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Introduction 
 
The Global HIV Vaccine Enterprise convened a two-day workshop in June of 2007 to discuss 
improving defences at the portals of entry. The meeting was divided between discussion of 
innate responses to HIV in general and mucosal innate and adaptive responses against HIV at the 
portals of entry.  Section I focuses on mucosal immunity, and should be read in context with the 
report on innate responses in Section II. The goals of this workshop were to identify key 
scientific issues that have emerged since the Enterprise Strategic Plan was first published in 
2005, and to make recommendations that Enterprise stakeholders can use to plan new activities.  
The meeting was organized by Barton Haynes, Robin Shattock, Bali Pulendran, Jorge Flores and 
Jose Esparza and was attended by 27 scientists from the United States, Europe Canada, South 
Africa and Asia. 
 
Defining the earliest events in mucosally transmitted HIV-1 infection is of central importance for 
characterizing the precise virus-host interactions that must be altered by vaccine-induced 
immune responses. While sexual transmission accounts for over 90% of all instances of HIV-1 
infection [1,2], the immediate events between exposure to infectious virus and establishment of 
infection are poorly understood. Mucosal transmission of HIV-1 infection is mediated by 
exposure to infectious virus and/or cells within mucosal secretions. It has been established in 
non-human primate studies that mucosal infection can occur following 30-60 min exposure to 
infectious virus, that localized infection is established within 16-72 hours and dissemination to 
draining lymph nodes is achieved within 24-72 hours [3,4], therefore the time for mucosal 
responses to impact on transmission events is critically short, and likely is within the first 14 
days of transmission. While the risk of transmission is influenced by factors relating to the 
infected partner [2,5,6], transmission is dependent upon transfer of infectious virus across the 
mucosal epithelium providing access to sub-epithelial dendritic cells (DCs), macrophages and/or 
T-cells that express both CD4 and co-receptors CCR5 and CXCR4 [7,8]. Multiple mechanisms 
for mucosal HIV-1 transmission have been proposed including: direct HIV-1 infection of 
epithelial cells; transcytosis of HIV-1 through epithelial cells and/or specialized M cells; 
epithelial transmigration of HIV-1-infected donor cells; uptake of HIV-1 by intra-epithelial 
Langerhans and dendritic cells [9-15]; or entry via epithelial microabrasions or ulceration [2,5,6]. 
These events may be critically influenced: by viral genotype [15-19] and incorporation of host 
cell proteins [20-23]. However, none of these mechanisms, the receptors involved, nor their 
modulation by immune responses (adaptive and/or innate) have been fully defined in tissue 
and/or non-human primate or human clinical studies. A broad consensus from the meeting was 
that a preventative vaccine must effectively target the earliest events in the establishment HIV 
infection right after transmission (hours to days). It was recognized that adaptive memory 
responses may be to slow to combat such events, and that robust mucosal protection may require 
both, components of the innate response (active within minutes-hours) and adaptive effector 
immune response (humoral and/or T cell). Induction and maintenance of such responses is likely 
to require rational vaccine design based upon a fuller understanding of the correlates of mucosal 
protection against HIV infection. On the basis of the major roadblocks to advance the field, nine 
scientific priorities were identified that will bring the field closer to defining the correlates of 
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mucosal protection (adaptive and innate) and developing the enabling technology for an effective 
HIV-1 vaccine. 
 
 
Section I: Roadblocks to inducing protective adaptive immunity at mucosal surfaces 
 
1. Definition of the sequence of events required to establish infection following exposure to 
HIV. 
As argued above, understanding the mechanisms of HIV infection across mucosal surfaces and 
the ability of immune responses to modulate these events is likely to be important for effective 
vaccine design and development. There was a clear consensus that for a preventative vaccine to 
extinguish HIV-1 following the transmission event, and achieve a viral reproductive ratio of less 
than 1 [24] , it must be able to target these very early events. One critical unanswered question is 
the relative role of cell free vs. infected cells in mucosal transmission [9], whether the relative 
importance of these varies by mucosal route and the relative impact of mucosal responses on 
these different pathways. A second knowledge gap relates to the different potential mechanism 
of viral transport across mucosal surfaces and their modulation by different aspects of the 
immune response [2,5,6,9-15]. Furthermore, there is still debate as to the identity, frequency, 
location and role of the primary targets of infection and the primary targets may vary depending 
on the type of mucosal epithelium present [3, 9, 25, 26]. Attention should be paid to the 
difference in infectivity and protection between the stratified squamous epithelium of the ecto-
cervico vaginal and foreskin epithelia in contrast to the columnar nature of the rectal and endo-
cervical epithelium. Critical to evaluating the impact of vaccines on these initial events will be 
the development of better tools to track initial infection and dissemination, and the ability to 
cross reference different models of mucosal transmission. 
 
Specific recommendations: 

• Develop tools for tracking virus and/or infected cell interaction with mucosal surfaces 
and subsequent spreading of infection within mucosal sites and dissemination to 
lymphoid tissue 

• Determine the role of dendritic cells (DC) in the mucosa for dissemination of HIV.  
• Cross reference and standardize cellular, tissue and non-human primate models of 

mucosal transmission 
• Develop better and more relevant panels of HIV and SHIVs from transmitted sequences 

for human explant tissue and NHP studies 
• Evaluate the impact of protective vaccines on initial events of transmission to determine 

the point at which the chain of events required to establish infection is aborted. 
 
2. Elucidation of acute mucosal sequellae that need to be prevented or subverted by HIV 
vaccines 
Parallel studies of pathological events in acute infection in NHP and humans have generated 
important insights into the subversion and/or destruction of the mucosal immune system. This is 
most evident by the rapid depletion of CD4 T cells within the GALT during acute infection 
[27,28], although it is less apparent whether this is paralleled in other mucosal sites. However, it 
has become abundantly clear that once mucosal infection has occurred, mucosal immune 
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responses to infection are insufficient to prevent these events, what is less clear is whether they 
have any role in controlling mucosal replication, viral evolution, immune cell depletion [27-30] 
and in particular depletion of central memory CD4 T cells [31]. A number of studies have 
identified a paucity in the induction of robust HIV-specific mucosal IgA and IgG responses in 
GALT [32]. It is unclear whether this purely reflects the consequence of CD4 T cell depletion on 
localized humoral response or whether additional immunosuppressive mechanisms are mediated 
by CD4+CD24+ Treg cells, phosphatidylserine, apotoptic cells/microparticles or the PD1- 
PDL1/PDL2 pathway [33-36]. While important work has been carried out to identify pathogenic 
sequellae in acute infection, the underlying mechanisms driving these events are not fully 
understood. The critical relationship between immune cell depletion, and permeability of the GI 
tract to bacteria and bacterial products remains unclear [37,38], are these events solely the direct 
consequence of HIV pathology or is there a more dynamic interaction between immune cell 
depletion, intestinal permeability, cytokine induction, cell activation and epithelial integrity that 
serves to accelerate localized and systemic disease? Less still is known about the impact of 
immune response (innate and adaptive) in their imprinting and subsequent modulation of these 
events. Perhaps most critically for vaccine design, it is unclear whether mucosal immune 
responses can be primed in such a way as to overcome such pathogenic mechanisms and whether 
infection can ever be prevented or aborted after the initiation of these events or merely 
controlled.  
 
Specific recommendations 

• Define why HIV fails to induce robust HIV-specific mucosal IgA and IgG responses 
• Determine whether immunosuppressive mechanisms mediated by  Treg cells and 

apoptotic  pathways at mucosal surfaces prevent robust immune responses and/or 
promote viral replication? 

• Develop a focused approach of parallel human and NHP studies of acute infection to 
further delineate common pathology of acute infection 

• Define key differences in specific mucosal IgA and IgG responses and regulatory 
cytokines in acute infection and following vaccination with HIV antigens and control 
antigens 

• Monitor mucosal immune depletion in multiple mucosal sites (GALT, BALT, GI) 
• Characterize the relationship between immune depletion, intestinal permeability to 

bacteria and bacterial products, cytokine environment, activation status and viral 
quasispecies within different mucosal compartments 

• Determine the mechanistic features that render the GI tract in acute HIV/SIV infection 
permeable to bacterial products 

• Monitor mucosal immune responses, T-cell depletion and gut permeability in naïve NHP 
and vaccinated animals in response to rectal challenge. 

 
3. Development of better tools for measuring mucosal immune responses: assay 
development, standardization and validation 
As already discussed, understanding the role of mucosal immunity in HIV transmission and 
prevention is likely to be key to the rational development of HIV vaccines. However, to date the 
techniques for evaluating mucosal immune responses (in humans and NHP) have been primarily 
based on assays established for the evaluation of systemic responses where sample volume and 
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cell numbers are not rate limiting. The technological hurdles are different for mucosal T cell and 
humoral responses and these will be discussed separately. However, one common research need 
is to identify novel mucosal specific homing markers to enable monitoring of mucosal immune 
responses via analysis of cells trafficking through the systemic circulation. While significant 
information is known about lymphocyte homing to the small intestine, skin and lymph nodes 
[39,40] and a number of lymphocyte homing receptors have been identified, including apha4 
beta7 for GALT, etc [41,42], these lack sufficient specificity in humans for other mucosal sites 
(colorectum, male and female genital tract).Thus identification of specific homing markers for 
these sites would enable monitoring of immune mucosal immune response via analysis of cells 
trafficking through the systemic circulation. 

While there is a substantial body of literature describing antigen specific T cells 
responses to HIV in peripheral blood [43, 44], far less is known about mucosal T cell responses. 
This reflects the lack of an accessible, reliable, and sensitive method for assessing mucosal 
cellular responses and represents a significant bottleneck in the ability to determine the mucosal 
correlates of protection and or viral control. As a consequence little is known about the quality, 
quantity and duration of mucosal T-Cell responses following infection or vaccination and their 
relation to systemic T-Cell response. Analysis of mucosal T-Cell responses (both vaginal and 
colorectal) in humans faces a number challenges. Optimal sampling methods for acquiring 
mucosal T cells have not been standardized and typically involve the collection of biopsies for 
colorectal responses, semen for male genital responses and cervical cytobrush samples for 
female genital responses. Transport and storage conditions for mucosal T cell samples have not 
been validated with the majority of investigations requiring the use of fresh samples, reducing 
their applicability to multiple trial sites. Furthermore, the number of cells for analysis is rate 
limiting when compared to established PBMC assays. Indeed mucosal assays need to be able to 
be performed on 104 T-cells of which >1% may be responsive to HIV antigens, severely limiting 
the ability of current technology to assess the breadth (ELISPOT) [45] and quality 
(multiparametric cytokine analysis) [46] of mucosal responses. Polyclonal expansion of mucosal 
T cells has been successfully used to facilitate analysis of mucosal memory T cell responses [47] 
and may provide some gains in sensitivity, however it was recognised the development of new 
technology including microfluidics and tetramer technology [48,49] could optimize single cell 
evaluation of mucosal T cell responses 

In contrast much has been done to increase the sensitivity of antibody binding assays 
using high sensitivity ELISA technology [50]. Additional advances are being realised, with 
multiparameter luminex assays able to evaluate responses to a wide range of antigens using small 
sample volumes [51], the use of Surface Plasmon Resonance [52] to evaluate kinetics and avidity 
of binding, and Resonant Acoustic Profiling able to detect antibody binding to whole virions 
[53,54]. However these gains in technology have not been matched with optimization and 
standardization of mucosal sampling, processing and storage techniques to detect mucosal 
vaccine humoral induced responses. Of particular concern was the wide variability in reported 
detection of mucosal IgA responses to HIV [32], the influence of mucosal secretions, immune 
complexes and IgG competition on different assay platforms. 
 
Specific recommendations 

• Identification of novel mucosal (colorectal, genital) specific homing markers 
• Define optimal methods to acquire, transport and store mucosal samples 
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• Establish/validated biomarkers for sample standardization and assay controls that will 
facilitate cross comparison between NHP and human vaccine studies 

• Optimize detection of HIV specific antibody isotypes in different mucosal samples 
(colorectal, cervicovaginal, semen)  

• Maximize the efficiency of polyclonal expansion of mucosal T cells to facilitate mucosal 
assessment. 

• Establish novel platform technology for single cell evaluation of mucosal T cell responses 
 
4. Defining the role of the common mucosal system in protection 
The central dogma that protective anti-HIV-1 immune reponses is best primed by mucosal 
vaccination has not been fully validated. Indeed, protection against mucosal challenge has been 
demonstrated in NHP studies with parenteral vaccines (at least with homologous virus) and live 
attenuated vaccines [42]. It is unclear whether such systemic immunization induces protection at 
mucosal surfaces, or whether more robust protection might be achieved with mucosal priming 
and/or boosting [55]. New tools for tracking virus and infected cells [56-59] may now allow 
studies to determine the point of protection in vaccinated animals. The unique contribution of 
NHP studies to addressing these questions was clearly recognized, but this was underscored with 
an emphasis for parallel immunogenicity studies in humans. Again the requirement for cross 
comparison between trials (and the tools to facilitate this) was seen as paramount.  
 
Specific recommendations 

• Establish a broad paradigm of the commonalities of the mucosal immune system through 
parallel studies in humans and NHP (BALT, GALT, genito-rectal associated lymphoid 
tissues). 

• Define the potential of mucosal immunization in different prime boost strategies to 
optimize protective  mucosal responses 

• Determine the role of mucosal immunity in protection afforded by parenteral vaccines 
(tracking of infectious events, determine differences by route of challenge) 

• Determine whether protection afforded by parenteral vaccines can be boosted by 
mucosal immunization. 

• Establish the role of mucosal antibodies (passive infusion studies, topical application of 
IgG, sIgA etc, neutralizing/non-neutralizing)in prevention of mucosal transmission 

 
5. Characterization of protective mucosal antibody responses 
While there is general agreement that a protective vaccine will require the induction of a humoral 
response, a large number of questions remain about the characteristics of such a response that 
will provide protection. The contribution of mucosal vs. systemic antibodies to mucosal 
protection remains an area of debate. It is unclear how much spill over of systemic antibodies 
there is into mucosal compartments, whether this could be sufficient for protection, if it is 
changed by sexual arousal, and whether luminal antibodies are required. Nevertheless, passive 
infusion studies have demonstrated protection against mucosal challenge [60,61] 

It remains unclear whether the induction of neutralizing antibodies is the only response 
contributing to robust protection or whether other functional characteristics of non-neutralizing 
antibodies may have equal or additional importance [62,63]. This question may be key in 
focusing vaccine development efforts. NHP challenge studies following passive infusion of 
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antibodies that demonstrate distinct functional characteristics could further define the humoral 
correlates of protection and provide cross-validation of relevant in vitro assays.   Therefore it was 
recommended that an emphasis be placed on understanding the contribution of functional 
activities of antibodies including: complement fixation, inhibition of epithelial transcytosis, 
blockade of cell-cell transmission across infectious synapses (in particular those between 
dendritic cells and T cells), and ADCC to mucosal protection. At present, there is no certainty as 
to which of the many different functional antibody assays might correlate with mucosal 
protection, and thus these must be tested in parallel with NHP and human protection studies, 
providing a way forward to understanding the humoral correlates of protection.  
  
Specific recommendations 

• Determine the correlates of protective antibody responses. Are mucosal antibodies 
necessary for protection or will antibodies of systemic origin suffice? 

• Define the role of antibody isotype in mucosal protection (combination of passive 
infusion NHP studies and in vitro functional assays) 

• Define the kinetics of protective antibodies- what is the time frame in which they have to 
work – hours, days? Can this be elicited by memory responses? 

• Determine the concentration of Ab needed at mucosal sites for an effective initial 
response. 

• Define the different characteristics of protective humoral responses against HIV 
transmission mediated by cell free virus and infected cells 

• Characterize the role of immune complexes in viral transmission and their impact of 
vaccine induced responses 

 
6. Definition of the role of T-cell responses in eliciting mucosal protection 
As discussed above, there are a number of technological hurdles to studying mucosal T cell 
responses (see Priority 3). Should these hurdles be overcome, there are several strategically 
important questions about the role of mucosal T cell responses, that could enhance the design of 
protective vaccines against mucosal HIV transmission. Comparison of systemic and mucosal 
responses in infected individuals would define whether there was any compartmentalization of T 
cell responses that would require differences in prime/boosting by vaccines. Definition of the 
correlates of protection and/or non-progression in elite controllers (NHP and humans), using 
broad systems approaches that includes multiparametric cytokine analysis and genomics may 
provide new insight into the role of T cell responses in protection/control of HIV infection and 
may explain why elite controllers have virus in their semen but not in their blood [43]. 
Furthermore, NHP studies could assess the relative contribution of specific mucosal memory vs. 
effector cell numbers and the duration of protection. Ex-vivo challenge studies of mucosal tissue 
might be developed as a tool for bridging studies between NHP and human studies. It was 
recognised that study of durable low-level localized infection (replication competent vectors, 
attenuated virus) could provide additional insight into the type of vaccine that will most likely 
stimulate mucosal T cell immunity. Furthermore, valuable lesions could be drawn through the 
study of other vaccines including: live versus inactivated polio; live versus inactivated flu; 
mucosal versus systemic delivery of measles vaccine; replication competent versus defective 
adenovirus; and exploration of response to vectors as a predictor of vaccine response [64]. 
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Specific recommendations 
• In depth comparison of mucosal and systemic T cell responses in acute and chronic 

infection of humans (frequency and functionality) 
• Comparison of mucosal and systemic T cell responses in protected NHP studies 

(frequency and functionality) 
• Definition of the correlates of non-progression in elite controllers(NHP and human 

studies) 
• Define any correlation between mucosal vs. systemic T cell responses (effector/memory 

ratio, specificity, functionality) with protection in NHP studies and their potential role in 
duration of protection/viral control 

• Characterize the role of durable low-level infection (replication competent vectors, 
attenuated virus) in inducing T cell response, and determine if it induces 
compartmentalized mucosal immunity at the site of exposure. 

• Explore the use of ex-vivo mucosal tissue challenge model as a tool for bridging studies 
between NHP and human immunogenicity studies. 

 
 
 
 
Section II: Roadblocks to harnessing the innate immune system to stimulate protective 
immunity against HIV 
 
Research done over the past decade has placed innate immunity at the center of immune 
regulation. The “innate” immune response is an evolutionarily ancient system of host defense, 
which occurs within minutes or hours of pathogen entry, or vaccination. A fundamental property 
of the innate immune system is its ability to “sense” or recognize microbial or viral stimuli, and 
to elicit rapid acting defence mechanisms [65-67]. The innate immune system consists of a 
network of interacting cell types including dendritic cells (DCs), macrophages, epithelial cells, 
endothelial cells, NK cells, NK T cells, mast cells, gamma-delta T cells which play a 
fundamental role in “sensing” microbes or viruses, and launching innate defence mechanisms 
against them [65-67]. Amongst these cells, DCs play a pre-eminent role, not only in directly 
sensing the presence of pathogens, but also in orchestrating the interactions between the other 
innate immune cell types, and facilitating the elicitation of anti-viral defences such secretion of 
type I interferons and defensins [68]. In addition to their roles in sensing pathogens and 
orchestrating innate immune defences, DCs also play a critical role in translating innate 
immunity into adaptive immunity [68, 69]. Understanding the impact of innate immunity on the 
regulation of adaptive immunity, and harnessing such knowledge to induce optimal immunity to 
HIV, was recognized as an area of the highest importance.   

The innate immune system is able to sense components of viruses, bacteria, parasites and 
fungi through the expression of so-called pattern recognition receptors (PRRs), which are 
expressed by DCs and other cells of the innate immune system [65-67]. Toll-like receptors 
[TLRs] represent the most studied  family of PRRs. However growing evidence suggests that 
other non-TLR families of innate receptors such as C-type lectin like receptors (CLRs) [70], 
NOD-like receptors (NLRs)[71] and RIG-I-like receptors (RLRs)[72] also play critical roles in 
innate sensing of pathogens, and induction of inflammatory responses. Furthermore, the 
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chemokine receptor CCR5 has been shown to recognize  HIV, M.tuberculosis, Toxoplasma 
gondii and microbial HSP70, and stimulate the maturation of dendritic cells.  The importance of 
such non-TLRs in regulation of adaptive immunity is only beginning to be understood. There are 
several different sub-populations of DCs that differ in their surface phenotype, function, and 
immune stimulatory potentials [68, 69]. Emerging evidence suggests that the nature of the DC 
subtype, as well as the particular TLRs and/or non-TLRs triggered play critical roles in 
modulating the strength, quality and persistence of adaptive immune responses [69]. Thus DCs 
and PRRs represent attractive targets for enhancing HIV-specific immunity in vaccination. 
Towards this end, a fundamental challenge is to understand the mechanisms by which DCs and 
PRRs regulate adaptive immune responses. In this context, the application of high throughput 
technologies to evaluate changes in gene and protein expression and kinase profiles in response 
to TLRs and non-TLRs, is likely to yield significant gains. Such an approach will offer an 
understanding of the signalling networks in the innate immune system that regulate the adaptive 
immune response, and this is likely to new insights on how to tune the adaptive immune 
response [73].  
 In the near term, understanding the precise roles played by TLRs and non TLRs, in the 
induction and regulation of adaptive immune responses, is critical for the design of optimally 
effective vaccines against HIV. Thus specific ligands which stimulate DCs via TLRs or non 
TLRs may represent novel adjuvants for vaccines against HIV [74]. However an important issue 
is to ensure targeted delivery of antigen plus adjuvant to the antigen presenting cell so as to 
optimize immunity and minimize systemic toxicities. Therefore the development of delivery 
systems, formulations, nanoparticles that facilitate the local or mucosal delivery of specific 
ligands for TLRs and non-TLRs may be a key step in the advancement of such novel adjuvants 
[75].  

Finally, there is a growing realization that many of our best empirically derived vaccines 
and adjuvants mediate their efficacy by activating specific innate immune receptors. For 
example, the highly effective yellow fever vaccine-17D, one of the most successful vaccines 
which has been administered to over half a billion people globally, signals via at least 4 different 
TLRs, as well as RIG-I like receptors, to elicit a broad spectrum of T cell responses [76].  This 
suggests that the immune response generated by a live attenuated vaccine can be effectively 
mimicked by adjuvants composed of the appropriate TLR and/or non-TLR ligands.  
Furthermore, recent work suggests that some adjuvants can induce robust adaptive immunity in a 
TLR-independent manner, perhaps through other receptors in the innate immune system [77]. 
Therefore, understanding the precise roles played by TLRs and other non TLRs, in the induction 
and regulation of adaptive immune responses, is critical for the design of optimally effective 
vaccines against HIV.  
 
 
7. Harnessing TLRs and non-TLRs in HIV vaccine development 
There was consensus that there should be enhanced efforts to understand how dendritic cell 
subsets, TLRs, and other innate immune receptors (non-TLRs) all represent potential targets, 
which can be manipulated to induce effective HIV-specific immunity.  
 
Specific recommendations: 

• Determine how innate immune activation controls the strength and quality of adaptive 
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immune responses.  
• Apply systems biological approaches to understanding the complex gene and protein 

regulatory networks stimulated by adjuvants, and their impact on adaptive immunity  
• Determine how to exploit TLRs, non-TLRs and antigen presenting cells (APCs) to induce 

protective immune responses, systemically and at mucosal surfaces.  
• Develop novel and safe adjuvants stimulate TLRs and/or non-TLRs.  
• Develop delivery systems, formulations, nanoparticles that facilitate the local or mucosal 

delivery of specific ligands for TLRs and non-TLRs. There is a growing belief that 
delivery of multiple TLR ligands might result in synergistic activation of DCs and a 
consequent enhancement of the adaptive immune response.  

• Determine how successful vaccines and adjuvants activate the innate immune system, 
with a view to exploiting such knowledge in the generation of new vaccines against HIV.  

• Use systems biological approaches to identify signatures of early innate immune 
activation that can predict the immunogenicity of vaccines. 

 
8. Understanding the role of natural anti-HIV factors and innate immune cells (e.g., NK 
cells, NK-T cells, gamma-delta T cells, B-1 B cells, marginal zone B cells) in mediating the 
interface between innate and adaptive immunity in HIV. 
Although much attention has focused on antigen-presenting cells, it is now clear that other innate 
activities including antiviral cytokines and cells such as NK cells, NK T cells, gamma-delta T 
cells play fundamental roles in mediating innate immune responses. Their function in inducing 
and in regulating adaptive immunity against HIV are beginning to be understood [78-80], and  
have yet to be exploited in vaccine design against HIV. Furthermore, the potential roles of innate 
B-1 and marginal zone B cells in mediating rapid induction of neutralizing antibodies against 
HIV remains an area of interest that may provide additional insight. Understanding the role of 
innate immunity in the induction and imprinting of adaptive immune responses was identified as  
and it was recognized that advances in this area might facilitate the effective manipulation of 
innate immunity to induce optimally effective adaptive immunity against HIV. 
 
Specific Recommendations 

• Determine if NK, NK-T, gamma/delta T cells have biologically relevant roles in control 
of HIV-1 during the transmission event. 

• Determine if B-1 B cells and marginal zone cells can be induced to rapidly produce 
protective antibodies in response to AHI by previous vaccination. 

 
9. Understanding the role of innate immunity in early HIV infection 
There is presently little knowledge about the early innate immune events that occur in response 
to mucosal HIV infection, and their potential influence on the ensuing adaptive immune response 
and disease progression. This issue was identified as an important gap in current understanding 
and it was widely recognized that advances in this area might facilitate the rationale design of 
interventions in acute infections. Intracellular innate antiviral factors such as APOBEC3CG can 
be upregulated and maintained so it may play an important role in prevention of HIV infection in 
the first few days after exposure to the virus [81].  Therefore further study of how innate antiviral 
factors can curtail early events in HIV transmission and development of vaccine approaches that 
can induce and maintain such responses may provide new leads. 
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Specific recommendations 

• Understand the roles of DC subsets, TLRs and non-TLRs in mediating innate and 
adaptive responses to HIV in early infection.  

• Role of other innate immune cells – NK, macrophages, marginal zone, B-1 B cells in 
mediating innate and adaptive immunity to HIV in early infection 

• Understand the role of innate antiviral cytokines in curtailing early HIV infection 
• Understand the role of innate intracellular antiviral factors in curtailing early HIV 

infection 
 
 
Summary, Discussion and Final Recommendations  
 
In summary, there was a general agreement that understanding the role of both innate and 
mucosal immunity in protection against mucosal HIV transmission was still in its infancy and 
may represent a significant bottleneck to development of a preventative HIV vaccine. 
Furthermore, recent safety concerns over the prematurely halted phase IIb STEP trial of the 
Merck adenovirus-5 vectored vaccine [82] emphasize  that studies of innate and adaptive 
mucosal immunity may be equally important in determining any potential enhancement of 
infection following vaccination.  Considerable gains could now be made with the development of 
new technology to monitor the earliest events in mucosal infection and the application of a 
focused approach to understanding the contribution of localized immune responses in prevention 
and/or potential enhancement of localized mucosal HIV infection.. It was recognized that 
acceleration of work in these areas would most likely to be met by the establishment of validated 
and standardized mucosal assay platforms that could facilitate cross comparative NHP and 
human studies, coupled with the development of innovative vaccine strategies specifically 
targeted at inducing and maintaining protective mucosal immune responses at the portal of HIV 
entry. 
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