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Background. Correlates of immune protection in patients with human immunodeficiency virus (HIV)–associated
cryptococcal meningitis are poorly defined. A clearer understanding of these immune responses is essential to
inform rational development of immunotherapies.

Methods. Cryptococcal-specific peripheral CD4+ T-cell responses were measured in 44 patients with HIV-
associated cryptococcal meningitis at baseline and during follow-up. Responses were assessed following ex vivo
cryptococcal mannoprotein stimulation, using 13-color flow-cytometry. The relationships between cryptococcal-
specific CD4+ T-cell responses, clinical parameters at presentation, and outcome were investigated.

Results. Cryptococcal-specific CD4+ T-cell responses were characterized by the production of macrophage in-
flammatory protein 1α, interferon γ (IFN-γ), and tumor necrosis factor α (TNF-α). Conversely, minimal interleu-
kin 4 and interleukin 17 production was detected. Patients surviving to 2 weeks had significantly different
functional CD4+ T-cell responses as compared to those who died. Patients with a response predominantly consist-
ing of IFN-γ or TNF-α production had a 2-week mortality of 0% (0/20), compared with 25% (6/24) in those
without this response (P = .025). Such patients also had lower fungal burdens (10 400 vs 390 000 colony-forming
units/mL; P < .001), higher cerebrospinal fluid lymphocyte counts (122 vs 8 cells/μL; P < .001), and a trend toward
faster rates of clearance of infection.

Conclusions. The phenotype of the peripheral CD4+ T-cell response to Cryptococcus was associated with
disease severity and outcome in HIV-associated cryptococcal meningitis. IFN-γ/TNF-α–predominant responses
were associated with survival.
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Cryptococcal meningitis is a leading cause of mortality
in human immunodeficiency virus (HIV)–infected
patients in the developing world [1]. A clear understand-
ing of the underlying immune response to Cryptococcus

neoformans is essential to help elucidate the causes of
mortality and inform development of immune-based
therapies. Unfortunately, correlates of immune protection
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in patients with HIV-associated cryptococcal meningitis re-
main poorly defined.

Most data regarding the immune response to C. neoformans
comes from animal models and in vitro work. Cryptococcus
evades killing by the innate immune system [2], and adaptive
CD4+ T-cell responses are critical for immune control and
clearance [3–6]. In mouse models, a dichotomy exists between
T-helper 1 (Th1)–type T-cell responses and T-helper 2
(Th2)–type responses. Th1-type responses are protective and
associated with proinflammatory cytokine responses; produc-
tion of interferon γ (IFN-γ), tumor necrosis factor α (TNF-α),
and interleukin 12; and effective intracellular killing of
C. neoformans by classically activated macrophages [3, 4, 7–20].
Th2-type responses appear to be detrimental and are charac-
terized by production of interleukin 10 (IL-10), interleukin
4 (IL-4), and interleukin 13; alternative macrophage activation;
increased C. neoformans proliferation; and impaired killing by
innate effector cells [7, 16–28]. T-helper 17 (Th17)–type cyto-
kine production has also been associated with reduced fungal
burdens and effective resolution of infection [29–32].

Human data are limited. The epidemiology of cryptococcal
disease clearly demonstrates that CD4+ T-cell depletion is the
key predisposing factor [33]. Cryptococcal meningitis nearly
exclusively affects patients with profound defects in cell-
mediated immunity. In HIV-infected patients who develop
cryptococcal meningitis, adverse clinical and microbiologi-
cal outcomes are associated with lower CD4+ T-cell counts and
poor inflammatory responses in the cerebrospinal fluid
(CSF) [34–36], but the phenotype of the immune response in
HIV-infected patients with cryptococcal meningitis is not
well described. HIV disease progression has been associated
with a loss of Th1-type responses and a switch to Th2-weighted
CD4+ T-cell and cytokine responses [37–39], although very few
data are available that directly examine the functional phenotypes
of CD4+ T cells in HIV-infected patients with advanced disease.

To explore the host response to cryptococcal infection in
patients with HIV-associated cryptococcal meningitis, both
at the site of infection in the central nervous system and
systemically, CSF cytokine levels and Cryptococcus-specific
peripheral CD4+ T-cell responses were measured in an explor-
atory analysis of 44 patients with acute cryptococcal meningitis
enrolled in a trial of adjuvant interferon gamma immuno-
therapy. The phenotype of the peripheral CD4+ T-cell res-
ponses to Cryptococcus was compared to better characterized
antigen-specific cytomegalovirus (CMV)– and Mycobacterium
tuberculosis–specific responses [40, 41], both to act as internal
validation of the performance of the experiments and to
enable a comparison between the CD4+ T-cell responses to
mycobacterial, fungal, and viral opportunistic infections. The
relationships between Cryptococcus-specific peripheral CD4+

T-cell responses and clinical parameters and outcomes were
explored.

METHODS

Study Subjects
Subjects were participants in a randomized controlled trial
examining the effect of short-course adjuvant interferon
gamma immunotherapy for the treatment of HIV-associated
cryptococcal meningitis. The trial was performed in Cape
Town, South Africa, between 2007 and 2010 and has been
described elsewhere (Supplementary Methods) [42]. Written
informed consent was obtained. The study was approved by
the research ethics committees of the University of Cape Town
and St. George’s University of London.

CSF Cytokine Analysis
CSF samples were collected at baseline, prior to receipt of anti-
fungal therapy, and centrifuged, and the supernatant was
frozen at −80°C for subsequent quantification of cytokine con-
centrations. Levels of interleukin 2 (IL-2), IL-4, interleukin 6
(IL-6), IL-10, interleukin 17 (IL-17), IFN-γ, TNF-α, RANTES,
macrophage inflammatory protein 1α (MIP-1α), monocyte
chemotactic protein 1 (MCP-1), and granulocyte-macrophage
colony-stimulating factor (GM-CSF) were measured using
Luminex multiplex cytokine analysis (Bio-plex kits, Bio-Rad
Laboratories).

Peripheral Blood Mononuclear Cell (PBMC) Flow Cytometry
Analysis
PBMCs were obtained from 30 mL of venous blood taken at
study admission (prior to any therapy), study day 14, and after
1 month of antiretroviral therapy (ART). Cryptococcal antigen
(CRAG) stimulations were performed using purified crypto-
coccal mannoproteins [43]. CMV stimulations were performed
using pp65 peptides, andM. tuberculosis stimulations were per-
formed using a mix of purified protein derivative, ESAT-6, and
CFP-10. Cell stimulation and staining were performed using a
modification of the method described by Betts et al [44]. Cells
were analyzed using a modified LSRII (BD Immunocytometry
Systems). Analytic gating of the flow cytometry data was per-
formed using FlowJo (version 9.0.1; TreeStar). For polychro-
matic analysis, all CD4+ T cells were identified in the same
manner, and standard cytokine gates were applied to all sam-
ples. The memory T-cell population was defined as CD3+

CD8−CD4+ cells that were not CD27+CD45RO−. Cytokine
gating for IFN-γ, IL-2, IL-4, IL-17, MIP-1α, and TNF-α was
done on the memory-cell population (Supplementary Methods
and Figure 1).

Statistical Analysis
Data were analyzed using Stata, version 11.0 (StataCorp);
Prism, version 5a (GraphPad Software); and Spice, version 5.2
(NIAID, NIH, Bethesda, MD). Variables were compared across
groups, using the Mann–Whitney U, Kruskal–Wallis, χ2, or
Fisher exact tests. Comparisons of paired groups were made
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using the Wilcoxon matched pairs test. The Spearman correla-
tion coefficient was used to examine associations between con-
tinuous variables, and an adjusted linear regression model
compared early fungicidal activity by treatment group. Patterns
of cytokine production between response phenotypes were
compared by permutation analysis, using a 1 000 000-iteration
Monte Carlo simulation model described in detail elsewhere
[45]. Because this was an exploratory study to highlight poten-
tially novel findings and avenues for future research, adjust-
ment for multiple comparisons was not made, because use of

stringent adjustment markedly increases the probability of type
2 errors. For all analyses, the 2-dose and 6-dose IFN-γ treat-
ment groups were considered as a single “IFN-γ–treated”
group. Statistical significance was defined as P value of≤ .05.

RESULTS

PBMCs were collected from 44 HIV-infected patients at pre-
sentation with cryptococcal meningitis. The median age was 32
years, 43% were male, and the median CD4+ T-cell count was

Figure 1. A, Analytic gating of the flow cytometry data. a, Singlet cells were sorted from aggregates on the basis of forward-scatter height (FSC-H) and
forward-scatter area (FSC-A). b, Dead cells, B-cells, and monocytes were excluded by staining with live/dead violet viability/vitality dye staining and CD14
and CD19 staining. c, The small lymphocyte population was selected. d, CD3+ cells were selected. CD3+CD8− cells (e) and then CD3+CD4+ cells (f ) were
sequentially selected. g, The memory T-cell population was defined as CD3+CD8−CD4+ cells that were not CD27+CD45RO−. h, Cytokine gating for interfer-
on γ (IFN-γ), interleukin 2 (IL-2), interleukin 4 (IL-4), interleukin 17 (IL-17), macrophage inflammatory protein 1α (MIP-1α) and tumor necrosis factor α (TNF-
α) was done on the memory cell population. B, Analytic gating of the flow cytometry data is shown. Cytokine gating for IFN-γ, IL-2, IL-4, IL-17, MIP-1α,
and TNF-α was done on the memory cell population.
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24 cells/μL (Table 1). Eighteen patients received standard anti-
fungal therapy, and 26 received standard therapy plus interfer-
on gamma. Two-week mortality was 14%. For patients who
survived, ART was initiated after a median of 23 days of anti-
fungal therapy. None of the patients had clinically apparent
CMV disease at the time of sample collection or developed
CMV end-organ disease during the first year of ART. Thirty-
four percent of patients (15) were being treated for tuberculosis
at the time of sample collection, a further 23% (10) had a
history of treated tuberculosis, and 5% (2) developed tuberculo-
sis during the 1-year follow-up period. Additional PBMC
samples were collected from 37 of the 38 surviving patients 2
weeks after the initial sample was collected, following comple-
tion of induction-phase antifungal therapy but prior to ART
initiation, and from 16 surviving patients 1 month following
ART initiation.

Frequency and Magnitude of Antigen-Specific CD4+ T-Cell
Responses
At baseline, CRAG-specific memory CD4+ T-cell responses
were present in 70% of patients (31/44), CMV-specific respons-
es were present in 77% (20/26), andM. tuberculosis–specific re-
sponses were present in 68% (13/19). The median frequencies
of CRAG-, CMV- and M. tuberculosis–specific memory CD4+

T cells in patients with detectable responses were 0.86% (inter-
quartile range [IQR], 0.5%–1.6%), 0.29% (IQR, 0.15%–1.1%),
and 1.34% (IQR, 0.6%–2.3%), respectively (Figure 2A). Despite
no clinical evidence of CMV disease, a number of patients had
extremely large CMV-specific responses: in one patient, 85% of
memory CD4+ T cells were CMV specific. M. tuberculosis–spe-
cific responses were present in 100% of patients (4/4) with

active tuberculosis, 75% (3/4) with previous tuberculosis, and
55% (6/11) with no history of tuberculosis, none of whom de-
veloped active tuberculosis during the 1-year follow-up period.

Phenotype of Response
Maturational and functional characteristics were examined
in pathogen-specific CD4+ T cells at baseline. Cellular
maturation was studied using the differentiation markers
CD27, CD45RO, and CD57 to distinguish between naive
(CD27+CD45RO−), CD27+ memory (CD27+CD45RO+), ef-
fector-memory (CD27–CD45RO+), and terminally differenti-
ated (CD57+) CD4+ T cells [46]. M. tuberculosis–specific
CD4+ T cells had the least mature functional profile, with
18% having a CD27+ memory phenotype, 75% having an
effector-memory phenotype, and 7% having a terminally dif-
ferentiated phenotype. Of the CRAG-specific CD4+ T cells,
13% had a CD27+ memory phenotype, 67% had an effector-
memory phenotype, and 18% had a terminally differentiated
phenotype. CMV-specific CD4+ T cells had the most mature
phenotype, with 14% having a CD27+ memory phenotype,
33% having an effector-memory phenotype, and 53% having
a terminally differentiated phenotype.

To further assess baseline functional response, expression of
IL-2, IL-4, IL-17, MIP-1α, IFN-γ, and TNF-α was measured.
Significantly different patterns of cytokine production were de-
tected in the CRAG-, CMV- andM. tuberculosis–specific T-cell
responses (Figure 2B). A large proportion of CRAG-specific
CD4+ T cells produced MIP-1α (median, 65%), with slightly
less IFN-γ and TNF-α production (median, 37% and 28%, re-
spectively). Negligible IL-2, IL-4, and IL-17 production was ob-
served. In contrast, CMV-specific T cells primarily produced
IFN-γ (median, 75%) and TNF-α (median, 53%), with lower
proportions of MIP-1α (median, 34%) and IL-2 (median,
11%). M. tuberculosis–specific responses were characterized by
a very high percentage of TNF-α–producing cells (median,
90%), along with a lower proportion of IFN-γ– (median, 9%),
MIP-1α–, and IL-2–producing cells. Very little antigen-specific
IL-4 or IL-17 production was detected with either CMV or M.
tuberculosis stimulation.

Baseline polyfunctional phenotypes were assessed through-
out the 64 different possible combinations of the 6 cytokines
(data not shown); however, as IL-4 and IL-17 production was
minimal, phenotypic analysis of a 4-function panel (IFN-γ, IL-2,
MIP-1α, and TNF-α) yielded results that were comparable to
those for the full 6-function panel. In keeping with the
overall cytokine production presented above, significantly dif-
fering functional phenotypes were seen in the different
antigen-specific T-cell responses (CRAG vs CMV, P < .001;
CRAG vs M. tuberculosis, P = .03; Figure 3). CRAG-specific
responses were characterized by a predominance of single-
function MIP-1α–producing cells (median, 42%; IQR, 23%–
77%), with single-function IFN-γ–producing cells (median,

Table 1. Baseline Characteristics of the Cohort

Variable Overall
Alive at
2 wk

Died at
2 wk

Age, y 32 (28–38) 32 (27–38) 32 (28–34)
Male sex 43 (19) 45 (17) 33 (2)

CD4+ T-cell count,
cells/μL

24 (15–50) 26 (16–63) 15 (9–39)

HIV load, log10
copies/mL

4.99 (4.4–5.4) 4.94 (4.4–5.4) 5.32 (5.0–5.7)

CSF lymphocyte
count, ×106

cells/L

15 (1–60) 23 (1–100) 2 (0–5)

Baseline fungal
burden, log10
CFU/mL

5.29 (4.0–5.9) 5.27 (4.0–5.8) 5.9 (3.3–6.1)

Abnormal mental
status

34 (15) 32 (12) 50 (3)

2-wk mortality 14 (6) . . . . . .

Data are median (interquartile range) or % (no.) of subjects.

Abbreviations: CFU, colony-forming units; CSF, cerebrospinal fluid; HIV,
human immunodeficiency virus.

1820 • JID 2013:207 (15 June) • Jarvis et al



6%; IQR, 1%–11%) and single-function TNF-α–producing
cells (median, 4%; IQR, 0%–15%) the next most frequent
phenotypes. Very little polyfunctionality was observed, with
a relatively small proportion of dual-function cells producing
TNF-α and IFN-γ (median, 4%; IQR, 0%–15%) and a very
low proportion of cells producing any other combination of
≥2 cytokines. In contrast, CMV-specific responses were char-
acterized by a notable proportion of triple-function cells pro-
ducing either TNF-α, IFN-γ, and MIP-1α (median, 10%;
IQR, 1%–27%) or TNF-α, IFN-γ, and IL-2 (median, 6%;
IQR, 2–12), along with a large proportion of dual-function
cells producing TNF-α and IFN-γ (median, 16%; IQR,

6%–17%). M. tuberculosis–specific responses were less poly-
functional and were characterized by large proportions of
single-function TNF-α–producing cells (median, 34%; IQR,
15%–49%).

Temporal Changes in Response
Between baseline and day 14, there were no significant changes
in the magnitude or phenotype of antigen-specific T-cell re-
sponses to CRAG, CMV, orM. tuberculosis. Following 1 month
of ART, there was no significant change in the overall median
frequency of CRAG-specific CD4+ T cells, but significant de-
creases of 90% in the frequency of IFN-γ–producing cells

Figure 2. A, The magnitude of cryptococcal antigen (CRAG)–, cytomegalovirus (CMV)–, and Mycobacterium tuberculosis–specific CD4+ T-cell responses
in patients with HIV-associated cryptococcal meningitis. The frequency of CRAG-, CMV-, and M. tuberculosis–specific CD4+ memory T-cell responses in
patients with a detectable antigen-specific response at baseline is shown. The frequency of cytokine-producing cells in each individual is shown as a per-
centage of their total memory CD4+ T-cell population. Wide bars represent the median percentage, with error bars showing the interquartile range. A
detectable total CD4+ T-cell response was defined as at least 0.1% of cells cytokine positive after subtraction of background, with at least 10 cytokine-
positive events over background. Statistical comparison between groups was performed using the Kruskal-Wallis test. In the 4 patients with large magni-
tude CMV responses, 10%, 18%, 23%, and 85% of CD4+ memory T cells were CMV specific. In the 2 patients with large-magnitude M. tuberculosis
responses, 6% and 7% of CD4+ memory T cells were M. tuberculosis specific. B, Differences in cytokine production in response to CRAG, CMV, and
M. tuberculosis. The proportion of CRAG-, CMV-, and M. tuberculosis–specific CD4+ memory T cells producing interferon γ (IFN-γ), interleukin 2 (IL-2), in-
terleukin 4 (IL-4), interleukin 17 (IL-17), macrophage inflammatory protein 1α (MIP-1α), and tumor necrosis factor α (TNF-α; as determined by flow cytome-
try after background subtraction) in patients with a detectable antigen specific response is shown. Bars are to the median, with error bars to the 75th
percentile. The proportion of IFN-γ–producing cells was highest in the CMV-specific responses, while M. tuberculosis–specific responses had the highest
proportions of IL-2 and TNF-α production, and MIP-1α production was highest in CRAG-specific responses.
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(P = .03) and 49% in the frequency of TNF-α–producing cells
(P = .02) were observed. Conversely, there was an increase of
49% in the frequency of CMV-specific T cells (P = .09), which
was primarily accounted for by an increase in the frequency of
IFN-γ–producing cells. There was also a very large increase of
>10-fold (1116%) in the frequency of IFN-γ–producing
M. tuberculosis–specific T cells following 1 month of ART
(P = .03), along with a 98% increase in frequency of TNF-
α–producing M. tuberculosis–specific T cells (P = .03), the
same pattern seen both in those with and those without active
tuberculosis.

Associations Between CRAG-Specific T-Cell Responses and
Clinical Presentation and Outcome of Cryptococcal Meningitis
Associations between the CRAG-specific T-cell responses and
the baseline fungal burden, rate of clearance of infection, and
mortality at 2 weeks were first examined according to the pres-
ence or absence of a detectable antigen-specific response

(hereafter referred to as “total response”). There were no signifi-
cant differences in either baseline fungal burden or rate of
clearance of infection in patients with and patients without
CRAG-specific T-cell responses, and mortality in the 2 groups
was similar (13% vs 15%; P = 1.0). However, the functional
phenotype of the response differed significantly between those
who survived and those who died (P = .01; Figure 4). Those
who died had a significantly higher proportion of single-function
MIP-1α–producing cells than those who survived (80% vs 38%;
P = .02). Survivors tended to have higher percentages of single-
function IFN-γ-producing cells (7% vs 0%; P = .19) and single-
function TNF-α–producing cells (6% vs 1%; P = .13) and a
larger proportion of polyfunctional dual-function IFN-γ– plus
TNF-α–producing cells (7% vs 0%; P = .35) than those who
died.

To further examine associations between the antigen-specific
CD4+ T-cell response phenotype and clinical outcome, the ab-
solute numbers of CRAG-specific T cells (ie, total response)

Figure 3. The functional phenotype of cryptococcal antigen (CRAG)–, cytomegalovirus (CMV)–, and Mycobacterium tuberculosis–specific CD4+ memory
T-cell responses at baseline. Peripheral blood mononuclear cells from human immunodeficiency virus–positive subjects with cryptococcal meningitis were
stimulated with cryptococcal mannoprotein, CMV pp65, or M. tuberculosis ESAT-6, CFP-10, and PPD. Flow cytometry of interferon γ (IFN-γ), interleukin 2
(IL-2), macrophage inflammatory protein 1α (MIP-1α), and tumor necrosis factor α (TNF-α) production within pathogen-specific CD4+ memory T cells is
shown. The bar chart shows each of the 15 possible response profiles on the x-axis. The percentage of the total cytokine response is shown on the y-axis,
with the filled bar representing the interquartile range and a line at the median. CRAG-specific responses are shown in blue, CMV-specific responses are
in red, and M. tuberculosis–specific responses are in green. Statistically significant differences (P < .05) by rank-sum testing are indicated by the pound
sign. The pie charts show the fractions according to the pie-slice colors shown at the bottom of the bar chart, with color-coded circles indicating the contri-
butions of IFN-γ (red), IL-2 (yellow), MIP-1α (green), and TNF-α (blue) to the 4-, 3-, 2-, and 1-function responses. Statistical comparisons of the overall re-
sponses by permutation testing are shown in the pie category test result chart.
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and IFN-γ–, TNF-α–, and MIP-1α–producing T cells were cal-
culated according to mortality (Figure 5). The magnitude of
the total response was similar in survivors and nonsurvivors,
but IFN-γ–producing and TNF-α–producing CRAG-specific
CD4+ T-cell counts tended to be higher in survivors than non-
survivors (24 cells/mL vs 9 cells/mL [P = .26] and 41 cells/mL
vs 11 cells/mL [P = .09]).

Given this dichotomous association, patients were then
analyzed according to whether they had an IFN-γ– and/or
TNF-α–producing CRAG-specific T-cell response at baseline
(hereafter referred to as “IFN-γ/TNF-α response”). Twenty pa-
tients (45%) had detectable IFN-γ– and/or TNF-α–producing
CRAG-specific CD4+ T-cell responses. Overall, patients with
an IFN-γ/TNF-α response were significantly more likely to
survive than those without this response (2-week mortality, 0%
[0 patients] vs 25% [6 patients]; P = .025). Even in an analysis

restricted to patients with a CRAG-specific total response at
baseline, with responses split into MIP-1α–predominant respons-
es (>50% MIP-1α producing) or IFN-γ/TNF-α–predominant
responses (<50% MIP-1α producing), those with the IFN-γ/
TNF-α–predominant response had lower mortality at 2 weeks
(0% vs 19%; P = .16), significantly lower baseline fungal
burdens (10 400 colony-forming units [CFU]/mL vs 390 000
CFU/mL; P < .001) and more rapid clearance of cryptococcal
infection from the CSF (early fungicidal activity, −0.64 vs
−0.52 log10 CFU/mL/day; P = .16).

Correlations Between CRAG-Specific CD4+ T-Cell Responses
and the CSF Immune Response
We examined relationships between CRAG-specific CD4+ T-
cell responses and 12 CSF immune parameters (CSF lympho-
cyte count and IL-2, IL-4, IL-6, IL-10, IL-17, IFN-γ, TNF-α,

Figure 4. Differences in functional phenotype of the cryptococcal antigen (CRAG)–specific responses at baseline between subjects who survived and
subjects who died. Results of flow cytometry of interferon γ (IFN-γ), interleukin 2 (IL-2), macrophage inflammatory protein 1α (MIP-1α), and tumor necrosis
factor α (TNF-α) production within CRAG-specific CD4+ memory T cells at baseline for patients who survived to 2 weeks and those who died are shown.
The bar chart shows each of the 15 possible response profiles on the x-axis. The percentage of the total cytokine response is shown on the y-axis, with the
filled bar representing the interquartile range and a line at the median. CRAG-specific responses in survivors are shown in blue, and response for those
who died are in red. Statistically significant differences (P < .05) on rank-sum testing are indicated by the pound sign. The pie charts show the fractions ac-
cording to the pie-slice colors shown at the bottom of the bar chart, with color-coded circles indicating the contributions of IFN-γ (red), IL-2 (yellow), MIP-
1α (green), and TNF-α (blue) to the 4-, 3-, 2-, and 1-function responses. Statistical comparisons of the overall responses in those who survived versus
those who died by permutation testing are shown in the pie category test result chart.
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RANTES, MIP-1α, MCP-1, and GM-CSF concentrations). Ab-
solute CRAG-specific CD4+ T-cell counts (total response and
IFN-γ–, TNF-α–, and MIP-1α–producing cells) were corre-
lated with CSF lymphocyte counts and log10 CSF cytokine/
chemokine concentrations, using the Spearman correlation co-
efficient. The total CRAG-specific CD4+ T-cell count was not
significantly correlated with the CSF lymphocyte count or any
of the cytokines or chemokines. However, as with the clinical
associations, it appeared that the phenotype, rather than the
magnitude of the peripheral T-cell response, was most relevant.
The IFN-γ–producing CRAG-specific CD4+ T-cell count was
significantly associated with an increasing CSF lymphocyte
count (Spearman rho, 0.34; P = .02), and a similar although
nonsignificant association was found between the TNF-α–
producing CRAG-specific CD4+ T-cell count and an increasing
CSF lymphocyte count (Spearman rho, 0.26; P = .09). IFN-γ–
and TNF-α–producing CRAG-specific CD4+ T-cell counts
were also positively associated with CSF IL-10 and IL-17 con-
centrations (Spearman rho, 0.29 for IFN-γ and IL-10 [P = .05],
0.27 for TNF-α and IL-10 [P = .08], 0.21 for IFN-γ and IL-17
[P = .2], and 0.42 for TNF-α and IL-17 [P = .005]) and nega-
tively associated with MCP-1 concentrations (Spearman rho,
−0.35 for IFN-γ and MCP-1 [P = .02] and −0.27 for TNF-α
and MCP-1 [P = .08]).

To examine the influence of CD4+ T-cell response phenotype
independently from magnitude, an analysis restricted to patients
with a CRAG-specific total response at baseline was performed,
with responses classified as MIP-1α predominant or IFN-γ/
TNF-α predominant as described above. Patients with IFN-γ/
TNF-α–predominant CRAG-specific CD4+ T-cell responses
had higher levels of proinflammatory cytokines in the CSF and
lower levels of MIP-1α, MCP-1, and GM-CSF (Figure 6).

Effects of Exogenous Interferon Gamma on Systemic Immune
Responses
The 44 patients in this study are a subset of a 90-patient cohort
enrolled in a clinical trial assessing the effect of adjuvant inter-
feron gamma administration on the rate of clearance of crypto-
coccal infection from the CSF of patients with HIV-associated
cryptococcal meningitis. Administration of interferon gamma
with standard antifungal therapy led to significantly faster rates of
clearance of infection than standard therapy alone [42]. When
examined according to baseline antigen-specific CD4+ T-cell re-
sponses, the effects of adjunctive interferon gamma therapy were
found to be most marked in patients who had no CRAG-specif-
ic IFN-γ/TNF-α–producing CD4+ T-cell response at baseline.
In the 24 patients without an IFN-γ/TNF-α–producing CD4+

T-cell response at baseline, the addition of interferon gamma led
to an increase of 0.25 log10 CFU/mL/day (95% confidence inter-
val [CI], .07–.43) in the rate of clearance (P = .01), compared
with an increase of 0.15 log10 CFU/mL/day (95% CI, −.05–.35)
in the rate among those with a CRAG-specific IFN-γ/TNF-α–
producing CD4+ T-cell response (P = .14), following adjustment
for absolute CD4+ T-cell count and baseline fungal burden.

To determine whether administration of adjuvant interferon
gamma had an effect on the CRAG-specific T-cell response, the
change in magnitude of the total CRAG-specific CD4+ T-cell
response over the initial 2 weeks of antifungal treatment was ex-
amined with respect to interferon gamma exposure. Overall, in-
terferon gamma treatment was not found to have a statistically
significant impact on either the change in magnitude of the
total CRAG-specific response between days 1 and 14 or the
phenotype of the CD4+ T-cell response on day 14 (Supplemen-
tary Figure 1A). Interferon gamma–treated patients had pro-
portionally less single-function MIP-1α–producing CD4+

Figure 5. The absolute cryptococcal antigen (CRAG)–specific cytokine–producing, interferon γ (IFN-γ)–producing, tumor necrosis factor α (TNF-α)–pro-
ducing and macrophage inflammatory protein 1α (MIP-1α)–producing CD4+ T-cell counts at baseline in subjects who survived and subjects who died. Ab-
solute numbers of antigen-specific CD4+ T cells were calculated by multiplying the proportion of cytokine-positive CD4+ T cells by the total CD4+ T-cell
count. Responses are shown according to 2-week mortality outcome. Statistical comparisons were made using the Mann–Whitney U test.
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T cells than controls on day 14 (24% vs 67%) and higher per-
centages of single-positive IFN-γ– and TNF-α–producing cells
(4% vs 1% and 13% vs 4%, respectively) and dual-function
IFN-γ/TNF-α–producing cells (11% vs 6%).

DISCUSSION

This is the first study characterizing antigen-specific peripheral
CD4+ T-cell responses to Cryptococcus in patients with HIV-
associated cryptococcal meningitis. Although this work is
primarily a descriptive, or “discovery,” study examining a rela-
tively small and heterogeneous patient population, clear trends
are evident when the results are taken as a whole, providing
novel data and unique insights. The magnitude of CRAG-
specific CD4+ T-cell responses in patients with active crypto-
coccal infection was similar to the magnitude of CMV-specific
and M. tuberculosis–specific responses, even though none of
these patients had clinically apparent CMV disease and only
one-third had evidence of active tuberculosis. CRAG-specific
CD4+ T-cell responses differed markedly fromM. tuberculosis–
specific and CMV-specific responses in terms of maturational
and functional profiles. M. tuberculosis–specific CD4+ T cells
were the least differentiated and were primarily TNF-α produc-
ing. CMV-specific CD4+ T cells exhibited a highly differentiat-
ed effector-memory phenotype, primarily produced IFN-γ and

TNF-α, and included large numbers of polyfunctional cells.
CRAG-specific CD4+ T cells had a more differentiated matura-
tional profile than M. tuberculosis–specific CD4+ cells but were
less differentiated than CMV-specific cells. A large proportion
of CRAG-specific cells produced MIP-1α, with slightly lower
proportions producing IFN-γ or TNF-α, and very little poly-
functionality observed. Following ART initiation, CRAG-
specific responses decreased or remained constant, in keeping
with a reduction in antigen burden during effective antifungal
therapy. In contrast, the magnitude of both M. tuberculosis–
and CMV-specific responses increased following ART initiation,
particularly markedly in the case of M. tuberculosis–specific re-
sponses. From low levels of M. tuberculosis–specific IFN-γ
production at baseline (when TNF-α predominated), there was
a 10-fold increase in the frequency of IFN-γ–producing CD4+

T cells after 1 month of ART. This observation is consistent
with the observed poor performance of IFN-γ release assays
in the diagnosis of tuberculosis in highly immune-suppressed
populations [47].

Although CD4+ T-cell depletion is the key predisposing
factor for development of HIV-associated cryptococcal menin-
gitis, in this cohort of patients with cryptococcal meningitis the
functional phenotype of the CRAG-specific CD4+ T-cell re-
sponse was associated with disease severity and clinical
outcome, unlike the overall magnitude of response. Survivors

Figure 6. Cerebrospinal fluid (CSF) immune parameters in subjects with and subjects without an interferon γ (IFN-γ)/tumor necrosis factor α (TNF-α)–
predominant cryptococcal antigen (CRAG)–specific CD4+ T-cell response. CSF cytokine concentrations in patients with a detectable CRAG-specific CD4+

memory T-cell response are shown, divided into patients with an IFN-γ/TNF-α–predominant response or a macrophage inflammatory protein 1α (MIP-1α)–
predominant response. A detectable total CD4+ T-cell response was defined as at least 0.1% of cells cytokine positive after subtraction of background,
with at least 10 cytokine-positive events over background. A MIP-1α–predominant response was defined as >50% of CRAG-specific cells producing MIP-
1α, and a IFN-γ/TNF-α–predominant response was defined as <50% CRAG-specific cells producing MIP-1α. Statistical comparisons were made using the
Mann–Whitney U test. Abbreviations: GM-CSF, granulocyte-macrophage colony-stimulating factor; MCP-1, monocyte chemotactic protein 1.
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had higher proportions of IFN-γ– and TNF-α–producing cells
and significantly lower proportions of MIP-1α–producing
cells. When analyzed according to the presence or absence of
an IFN-γ/TNF-α–producing CRAG-specific CD4+ T-cell re-
sponse, those with such a response were found to have higher
CSF lymphocyte counts, a more proinflammatory CSF cytokine
response, significantly lower baseline fungal burdens, a trend to
more rapid clearance of infection from the CSF, and a signifi-
cantly lower 2-week mortality.

No Th2- or Th17-type antigen-specific cytokine production
was seen in response to mannoprotein stimulation. Given the
widely reported role of Th2-type responses in animal models of
cryptococcal meningitis [16, 22, 23, 28], and especially in light
of the described Th2-weighting of immune responses in late-
stage HIV-infection [37], this may seem surprising. However
this finding could be related to the use of mannoprotein rather
than whole-organism or other capsular components in cell
stimulations. Cryptococcal mannoproteins have previously
been shown to elicit delayed-type hypersensitivity and Th1-
type cytokines [48, 49], while other capsular components,
notably GXM, appear to inhibit these responses, promoting
detrimental Th2-type immunity [50]. It is possible that, rather
than Th2-type CD4+ T-cell responses to C. neoformans, an ab-
solute lack of CD4+ T cells may lead to detrimental Th2-type
cytokine production by monocytes/macrophages or glial cells
in HIV-associated cryptococcal meningitis. However, we found
no inverse correlation between either total or IFN-γ/TNF-α–
producing CRAG-specific peripheral CD4+ T-cell counts and
Th2-type CSF cytokine levels. The only inverse correlation seen
was between the number of IFN-γ/TNF-α–producing CRAG-
specific peripheral CD4+ T cells and the chemokine MCP-1,
suggesting that an adequate peripheral CD4+ T-cell response
leads to downregulation of CNS chemokine production.

In terms of determining the mechanism by which exogenous
IFN-γ leads to more rapid clearance of cryptococcal infection
from the CSF, our results are inconclusive. The benefits of exog-
enous IFN-γ were most marked in patients with no IFN-γ/
TNF-α–producing CRAG-specific peripheral CD4+ T-cell re-
sponse. However, this did not reach statistical significance,
possibly because our study was underpowered for such com-
parisons, particularly for subgroup analyses and in situations
where there was much heterogeneity of responses. As the bio-
logical effects of exogenous IFN-γ may primarily result from
direct activation of innate effector cells such as monocytes/
macrophages and microglial cells, a limitation of this study is
that innate effector-cell function was not directly examined.
Further work is required to better characterize the subgroup of
patients who have poor baseline immune responses to Cryptococ-
cus, in whom adjuvant immunotherapy may be of most benefit.

In conclusion, the presence of an IFN-γ/TNF-α–producing
CRAG-specific peripheral CD4+ T-cell response has been
shown to correlate with favorable microbiological and clinical

outcomes in patients with HIV-associated cryptococcal menin-
gitis. Mannoprotein stimulation of peripheral CD4+ T cells did
not lead to Th2-cytokine production even in these patients
with advanced HIV. Unlike animal models, we found no evi-
dence of a dichotomous Th1/Th2 response in this cohort of pa-
tients with advanced HIV infection and cryptococcal
meningitis. Rather, an IFN-γ/TNF-α–producing CRAG-specif-
ic peripheral CD4+ T-cell response was associated with in-
creased concentrations of cytokines at the site of infection,
including classical Th1 cytokines, as well as IL-10 and IL-17,
and the presence of this combined inflammatory response
appears to be beneficial, while its absence is detrimental.
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