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CASE REPORT

Neonatal presentation of familial glucocorticoid deficiency
resulting from a novel splice mutation in the melanocortin
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Abstract

Background: Familial glucocorticoid deficiency (FGD) is a rare autosomal recessive disorder
characterised by isolated glucocorticoid deficiency. Mutations in the ACTH receptor/melanocortin
2 receptor (MC2R), the MC2R accessory protein (MRAP) or the STAR protein (STAR) cause FGD types 1,
2 and 3, respectively, accounting for w50% of all cases.
Patient and methods: We report a neonate of Indian origin, who was diagnosed with FGD in the first
few days of life. He presented with hypoglycaemic seizures and was noted to have generalised intense
hyperpigmentation and normal male genitalia. Biochemical investigations revealed hypocortisolaemia
(cortisol 0.223 mg/dl; NR 1–23 mg/dl) and elevated plasma ACTH (170 pg/ml). Serum electrolytes,
aldosterone and plasma renin activity were normal. Peak cortisol following a standard synacthen test
was 0.018 mg/dl. He responded to hydrocortisone treatment and continues on replacement. Patient
DNA was analysed by direct sequencing. The effect of the novel mutation was assessed by an in vitro
splicing assay using wild type and mutant heterologous minigenes.
Results: A novel homozygous mutation c.106C2_3dupTAwas found in theMRAPgene. Both parents were
heterozygous for the mutation. In an in vitro splicing assay, the mutation resulted in the skipping of exon 3.
Conclusion: We have identified a novelMRAPmutation where disruption of the intron 3 splice-site results in
a prematurely terminated translation product. This protein (if produced) would lack the transmembrane
domain that is essential for MC2R interaction. We predict that this would cause complete lack of ACTH
response thus explaining the early presentation in this case.
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Introduction

Familial glucocorticoid deficiency (FGD) is a rare
autosomal recessive disorder which manifests as
isolated glucocorticoid deficiency with normal miner-
alocorticoid function (1). This potentially lethal con-
dition is caused by adrenal resistance to ACTH and is
clinically characterised by low serum cortisol concen-
trations in the presence of markedly elevated plasma
ACTH levels. FGD patients typically present with
hyperpigmentation, hypoglycaemic seizures and failure
to thrive in the neonatal period or late childhood (1, 2).
However, some milder genotypes have been presented
in later years (3, 4).

FGD is a genetically heterogeneous entity. Inactivating
mutations in the ACTH receptor also known as the
melanocortin 2 receptor (MC2R) were first identified as
the cause of FGD in 1993 (5, 6). This is now termed
FGD type 1 (OMIM#202200) and accounts for up to
25% of cases. In 2005, Metherell et al. (7) showed that
ndocrinology
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mutations in the MC2R accessory protein (MRAP), which
is essential for trafficking of MC2R from the endoplasmic
reticulum (ER) to the cell surface and subsequent
signalling in response to ACTH, are responsible for a
further w20% of FGD cases, now named FGD type 2
(OMIM #607398). To date, over 25 loss-of-function
mutations in MC2R and 11 in MRAP have been reported
(1, 4, 8). These MRAP mutations are summarised in
Table 1. Recently, certain ‘less severe’ mutations in STAR
protein (STAR) (R192C and R188C) have been reported
to be responsible for a phenotype identical to FGD types 1
and 2 and classified as FGD type 3 (3). Over the last
few years we have identified cases of FGD that vary
from the classical phenotype. These include cases of late
onset FGD (3, 4), cases describing mild disturbances
in angiotensin–renin–aldosterone axis in severe FGD
(9, 10) and genetic overlap with conditions associated
with mineralocorticoid insufficiency (3). This adds to
the complexity of making a diagnosis and highlights the
importance of genetic testing.
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Table 1 Summary of published and unpublished MRAP mutations. The majority of mutations are predicted to result in absent or
significantly truncated protein forms and hence complete loss of ACTH response. In comparison, c.76TOC (p.V26A) and c.175TOG
(p.Y59D) have been shown to have impaired but not absent function. p.0? represents the recommended annotation when the effect on the
protein is unknown as in the case of c.3GOA that affect the initiation site and the splice mutations the lead to skipping of exon 3.

Mutationa
Mutation
type Functional effect Clinical presentation References

c.3GOA (p.0? or p.M1?) MS Unknown (? no protein produced) Classical early onset (2, 7, 25, 26)
c.17-23delACGCCTC

(p.N6MfsX24)
NS Shortened protein if translated Classical early onset (8)

c.33COA (p.Y11X) NS Shortened protein if translated Classical early onset (1)
c.76TOC (p.V26A) MS Full-length protein with amino acid

change – impaired cAMP generation
Late presentation (4)

c.106C1GOT (p.0?) SS Skipping of exon 3 (no protein or lack
transmembrane domain)

Classical early onset (2, 7)

c.106C1GOA (p.0?) SS Skipping of exon 3 (no protein or lack
transmembrane domain)

Classical early onset (2, 7)

c.106C1GOC (p.0?) SS Skipping of exon 3 (no protein or lack
transmembrane domain)

Classical early onset (2, 7)

c.106C1delG (p.0?) SS Skipping of exon 3 (no protein or lack
transmembrane domain)

Classical early onset (2, 7, 27)

c.106C2insT (p.0?) SS Skipping of exon 3 (no protein or lack
transmembrane domain)

Classical early onset (2, 7)

c.106C2_3dupTA (p.0?)* SS Skipping of exon 3 (no protein or lack
transmembrane domain)

Classical early onset This study

c.128delG (p.V44X) NS Shortened protein if translated Classical early onset (7, 16)
c.175TOG (p.Y59D) MS Full-length protein with amino acid

change – impaired cAMP generation
Late presentation (4)

MS, missense mutation; NS, nonsense mutation; SS, splice-site mutation; c., coding DNA; p., protein.
aMutations described according to recommended nomenclature (11). Novel mutation indicated by *.
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We report an Indian child with severe generalised
hyperpigmentation at birth who presented with recur-
rent hypoglycaemic seizures from 36 h of life due to a
novel homozygous splice mutation (c.106C2_3dupTA)
in MRAP. Using an in vitro splicing assay, we
demonstrate that the mutation leads to disrupted
mRNA splicing and exon 3 skipping.
Case history

The index case presented at birth with intense
generalised hyperpigmentation (Fig. 1A). The male
infant was born at term, birth weight 2.8 kg to non-
consanguineous Indian parents with a fair complexion.
He had normal male genitalia. There was a family
history of three previous miscarriages for which no
cause was identified. At 36 h of life, he developed high
fever, lethargy and poor feeding. He was hypoglycaemic
with blood glucose of 20 mg/dl. Treatment with i.v.
glucose was initiated but despite this he suffered four
further episodes of hypoglycaemia, twice accompanied
by seizures. Serum electrolytes were normal. Endocrine
investigations revealed low serum cortisol 0.22 mg/dl
(NR 1.7–14) with a flat response post administration of
a standard synacthen test 0.018 mg/dl. Normal plasma
renin activity of 5.72 ng/ml per h (NR 2.0–35.0) and
plasma aldosterone of 97.9 ng/l (NR supine 10–160)
confirmed the diagnosis of isolated cortisol deficiency in
this case. 17-OHP levels were normal (2 ng/ml) and did
not rise after a standard synacthen test (1.5 ng/ml).
www.eje-online.org
Plasma ACTH was measured after 3 days of hydrocorti-
sone therapy and was 170 pg/ml (NR 10–50). The
adrenal glands were not visualised on abdominal
ultrasound or computed tomography of the abdomen
but seen on magnetic resonance imaging and reported
as bilaterally small, highlighting the difficulty of adrenal
imaging in young children.

Whilst on an initial oral replacement hydrocortisone
dose of 20 mg/m2 per day, his skin significantly
lightened. Over the next 3 years he had four further
episodes of hypoglycaemic seizures precipitated by viral
illness. Plasma ACTH at the age of 14 months was
O2000 pg/ml, related to poor treatment compliance.
This improved and his dose of hydrocortisone was
reduced to 15 mg/m2 per day. Subsequent ACTH
concentrations at the age of 2 and 3.5 years were 5.7
and 25.2 pg/ml respectively.

Despite abnormal neurological tests during the
neonatal period, with extinguished response on visual
evoked responses and a flat curve on brainstem evoked
response to audiometry, he achieved all milestones at
an appropriate age with normal hearing and vision at
3.5 years of age. Aged 3.5 years his height was 87 cm
(K3.5 SDS) and weight 12.5 kg (K2 SDS). However,
the height velocity over the past year is greater than K1
SDS and the short stature may be a reflection of the
short mid-parental height of 160 cm (K2.5 SDS).

In view of the diagnosis of isolated glucocorticoid
insufficiency, blood was obtained from the infant and
both parents and molecular genetic analysis was
performed.



Figure 1 (A) Intense generalised hyperpigmentation of index case
at presentation in the neonatal period. (B) Current image of index
case (consent obtained). Full colour version of this figure available
via http://dx.doi.org/10.1530/EJE-11-0581.
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Materials and methods

Sequencing

Genomic DNA was extracted from blood leucocytes.
Informed patient consent was obtained. PCR and
sequencing of the coding exons of MC2R and MRAP
was performed using patient or parental genomic DNA.
Primers were designed to intronic sequences (sequences
available on request). PCR products were sequenced in
both directions using ABI Prism Big Dye Sequencing kit
on an ABI 377 automated DNA sequencer (Applied
Biosystems). The mutation was described according to
recommended nomenclature (11).
In vitro splicing assay

To demonstrate that this mutation affected mRNA
splicing, MRAP exon 3 and its wild type (MRAP wt) or
mutated (MRAP mt) flanking intronic sequences were
introduced into a well-characterised splicing reporter
derived from the adenovirus major late (AdML-Par) first
and second leader exons. In vitro splicing experiments
were performed as described previously (12).
Results

MC2R was found to be normal on sequencing. A novel
homozygous two base pair duplication mutation at the
splice junction of exon 3/intron 3 (c.106C2_3dupTA)
was detected in MRAP in the affected child (Fig. 2A).
Both parents were heterozygous for this mutation.

In silico, c.106C2_3dupTA mutation is predicted to
disrupt splicing. An in vitro splicing assay showed that
after 1 h incubation under splicing condition, the wild-
type minigene produced a band corresponding to
the three exons (L1-MRAP_exon3-L2) joined together.
This was confirmed by direct sequencing. The c.106
C2_3dupTA mutation in the mutant minigene caused
the skipping of MRAP exon 3 and resulted in a band of
186 nucleotides corresponding to exons L1 and L2
spliced together (Fig. 2B). This was confirmed by DNA
sequencing. The resulting MRAP transcript would have
a foreshortened open reading frame that encodes a
prematurely terminated translation product. This
protein (if produced) would lack the transmembrane
domain that is essential for MC2R interaction.
Discussion

We report a case of FGD presenting at birth due to a
novel homozygous splice-site mutation of MRAP. In vitro
splicing assay demonstrated that this mutation would
cause skipping of exon 3 leading to a protein (if
produced) lacking the transmembrane MC2R interact-
ing domain.

The very early presentation of FGD and severe
phenotype in our case is in keeping with the
pathophysiology previously seen with MRAP splice-
site and nonsense mutations (1, 2, 8). MRAP is a small
single-pass transmembrane domain protein, which is
essential for the processing of the MC2R and its
trafficking from the ER to the cell surface. Mapping of
the domains important for action has been undertaken
by two groups (13, 14). The transmembrane domain of
MRAP encoded by exon 3 is responsible for MC2R
interaction, whilst the tyrosine rich region in the
N-terminus is important for MC2R trafficking; and the
C-terminus regulates MC2R cell surface expression (14).
In the absence of MRAP, MC2R is retained within the ER
and fails to reach the cell surface (7, 15).

The majority of MRAP mutations reported to date are
splice-site or nonsense mutations which if translated are
predicted to produce proteins lacking the trans-
membrane domain, leading to a complete loss of
receptor function and a severe phenotype (1, 7, 8,
16). Such patients present with symptoms and signs of
hypocortisolaemia very early on in life at a median age
of 0.08 years (range: at birth to 1.6 years) (2). Recently,
two homozygous missense mutations in MRAP have
also been reported that are associated with a milder and
variable phenotype (4). In contrast to the early
presentation seen with MRAP splice-site/nonsense
mutations, the index cases with missense mutations
c.175TOG (p.Y59D) and c.76TOC (p.V26A) presented
at the age of 4 and 18 years respectively. Importantly, the
18-year-old index patient presented with non-specific
www.eje-online.org
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Figure 2 (A) Schematic diagram representing alternative splicing of
MRAP exons 5 and 6. Black boxes represent coding regions and
black dashed lines indicate splicing. Chromatogram showing the
splice mutation (red arrow). Other known MRAP mutations are
shown in blue. *Indicates position of splice-site mutations (c.106C
1GOT, c.106C1GOA, c.106C1GOC, c.106C1delG and c.106C
2insT). (B) In vitro splicing assay demonstrates that MRAP mutation
c.106C2_3dupTA leads to impaired splicing and skipping of exon 3.
In this assay, MRAP exon 3 flanked by either wild type (wt) or
mutated (mt; c.106C2_3dupTA) MRAP intronic sequences were
introduced into a splicing reporter (AdML-Par) between the first and
the second leader exons, L1 and L2. The resulting minigenes,
MRAP wt (L1-MRAP wt_exon3-L2), MRAP mt (L1-MRAP
mt_exon3-L2) or AdML-Par (splicing reporter alone, L1–L2), were
incubated in HeLa nuclear extracts for 60 min under splicing
conditions at 30 8C or pre-splicing control conditions at 0 8C.
Incubation temperatures, 0 or 30 8C, are indicated above each lane.
The identity of the pre-mRNA and of the mRNA spliced products is
schematically drawn next to the autoradiogram. The nucleotide
ladder is shown on the right. Retention of MRAP exon 3 (L1-MRAP-
L2) is seen with MRAP wt whilst aberrant splicing resulting in
skipping of MRAP exon 3 (L1–L2) is detected in MRAP mt. Bands
corresponding to correct and aberrant mRNA splice products are
indicated by the arrows. Full colour version of this figure available
via http://dx.doi.org/10.1530/EJE-11-0581.
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symptoms of fatigue, weight loss and depression. The
description of these patients not only extends the
phenotype of FGD but also informs us of the importance
of considering this diagnosis in adults with late
presentation isolated glucocorticoid deficiency.

On the other hand, more than 25 mutations reported
so far in MC2R gene are missense mutations. The
majority of these mutations have been shown in vitro
to impair the trafficking of MC2R from ER to the cell
www.eje-online.org
surface and lead to a variable reduction in the receptor
expression, which is 20–100% of the wild type (2, 4,
17). As highlighted by Chung et al. (2), nonsense or
frameshift mutations are associated with a severe
phenotype of FGD (more common with MRAP
mutations) whereas missense mutations give rise to a
milder phenotype (more common with MC2R
mutations).

Owing to the observation that ACTH and a-MSH are
equipotent on human melanocortin 1 receptor (MC1R)
(18), hyperpigmentation observed in FGD has generally
been thought to be due to high ACTH acting on the
MC1R in melanocytes (19, 20). Indeed other conditions
that result in ACTH excess, such as Cushing’s disease
and ectopic ACTH Cushing’s syndrome can present with
hyperpigmentation although this is often less intense,
reflecting the lower plasma concentrations of ACTH
measured in these disorders (21).

It is interesting that our patient was deeply
hyperpigmented at birth. This is a feature that has
been described in other case reports and would suggest
that the foetal corticotrophs can produce excessive
plasma ACTH in response to low foetal cortisol which in
turn acts on melanocytes to promote eumelanin
synthesis before birth (22, 23). In some FGD patients
the plasma ACTH levels are difficult to normalise despite
large doses of hydrocortisone and they remain
pigmented. In our patient normalisation of ACTH was
achievable using a dose of 15 mg/m2 per day.

Weight and height differences have also been
described. Some patients with MC2R mutations (FGD
type 1) have been described as having tall stature
(2, 24) although the molecular mechanism for this is
uncertain. Our patient has short stature at the age of
3.5 years. This is probably consistent with the short
stature of his parents. Early onset obesity has also been
reported in one family with MRAP mutation (16), this
is not a feature noted in our patient.

In conclusion, we have presented a newborn with
FGD type 2, presenting with intense hyperpigmentation
and hypoglycaemic seizures. He was found to have a
novel splice-site mutation in the MRAP gene that would
cause complete loss of ACTH response, hence explaining
the early presentation seen in the case. Early diagnosis
and appropriate therapy enabled him to achieve
normal developmental milestones despite initial abnor-
mal tests.
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