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Review
Artemisinins are derived from extracts of sweet
wormwood (Artemisia annua) and are well established
for the treatment of malaria, including highly drug-
resistant strains. Their efficacy also extends to phylo-
genetically unrelated parasitic infections such as
schistosomiasis. More recently, they have also shown
potent and broad anticancer properties in cell lines and
animal models. In this review, we discuss recent
advances in defining the role of artemisinins in medi-
cine, with particular focus on their controversial mech-
anisms of action. This safe and cheap drug class that
saves lives at risk from malaria can also have important
potential in oncology.

Introduction
The remarkable story of the discovery of artemisinin
(Figure 1a) and establishment of its antimalarial activity
by Chinese scientists represents one of the great discov-
eries in medicine in the latter half of the 20th century [1].
Through a collaborative effort, collectively referred to as
‘Project 523’, the Chinese prepared dihydroartemisinin
(DHA; Figure 1b), artemether (Figure 1c) and artesunate
(Figure 1d) in the 1970s. It is these derivatives [with
others, including artemisone (Figure 1e), arteether
(Figure 1f) and artelinic acid (Figure 1g), generically
known as ‘artemisinins’] that are now making a crucial
contribution to the management of malaria, one of our
most important infections. The magnitude of the malaria
problem is represented in the annual burden of 500million
cases. This fascinating class of drug, with structures so
different from the classical quinoline antimalarials, is
particularly valuable when used in combination with other
antimalarials [2,3].

Artemisinins have also been submitted to studies aimed
at exploring other uses for this drug class. Artemisinins are
active against other parasite species in vitro, including
protozoa that are phylogenetically unrelated to apicom-
plexan parasites such as the Plasmodium species that
cause malaria. Artemisinins also act against metazoan
parasites such as Schistosoma spp. Their anti-disease
properties include potent anticancer activity in in vitro
studies and in an in vivo model of colorectal cancer. Taken
together with case reports describing benefits in diverse
cancers, a recently published clinical trial of short-term use
in lung cancer, their established record of safety in children
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and adults with malaria, and their permissive cost, there
are compelling reasons to study their contribution to man-
agement of tumours that require adjuvant and neo-adju-
vant therapies. This selective review focuses on rapidly
advancing areas of artemisinin science and usage and
illustrates why artemisinins have the potential to rival
acetylsalicylic acid in the breadth of their anti-disease
properties.

There is considerable debate regarding the mechanisms
of antimalarial action of artemisinins. An endoperoxide
bridge (Figure 1) lies at the heart of antiparasitic activity of
artemisinins, although the chemical nature of the inter-
action between artemisinins (particularly the essential
endoperoxide) and parasite target(s) is not well under-
stood. The role of ferrous species in the antimalarial
actions of artemisinins is also debated [4] because these
cations can catalyse in vitro reactions of some artemisinins,
including their decomposition in aqueous solutions.

One issue focuses further discussions: is there a single
important target for artemisinins in Plasmodium spp. or
are theremultiple targets? Fully synthetic trioxolanes that
contain an endoperoxide bridge but lack other features of
artemisinins have increased complexity of the debate on
mechanisms of action of artemisinins [5]. Many groups,
including our own, have reviewed recent developments
[6–9]. Clarifying mechanisms of action of artemisinins is
important for understanding both how structurally related
drugs, such as the fully synthetic trioxolanes, might work
and the basis for the development of resistance by para-
sites to this class of antimalarial. Clearly, a structural
appreciation of the putative targets should contribute to
the design of derivatives that are not crippled bymutations
in target, as exemplified by approaches used in the de-
velopment of new dihydrofolate reductase inhibitors
[10,11].

Rodent malarias are also useful models for under-
standing possible mechanisms of resistance to different
classes of antimalarials [12,13]. Genetic analyses per-
mitted by Plasmodium chabaudi infection in mice ident-
ified a locus linked to artemisinin resistance that
is stable after mosquito passage [14,15]. Linkages to
artemisinin resistance have been narrowed down to a
de-ubiquitination enzyme (among others) that might
function in the endoplasmic reticulum of parasites and
be involved in the stress response. Other groups have
established stable artemisinin-resistant strains, confirm-
ing that artemisinin resistance can develop through
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Figure 1. Chemical structures of artemisinins. Artemisinin (a) isolated in crystalline form in 1973 from Artemisia annua and derivatives dihydroartemisinin (DHA) (b),

artemether (c), artesunate (d) and arteether (f) were first prepared by Chinese scientists in the 1970s [1]. Artemisone (e), representative of a new class of artemisinin known

as amino-artemisinins, is curative in clinical trials at one-third the dose regimen of artesunate. It is characterized by low toxicity [56]. Artelinate (g) was prepared at the

Walter Reed Army Institute of Research (http://wrair-www.army.mil), but was withdrawn because of toxicity concerns [112]. Deoxyartemisinin (h), lacking the peroxide

bridge, is biologically inert.
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standard selection procedures rather than (unfortu-
nately) being an extremely rare event and can also arise
by more than one mechanism [16–18].

Molecular targets of artemisinins
Plasmodium falciparum multiplies in red blood cells, and
digestion of haemoglobin during its 48 h asexual life cycle
is essential for parasite survival (Box 1). For many years,
artemisinins have been proposed to act on parasite haemo-
globin-digestion processes within the ‘food vacuole’ (Box 1,
Figure Ib). Other studies have indicated that artemisinins
could also target the parasite mitochondrion or the trans-
lationally controlled tumour protein (TCTP) and PfATP6, a
parasite-encoded sarcoplasmic–endoplasmic reticulum
calcium ATPase (SERCA). These hypotheses are discussed
in more detail here.

Haem pathway

Haemozoin is parasite pigment deposited within a food
vacuole (Box 1) after digestion of haemoglobin. It has long
been proposed as a target of artemisinins, although the
plasmodial stages most susceptible to the activity of arte-
misinins are too young to manifest visible pigment
(reviewed in Refs [19,20]). The endoperoxide bridge of
artemisinins is proposed to be activated by ferrous iron
to generate free radicals (of the oxy or C-centred variety) in
in vitro experiments and, subsequently, to alkylate haem.
As iron is the principal element deposited in haemozoin,
digestion of haemoglobin by parasites is suggested to
render them susceptible to killing by locally activated
artemisinins.

However, several localization studies indicate that most
artemisinin taken up into parasites is outside of their food
vacuoles [21,22]. Some studies with fluorescent artemisi-
nin derivatives show food vacuolar localization [23], per-
haps representing trafficking of the fluorophore itself. This
trafficking of a fully synthetic fluorescent antimalarial
trioxolane might also explain differential localization
results (one parasite with signal in the cytosol and the
other in the food vacuole) observed for two parasites shar-
ing the same erythrocyte [24]. Synthetic trioxolanes, such
as OZ277, are more fragile than the semi-synthetic arte-
misinin derivatives when assayed in aqueous solutions
[4,25,26], and they also seem to degrade easily within
parasitized erythrocytes [27]. These propertiesmight influ-
ence estimates of potency.

Further evidence for the irrelevance of parasite pigment
in the action of artemisinins comes from their potent
activity against non-pigment-producing apicomplexan
parasites (see later). There is also divergence between
some in vitro assays of haem alkylation by trioxolanes
and natural and semi-synthetic artemisinins [25]. The
correlation observed between antimalarial potencies of
trioxolanes and their propensity to alkylate haem [25] is
not observed for artemisinins, implying either that these
classes of antimalarial might have different modes of
action or that, indeed, the haem pathway might be irrele-
vant. The trioxolane OZ277 inhibits PfATP6 calcium
ATPase activity when expressed in oocytes [24] at low
(mM) concentrations. Thismight be owing to decomposition
of the compound under the assay conditions or other
aspects of the in vitro assay system. Study of more stable
trioxolanes might resolve some of these issues. There is
also correlation (r2 = 0.5, n = 38; p = 0.002) between para-
siticidal activities of artesunate and OZ277 tested against
field isolates, with no correlation between OZ277 and other
classes of antimalarial such as quinolines [28]. This cor-
relation might represent a general (non-target-specific)
propensity of parasites to be susceptible to endoperoxides,
but it is also consistent with the shared-target hypothesis
formechanisms of action, with PfATP6 being an example of
such a target.
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Box 1. The intraerythrocytic parasite and proposed targets

of artemisinins

Human malaria-causing parasites have complex life cycles requiring

both mosquito vectors and human hosts with three cycles of asexual

and one cycle of sexual reproduction. One of the asexual phases takes

place within the red blood cells of its host (Figure Ia). Invasive forms,

termed merozoites, enter the red blood cell and remain relatively

metabolically inactive (compared with the later asexual stages of

development) for 10–15 h (the ring stage). The parasite then under-

goes a rapid phase of growth over the next 25 h (forming the

trophozoite stage), during which time the parasite digests the

majority of the haemoglobin of the host cell and grows to fill >50%

of the volume of the host cell. Haemoglobin is digested within a food

vacuole (Figure Ib), which results in the formation of haem. As the

haem is formed, it associates via one of the peripheral carboxyl

groups with the Fe3+ of an adjacent haem to form insoluble

haemozoin. It has been proposed, although not proven, that this

process is aided by a protein termed the histidine-rich protein II. At the

end of the trophozoite stage the parasite divides several times (the

schizont stage) before the host cell lyses (some 48 h after invasion) to

release the newly formed meroziotes that continue the cycle.

Artemisinins, which might not require activation by Fe2+, have

been proposed over several years to target several different

pathways (Figure Ib), including the heam detoxification pathway,

the mitochondrion, the TCTP and a Ca2+ pump localized to the

endoplasmic reticulum (termed PfATP6).

Figure I. Diagram showing the complex life cycle of Plasmodium falciparum.

Abbreviations: AA, amino acids; Ap, apicoplast; ART, artemisinins; DV,

digestive vacuole; ER, endoplasmic reticulum; G, Golgi apparatus; Hb,

haemoglobin; Hz, haemozoin; M, mitochondrion; N, nucleus; RBC, red blood

cell; TCTP, translationally controlled tumour protein.
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As a variant of the haem hypothesis, reaction with a
histidine-rich protein of parasites (HRPII; Box 1) might
also be involved in antimalarial activity [29] because
HRPII aids digestion of haemoglobin. However, very little
HRPII is secreted in early ring stages (Box 1), which are
most susceptible to artemisinins [30,31].

Understanding interactions between haemoglobins and
artemisinins is complicated by alterations in iron status
associated with haemoglobinopathies. Higher concen-
trations of free iron in haemoglobin-E-containing and tha-
lassaemic erythrocytes reduces parasiticidal potencies of
artemisinins when assayed in vitro [32]. However, in vivo
kinetic studies using bioassays of artesunate and its active
metabolite, DHA, show approximately tenfold higher
plasma concentrations in a-thalassaemic subjects when
areas under the time–concentration curves were assessed
[33], and the haemoglobin E trait might increase parasite
clearance by artemisinins [34]. Despite these differences
between in vitro activities of artemisinins related to the
haemoglobin status of host erythrocytes, thalassaemia is
not an influential co-variate in population pharmacoki-
netic analysis of rectal artesunate used to treat Plasmo-
dium vivax or P. falciparum infections. Additionally,
antimalarial activities of artemisinin against P. falci-
parum parasites cultured in the presence of carboxy-
haemoglobin are significantly higher than in the presence
of oxy-haemoglobin. This increase in artemisinin activity is
unexpected if Fe2+ is important in activating artemisinins
because carboxy-haemoglobin inhibits haem-Fe2+ reactiv-
ity, indicating that haemoglobin iron plays no part in
activating artemisinin for antimalarial activity and that
competitive degradation of the artemisinin by haemo-
globin actually attenuates its antimalarial activity [35,36].

PfATP6

The supportive arguments for PfATP6, the P. falciparum
SERCA orthologue, as a target for artemisinins have been
reviewed recently [9]. Evidence from transfection into
parasites of DNA encoding PfATP6 that have altered
sensitivity to some artemisinins will provide suitable
genetic tests for the PfATP6 hypothesis (studies in pro-
gress), which has gained support from data from field
isolates. An interesting study from French Guiana showed
a clear association between mutation(s) in PfATP6 and
decreased susceptibility to artemether, particularly with
position 769 (Ser769Asn substitution) [37]. Parasites with
Ser769Asn had a median IC50 value >20-times higher for
artemether (indicating artemether resistance) compared
with parasites without this mutation [9].

Detailed methodology for in vitro assays used in the
earlier publication [37] is provided in a follow-up paper
[38]. The lack of a laboratory-adapted line carrying the
Ser769Asn mutation has been criticized, despite there
being well-recognized ‘fitness-costs’ (i.e the ability of resist-
ant parasites to persist in the absence of drug pressure) of
some resistancemutations for cultured parasites, as shown
for mutations in the P. falciparum multidrug resistance
gene 1 (pfmdr1) [38–40]. Laboratory-derived transfectants
carrying the Ser769Asn mutation will clarify its role in
artemisinin resistance, especially when combined with ex
vivo assays of susceptibility to artemisinins with the



Table 1. Polymorphism in the PfATPase6 gene and in vitro susceptibility to artemisinins of Plasmodium falciparum

Region

Non-synonymous

nucleotide substitution

Amino acid

substitution

Artemether IC50

median [range]

(nM)

DHA IC50

median [range]

(nM)

Artesunate IC50

median [range]

(nM) Refs

Wild type – 5.6 [1.3–55.8] 0.68 [0.1–31.8]

0.25 [0.17–18.4]

[37,41,45]5.46 [0.68–61.1]

Thailand T266C Ile89Thr Not determined Not determined 3.38 [0.81–29.9] [45]

Africa C727T His243Tyr Not determined 4.2; 6.4 Not determined [41]

G2306A Ser769Asn Not determined 0.83 Not determined

Senegal G1291A Glu431Lys Not determined Not determined 20.8 [37]

G1291A and C1868A Glu431Lys and

Ala623Glu

Not determined Not determined 44.7

French Guiana G2306A Ser769Asn 58.8 [38.2–100] Not determined Not determined [37]

A1721C and G2306A Gln574Pro and

Ser769Asn 116.8

Not determined Not determined
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Xenopus oocyte model. An African isolate carrying the
Ser769Asn mutation was still susceptible to DHA, and
data for susceptibility to artemether were not reported
(Table 1). These observations indicate that different arte-
misinin derivatives give rise to different inhibitory profiles
when they encounter PfATP6 with a particular single-site
polymorphism [41], as discussed elsewhere [42]. Structural
modelling of the Ser769Asn mutation has proved difficult
because the region containing this mutation has relatively
low similarity to a mammalian SERCA (compared with
other functionally conserved regions), a crystal structure of
which is available [43]. This region is not related to the
thapsigargin-binding site of mammalian SERCAs, which,
in PfATP6, has also been hypothesized to accommodate
artemisinins on the basis of mutational studies after
expression in oocytes [44].

Mutation elsewhere in field isolates (position 243 in
PfATP6) decreases susceptibility to DHA, although data
are only available from two isolates [41]. Monitoring of
polymorphisms in PfATP6 (and indeed other transporter
sequences) and relating the findings to phenotypes by
assessing susceptibility to artemisinins is likely to be
highly relevant to the objective of detecting early signs
of artemisinin resistance (Table 1). For example, increased
copy number of the multidrug resistance gene pfmdr1
modulates susceptibility of parasites to artemisinins in
vitro, although the clinical relevance of this observation
is not established [45].

Other targets

Recent studies with Baker’s yeast indicate that mitochon-
drial membrane potential can be disrupted by artemisinin
when grown in nonfermentable conditions (i.e. when car-
bon sources such as glycerol or ethanol are not metabolized
by glycolysis) [46]. However, the relevance of these obser-
vations to antimalarial activity of artemisinins is unclear
because other experiments indicate that higher concen-
trations (mM) of artemisinins are necessary to trigger
resistance responses to artemisinins in yeast [47].
Additionally, the new clinically tested artemisinin deriva-
tive artemisone has no effect on mitochondrial membrane
potential, reactive oxygen species levels or inhibition of the
respiratory chain in neuronal cell lines [48].

The TCTP orthologue of P. falciparum was identified
some years ago as a protein alkylated by radiolabelled
artemisinin. There is no new evidence that supports the
idea of TCTP as a target for artemisinins. Field isolates
that have variable sensitivities to artemether are not
associated with sequence polymorphisms in TCTP [37].
Neither do studies with animal models of artemisinin-
resistant parasites support involvement of TCTP as a
target [15].

Properties of artemisinins
Antimalarial activity of artemisinins – clinical

applications

Using artesunate to treat severe malaria in adults has
been emphasized in recent publications [49]. Parenteral
artesunate (including intramuscular artesunate [50]) is
easier to administer and is associated with fewer adverse
effects (e.g. hypoglycaemia) when compared with quinine
[51], the only other drug used in severe malaria. Mortality
in adults is also lower with artesunate than with quinine.
Intrarectal treatment with artesunate of children or adults
who cannot take medicines by mouth and suffer from
symptoms of malaria away from healthcare facilities has
also been studied in large scale (Phase IV) studies that will
be reported soon. Both safety and efficacy have been estab-
lished in smaller studies [52,53]. However, a child treated
with very high rectal doses of artesunate (88 mg kg�1 in
total compared with a recommended 10–20 mg kg�1)
recently died because of probable toxicity [54].

Curiously, oral artemether and DHA are more com-
monly used in fixed-dose formulations rather than artesu-
nate. Artesunate might have more favourable properties,
both in terms of stability and ease of co-formulation when
compared with DHA, and in terms of adverse effects in
animal models when compared with artemether [55].
Newer semi-synthetic artemisinin derivatives such as
artemisone (Figure 1e) preserve safety but enhance ef-
ficacy and should be studied for performance against
models of artemisinin resistance [56].

Activity against Toxoplasma gondii and other

pathogenic apicomplexan parasites

Studying the susceptibility of non-plasmodial apicomplex-
ans to artemisinins affords new therapeutic opportunities
and provides new mechanistic insights. If organisms
within the crown eukaryotic group are susceptible to arte-
misinins, then the simplest mechanistic interpretation is
that they function in a similar way against these phylo-
genetically related organisms. For example, Toxoplasma
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gondii is a somewhat more tractable parasite than Plas-
modium spp., particularly for studies using genetic manip-
ulations or imaging technologies. Early work showed
toxoplasma to be susceptible to artemisinins, albeit requir-
ing concentrations within the micromolar range to kill
parasites (online supplementary Table S1). Now studies
show that T. gondii can be killed by nanomolar concen-
trations of artemisone in in vitro models and that
TgSERCA (the PfATP6 orthologue) is susceptible to inhi-
bition by artemisinin when expressed in yeast [57].
Furthermore, artemisinins trigger disturbances of calcium
metabolism in parasites that have functional consequences
on invasion machinery, and these might differ if parasites
are cultured within host cells or as free living organisms
[58]. These findings independently support the hypothesis
that parasite SERCAs are targets for artemisinins (both in
vivo and after heterologous expression). They also indicate
that a glutamic acid residue predicted in transmembrane
segment 3 of TgSERCA is permissive for artemisinin
susceptibility [44], consistent with the suggestion made
here that other key residues in TgSERCA might modulate
artemisinin susceptibility.

Babesia species are tick-borne intraerythrocytic para-
sites that can infect humans in addition to a variety of
domestic animals, depending on the species of parasite.
Unlike plasmodial infections, babesia do not generate a
parasitophorous vacuole and do not digest haemoglobin to
make haemozoin [59]. Yet, some species are also suscept-
ible to killing by artemisinins (online supplementary Table
S1), once again making the haemoglobin digestion path-
way a less compelling one for their mechanisms of action.
Other related parasites have variable susceptibilities to
artemisinins (online supplementary Table S1). These stu-
dies also establish that neither haemozoin nor haemo-
globin is crucial to antiparasitic activity of artemisinins.
It will be of interest to test the SERCA hypothesis for the
mechanism of action of artemisinins in these related patho-
genic parasites.

Activity against other protozoan and metazoan parasites

Artemisinins are also active against phylogenetically unre-
lated parasites, such as the single-celled kinetoplastids
and metazoan helminths (online supplementary Table
S2; efficacy against Schistosoma spp. is reviewed else-
where [60]). Both salivarian (African) and stercorarian
(American) trypanosomes can be killed by micromolar
concentrations of artemisinins, indicating that artemisi-
nins can be used as leads on which to optimize more potent
derivatives [61]. Leishmania spp. are also killed by micro-
molar concentrations of artemisinins (online supple-
mentary Table S2). As these infections are usually
neglected in drug development portfolios, it would be
regrettable if promising in vitro activities are not examined
more thoroughly in relevant in vivomodels perhaps used in
combination with current therapies.

For metazoan infections, particularly Schistosoma spp.,
artemether and artesunate have shown useful activities in
human studies and in models of infection [60,62]. First
identified in Chinese studies [63], these observations have
been extended to African infections. The limited portfolio of
active trematocidal compounds reinforces the potential for
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artemisinins in the treatment of Schistosomamansoni and
Schistosoma haematobium.

Antitumour properties of artemisinins

Since the late 1980s, anticancer properties of artemisinins
have been assayed in vitro (online supplementary Table
S3). After more detailed studies, artemisinins such as
artesunate were found to be active against a variety of
unrelated tumour cells lines, from the most common types
such as colon, breast and lung cancers to leukaemias and
pancreatic cancer [64,65]. Studies have also identified
potential general mechanisms such as normalization of
the upregulated Wnt/b-catenin pathway in colorectal can-
cer [66]. Other pathways for anticancer activity include
inhibition of enhanced angiogenesis associated with
tumours [67–77]. Artemisinins inhibit proliferation,
migration and tube formation of human umbilical vein
endothelial cells (HUVEC), inhibit vascular endothelial
growth factor (VEGF) binding to surface receptors on
HUVEC and reduce expression of VEGF receptors Flt-1
and KDR/flk-1 on HUVECs [74,75,77]. In cancer cells,
artemisinins reduce expression of the VEGF receptor
KDR/flk-1 in tumour and endothelial cells and slow growth
of human ovarian cancer HO-8910 xenografts in nude mice
[67–69,75,77]. HUVEC apoptosis by artesunate is associ-
ated with downregulation of Bcl-2 (B-cell leukemia/lym-
phoma 2) and upregulation of BAX (Bcl-2-associated X
protein) [78].

mRNA expression of 30 out of 90 angiogenesis-related
genes correlated significantly with the cellular response to
artemisinins [70]. In this microarray panel, there were
many fundamental angiogenic regulators encoded by genes
such as VEGFC, fibroblast growth factor-2 (FGF2), matrix
metalloproteinase-9 (MMP9), thrombospondin-1 (THBS1)
and hypoxia-inducing factor a (HIF1A). The fact that
sensitivity and resistance of tumour cells can be predicted
by mRNA expression levels of angiogenesis-related genes
indicates that artemisinins reveal their antitumour effects,
at least in part, by inhibition of tumour angiogenesis.
Overexpression of enzymes associated with modulation
of oxidative stress such as glutamylcysteine synthetase,
glutathione S-transferases and the endothelial growth
factor receptor reduce susceptibility of tumour cells to
artemisinins [79,80]. Importantly, overexpression of genes
encoding transporters that mediate drug resistance (e.g.
multidrug resistance gene 1, multidrug resistance associ-
ated protein 1 and breast cancer resistance protein), dihy-
drofolate reductase and ribonucleotide reductase, which
also confer resistance to established antitumour drugs, do
not affect susceptibility, indicating that artemisinins func-
tion in different ways to classical cancer chemotherapeutic
agents. These in vitro studies have also shown that for
some cancer lines, delivery of iron, for example by the use of
holotransferrin, enhances the anticancer properties of
artemisinins [65,81–87].

Should artemisinins remain relegated to the large
category of compounds that have interesting in vitro prop-
erties against cancers but have not been studied suffi-
ciently to warrant more extensive clinical studies?
Probably not, for many reasons. First, artesunate is a
cheap, safe, easily administered and orally bioavailable
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compound that acts at targets different to those of many
current cancer chemotherapeutic agents and is unlikely to
interact adversely with existing anticancer interventions
(P. Folb, personal communication). Second, study of an
animal model carrying a human colorectal cancer cell line
confirms that artesunate has independent antitumour
activity and can shrink primary tumours and reduce the
risk of hepatic metastases developing [66]. Additionally,
human studies of individual cases [88,89], in addition to a
recently published Phase II study of lung cancer [90],
support rapid implementation of studies of artesunate
as a primary or adjunct antitumour intervention, particu-
larly for colorectal cancers and for leukaemia (as supported
by results in online supplementary Table S3).

Other potentially useful properties of artemisinin

compounds

In in vitro studies, several groups have reported that
artemisinins have antiviral properties. Artemisinins
reduce replication rates of hepatitis B and C viruses
[91,92], a range of human herpes viruses [93–95], HIV-1
[96], influenza virus A [93,97] and a bovine viral diarrhoea
virus [98] in the low micromolar range. Artesunate was
also effective at reducingCMV (human herpes virus 5) copy
number in an immunosuppressed 12-year-old child [99]
and was used (100 mg per day, orally) for 30 days without
attributable toxicity. Artemisinins also have some anti-
fungal properties against Pneumocystis carinii in vitro
[100,101], although artemether was not curative in two
in vivo studies in immunosuppressed rats [102,103]. There
are several other diseasemodels, such as those for rheuma-
toid arthritis [104–106], nephritic syndrome [107], pan-
creatitis [108] and lupus nephritis [109,110], in which
artemisinins have produced promising results. In the case
of lupus nephritis, artemisinin has been used for three
years in a human study, with positive effects on the disease
state [111].

Concluding remarks
Artemisinins are firmly established in combination thera-
pies [2,3] to treat drug-resistant malaria. They are becom-
ing established as anti-schistosomal agents. Their true
potential now lies in broader anti-disease applications,
particularly in addressing the difficult challenge posed by
advanced cancers for which expensive treatments are
providing, at best, incremental gains in outcome. Ques-
tions about dosing regimens, safety of long-term use and
possible interactions (either positive or negative) with
existing therapies and toxicities that might be related
to the treatment of tumours should be answered by appro-
priate clinical studies as part of an urgent need to inves-
tigate drugs such as artesunate for oncological
indications.
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sarcoplasmic reticulum at 2.6 Å resolution. Nature 405, 647–655

44 Uhlemann, A.C. et al. (2005) A single amino acid residue can
determine the sensitivity of SERCAs to artemisinins. Nat. Struct.
Mol. Biol. 12, 628–629

45 Price, R.N. et al. (2004) Mefloquine resistance in Plasmodium
falciparum and increased pfmdr1 gene copy number. Lancet 364,
438–447

46 Li, W. et al. (2005) Yeast model uncovers dual roles of mitochondria in
action of artemisinin. PLoS Genet. 1, e36

47 Alenquer, M. et al. (2006) Adaptive response to the antimalarial drug
artesunate in yeast involves Pdr1p/Pdr3p-mediated transcriptional
activation of the resistance determinants TPO1 and PDR5. FEMS
Yeast Res. 6, 1130–1139

48 Schmuck, G. et al. (2002) Neurotoxic mode of action of artemisinin.
Antimicrob. Agents Chemother. 46, 821–827

49 Dondorp, A. et al. (2005) Artesunate versus quinine for treatment
of severe falciparum malaria: a randomised trial. Lancet 366,
717–725
526
50 Nealon, C. et al. (2002) Intramuscular bioavailability and clinical
efficacy of artesunate in gabonese children with severe malaria.
Antimicrob. Agents Chemother. 46, 3933–3939

51 Woodrow, C.J. et al. (2006) Artesunate versus quinine for severe
falciparum malaria: a randomised trial. Lancet 367, 110–111

52 Gomes, M. et al. (2008) Rectal artemisinins for malaria: a review of
efficacy and safety from individual patient data in clinical studies.
BMC Infect. Dis. 8, 39

53 Krishna, S. et al. (2001) Bioavailability and preliminary clinical
efficacy of intrarectal artesunate in Ghanaian children with
moderate malaria. Antimicrob. Agents Chemother. 45, 509–516

54 Campos, M.S. et al. Fatal artesunate toxicity in a child. J. Pediatr.
Infect. Dis. (in press)

55 Woodrow, C.J. et al. (2005) Artemisinins. Postgrad. Med. J. 81, 71–78
56 Haynes, R.K. et al. (2006) Artemisone – a highly active antimalarial

drug of the artemisinin class. Angew. Chem. Int. Ed. Engl. 45, 2082–

2088
57 Nagamune, K. et al. (2007) Artemisinin induces calcium-dependent

protein secretion in the protozoan parasite Toxoplasma gondii.
Eukaryot. Cell 6, 2147–2156

58 Nagamune, K. et al. (2007) Artemisinin-resistant mutants of
Toxoplasma gondii have altered calcium homeostasis. Antimicrob.
Agents Chemother. 51, 3816–3823

59 Vial, H.J. and Gorenflot, A. (2006) Chemotherapy against babesiosis.
Vet. Parasitol. 138, 147–160

60 Utzinger, J. et al. (2007) Artemisinins for schistosomiasis and beyond.
Curr. Opin. Investig. Drugs 8, 105–116

61 Mishina, Y.V. et al. (2007) Artemisinins inhibit Trypanosoma cruzi
and Trypanosoma brucei rhodesiense in vitro growth. Antimicrob.
Agents Chemother. 51, 1852–1854

62 Xiao, S.H. (2005) Development of antischistosomal drugs in China,
with particular consideration to praziquantel and the artemisinins.
Acta Trop. 96, 153–167

63 Chen, D.J. et al. (1980) Experimental studies on antischistosomal
activity of qinghaosu. Zhong Hui Yi Xue Zha Zhi 60, 422–425

64 Efferth, T. et al. (2001) The anti-malarial artesunate is also active
against cancer. Int. J. Oncol. 18, 767–773

65 Kelter, G. et al. (2007) Role of transferrin receptor and the ABC
transporters ABCB6 and ABCB7 for resistance and differentiation
of tumor cells towards artesunate. PLoS ONE 2, e798

66 Li, L.N. et al. (2007) Artesunate attenuates the growth of human
colorectal carcinoma and inhibits hyperactive Wnt/b-catenin
pathway. Int. J. Cancer 121, 1360–1365

67 Zhou, H.J. et al. (2007) Artesunate inhibits angiogenesis and
downregulates vascular endothelial growth factor expression in
chronic myeloid leukemia K562 cells. Vascul. Pharmacol. 47,
131–138

68 Wu, X.H. et al. (2006) Dihydroartemisinin inhibits angiogenesis
induced by multiple myeloma RPMI8226 cells under hypoxic
conditions via downregulation of vascular endothelial growth factor
expression and suppression of vascular endothelial growth factor
secretion. Anticancer Drugs 17, 839–848

69 Li, J. and Zhou, H.J. (2005) Dihydroartemisinin inhibits the
expression of vascular endothelial growth factor in K562 cells. Yao
Xue Xue Bao 40, 1041–1045

70 Anfosso, L. et al. (2006) Microarray expression profiles of
angiogenesis-related genes predict tumor cell response to
artemisinins. Pharmacogenomics J. 6, 269–278

71 Longo, M. et al. (2006) Effects of the antimalarial drug
dihydroartemisinin (DHA) on rat embryos in vitro. Reprod. Toxicol.
21, 83–93

72 Dell’Eva, R. et al. (2004) Inhibition of angiogenesis in vivo and growth
of Kaposi’s sarcoma xenograft tumors by the anti-malarial
artesunate. Biochem. Pharmacol. 68, 2359–2366

73 Huan-huan, C. et al. (2004) Artesunate reduces chicken
chorioallantoic membrane neovascularisation and exhibits
antiangiogenic and apoptotic activity on human microvascular
dermal endothelial cell. Cancer Lett. 211, 163–173

74 Chen, H.H. et al. (2004) Antimalarial dihydroartemisinin also inhibits
angiogenesis. Cancer Chemother. Pharmacol. 53, 423–432

75 Chen, H.H. et al. (2004) Inhibitory effects of artesunate on
angiogenesis and on expressions of vascular endothelial growth
factor and VEGF receptor KDR/flk-1. Pharmacology 71, 1–9



Review Trends in Pharmacological Sciences Vol.29 No.10
76 Wartenberg,M. et al. (2003) The antimalaria agent artemisinin exerts
antiangiogenic effects inmouse embryonic stem cell-derived embryoid
bodies. Lab. Invest. 83, 1647–1655

77 Chen, H.H. et al. (2003) Inhibition of human cancer cell line growth
and human umbilical vein endothelial cell angiogenesis by
artemisinin derivatives in vitro. Pharmacol. Res. 48, 231–236

78 Wu, G.D. et al. (2004) Apoptosis of human umbilical vein endothelial
cells induced by artesunate. Vascul. Pharmacol. 41, 205–212

79 Efferth, T. and Oesch, F. (2004) Oxidative stress response of tumor
cells: microarray-based comparison between artemisinins and
anthracyclines. Biochem. Pharmacol. 68, 3–10

80 Efferth, T. et al. (2003) Role of antioxidant genes for the activity of
artesunate against tumor cells. Int. J. Oncol. 23, 1231–1235

81 Singh, N.P. and Lai, H.C. (2005) Synergistic cytotoxicity of
artemisinin and sodium butyrate on human cancer cells.
Anticancer Res. 25, 4325–4331

82 Kim, S.J. et al. (2006) Dihydroartemisinin enhances radiosensitivity of
human glioma cells in vitro. J. Cancer Res. Clin. Oncol. 132, 129–135

83 Efferth, T. et al. (2004) Enhancement of cytotoxicity of artemisinins
toward cancer cells by ferrous iron. Free Radic. Biol. Med. 37, 998–

1009
84 Singh, N.P. and Lai, H.C. (2004) Artemisinin induces apoptosis in

human cancer cells. Anticancer Res. 24, 2277–2280
85 Sadava, D. et al. (2002) Transferrin overcomes drug resistance to

artemisinin in human small-cell lung carcinoma cells. Cancer Lett.
179, 151–156

86 Singh, N.P. and Lai, H. (2001) Selective toxicity of dihydroartemisinin
and holotransferrin toward human breast cancer cells. Life Sci. 70,
49–56

87 Lai, H. and Singh, N.P. (1995) Selective cancer cell cytotoxicity from
exposure to dihydroartemisinin and holotransferrin. Cancer Lett. 91,
41–46

88 Berger, T.G. et al. (2005) Artesunate in the treatment of metastatic
uveal melanoma – first experiences. Oncol. Rep. 14, 1599–1603

89 Singh, N.P. and Panwar, V.K. (2006) Case report of a pituitary
macroadenoma treated with artemether. Integr. Cancer Ther. 5,
391–394

90 Zhang, Z.Y. et al. (2008) Artesunate combined with vinorelbine plus
cisplatin in treatment of advanced non-small cell lung cancer: a
randomized controlled trial. Zhong Xi Yi Jie He Xue Bao 6, 134–138

91 Paeshuyse, J. et al. (2006) Hemin potentiates the anti-hepatitis C
virus activity of the antimalarial drug artemisinin. Biochem. Biophys.
Res. Commun. 348, 139–144

92 Romero, M.R. et al. (2005) Effect of artemisinin/artesunate as
inhibitors of hepatitis B virus production in an ‘‘in vitro’’
replicative system. Antiviral Res. 68, 75–83

93 Efferth, T. et al. (2002) Antiviral activity of artesunate towards wild-
type, recombinant, and ganciclovir-resistant human
cytomegaloviruses. J. Mol. Med. 80, 233–242

94 Kaptein, S.J. et al. (2006) The anti-malaria drug artesunate inhibits
replication of cytomegalovirus in vitro and in vivo. Antiviral Res. 69,
60–69

95 Naesens, L. et al. (2006) Antiviral activity of diverse classes of broad-
acting agents and natural compounds in HHV-6-infected
lymphoblasts. J. Clin. Virol. 37 (Suppl. 1), S69–S75
96 Efferth, T. et al. (2002) Activity of drugs from traditional Chinese
medicine toward sensitive and MDR1- or MRP1-overexpressing
multidrug-resistant human CCRF-CEM leukemia cells. Blood Cells
Mol. Dis. 28, 160–168

97 Qian, R.S. et al. (1982) The immunologic and antiviral effect of
qinghaosu. J. Tradit. Chin. Med. 2, 271–276

98 Romero, M.R. et al. (2006) Antiviral effect of artemisinin from
Artemisia annua against a model member of the Flaviviridae
family, the bovine viral diarrhoea virus (BVDV). Planta Med. 72,
1169–1174

99 Shapira, M.Y. et al. (2008) Artesunate as a potent antiviral agent in a
patient with late drug-resistant cytomegalovirus infection after
hematopoietic stem cell transplantation. Clin. Infect. Dis. 46, 1455–

1457
100 Merali, S. and Meshnick, S.R. (1991) Susceptibility of Pneumocystis

carinii to artemisinin in vitro. Antimicrob. Agents Chemother. 35,
1225–1227

101 Ni, X. and Chen, Y. (2001) In vitro study of the anti-pneumocystis
carinii effect of arteminsin derivatives. Zhonghua Jie He He Hu Xi Za
Zhi 24, 164–167

102 Brun-Pascaud, M. et al. (1996) Lack of activity of artemether for
prophylaxis and treatment of Toxoplasma gondii and Pneumocystis
carinii infections in rat. Parasite 3, 187–189

103 Chen, Y.T. et al. (1994) An experimental trial of artemether in
treatment of Pneumocystis carinii in immunosuppressed rats.
Chin. Med. J. (Engl.) 107, 673–677

104 Xu, H. et al. (2007) Anti-malarial agent artesunate inhibits TNF-a-
induced production of proinflammatory cytokines via inhibition of
NF-kB and PI3 kinase/Akt signal pathway in human rheumatoid
arthritis fibroblast-like synoviocytes.Rheumatology (Oxford) 46, 920–

926
105 Mirshafiey, A. et al. (2006) Design of a new line in treatment of

experimental rheumatoid arthritis by artesunate.
Immunopharmacol. Immunotoxicol. 28, 397–410

106 Cuzzocrea, S. et al. (2005) Artemether: a new therapeutic
strategy in experimental rheumatoid arthritis. Immunopharmacol.
Immunotoxicol. 27, 615–630

107 Razavi, A. et al. (2007) Treatment of experimental nephrotic
syndrome with artesunate. Int. J. Toxicol. 26, 373–380

108 Zhao, M. et al. (2007) Induction of apoptosis by artemisinin relieving
the severity of inflammation in caerulein-induced acute pancreatitis.
World J. Gastroenterol. 13, 5612–5617

109 Li, W.D. et al. (2006) Dihydroarteannuin ameliorates lupus symptom
of BXSB mice by inhibiting production of TNF-a and blocking the
signaling pathway NF-kB translocation. Int. Immunopharmacol. 6,
1243–1250

110 Dong, Y.J. et al. (2003) Effect of dihydro-qinghaosu on auto-antibody
production. TNFa secretion and pathologic change of lupus
nephritis in BXSB mice. Zhongguo Zhong Xi Yi Jie He Za Zhi 23,
676–679

111 Lu, L. (2002) Study on effect of Cordyceps sinensis and artemisinin in
preventing recurrence of lupus nephritis. Zhongguo Zhong Xi Yi Jie
He Za Zhi 22, 169–171

112 Li, Q. et al. (2005) Toxicokinetics and hydrolysis of artelinate
and artesunate in malaria-infected rats. Int. J. Toxicol. 24, 241–250
527


	Artemisinins: their growing importance in medicine
	Introduction
	Molecular targets of artemisinins
	Haem pathway
	PfATP6
	Other targets

	Properties of artemisinins
	Antimalarial activity of artemisinins - clinical applications
	Activity against Toxoplasma gondii and other pathogenic apicomplexan parasites
	Activity against other protozoan and metazoan parasites
	Antitumour properties of artemisinins
	Other potentially useful properties of artemisinin compounds

	Concluding remarks
	Acknowledgements
	Supplementary data
	References


