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The aim of the present study was to provide a mechanistic insight into how phosphatase activity infl uences calcium-
activated chloride channels in rabbit pulmonary artery myocytes. Calcium-dependent Cl− currents (IClCa) were 
evoked by pipette solutions containing concentrations between 20 and 1000 nM Ca2+ and the calcium and voltage 
dependence was determined. Under control conditions with pipette solutions containing ATP and 500 nM Ca2+, 
IClCa was evoked immediately upon membrane rupture but then exhibited marked rundown to �20% of initial 
 values. In contrast, when phosphorylation was prohibited by using pipette solutions containing adenosine 5′-(β,γ-
 imido)-triphosphate (AMP-PNP) or with ATP omitted, the rundown was severely impaired, and after 20 min 
dialysis, IClCa was �100% of initial levels. IClCa recorded with AMP-PNP–containing pipette solutions were signifi -
cantly larger than control currents and had faster kinetics at positive potentials and slower deactivation kinetics at 
negative potentials. The marked increase in IClCa was due to a negative shift in the voltage dependence of activation 
and not due to an increase in the apparent binding affi nity for Ca2+. Mathematical simulations were carried out 
based on gating schemes involving voltage-independent binding of three Ca2+, each binding step resulting in 
channel opening at fi xed calcium but progressively greater “on” rates, and voltage-dependent closing steps (“off” 
rates). Our model reproduced well the Ca2+ and voltage dependence of IClCa as well as its kinetic properties. The 
impact of global phosphorylation could be well mimicked by alterations in the magnitude, voltage dependence, 
and state of the gating variable of the channel closure rates. These data reveal that the phosphorylation status of 
the Ca2+- activated Cl− channel complex infl uences current generation dramatically through one or more critical 
voltage-dependent steps.

I N T R O D U C T I O N

In smooth muscle cells, Cl− ions are actively accumu-

lated by three major uptake mechanisms: the Na-K-2Cl 

cotransporter, the Cl:HCO3 exchanger, and a poorly 

characterized “pump III” (Chipperfi eld and Harper, 

2000). The product of these transporter systems is an 

intracellular [Cl−] lying between 30 and 80 mM (Chip-

perfi eld and Harper, 2000). This results in an electro-

chemical gradient favoring Cl− effl ux at the measured 

resting membrane potential of �−40 to −60 mV. As a 

consequence, activation of Cl− channels is an important 

mechanism to increase smooth muscle cell excitability 

by depolarizing the cell membrane potential (Large 

and Wang, 1996; Leblanc et al., 2005).

The most extensively recorded Cl− channel current in 

smooth muscle cells is evoked by a rise in intracellular 

[Ca2+], the so called calcium-activated chloride current 

(IClCa). There have been numerous studies reporting the 

activation of IClCa by various agents and manipulations 

in smooth muscle cells (Large and Wang, 1996; Leblanc 

et al., 2005). However, the molecular identity remains 

elusive and little is known about how the channel is gated 

by a rise in [Ca2+] or how intracellular regulators mod-

ify this process. Recent studies revealed that the activity 

of Ca2+-dependent Cl− channels (ClCa) is infl uenced by 

Ca2+-dependent enzymes. For example, blockers of the 

Ca2+-calmodulin–dependent kinase CaMKII prolong 

the duration of IClCa in myocytes isolated from trachea 

(Wang and Kotlikoff, 1997) and enhance IClCa in pulmo-

nary and coronary artery smooth muscle cells (Green-

wood et al., 2001). The suppressive role of CaMKII in 

pulmonary artery myocytes was substantiated by the 

use of constitutively active CaMKII (Greenwood et al., 

2001). Subsequent experiments established that a coun-

ter mechanism of regulation is provided by the Ca2+-

dependent serine/threonine phosphatase calcineurin 

or PP2B (Ledoux et al., 2003; Greenwood et al., 2004). 

Moreover, in pulmonary artery myocytes, the positive 

regulation of IClCa depends on the isoform of the cata-

lytic subunit (Greenwood et al., 2004).  Consequently, 
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while it is axiomatic that generation of IClCa relies upon 

an increase in [Ca2+]i, dephosphorylation of the chan-

nel complex also determines IClCa activity.

The aim of the present study was to undertake a rigor-

ous examination of the activation of IClCa by intracellular 

[Ca2+] under conditions where phosphorylation is sup-

ported or minimized. To obviate any reliance upon Ca2+ 

infl ux or Ca2+ release mechanism, IClCa was activated by 

pipette solutions containing free [Ca2+]i set at known con-

centrations. This technique has been employed to char-

acterize similar conductances in lacrimal cells ( Evans and 

Marty, 1986), parotid acinar cells (Arreola et al., 1996), 

endothelial cells (Nilius et al., 1997), and Xenopus oocytes 

(Kuruma and Hartzell, 2000). Recently we have used this 

technique to study IClCa in smooth muscle cells isolated 

from hepatic portal vein, pulmonary artery, and coronary 

artery (e.g., Greenwood et al., 2001; Ledoux et al., 2003; 

Greenwood et al., 2004; Ledoux et al., 2005). With pipette 

solutions containing free Ca2+ higher than the threshold 

for activation, IClCa was sustained and exhibited distinc-

tive voltage-dependent kinetics following membrane de-

polarization. In the present study, IClCa was recorded with 

pipette solutions containing different [Ca2+] ranging 

from 20 to 1000 nM and either 3 mM ATP or 3 mM aden-

osine 5′-(β,γ- imido)-triphosphate (AMP-PNP) to assess 

the mechanistic effect of dephosphorylation on the Cl− 

conductance. As the terminal phosphate of AMP-PNP is 

resistant to hydrolysis (Yount, 1975), this compound pro-

hibits substrate phosphorylation and has been used in 

studies to explore the role of phosphorylation (e.g., regu-

lation of CFTR; Gadsby and Nairn, 1999). Consequently, 

the action of endogenous phosphatases was accentuated. 

These experiments revealed calcium and voltage depen-

dency of IClCa activation. Moreover, the results provide a 

novel insight into how the gating of the Ca2+-activated 

Cl− channel is infl uenced by dephosphorylation.

M AT E R I A L S  A N D  M E T H O D S

Isolation of Freshly Dissociated Pulmonary Artery Myocytes
A similar technique to that previously used by our group (Green-
wood et al., 2001, 2004) was used to isolate smooth muscle cells. In 
brief, cells were prepared from the main and secondary pulmonary 
arterial branches dissected from New Zealand white rabbits (2–3 
kg) killed by anesthetic overdose in accordance with British and 
American regulations. After dissection and removal of connective 
tissue, the pulmonary arteries were cut into small strips and incu-
bated overnight (�16 h) at 4°C in a low Ca2+ physiological salt 
solution (PSS) containing either 10 or 50 μM CaCl2 and 1 mg ml−1 
papain, 0.15 mg ml−1 dithiothreitol, and 2 mg ml−1 BSA. The next 
morning, the tissue strips were rinsed three times in low Ca2+ PSS 
and incubated in the same solution for 10 min at 37°C. Cells were 
released by gentle agitation with a wide bore Pasteur pipette. Cells 
were stored at 4°C and used within 10 h after dispersion.

Patch Clamp Methods
Ca2+-activated Cl− currents were elicited in conventional whole-
cell path clamp mode by pipette solutions containing 10 mM 

BAPTA and free [Ca2+] set to values ranging from 20 to 1000 nM 
by the addition of 0.84–8.7 mM CaCl2 as determined by the cal-
cium chelator program EQCAL (Biosoft). Free [Ca2+] was veri-
fi ed independently using a Ca2+-sensitive electrode (Thermo 
Orion, model 93–20) using calibrated solutions (CALBUF-2; 
World Precision Instruments Inc.). These [Ca2+] constitute a dy-
namic range experienced by smooth muscle cells physiologically 
(e.g., ZhuGe et al., 2002). It is worth stressing that contraction 
of the myocyte was observed with pipette solutions containing 
Ca2+ >100 nM as Ca2+ fl ooded into the cell following membrane 
rupture. No attempt was made to block this contraction (e.g., by 
inhibition of myosin light chain kinase) as this would introduce 
another variable into the recording conditions. Contamination of 
IClCa from other types of current was minimized by the use of CsCl 
and TEA in the pipette solution, and TEA in the external solu-
tion. Control pipette solutions contained 3 mM ATP, whereas the 
test internal solutions contained 3 mM AMP-PNP. On any given 
experimental day, pipette solutions containing ATP were rigor-
ously alternated with one containing AMP-PNP. However only 
one Ca2+ concentration could be practically tested on the same 
day due to the low success rate of maintaining a stable recording 
for the entire 20 min of cell dialysis. Consequently, data for each 
group were collected in cells from at least two animals. In all cases, 
the cell capacitance was similar across the whole study. Mean ± 
SEM cell capacitances measured from cells dialyzed with ATP 
for the following pipette Ca2+ concentrations were as follows: 20 
nM, 21.3 ± 6.4 pF (n = 5); 100 nM, 18.8 ± 3.0 pF (n = 3); 250 nM, 
21.1 ± 1.6 pF (n = 13); 500 nM, 18.2 ± 1.3 pF (n = 11); 750 nM, 
16.4 ± 1.7 pF (n = 8); 1000 nM, 13.1 ± 1.4 pF (n = 6). Con-
versely, for the AMP-PNP group of data, mean ± SEM cell capaci-
tances for the same pipette Ca2+ concentrations were as follows: 
20 nM, 21.3 ± 2.4 pF (n = 5); 100 nM, 19.3 ± 1.9 pF (n = 8); 250 nM, 
22.3 ± 3.9 pF (n = 7); 500 nM, 18.5 ± 1.1 pF (n = 15); 750 nM, 
18.1 ± 1.5 pF (n = 13); 1000 nM, 19.1.1 ± 1.9 pF (n = 16). The 
relatively small error bars in each group combined with the high 
correlation coeffi cients of the Hill equation fi ts to the data (see 
Fig. 3) gave us confi dence in our ability to determine accurately 
the Ca2+ dependence of IClCa in phosphorylated and dephosphor-
ylated conditions.

IClCa was evoked immediately upon rupture of the cell mem-
brane, and the voltage-dependent properties were monitored ev-
ery 10–20 s by stepping from a holding potential (Vh) of −50 mV 
to either +70 or +90 mV for 750 ms or 1 s, followed by repolariza-
tion to −80 mV for 0.5 or 1 s. Current–voltage relationships were 
constructed by stepping in 10-mV increments from Vh to test po-
tentials between −100 mV and +130 mV for 1 s after 20 min dialysis. 
IClCa was represented as the chord conductance normalized to cell 
capacitance determined from a 10-mV hyperpolarizing pulse from 
Vh. The calcium dependence of IClCa was determined at each test 
potential by plotting the mean conductance at the end of the test 
step (t = 1 s) from n cells against pipette [Ca2+] and fi tting the data 
with the Hill equation (Eq. 1) lacking fi tting constraints on upper 
and lower asymptotes. For Eq. 1, Y is the Cl− conductance (nS/
pF), Ymax is the maximal conductance, Kd is the apparent binding 
affi nity constant, η is the Hill coeffi cient, and c is a constant:

 η η η= + +2+ 2+
max*[Ca ] /(   [Ca ] )  .dY Y K c  (1)

The voltage dependence of IClCa generation was assessed by 
plotting the mean chord conductance against test potential for 
each pipette [Ca2+]. These data were then fi tted by a Boltzmann 
function (Eq. 2) where G is the conductance at a given potential, 
Gmax is the maximum conductance, V is the voltage, V0.5 is the volt-
age required for half-maximal amplitude, k is the steepness of the 
voltage dependence, and c is a constant:

 = + − +max 0.5/{1 exp[( )/ ]} .G G V V k c  (2)
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The kinetics of IClCa were generally well fi tted by a single expo-
nential function although two exponential terms were required 
in some cases at higher [Ca2+] (e.g., >500 nM; see Fig. 9). The 
formula describing such fi ts is the following:

 = − τ + − τ +1 fast 2 slow* exp( / ) * exp( / ) ,I A t A t c  (3)

where I is the amplitude of the current, A1 (equal to 0 for a single 
exponential term) and A2 are the amplitudes of the fast and slow 
component of deactivation, respectively, t is the time, τfast and τslow 
are the fast and slow time constant deactivation, respectively, and 
c is a constant.

Solutions
Single pulmonary arterial myocytes were isolated by incubating 
pulmonary arterial tissue strips in the following low Ca2+ PSS (in 
mM): NaCl (120), KCl (4.2), NaHCO3 (25; pH 7.4 after equili-
bration with 95% O2–5% CO2 gas), KH2PO4 (1.2), MgCl2 (1.2), 
glucose (11), taurine (25), adenosine (0.01), and CaCl2 (0.01 or 
0.05). The K+-free bathing solution used in all patch clamp ex-
periments had the following composition (in mM): NaCl (126), 
HEPES-NaOH (10, pH 7.35), TEA (10), glucose (20), MgCl2 
(1.2), and CaCl2 (1.8). The pipette solution had the following 
composition (in mM): TEA (20), CsCl (106), HEPES-CsOH (10, 
pH 7.2), BAPTA (10), GTPNa2 (0.2), MgCl2 (0.42), and either 
3 mM ATP or 3 mM AMP-PNP (both Mg and Na salts of ATP 
were used because a Mg salt of AMP-PNP was unavailable and 
quantitatively similar results were obtained) or no added nucle-
otide (0 ATP). All enzymes and reagents were purchased from 
Sigma-Aldrich.

Computer Simulations
The behavior of macroscopic ClCa channel activity in pulmonary 
artery myocytes dialyzed with ATP and AMP-PNP was mathemati-
cally simulated using Markov chain kinetic models that were 
solved numerically by Axon Engineer software (version 2.11c, 
Aeon Software Inc.) run under DOS on a PC (Pentium III, 800 
MHz) running under Windows ME platform. Ordinary differen-
tial equations were simultaneously solved by the Gear numerical 
integration method using incremental time steps of 0.1 μs in du-
ration with enabled stiffness constraint. All voltage clamp simula-
tions lasted 2.5 s and were initiated from a holding potential of 
−50 mV under steady-state conditions. Simulated time- dependent 
currents elicited with 20, 100, 250, 500, 750, and 1000 nM 
Ca2+ for potentials ranging from −100 to +140 mV (20-mV incre-
ments), and steady-state conductance vs. voltage curves at each 
[Ca2+] generated by Axon Engineer were exported in ASCII for-
mat into Microsoft Offi ce Excel 2003 and then into Origin 7.5 
(OriginLab Corp.). The specifi c parameters and equations used 
in the simulations are listed in Table I.

Statistical Analysis
All data were accrued from n cells taken from at least three differ-
ent animals with error bars representing the SEM unless other-
wise stated (e.g., Figs. 5 and 7). For each experimental day, IClCa 
was evoked by ATP-containing pipette solutions alternated with 
AMP-PNP–containing pipette solutions, i.e., the comparison be-
tween ATP and AMP-PNP was maintained for each set of cells. All 
data were fi rst pooled in Excel and means exported to Origin 7.5 
software for plotting and curve fi tting. Time constants of activa-
tion and deactivation were determined by curve fi tting of individ-
ual current traces using Clampfi t (PClamp, version 8.2; Molecular 
Devices Corp.) and the data exported to Excel 2003 and Origin 
7.5 software. All graphs and current traces were exported to Corel-
Draw 12 for fi nal processing of the fi gures. Statistica for Windows 
99 (version 5.5) was used to determine statistical signifi cance be-
tween groups with one-way or two-way ANOVA tests followed by 

Fisher LSD post-hoc multiple range tests in multiple group com-
parisons. P < 0.05 was considered to be statistically signifi cant.

Online Supplemental Material
Full details of the kinetic analysis of IClCa recorded in myocytes 
dialyzed with ATP or AMP-PNP and the parameters used for 
the computer simulations can be found in the online supple-
mental material (available at http://www.jgp.org/cgi/content/
full/jgp.200609507/DC1).

R E S U LT S

Cell Dialysis with AMP-PNP, a Nonhydrolyzable Analogue 
of ATP, Attenuates the Rundown of IClCa in Pulmonary 
Artery Myocytes
Under conditions prohibiting the activity of K+ chan-

nels, intracellular dialysis of rabbit pulmonary artery 

myocytes with a pipette solution containing free Ca2+ 

concentration >100 nM consistently elicited a membrane 

TA B L E  I

Parameters Used To Compute the Mathematical Model Describing the 
Impact of Global Phosphorylation Status on the Regulation of IClCa

ATP AMP-PNP Units

Conductance and 

equilibrium potential

Maximal conductance 1.16 1.16 mS/cm2

ECl 0 0 mV

Values of gating variables

C1 0 0

C2.Ca 0 0

C3.2Ca 0 0

C4.3Ca 0 0

O1 1 1

O2 0 1

O3 0 1

Ca2+ binding rates

kon(C1→C2.Ca) 20 × 106 20 × 106 M−1s−1

kon(C2.Ca→C3.2Ca) 20 × 106 20 × 106 M−1s−1

kon(C2.Ca→C3.2Ca) 20 × 106 20 × 106 M−1s−1

Unbinding rates

koff(C2.Ca→C1 + Ca) 50 50 s−1

koff(C3.2Ca→C2.Ca + Ca) 50 50 s−1

koff(C4.3Ca→C3.2Ca + Ca) 50 50 s−1

Channel opening rates

α1(C2.Ca→O1) 75 75 s−1

α2(C3.2Ca→O2) 150 150 s−1

α3(C4.3Ca→O3) 300 300 s−1

Channel closing ratesa

β1(V)(O1→C2.Ca)

where a, V0.5, and k = 10, 75, and 50 5, 90, and 50 s−1, mV, mV

β2(V)(O2→C3.2Ca)

where a, V0.5, and k = 75, 120, and 50 5, 0, and 50 s−1, mV, mV

β3(V)(O3→C4.3Ca)

where a, V0.5, and k = 100, 120, and 50 5, −60, and 50 s−1, mV, mV

aAll βx(V) used the following Boltzmann equation form: βx(V) = a/{1 + exp

[(V − V0.5)/k]}.



76 Regulation of IClCa by Phosphorylation in VSMCs

current that had characteristics identical to the “classical” 

Ca2+-activated Cl− current (IClCa) evoked by a similar 

method in this preparation (Greenwood et al., 2001; 

Piper et al., 2002; Greenwood et al., 2004) and other 

cell types (Evans and Marty, 1986; Arreola et al., 1996; 

Nilius et al., 1997; Kuruma and Hartzell, 2000; Ledoux 

et al., 2003). These include the following: (a) anion 

 selectivity with a permeability sequence of SCN− >> I− > 

Cl− >> aspartate; (b) activation by [Ca2+]i in the range 

of 100 to 1000 nM; (c) strong outward rectifi cation due 

to voltage-dependent gating; (d) time-dependent acti-

vation and deactivation; and (e) sensitivity to block by 

nifl umic acid, a putative IClCa blocker. This approach 

bears a great advantage over other conventional meth-

ods used to elicit IClCa (e.g., by spontaneous or evoked 

Ca2+ release from the sarcoplasmic reticulum, or by 

Ca2+ entry through voltage-gated Ca2+ channels; for a 

review see Leblanc et al., 2005) in that potentially unde-

sirable effects of manipulating phosphorylation status 

on the Ca2+ source triggering IClCa can be effectively 

eliminated, thus allowing a direct study of how phos-

phorylation infl uences the channels themselves or any 

regulatory subunits.

Fig. 1 A shows that IClCa elicited by 500 nM Ca2+ exhib-

ited rapid rundown in cells dialyzed with 3 mM ATP. 

The amplitude of IClCa remained constant once the ini-

tial rundown period had passed so that after the 20-min 

recording period, the relative amplitude of IClCa was 17 ± 

6% of initial control amplitude at t = 0 (n = 5; Fig. 1 B). 

In contrast, IClCa elicited with pipette solutions con-

taining 500 nM Ca2+ and AMP-PNP, a nonhydrolyzable 

analogue of ATP, recovered steadily after an initial at-

tenuated rundown so that after 20 min recording, the 

amplitude of IClCa at +90 mV was 105 ± 17% of the cur-

rent recorded at t = 0 (n = 6; Fig. 1 B). The pattern of 

rundown and recovery of IClCa was similar in experi-

ments performed with a pipette solution lacking ATP 

(nominally zero ATP; unpublished data). These data 

Figure 1. Attenuation of rundown of Ca2+-activated 
Cl− current in rabbit pulmonary artery myocytes by 
intracellular dialysis with a nonhydrolyzable form of 
ATP, AMP-PNP. (A) Representative current traces 
from typical experiments showing the time-dependent 
changes of Ca2+-activated Cl− current recorded 
from pulmonary arterial smooth muscle cells dia-
lyzed with 500 nM Ca2+ and 3 mM ATP (fi rst row) or 
3 mM AMP-PNP (second row). Currents recorded 
immediately after breaking the seal (0 min), and af-
ter 2 and 20 min of cell dialysis were elicited by re-
petitive steps (every 10 s) to +90 mV lasting 1 s from 
a holding potential (HP) of −50 mV . Each depolar-
izing pulse to +90 mV was followed by a repolarizing 
step to −80 mV to enhance the magnitude of the tail 
current. The voltage clamp protocol is shown below 
the traces. (B) Similar to the experiments depicted 
in A, this graph shows the mean time course of 
changes of normalized IClCa amplitude elicited by 1-s 
depolarizing pulses to +90 mV, followed by 1-s repo-
larizing steps to −80 mV, in the presence of 3 mM 
ATP (fi lled squares; n = 5) or 3 mM AMP-PNP 
(empty squares; n = 6); each step was applied from 
HP = −50 mV at a frequency of one pulse every 10 s 
for 20 min. Please note the attenuation of rundown 
of IClCa and the delayed recovery of this current in 
cells dialyzed with AMP-PNP.
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are consistent with recent fi ndings showing that IClCa in 

smooth muscle cells is down-regulated by phosphoryla-

tion through CaMKII, an effect that is antagonized, at 

least in part, by calcineurin (Greenwood et al., 2001, 

2004; Ledoux et al., 2003). These observations suggest 

that the rundown of IClCa in pulmonary artery myocytes 

dialyzed with ATP was likely due to a shift in the phos-

phorylation status in the vicinity of the channel. The 

following series of experiments aimed to determine the 

biophysical mechanisms driving IClCa gating under dif-

ferent conditions of global cellular phosphorylation, 

that is after 20 min cell dialysis with 3 mM ATP or 3 mM 

AMP-PNP.

Ca2+ Dependence of IClCa

To obtain quantitative information about the impact of 

phosphorylation on Ca2+-activated Cl− channels, we 

studied the effect of dialyzing pulmonary artery myo-

cytes with pipette solutions containing different free 

[Ca2+] and either ATP or AMP-PNP. With pipette solu-

tions containing ATP and 20 nM free Ca2+ no time-

 dependent current was evoked at the holding potential 

of −50 mV and no outward relaxations were recorded 

upon membrane depolarization up to +130 mV (Fig. 2, 

left). Similarly, 100 nM Ca2+ elicited negligible current 

at −50 mV, but in some cells, test steps to potentials pos-

itive to +80 mV produced an instantaneous outward 

current followed by an outward relaxation that was well 

fi tted by a single exponential. When pipette solutions 

contained Ca2+ in the range of 250 to 1000 nM, progres-

sively greater inward current was generated at −50 mV, 

and time-dependent outward relaxations were observed 

with depolarizing test steps that were followed by promi-

nent time-dependent inward tail currents upon repolar-

ization to −50 mV. With AMP-PNP in the pipette 

solution, the threshold for activation of IClCa was similar 

Figure 2. General properties of Ca2+-activated Cl− cur-
rents recorded from cells dialyzed with distinct free 
Ca2+ concentrations in the presence of ATP or AMP-
PNP. Typical families of IClCa recorded with pipette solu-
tions containing 20, 100, 250, 500, 750, or 1000 nM 
Ca2+, with either 3 mM ATP (left) or 3 mM AMP-PNP 
(right). All families of currents were evoked by the pro-
tocol shown at bottom. Notice the different vertical cali-
bration bars for the traces recorded with ATP and 
AMP-PNP. Besides being much larger in cells dialyzed 
with AMP-PNP versus ATP, IClCa activated more quickly 
and deactivated more slowly with AMP-PNP. All traces 
were obtained after 20 min of cell dialysis.



78 Regulation of IClCa by Phosphorylation in VSMCs

to that observed for ATP-containing pipette solutions 

(Fig. 2, right). Dialysis with 20 nM Ca2+ had a negligible 

effect on membrane currents, and only occasionally 

were time-dependent currents observed at very depolar-

ized potentials in response to 100 nM Ca2+. However, 

with 250 and 1000 nM Ca2+, much larger IClCa with dis-

tinctive outward relaxations were evoked. The kinetics 

of the outward relaxation and subsequent inward cur-

rent upon repolarization were dependent on [Ca2+] 

and are analyzed in a later section.

The Ca2+ dependence of IClCa at different potentials 

was quantifi ed as described in Materials and Methods. 

While the maximal conductance of IClCa was more than 

threefold larger in AMP-PNP–containing myocytes, 

IClCa displayed a similar Ca2+ dependence in the two 

cell groups with a threshold between 100 and 250 nM 

Ca2+ and a maximum lying between 500 and 1000 nM 

depending on the voltage (Fig. 3). Ca2+-dependent 

activation curves for cells dialyzed with ATP could not 

be determined for potentials below the predicted ECl 

(�0 mV) as the currents were too small in the negative 

range of membrane potentials. Also apparent from the 

plots in Fig. 3 (A and B) was the progressive rightward 

shift of the Ca2+ dependence of IClCa with membrane 

hyperpolarization.

A more detailed analysis of the impact of the two nu-

cleotides on the Ca2+ dependence of IClCa is shown in 

Fig. 4. Panel A shows a graph reporting the voltage de-

pendence of the apparent Kd for Ca2+ obtained with 

ATP (fi lled squares) and AMP-PNP (empty squares). In 

both cases, the apparent Kd decreased with membrane 

depolarization from �400 nM at +60 mV to �200 nM 

at +130 mV. However, only the data obtained with AMP-

PNP could be fi tted with confi dence over the entire 

range of membrane potentials examined (due to much 

larger currents measured at negative potentials). We 

also determined the effects of membrane potential on 

the Hill coeffi cient in the two cell groups. The data ob-

tained with AMP-PNP indicate that the Hill coeffi cient 

η decreased exponentially as function of membrane po-

tential from �3 at −100 mV to a minimal level of �2 at 

potentials >0 mV. The range of values of η and its volt-

age dependence are similar to those reported for IClCa 

in Xenopus oocytes (Kuruma and Hartzell, 2000). Again, 

Hill coeffi cients could not be determined for the ATP 

data at potentials more negative than +60 mV. How-

ever, as for the apparent Kd, there were no signifi cant 

differences in η between the two groups of data at po-

tentials ranging from +60 to +130 mV. Thus, neither a 

change in Ca2+ sensitivity of the channels nor the num-

ber of Ca2+ ions activating the channel is responsible 

for the alterations of the biophysical properties of IClCa 

in response to global changes in phosphorylation status 

of the smooth muscle cell.

Voltage Dependence of IClCa

Activation of IClCa has an obligatory requirement for 

an increase in [Ca2+], as discussed above (also see 

Leblanc et al., 2005). However, the current–voltage re-

lationship (I-V) of IClCa in pulmonary artery myocytes 

and other cell types at steady state is outwardly rectify-

ing (Arreola et al., 1996; Nilius et al., 1997; Kuruma 

and Hartzell, 2000; Greenwood et al., 2001; Ledoux 

et al., 2003;  Greenwood et al., 2004), suggesting that 

activation of IClCa is infl uenced by voltage. In the pre-

sent study the voltage dependence of IClCa activation 

was ascertained by fi tting the normalized maximal Cl− 

conductance at a given [Ca2+] with the Boltzmann 

Figure 3. Calcium dependence of IClCa at different membrane 
potentials recorded after prolonged cell dialysis with ATP or AMP-
PNP. For the experiments conducted with ATP (A; n = 3–13) and 
AMP-PNP (B; n = 5–16), all data from experiments identical to 
those described in Fig. 2 were pooled and the mean chord con-
ductance ± SEM (calculated using Eq. 1 in the Materials and 
Methods) at each step potential plotted as a function of pipette 
Ca2+ concentration ranging from 20 to 1000 nM Ca2+. Data at 
many potentials were purposely omitted for the sake of clarity but 
values extracted from such potentials are represented in Fig. 4. 
Each data set was fi tted with the Hill equation (Eq. 1 in Materials 
and Methods) for determination of the Ca2+ affi nity and Hill 
 coeffi cient at a given step potential, which are described in Fig. 4. 
In A, the Ca2+ dependence of the chord conductance measured 
with ATP at potentials negative to 0 mV could not be fi tted due 
to the small and variable magnitude of the macroscopic IClCa re-
corded in the negative range of membrane potentials. All plots 
were generated from data obtained after 20 min of cell dialysis 
with either nucleotide.



 Angermann et al. 79

function (Eq. 2). All data were collected after 20 min 

dialysis. In ATP and AMP-PNP recording conditions, 

membrane depolarization increased the amplitude of 

IClCa at all [Ca2+] tested.

As shown in Fig. 5, the voltage dependence of activa-

tion of IClCa spanned >230 mV, exceeding the practical 

range of measurement. The half-maximal activation 

voltage (V0.5) values in ATP and AMP-PNP at low Ca2+ 

were positive to +130 mV. To characterize the voltage 

dependence of current activation, we fi tted the data 

with a Boltzmann function. The data generated with 

AMP-PNP (Fig. 5 B) for 500, 750, and 1000 nM Ca2+ ex-

trapolated to maximum conductances between 0.95 

and 1.78 nS/pF with an average of 1.16 nS/pF. The fact 

that extrapolation of the Boltzmann relationships cal-

culated for these three data sets, each of which started 

at a different basal level in the negative range of mem-

brane potentials (Fig. 5 B), yielded similar extrapolated 

maximal conductances (considering they were obtained 

from different experimental series) provided support 

to our approach of using the mean value of 1.16 nS/pF 

as the maximum conductance to fi t all data sets (see 

Discussion). In both groups, increasing the pipette 

[Ca2+] produced a leftward shift in the voltage-dependent 

activation, manifest as a decrease in the calculated po-

tential for V0.5. However, the most remarkable differ-

ence between cells dialyzed with ATP (Fig. 5 A) and 

AMP-PNP (Fig. 5 B) was the large elevation of the mini-

mal or basal conductance level at negative potentials in 

the cells dialyzed with AMP-PNP for pipette [Ca2+] ≥ 

250 nM. A consequence of the marked basal elevation 

of ClCa conductance was that the channels were less 

 infl uenced by membrane potential within the phy-

siological range of voltages, especially at higher in-

tracellular Ca2+ levels (750 and 1000 nM Ca2+). 

For example, ClCa conductance only increased from 

0.59 ± 0.11 nS/pF at −60 mV to 0.63 ± 0.13 nS/pF at 

−20 mV with 1000 nM Ca2+.

Fig. 6 A shows that an exponential function described 

the relationship between V0.5 and [Ca2+] in both groups. 

Importantly, the AMP-PNP curve was signifi cantly lower 

than that obtained with ATP again, indicating an in-

creased sensitivity to voltage at all Ca2+ levels examined. 

Plots of the Ca2+ dependence of the slope factor k for 

the calculated Boltzmann relationships are displayed in 

the inset of Fig. 6 A and reveal a small but signifi cant 

enhancement of the steepness of the voltage depen-

dence of IClCa at [Ca2+]i > 500 nM with AMP-PNP vs. 

ATP. Fig. 6 B shows that the ratio of V0.5 recorded with 

ATP and AMP-PNP internal solutions at a given [Ca2+] 

was linearly related to the pipette [Ca2+]. These data 

show that under control conditions where phosphoryla-

tion is supported, the activation of IClCa by internal Ca2+ 

can be augmented considerably by depolarization be-

cause the recorded currents are elicited at potentials 

that are far away from the apparent V0.5. However, when 

phosphorylation is prohibited by AMP-PNP dialysis, the 

recorded currents are augmented less by depolarization 

because they are registered at potentials nearer to satu-

ration, especially with elevated [Ca2+]. In both cases, 

the level of Ca2+ in the internal solution caused an 

 “apparent” modulation of the voltage sensor, which 

was more prominent in cells dialyzed with AMP-PNP.

Figure 4. The Ca2+ sensitivity and number of Ca2+ ions required 
for activation of IClCa are not infl uenced by the global state of 
phosphorylation. (A) Graph showing the voltage dependence of 
the Ca2+ affi nity of IClCa (apparent Kd for Ca2+) derived from ex-
periments obtained with 3 mM ATP (fi lled squares) or 3 mM 
AMP-PNP (empty squares). Mean Kd ± fi tting error (error scaled 
to the square root of reduced χ2 as calculated by Origin software) 
for Ca2+ at each voltage was estimated from curve fi tting of the 
data to the Hill equation as represented in Fig. 3. The line passing 
through the data points is a Boltzmann fi t to the data points and 
is described by the following parameters: Kd for Ca2+ = {748.1/
[1 + exp((V − 30.3)/36.7)]} + 178.42, where V is membrane po-
tential. (B) Graph illustrating the voltage dependence of the Hill 
or cooperativity coeffi cient (η) obtained from analysis of the Ca2+ 
dependence of IClCa with the Hill equation (Fig. 3) after 20 min of 
cell dialysis with ATP (fi lled squares) or AMP-PNP (empty 
squares). The solid line is a single exponential least-square fi t to 
the data and is described by the following formula: η = 0.19 * 
exp(−V/48.3) + 2.22, where V is membrane potential. All plots 
were generated from data obtained after 20 min of cell dialysis 
with either nucleotide.
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Kinetics of IClCa Evoked by Different Pipette [Ca2+]
The time-dependent increase in outward current at pos-

itive potentials is a distinctive feature of Ca2+-gated Cl− 

channels and refl ects an increase in the fraction of open 

channels relative to those open at the holding  potential. 

As stated above, increasing the [Ca2+] in the pipette 

 solution increased the amplitude of the outward relax-

ation. Repolarization to −80 mV produced large deacti-

vating inward IClCa. The decay of these currents was 

generally well fi tted by a single exponential although 

double exponential functions were required to fi t the 

data with pipette containing >750 nM Ca2+ with ATP 

and >500 nM Ca2+ with AMP-PNP. A detailed analysis 

of the voltage and Ca2+ dependence of the activation 

and deactivation kinetics of IClCa recorded in ATP and 

AMP-PNP is provided in the online supplemental mate-

rial (available at http://ww.jgp.org/cgi/content/full/

jgp.200609507/DC1). Fig. 7 gives an abbreviated ac-

count of our kinetic analyses at two [Ca2+] spanning the 

activation of IClCa, 250 and 1000 nM. Except for ATP and 

250 nM Ca2+, where regression analysis revealed a slope 

signifi cantly different from 0 (P = 0.035), the time con-

stant of activation (τact) did not vary as a function of 

voltage in cells dialyzed with ATP or AMP-PNP at all pi-

pette [Ca2+] tested (P ≥ 0.298; unpublished data; see 

Fig. S1 A). Fig. 7 A shows that the time constant of acti-

vation (τact) of IClCa at +130 mV was Ca2+ independent 

in cells dialyzed with ATP. However, although τact was 

similar with 250 nM Ca2+ in ATP- and AMP-PNP–loaded 

myocytes, elevation of [Ca2+]i to 1000 nM accelerated 

the kinetics of activation of IClCa with AMP-PNP but not 

with ATP. These results suggest that phosphorylation of 

the Cl− channel may mask a Ca2+-dependent increase 

in the rate of activation.

Fig. 7 B shows that a similar trend, albeit in the oppo-

site direction, was apparent when analyzing the Ca2+ 

dependence of the time constant of deactivation the 

slow tail current (τdeact) produced by IClCa (τdeact). With 

both ATP and AMP-PNP, increasing [Ca2+]i slowed IClCa 

deactivation. In comparison to ATP, IClCa in cells dia-

lyzed with AMP-PNP deactivated more slowly (the dif-

ference at 250 nM Ca2+ was just at the limit of signifi cance 

with P = 0.080), an effect that was accentuated at higher 

[Ca2+]i (note that for [Ca2+]i > 500 nM, the slow time 

constant of deactivation in AMP-PNP was compared 

with the single τdeact measured with ATP; see online sup-

plemental material for further details). This is visually 

apparent when examining the typical currents shown in 

Fig. 2 where complete IClCa deactivation with AMP-PNP 

at higher [Ca2+]i required several seconds. Except for 

1000 nM Ca2+, τdeact gradually increased with membrane 

potential at [Ca2+]i in the range of 250 to 750 nM in 

cells loaded with ATP (unpublished data; see Fig. S2 B). 

This is in line with the well known voltage dependence 

of deactivation of this current in smooth muscle cells 

(Large and Wang, 1996). At all [Ca2+]i tested, the dif-

ference of τdeact between ATP- and AMP-PNP–loaded 

myocytes declined with membrane potential with no 

signifi cant difference at potentials >0 mV (unpublished 

Figure 5. Voltage dependence of IClCa analyzed after prolonged 
dialysis with ATP and AMP-PNP. The same data from the experi-
ments described in Fig. 2 were used to construct the voltage de-
pendence of IClCa for each pipette Ca2+ concentration ranging 
from 100 to 1000 nM in the presence of 3 mM ATP (A) or AMP-
PNP (B). The two graphs shown in A and B report the mean ± 
SEM chord conductance of fully activated IClCa as a function of 
step potential ranging from −100 to +130 mV. Data points at or 
around 0 mV were not included due to the small current near the 
equilibrium potential for Cl−. All lines are least-square  Boltzmann 
fi ts to the data (Eq. 2) from which we extracted the half- maximal 
voltage (V0.5), which are reported in Fig. 6. All sigmoidal relation-
ships in the two panels were fi tted by constraining each fi t to a 
maximal conductance of 1.16 nS/pF; the latter value is the mean 
of the maximal conductance estimated from curve fi tting of the 
data obtained with 500, 750, and 1000 nM Ca2+ and AMP-PNP, 
which yielded similar estimates. Mean data points in A and B are 
reproduced from Fig. 3 but plotted differently. All plots were 
 generated from data obtained after 20 min of cell dialysis with 
either nucleotide.
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data; see Fig. S2 B). These results indicate that global 

dephosphorylation reduced the rate of channel closure, 

an effect that was only apparent at negative potentials 

and more prominent at higher [Ca2+]i.

Computer Simulations
The behavior of Ca2+-activated Cl− currents recorded 

with ATP and AMP-PNP was simulated mathemati-

cally using methods employed previously by our group 

( Remillard and Leblanc, 1996; Ledoux et al., 2005) 

based upon the following scheme proposed by Kuruma 

and Hartzell (2000) to describe IClCa recorded from 

 Xenopus oocytes.

  (SCHEME 1)

  

We adapted this model to best reproduce our data by 

implementing only minor modifi cations to the param-

eters used by Kuruma and Hartzell (2000). A full justi-

fi cation for setting and adjusting the rate constants and 

gating variables of the various kinetic steps is provided 

in the online supplemental material. This model incor-

porates the binding of three Ca2+ ions (suggested by our 

experimental data; see Fig. 4 B) and allows the channel 

to open (O1, O2, and O3) from each of the Ca2+-bound 

states (C1–C4). In this model, the rate of Ca2+ binding is 

a simple fi rst-order reaction scheme that is directly pro-

portional to [Ca2+] and is equal to [Ca2+] * kon, where kon 

is a rate constant in M−1s−1; the rate of channel closure 

is voltage dependent (β1, β2, and β3; units are s−1). Simi-

lar to Kuruma and Hartzell (2000), transitions between 

the three open states were forbidden. We fi rst modeled 

IClCa as recorded from AMP-PNP–loaded cells because 

our analysis of the voltage dependence of IClCa showed 

that a maximal ClCa conductance of 1.16 mS/cm2 was 

consistently observed for pipette [Ca2+] ≥ 500 nM Ca2+ 

in these experiments (Fig. 5 B), and this dictated an 

upper conductance limit for both groups of data. Since 

our results indicated that the Ca2+ sensitivity of IClCa and 

Hill coeffi cient were not signifi cantly different between 

ATP- and AMP-PNP–loaded myocytes, at least at posi-

tive potentials, the only parameters that were adjusted 

were the value of the gating variables (between 0 and 

1), which determines whether the channel is closed or 

open, and the magnitude and voltage dependence of 

the closure rate constants. All other parameters were 

identical as shown in Table I. To incorporate the effects 

of phosphorylation into the model, we noted the lack 

of Ca2+ dependence of τact in the presence of ATP 

Figure 6. A reduction in the global state of phosphorylation by 
cell dialysis with AMP-PNP causes a pronounced shift of the volt-
age dependence of IClCa toward negative potentials. (A) From the 
experiments conducted with pipette solutions containing ATP 
(fi lled squares) or AMP-PNP (empty squares), the mean ± fi tting 
error (error scaled to the square-root of reduced χ2 as calculated 
by Origin software) of half-maximal activation voltages (V0.5) deter-
mined from the analyses outlined in Fig. 5 (Eq. 2) were plotted as 
a function of internal Ca2+ concentration ([Ca2+]). The lines pass-
ing through the data points are least-square exponential fi ts to the 
data points and are described by the following formulas: ATP, 
V0.5 = 608.8 * exp(−[Ca2+]/69.2) + 205.5; AMP-PNP, V0.5 = 482.3 * 
exp(−[Ca2+]/119) + 66.1. Inset, graph illustrating the Ca2+ de-
pendence of the slope factor k extracted from analysis of the volt-
age dependence of the conductance of IClCa (Fig. 5) measured with 
ATP (fi lled squares) and AMP-PNP (empty squares). As for V0.5, 
each data point is mean ± fi tting error (error scaled to the square-
root of reduced χ2 as calculated by Origin software) of the k value 
determined for each data set. (B) In this graph, the ratio of the 
mean half-maximal voltage obtained in ATP over that in AMP-PNP 
(V0.5ATP/V0.5AMP-PNP; derived from A) was plotted as a function 
of pipette Ca2+ concentration ([Ca2+]i). The slope of the linear re-
gression passing through the calculated data points is signifi cantly 
different from 0, with P = 0.025. The parameters of the equation 
determining this regression are: V0.5ATP/V0.5AMP-PNP = 0.0023 * 
[Ca2+]i + 1.35 (r2 = 0.852). All plots were generated from data ob-
tained after 20 min of cell dialysis with either nucleotide.
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(see Fig. S1 A) and we thus hypothesized that phos-

phorylation causes open channel block at higher Ca2+ 

bound states (O2 and O3). Accordingly, we set the gating 

variable of O2 and O3 to 0 for the ATP model (Table I). 

We also increased the magnitude of the rates of closure 

(β(V)x) and shifted the voltage dependence toward 

more positive potentials compared with currents re-

corded with AMP-PNP (Table I).

Fig. 8 shows families of simulated IClCa currents elic-

ited from a holding potential of −50 mV with [Ca2+] 

facing the internal side of the membrane ranging from 

20 to 1000 nM in conditions that support phosphoryla-

tion (ATP) or conditions that prohibit phosphorylation 

(AMP-PNP). Currents were generated at different po-

tentials from −100 to +140 mV applied for 1 s. As for 

experimentally derived data, much larger currents were 

simulated in the presence of AMP-PNP than ATP (no-

tice the different vertical calibrations). In both groups, 

threshold for activation was near 100 nM and saturated 

between 750 and 1000 nM Ca2+. Currents in ATP dis-

played signs of strong outward rectifi cation at all [Ca2+], 

whereas this feature was much less apparent for the 

AMP-PNP–simulated currents especially at higher [Ca2+]. 

Indeed with [Ca2+] ≥ 500 nM, large instantaneous cur-

rents were apparent, which refl ected high occupancy of 

the open states at the holding potential. A visual inspec-

tion of Fig. 8 also shows that the kinetics of activation 

are faster and the kinetics of deactivation are slower 

with AMP-PNP versus ATP. A short survey comparing 

some kinetic parameters of experimental and modeled 

data can be found in the online supplemental material, 

which demonstrates a very good correlation between 

our computer-simulated currents and IClCa measured in 

our experiments.

Fig. 9 A displays the Ca2+ dependence of steady-state 

activation obtained in ATP (panel a) and AMP-PNP 

(panel b) for potentials ranging from −100 to +130 

mV as indicated. Notice the difference in maximal con-

ductance between the two groups and the match with 

Fig. 3. In both cases, the affi nity for Ca2+ shifted to 

higher levels of [Ca2+] with membrane hyperpolariza-

tion. This is better illustrated in Fig. 9 C, where the Kd 

for Ca2+ for model (solid lines) and experimental (dot-

ted line: AMP-PNP) data in the two groups was plotted 

as a function of voltage. The simulated AMP-PNP curve 

matched quantitatively with that derived from experi-

ments. The modeled ATP curve displayed a declining 

Boltzmann relationship reaching a value near 300 nM 

at +130 mV that compared well with an experimentally 

derived value of 246 ± 24 nM. The voltage dependence 

of simulated IClCa determined in the presence of ATP or 

AMP-PNP was also quantitatively similar to our experi-

mental results (compare Fig. 9 B to Fig. 5). With ATP, 

the conductance of IClCa was very small at negative po-

tentials and increased in a Ca2+-dependent manner at 

potentials >0 mV. In contrast, a marked basal elevation 

of IClCa was observed with AMP-PNP in the negative 

range of membrane potentials and was accompanied by 

a marked shift in its voltage dependence as a function 

of [Ca2+]i. Fig. 9 D shows a graph reporting the Ca2+ 

dependence of V0.5 estimated from our simulations 

(data from Fig. 9 B; solid lines) overlaid with those mea-

sured experimentally (data from Fig. 6 A). Again, V0.5 

declined exponentially with [Ca2+]i in both groups and 

Figure 7. Ca2+ dependence of IClCa kinetics recorded from ATP- 
and AMP-PNP–loaded myocytes. (A and B) Bar graphs summa-
rizing the effects of cell dialysis with 3 mM ATP (open bars) or 
3 mM AMP-PNP (fi lled bars) on the time constant of activation 
at +130 mV (τact; A) and deactivation at −100 mV (τdeact; B) of 
IClCa elicited with either 250 or 1000 nM Ca2+ in the pipette solu-
tion. Please note in B that τdeact measured in AMP-PNP and 1000 
nM Ca2+ is the slower of the two time constants of deactivation 
estimated by least-squares biexponential fi tting. For both panels, 
each bar represents a mean ± SEM of four to fi ve measurements. 
Two-way ANOVA tests were used to assess statistical signifi cance 
between mean data obtained in ATP and AMP-PNP; with 1000 
nM Ca2+, mean τact (A) and τdeact (B) in ATP were signifi cantly 
different from those estimated with AMP-PNP (‡, P < 0.001, de-
termined with LSD post-hoc test). Both bar graphs were gener-
ated from data obtained after 20 min of cell dialysis with either 
nucleotide. A more thorough analysis of the effects of the two 
nucleotides on IClCa kinetics can be found in the online supple-
mental material.
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paralleled semi-quantitatively our experimental data, 

except at 100 nM Ca2+, where both models yielded V0.5 

values that were lower than those obtained in experi-

ments. Overall, we found that the models reproduced a 

variety of our experimental results.

D I S C U S S I O N

This study represents the fi rst comprehensive investiga-

tion into the gating of Ca2+-dependent Cl− channels in 

smooth muscle cells under whole cell conditions and 

the effects of phosphorylation status on channel gating. 

Our experiments confi rmed the absolute requirement 

for intracellular [Ca2+] to activate IClCa and a modula-

tion of this activation by voltage. The apparent affi nity 

for Ca2+ was increased at depolarized test potentials 

while an increase in the intracellular [Ca2+] produced 

a leftward shift in the voltage sensitivity of activation. 

Prohibiting phosphorylation by inclusion of the nonhy-

drolyzable ATP analogue, AMP-PNP, or by removal of 

ATP from the pipette solution, augmented IClCa consider-

ably. This was not due to an increase in the apparent 

binding affi nity for Ca2+ but resulted from an increase in 

the voltage sensitivity of the underlying channels. These 

data provide an important insight into the mechanism 

underlying the profound effect phosphorylation status 

has on the activity of Ca2+-dependent Cl− channels.

Comparison with Other Cell Types
Studies of IClCa have identifi ed two forms of the current. 

In T84 epithelial cells, IClCa is time and voltage indepen-

dent and the currents are activated solely by Ca2+ (Xie 

et al., 1996; Merlin et al., 1998; Xie et al., 1998). In all 

smooth muscle myocytes examined to date, including 

the pulmonary artery myocytes studied here, as well as a 

variety of other cell types, IClCa is controlled by both 

Figure 8. Modeling of IClCa under conditions simulat-
ing prolonged cell dialysis with ATP or AMP-PNP. The 
nomenclature of this fi gure is identical to that of actual 
data shown in Fig. 2 except that the last potential of the 
voltage clamp protocol was +140 mV instead of +130 
mV, and voltage steps were incremented by +20 mV 
from −100 mV. The conditions and parameters used 
for the simulation are described in the text (Materials 
and Methods and Results) and Table I. Again, note the 
different calibration bars for the simulations with ATP 
and AMP-PNP.
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Ca2+ and voltage with characteristic activation and deac-

tivation kinetics (for review see Frings et al., 2000; Hartz-

ell et al., 2005; Leblanc et al., 2005). To investigate the 

mechanism of activation of IClCa, we (Greenwood et al., 

2001, 2004; Britton et al., 2002; Ledoux et al., 2003) and 

others (Evans and Marty, 1986; Ishikawa and Cook, 

1993; Arreola et al., 1996, Nilius et al., 1997; Qu et al., 

2003; Boese et al., 2004) have used intracellular Ca2+ 

chelators such as EGTA or BAPTA to examine the time 

and voltage dependence of channel activation at con-

stant [Ca2+]i. These studies have revealed qualitative 

similarities in the kinetics of gating but interesting vari-

ability in the Ca2+ sensitivity of the currents. The Ca2+ 

dependence of IClCa activation in rabbit pulmonary ar-

tery myocytes reported here was similar to that reported 

in other studies. Thus, at +60 mV, the apparent Kd for 

Ca2+ was �400 nM in the present study compared with 

285 nM in bovine endothelial cells (Nilius et al., 1997) 

and 400 nM in medullary collecting duct cells (Qu et al., 

2003; Boese et al., 2004). In contrast, activation of IClCa 

Figure 9. Comparison of experimen-
tal and simulated IClCa data. (A) Plots 
of simulated chord conductance vs. 
[Ca2+]i relationships derived from 
analysis of data generated with the ATP 
(a) and AMP-PNP (b) models at poten-
tials ranging from −100 to +130 mV 
(HP = −50 mV), as indicated by the 
different symbols. All solid lines are fi ts 
of the simulated sets of data to the Hill 
equation (Eq. 1) calculated by Origin 
software. Parameters calculated from 
such fi ts are presented in C. Please note 
the remarkable similarity between such 
graphs and those represented in Fig. 3. 
(B) Plots of simulated chord conduc-
tance vs. voltage relationships derived 
from analysis of data generated with 
the ATP (a) and AMP-PNP (b) models 
at [Ca2+]i ranging from 100 to 1000 nM 
Ca2+ as indicated by the different 
 symbols. All solid lines are fi ts of the 
simulated sets of data to the Boltzmann 
equation (Eq. 2) calculated by Origin 
software. Parameters calculated from 
such fi ts are presented in D. Again, 
note the high similarity between these 
relationships and those derived from 
the experimental results described in 
Fig. 5. (C) Graph showing the relation-
ship between estimated EC50 for Ca2+ 
and step potential for experimental 
(squares) and simulated (circles) data 
obtained with ATP (fi lled symbols) and 
AMP-PNP (empty symbols). The two 
experimental data sets (ATP and AMP-
PNP) and the fi t (dotted line; AMP-
PNP) are reproduced from Fig. 4 for 
comparison. The solid lines passing 
through the two sets of simulated data 
are Boltzmann fi ts (Eq. 2) described by 
the following formulas: ATP, EC50 for 
Ca2+ = {443.07/[1 + exp((V − 
118)/44.6)]} + 85.4; AMP-PNP: EC50 
for Ca2+ = {686.4/[1 + exp((V − 
59.5)/58.8)]} + 74.7, where V is mem-
brane potential. (D) Graph showing 
the relationship between the half-maximal 
activation voltage (V0.5) estimated and 

internal Ca2+ concentration ([Ca2+]i) for experimental (squares) and simulated (circles) data obtained with ATP (fi lled symbols) and 
AMP-PNP (empty symbols). The two experimental data sets and associated fi ts (dashed and dotted lines) are reproduced from Fig. 6 
for comparison. The solid lines passing through the two sets of simulated data are single exponential fi ts (Eq. 3) described by the follow-
ing formulas: ATP, V0.5 = 260.2 * exp(−[Ca2+]i/398.4) − 11.4; AMP-PNP, V0.5 = 73.5 * exp(−[Ca2+]i/128.8) + 184.5.
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in parotid acinar cells required lower [Ca2+] (apparent 

Kd for Ca2+ at +70 mV was �60 nM, Arreola et al., 1996), 

whereas in Xenopus oocytes the Ca2+ sensitivity was lower 

(apparent Kd for Ca2+ at +120 mV was �900 nM, 

 Kuruma and Hartzell, 2000). Interestingly, an extensive 

study of single Ca2+-activated Cl− channel activity in ex-

cised patches from rabbit pulmonary artery myocytes 

derived an EC50 value of 8 nM at +100 mV (Piper and 

Large, 2003), considerably higher than the Ca2+ sensi-

tivity determined in the present study. The reason for 

this discrepancy is unknown but may refl ect the highly 

regulated nature of these channels (see Leblanc et al., 

2005 and below). Overall the channels underlying IClCa 

in an array of cell types, including vascular myocytes, 

exhibit similar basic gating properties with differing 

Ca2+ sensitivities.

The time-dependent development of current at pos-

itive potentials led to a current–voltage relationship 

that exhibited marked outward rectifi cation although 

the channel conductance does not rectify inherently. 

Hence the voltage dependence of the open Cl− chan-

nel is approximately ohmic (Greenwood et al., 2001; 

Piper and Greenwood, 2003) and the unitary conduc-

tance does not change with depolarization (Piper and 

Large, 2003). Consequently, the outward rectifi cation 

that is a characteristic of IClCa in these cells is a prod-

uct of a time-dependent increase in channel activity 

(open probability). In parotid acinar, endothelial cells, 

and Xenopus oocytes this time-dependent property has 

been ascribed to an increase in Ca2+ sensitivity and a 

decrease in open to closed transitions at positive poten-

tials (Arreola et al., 1996; Nilius et al., 1997; Kuruma 

and Hartzell, 2000). The data of the present study re-

veal that similar properties infl uence the kinetics of 

IClCa in vascular myocytes.

Working Model
The salient discoveries of our analysis were that genera-

tion of IClCa is augmented by membrane depolarization 

but has an obligatory requirement for an increase in 

[Ca2+]. Consequently, membrane hyperpolarization 

does not turn off IClCa when the pipette [Ca2+] is set to 

levels greater than the activation threshold (between 

100 and 250 nM). This property was also observed for 

IClCa recorded from parotid acinar cells and Xenopus oo-

cytes (Arreola et al., 1996; Kuruma and Hartzell, 2000) 

but differs from that of Ca2+-dependent K+ channels 

that can be opened by strong membrane depolarization 

in the absence of internal Ca2+ (Cui et al., 1997).

To gain better insight into the mechanism by which 

phosphorylation affects the gating of the ClCa channel 

in pulmonary myocytes, we took advantage of computer 

modeling techniques and the existence of already pub-

lished kinetic models of ClCa in other cell types that well 

reproduced their macroscopic properties in pancreatic 

acinar cells (Arreola et al., 1996) and Xenopus oocytes 

(Kuruma and Hartzell, 2000). In the former model, 

there are two consecutive voltage-dependent Ca2+ bind-

ing steps, and binding of both Ca2+ ions is required for 

channel opening. Similar to Arreola et al. (1996), our 

data showed that the Kd for ClCa channel activation by 

intracellular Ca2+ declined with membrane depolariza-

tion. However, the Hill coeffi cient of ClCa channels in-

creased from �1 at negative potentials to �2 at positive 

potentials, whereas ClCa channels in pulmonary myo-

cytes (Fig. 5 B) required more than two Ca2+ ions (Hill 

coeffi cient of 2–4) for channel activation; moreover, 

this parameter declined rather than increased from �3 

at negative potentials to �2 at potentials >0 mV, an ob-

servation similar to IClCa in Xenopus oocytes (Kuruma 

and Hartzell, 2000). All attempts to simulate our data 

with such a model failed to reproduce the Ca2+ and 

voltage dependence of IClCa in PA myocytes and their ki-

netics of activation and deactivation with ATP or AMP-

PNP, although certain properties of the macroscopic 

current could be modeled reasonably well at any given 

concentration of Ca2+.

We therefore investigated the more complex model 

developed by Kuruma and Hartzell (2000), which de-

scribed well the properties of IClCa in Xenopus oocytes 

and adapted it to simulate the gating of Ca2+-activated 

Cl− channels in pulmonary artery myocytes. Besides the 

fact that their model offered much more fl exibility, the 

characteristics of IClCa recorded from Xenopus oocytes 

correlated better with the properties of “dephosphor-

ylated” ClCa channels (AMP-PNP) in our preparation: 

(a) similar voltage dependence of the Kd for Ca2+ and Hill 

coeffi cient, (b) similar Ca2+ dependence of V0.5, (c) lack 

of voltage dependence and similar Ca2+ dependence of 

τact at [Ca2+] > 200 nM, and (d) similar voltage and 

Ca2+ dependence of τdeact. As explained in Results, acti-

vation of the channel involves the consecutive binding 

of three Ca2+, all with identical affi nities, but in con-

trast to the model of Arreola et al. (1996), Ca2+ binding 

per se is voltage independent. Each of the Ca2+-bound 

closed states can transit in the open state with progres-

sively faster opening rates as the channel binds more 

calcium ions. In this kinetic scheme, voltage-dependent 

gating is due to the channel closing rate. Figs. 8 and 9 

showed that an adapted version of the Kuruma and 

Hartzell model effectively simulated the experimen-

tally derived data recorded with AMP-PNP–containing 

pipette solutions (compare Fig. 8 with Fig. 3). It is inter-

esting to note that in the experiments of both Arreola 

et al. (1996) and Kuruma and Hartzell (2000), the solu-

tion facing the internal side of the membrane did not 

contain ATP, a situation that would minimize the state of 

phosphorylation of the channels and mimic our AMP-

PNP experiments. Although it is unknown whether ClCa 

channels in these cells are regulated by phosphoryla-

tion in a similar fashion, it has been reported that IClCa 

in Xenopus oocytes is inactivated by activation of protein 
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kinase C in a Ca2+-dependent manner (Boton et al., 

1990). Overall, the model parameters used to simulate 

IClCa recorded from cells dialyzed with AMP-PNP (see 

Table I) accounted well for the “apparent” sigmoidal 

increase in Ca2+ affi nity observed with membrane de-

polarization, the voltage dependence of fully activated 

IClCa, the basal activation of the underlying channels ob-

served at negative potentials, the Ca2+ dependence of 

V0.5 and kinetics of activation, and voltage dependence 

of deactivation.

To model the data with ATP, we simply increased the 

magnitude of the “off” (βx in Table I) rate constants and 

shifted their voltage dependence toward more positive 

potentials, assigning a value of 0 to the gating variable 

for the higher Ca2+-bound states, which means that the 

channels are either closed or blocked by phosphoryla-

tion. By analogy, this would correspond to open state 

channel block by phosphorylation. All other rate con-

stants, including those defi ning Ca2+ affi nity, were iden-

tical to those used in the AMP-PNP model (see Table I). 

Our simulations reproduced quantitatively in most 

cases, and semi-quantitatively in others, the macro-

scopic behavior of IClCa that includes potent inhibition 

of the Cl− channels within the physiological range of 

membrane potentials, their Ca2+ dependence at all po-

tentials examined, and to a lesser extent their Ca2+ and 

voltage dependence of activation (except at 250 nM) 

and deactivation kinetics. Although this was not evalu-

ated, it might have been possible to produce similar re-

sults by reducing the gating variable of all open states 

to a fraction between 0 and 1. This would be similar to 

the induction of subconductance states by phosphory-

lation. Indeed, higher levels of [Ca2+] were shown to 

induce the appearance of subconductance levels of sin-

gle ClCa channels in rabbit pulmonary myocytes (Piper 

and Large, 2003), and perhaps phosphorylation of a 

cytoplasmic domain may cause open state block by an 

electrostatic interaction with acidic amino acid residues 

residing within or near the channel pore. By opposition, 

minimizing phosphorylation with AMP-PNP may “lock” 

the channels open at negative potentials, especially at 

higher levels of intracellular Ca2+, resulting in the ap-

pearance of very slowly declining tail currents (see Figs. 

3 and 9) and large negative shifts in the holding cur-

rent, leading to attenuation of the normally strong out-

ward rectifi cation. Although the model is undoubtedly 

overly simplistic, it nevertheless provides a valid frame-

work from which specifi c hypotheses in regards to the 

regulation of ClCa channels by phosphorylation can be 

thoroughly tested under conditions allowing physiolog-

ical intracellular Ca2+ dynamics. Future single channel 

experiments will be designed to test the hypothesis that 

the state of phosphorylation of the channel and/or 

regulatory subunit(s) alters the properties determining 

the rate of closure of the gate and perhaps the state of 

permeation of the channel.

Regulation of IClCa in Pulmonary Artery Myocytes
The data of the present study agree with our past studies 

(Greenwood et al., 2001, 2004; Ledoux et al., 2003) that 

the activity of Ca2+-activated Cl− channels in vascular 

smooth muscle cells is dictated by the phosphorylation 

status in the vicinity of the channel. Regulation of IClCa 

has been best studied in arterial myocytes where we have 

established that CaMKII suppresses activity (Greenwood 

et al., 2001) whereas calcineurin enhances IClCa (Ledoux 

et al., 2003; Greenwood et al., 2004). Previously, we showed 

that blockade of calcineurin in coronary artery myocytes 

produced a decrease in the Ca2+ sensitivity. However, the 

present study established that gross dephosphorylation 

markedly enhanced IClCa due to an increase in the volt-

age sensitivity and not the Ca2+ sensitivity. While there 

is the caveat that the studies were not performed in the 

same cell type, these data suggest that a hyperphosphor-

ylated Cl− channel is less able to bind Ca2+ or is less able 

to transit to an open confi guration upon Ca2+ binding, 

whereas a fully dephosphorylated channel is more active 

at less depolarized potentials. The present study also re-

veals that Cl− channel activity in rabbit pulmonary artery 

myocytes is highly labile and at the mercy of the oppos-

ing kinase/phosphatase activity. Thus, the amplitude of 

IClCa evoked immediately after membrane rupture was 

large but decreased to a stabilized level �20% of the ini-

tial value when the pipette solution was ATP rich. Under 

these conditions, phosphorylation would be supported, 

and therefore the current recorded at the stabilized level 

represents diminished ion fl ux through a partially phos-

phorylated channel. The degree of phosphorylation is 

dynamic and dependent on the kinase/phosphatase 

balance in the vicinity as described by Greenwood et al. 

(2004). This supposition is reinforced by the data with 

AMP-PNP that is unable to support phosphorylation 

(Yount, 1975; Gadsby and Nairn, 1999) and therefore 

allows phosphatase activity to dominate. Consequently, 

the degree of rundown is attenuated and the current sta-

bilizes to a steady-state level close to the initial current 

amplitude. Whether calcineurin alone or in combina-

tion with other phosphatases drives this recovery of IClCa 

amplitude is the focus of future experiments.

In conclusion, the present study represents an exten-

sive study of the kinetics, Ca2+ dependence, and voltage 

dependence of whole-cell IClCa in pulmonary artery 

 myocytes. A corollary to this work is that we have been 

able to effectively simulate the experimental data using 

a minimal reaction scheme. Moreover, this exhaustive 

study has revealed a mechanism by which phosphoryla-

tion regulates Cl− channel activity and has reinforced 

the crucial role of phosphorylation/dephosphorylation 

mechanisms on IClCa.
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