signals, four loci contained three signals, and one locus contained

four signals). Plots of all 106 loci are available at www.reprogen.org. SNPs with A/T or C/G

alleles were excluded from this analysis to prevent strand issues leading to false-positive

results.

To summarize the information obtained from the single-SNP and GCTA analyses, the 105

SNPs selected from the uni-variate analysis and the 115 SNPs selected from the GCTA

model selection analysis were combined into a single list of signals independently associated

with age at menarche (Supplementary Table 2), using the following selection process

(Extended Data Figure 1). For loci with no evidence of allelic heterogeneity, if the uni-

variate signal was genome-wide significant, the lead uni-variate SNP was selected (94

independent association signals follow this criterion); otherwise the lead GCTA SNP was

selected instead (one independent signal). For loci where evidence for allelic heterogeneity

was found, all signals identified in the GCTA joint model were selected if GCTA selected

the uni-variate index SNP (21 independent signals at 8 loci) or a very good proxy (r2>0.8) (7

independent signals at 3 loci). When instead GCTA selected a SNP independent from the

uni-variate index SNP, both the lead uni-variate SNP and all signals identified in the GCTA

joint model were selected (0 independent signals).

To determine likely causal genes at each locus, we used a combination of criteria. The gene

nearest to each top SNP was selected by default. This gene was replaced or added to if the

top SNP was (in high LD with) an expression quantitative-trait locus (eQTL) or a non-

synonymous variant in another gene, or if there was an alternative neighbouring biological

candidate gene. 31/123 signals mapped as eQTLs in data from Westra et al. (E)10, five were

annotated as non-synonymous functional (F), 60 as biological candidates (C), and four

mapped to gene deserts (nearest gene >500 kb) (Supplementary Tables 6-8). We also used

publicly available whole blood and adipose tissue methylation-QTL data to map 9/123

signals to cis-acting changes in methylation level (Extended Data Table 5)9.

Follow up in the EPIC-InterAct study

We used an independent sample of 8689 women from the EPIC-InterAct study35 to follow-

up our menarche signals. To test associations between each identified SNP and age at

menarche with correction for cryptic relatedness, we ran a linear mixed model association

test implemented in GCTA34 (--mlma-loco option), adjusting for birth year, disease status

and research centre. Given the relatively small sample size compared to our discovery set,
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directional consistency with results from the discovery-meta analysis was assessed using a

binomial sign test. Variance explained by menarche loci was estimated using restricted

maximum likelihood analysis in GCTA34. In addition to the 123 confirmed menarche loci,

variance explained in subsets of menarche loci below the genome-wide significance

thresholds was also assessed.

eQTL analyses

In order to estimate the potential downstream regulatory effects of age at menarche

associated variants, we used publicly available blood eQTL data (downloadable from http://

genenetwork.nl/bloodeqtlbrowser/) from a recently published paper by Westra et al.

(2013)10. Westra et al. conducted cis-eQTL mapping by testing, for a large set of genes, all

SNPs (HapMap2 panel) within 250 kb of the transcription start site of the gene for

association with total RNA expression level of the gene. The publicly available data contain,

for each gene, a list of all SNPs that were found to be significantly associated with gene

expression using a False Discovery Rate (FDR) of 5%. For a detailed description of the

quality control measures applied to the original data, see Westra et al10. Their meta-analysis

was based on a pooled sample of 5,311 individuals from 7 population-based cohorts with

gene expression levels measured from full blood. We used the software tool SNAP (http://

www.broadinstitute.org/mpg/snap/) to identify variants in close linkage disequilibrium (r2 ≥

0.8) with the trait associated variants. All eQTL effects at FDR 5% and also lists of the

strongest SNP effect for all the significant genes are shown in Supplementary Table 7.

Index SNPs (or highly correlated proxies) were also interrogated against a collected

database of eQTL results from a range of tissues. Blood cell related eQTL studies included

fresh lymphocytes36, fresh leukocytes37, leukocyte samples in individuals with Celiac

disease38, whole blood samples39–43, lymphoblastoid cell lines (LCL) derived from

asthmatic children44,45, HapMap LCL from 3 populations46, a separate study on HapMap

CEU LCL47, additional LCL population samples48–50 (and Mangravite et al. (unpublished)),

CD19+ B cells51, primary PHA-stimulated T cells48, CD4+ T cells52, peripheral blood

monocytes51,53,54, CD11+ dendritic cells before and after Mycobacterium tuberculosis

infection55. Micro-RNA QTLs56 and DNase-I QTLs57 were also queried for LCL. Non-

blood cell tissue eQTLs searched included omental and subcutaneous adipose39,50,58,

stomach58, endometrial carcinomas59, ER+ and ER- breast cancer tumor cells60, brain

cortex53,61,62, pre-frontal cortex63,64, frontal cortex65, temporal cortex62,65, pons65,

cerebellum62,65, 3 additional large studies of brain regions including prefrontal cortex,

visual cortex and cerebellum, respectively66, liver58,67–70, osteoblasts71, intestine72, lung73,

skin50,74 and primary fibroblasts48. Micro-RNA QTLs were also queried for gluteal and

abdominal adipose75. Only results that reach study-wise significance thresholds in their

respective datasets were included (Supplementary table 6). Expression data was also

available on adipose tissue and whole blood samples from deCODE where parent-of-origin

specific analyses were possible.

Parent-of-origin specific associations

Evidence for parent-of-origin specific allelic associations at imprinted loci was sought in the

deCODE Study, which included 35,377 women with parental origins of alleles determined
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by a combination of genealogy and long-range phasing as previously described6. Briefly,

using SNP chip data in each proband, genome-wide, long range phasing was applied to

overlapping tiles, each 6 cM in length, with 3 cM overlap between consecutive tiles. For

each tile, the parental origins of the two phased haplotypes were determined regardless of

whether the parents of the proband were chip-typed. Using the Icelandic genealogy

database, for each of the two haplotypes of a proband, a search was performed to identify,

among those individuals also known to carry the same haplotype, the closest relative on each

of the paternal and maternal sides. Results for the two haplotypes were combined into a

robust single-tile score reflecting the relative likelihood of the two possible parental origin

assignments. Haplotypes from consecutive tiles were then stitched together based on sharing

at the overlapping region. For haplotypes derived by stitching, a contig-score for parental

origin was computed by summing the individual single-tile scores. Similarly, parent-of-

origin specific allelic associations at imprinted loci were also sought in the deCODE blood

cells and adipose tissue expression datasets.

Pathway analyses

Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA) was used to

explore pathway-based associations in the full GWAS dataset. MAGENTA implements a

gene set enrichment analysis (GSEA) based approach, as previously described76. Briefly,

each gene in the genome is mapped to a single index SNP with the lowest P-value within a

110 kb upstream, 40 kb downstream window. This P-value, representing a gene score, is

then corrected for confounding factors such as gene size, SNP density and LD-related

properties in a regression model. Genes within the HLA-region were excluded from analysis

due to difficulties in accounting for gene density and LD patterns. Each mapped gene in the

genome is then ranked by its adjusted gene score. At a given significance threshold (95th

and 75th percentiles of all gene scores), the observed number of gene scores in a given

pathway, with a ranked score above the specified threshold percentile, is calculated. This

observed statistic is then compared to 1,000,000 randomly permuted pathways of identical

size. This generates an empirical GSEA P-value for each pathway. Significance was

determined when an individual pathway reached a false discovery rate (FDR) <0.05 in either

analysis. In total, 2529 pathways from Gene Ontology, PANTHER, KEGG and Ingenuity

were tested for enrichment of multiple modest associations with age at menarche.

MAGENTA software was also used for enrichment testing of custom gene sets.

Relevance of menarche loci to other traits

We assessed the relevance of identified menarche loci to other traits by comparing SNPs

significantly associated with age at menarche with published GWAS findings or by using

publicly available data from the Genetic Investigation of Anthropometric Traits (GIANT)

consortium22,21 and the GEnetic Factors for OS (GEFOS) consortium27. In addition, we

requested look-ups up the 123 menarche SNPs for association with puberty timing assessed

by Tanner staging in the Early Growth Genetics (EGG) consortium77.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manhattan and QQ plot of the GWAS for age at menarche
Manhattan (main panel) and quantile-quantile (QQ) (embedded) plots illustrating results of

the genome-wide association study (GWAS) meta-analysis for age at menarche in up to

182,416 women of European descent. The Manhattan plot presents the association -log10 P-

values for each genome-wide SNP (Y-axis) by chromosomal position (X-axis). The red line

indicates the threshold for genome-wide statistical significance (P=5×10−8). Blue dots

represent SNPs whose nearest gene is the same as that of the genome-wide significant

signals. The QQ plot illustrates the deviation of association test statistics (blue dots) from

the distribution expected under the null hypothesis (red line).

Perry et al. Page 20

Nature. Author manuscript; available in PMC 2015 April 02.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Forest plot of parent-of-origin specific allelic associations at three imprinted menarche
loci
The forest plot illustrates the associations of variants in four independent genomic signals

for age at menarche that are located in three imprinted gene regions. For each variant,

squares (and error bars) indicate the estimated per-allele effect sizes on age at menarche in

years (and 95% confidence intervals) from the standard additive models in the combined

ReproGen meta-analysis (Black), and separately for the paternally-inherited (Blue) or

maternally-inherited allele (Red) in up to 35,377 women from the deCODE study. The

association for the menarche locus with the largest effect size at LIN28B is also shown for

reference, illustrating the similar magnitude of effect size at the MKRN3 locus when parent-

of-origin is taken into account.
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Figure 3. Schematic diagram indicating possible roles in the hypothalamic-pituitary-ovarian axis
of several of the implicated genes and biological mechanisms for menarche timing
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