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cytokines interleukin-1 �  and tumour necrosis factor and in-

duced secretion of MMP-1, MMP-3, gp38 and serum amyloid-

like protein A in chondrocytes. Our studies provide a mecha-

nistic link between the innate immune receptor TLR4 and 

sterile arthritis induced by the FN III 13-14 domains of the en-

dogenous matrix molecule FN. 

 Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 A number of factors are implicated in joint damage 
during arthritis, including the cytokines tumour necro-
sis factor (TNF)- �  and interleukin-1 (IL-1), superoxide 
release and the production of proteolytic enzymes in-
cluding the aggrecanases and matrix metalloproteinases 
(MMPs) that degrade the main components of joint tis-
sue  [1] . Recent work has shown that ADAMTS-5 (a disin-
tegrin and metalloproteinase with thrombospondin re-
peats 5) is the major aggrecanase regulating cartilage de-
struction in murine animal models  [2, 3] . Reports have 
also demonstrated how catabolic factors including IL-1 
and retinoic acid upregulate aggrecanase production by 
chondrocytes, the only cell type present in cartilage  [4] . 
However, the early steps which lead to tissue breakdown 
in osteoarthritis are not well understood.
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 Abstract 

 Cartilage loss is a feature of chronic arthritis. It results from 

degradation of the extracellular matrix which is composed 

predominantly of aggrecan and type II collagen. Extracellu-

lar matrix degradation is mediated by aggrecanases and ma-

trix metalloproteinases (MMPs). Recently, a number of en-

dogenous matrix molecules, including fibronectin (FN), have 

been implicated in mediating cartilage degradation. We 

were interested in studying the C-terminal heparin-binding 

region of FN since it mediates aggrecan and type II collagen 

breakdown in cartilage, but the specific FN domains respon-

sible for proteolytic enzyme activity and their receptors in 

cartilage are unknown. In this study, the ability of recombi-

nant FN domains to induce cartilage breakdown was tested. 

We found that the FN III 13-14 domains in the C-terminal hep-

arin-binding region of FN are potent inducers of aggrecana-

se activity in articular cartilage. In murine studies, the FN III 

13-14-induced aggrecanase activity was inhibited in Toll-like 

receptor 4 (TLR4) knockout mice but not wild-type mice. FN 

III 13-14 domains also synergized with the known catabolic 
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  It has recently been suggested that endogenous signals 
which arise in joint tissue upon injury induce further 
joint damage and promote the persistence of inflamma-
tion. These include the activation of catabolic pathways 
by endogenously expressed extracellular matrix proteins 
including fibronectin (FN)  [5–8] , fibromodulin  [9] , hyal-
uronan  [10]  and type II collagen  [11] . Upon injury, there 
is upregulated expression of specific proteins including 
FN, fibromodulin and type II collagen  [12, 13] . The acti-
vation of pro-inflammatory pathways mediated by these 
proteins and their fragments has led to their description 
as damage-associated molecular patterns  [14, 15] .

  Of all the endogenous cartilage proteins implicated in 
joint degradation, a large amount of evidence has accu-
mulated for specific regions of FN. FN is a glycoprotein 
comprising a domain structure of type I, II and III re-
peats that confer specific biological properties to this 
molecule  [16] . FN fragments (FNfs) upregulate the re-
lease of MMPs and pro-inflammatory mediators in joint 
tissue, including cartilage  [5, 17]  and synovial cells  [18] . 
Recently, the Toll-like receptor 4 (TLR4) has been impli-
cated in promoting the activation of pro-inflammatory 
pathways by interaction with specific damage-associated 
molecular patterns in chronic inflammation  [14] . In-
creased TLR expression has been reported in arthritic 
tissue and proposed as an important mechanism for 
maintaining chronic inflammation  [19, 20] . The extra 
type III domain A (EDA) splice variant of FN, expressed 
in cellular but not plasma forms of FN, has recently been 
shown to mediate its pro-inflammatory effects via TLR4 
in mast cells  [21]  and neutrophils  [22] . However, the po-
tential inter action of other FN domains with TLRs is 
unknown. Hashimoto et al.  [23]  reported that the C-ter-
minal heparin-binding region of FN can regulate the ac-
tivity of recombinant forms of ADAMTS-4. We were 
therefore interested in investigating which specific 
domain(s) in the C-terminal heparin-binding region of 
FN induce aggrecanase activity in cartilage models. In 
view of the EDA inducing joint damage via TLR4  [21] , we 
also hypothesized that the C-terminal heparin-binding 
region may mediate its cartilage-degrading effects via 
TLR4. Here, we show for the first time that FN domains 
mapping to repeats FN III 13-14 in the C-terminal hep-
arin-binding region upregulate aggrecanase activity via 
the activation of TLR4 in articular cartilage. We thereby 
describe a novel mechanism of how the innate immune 
receptor TLR4 activates catabolic pathways by TLR4 ac-
tivation, thereby promoting ongoing joint destruction in 
arthritis.

  Methods 

 Reagents 
 Materials were purchased from the following sources: fetal calf 

serum from Labtech International (UK), Dulbecco’s modified Ea-
gle’s medium (DMEM), penicillin and streptomycin from Bio-
whittaker (UK), dimethylmethylene blue (DMMB) and shark 
chondroitin sulphate from Sigma-Aldrich Ltd. (UK), unstained 
and pre-stained precision protein standards for SDS-PAGE from 
Biorad (UK), Superdex-200, Superdex-75 pre-packed columns, a 
GFX DNA extraction kit and an mRNA purification kit from GE-
Healthcare (UK), nickel-nitrilotriacetic acid (NTA) agarose resin 
from Qiagen (Hilden, Germany), amphotericin B, PVDF mem-
brane, superscript II reverse transcriptase (RT) and the poly-
merase chain reaction (PCR) Blunt-TOP10 vector system from 
Invitrogen (Paisley, UK), chondroitinase ABC and keratanase 
from Seikagaku (Tokyo, Japan), anti-rabbit alkaline phosphatase 
(AP)-linked antibody, anti-mouse AP-linked antibody and AP 
substrate (5-bromo-4-chloro-3-indolyl-1-phosphate and nitro-
blue tetrazolium) from Promega (Southampton, UK), HepG2 
cells from ECACC (Salisbury, UK), XL1-blue bacteria, pET3a vec-
tor, BL21-(DE3) cells, carbenicillin and kanamycin from Novagen 
(Nottingham, UK), IPTG (isopropyl  � -D-thiogalactopyranoside) 
from Biogene (Cambridge, UK), T4 DNA ligase, restriction endo-
nucleases from New England Biolabs (UK), Pfu Turbo from Strat-
agene Europe (Amsterdam, The Netherlands) and expired human 
plasma for FN purification from the London Blood Bank Services. 
An RNA extraction kit was from Qiagen (Crawley, UK). The Lim-
ulus amoebocyte assay kit was purchased from Cambrex (USA). 
Monoclonal antibody BC-3 that recognizes the aggrecanase-gen-
erated N-terminal neoepitope  374 ARGSV of aggrecan and BC-14 
that recognizes the MMP-generated N-terminal neoepitope FF-
GVS were gifts from Prof. B. Caterson and Dr. C. Hughes  from 
the University of Cardiff, UK. A polyclonal antibody to anti-AL-
GS peptide was a gift from Dr. A. Fosang from the University of 
Melbourne, Australia. IL-1 �  was a gift from Prof. J. Saklatvala 
from the Imperial College, London, UK. Phenol-chloroform-pu-
rified  Escherichia coli  lipopolysaccharides (LPSs; rough and 
smooth) were from Alexis (Birmingham, UK). Porcine cartilage 
from pig trotters was obtained 4–8 h after slaughter and provided 
by Fresh Tissue Supplies (London, UK).

  Murine Experiments 
 Homozygous TLR4-deficient mice on a C57BL/6 background 

were obtained from B & K Universal (Hull, UK)  [24, 25] . Homo-
zygous MyD88-deficient mice on a C57BL/6 background were 
provided by the Sanger Institute (Cambridge, UK). Age-matched 
congenic inbred wild-type C57BL/6 mice were obtained from 
Charles River (Margate, UK). All animals were fed standard ro-
dent chow and water ad libitum, and were housed ( ! 6 mice/cage) 
in sawdust-lined cages in an air-conditioned environment with 
12-hour light/dark cycles. All animal procedures were approved 
by the Institutional Ethics Committee.

  Cartilage Culture with Catabolic Factors 
 Porcine articular cartilage from the metacarpophalangeal 

joints of 3- to 9-month-old pigs was dissected into small pieces (3 
 !  2–3  !  0.5 mm; wet weight approx. 10 mg). Following dissec-
tion, the cartilage rested for 48 h at 37   °   C under 5% CO 2  in DMEM 
containing 5% fetal calf serum, penicillin, streptomycin and am-
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photericin B (100 units/ml each). After resting, cartilage was 
washed 3 times in serum-free DMEM. Each cartilage piece was 
placed in the well of a round-bottom 96-well plate with 200  � l of 
serum-free medium with FNfs and IL-1 � . After 2 days, the con-
ditioned media and cartilage were harvested separately and stored 
at –20 ° C until use.

  Murine cartilage was obtained from 6-week-old mice and 
their femoral heads were dissected. After resting for 48 h at 37   °   C 
under 5% CO 2  in DMEM containing 5% fetal calf serum, penicil-
lin and streptomycin (100 units/ml) plus amphotericin B (100 
units/ml), cartilage was washed 3 times in serum-free DMEM and 
then stimulated with FNfs or other catabolic factors including 
IL-1 and LPS. After 2 days, conditioned media were harvested and 
stored at –20 ° C until use.

  Analysis of Glycosaminoglycan Release 
 Glycosaminoglycan (GAG) released into the conditioned me-

dium was measured using the DMMB assay as described by Farn-
dale et al.  [26] . A volume of 250  � l of DMMB reagent was mixed 
with 5  � l of sample. Each sample was assayed in duplicate. A stan-
dard curve using shark chondroitin sulphate (0–2.6  � g) was in-
cluded in each plate. The treatments were tested on cartilage in 
triplicate, for which the absorbance at 540 nm was used for GAG 
release. Analyses were performed using the Graphpad prism soft-
ware (version 4; San Diego, Calif., USA) (see statistics section).

  SDS-PAGE and Western Blot Analyses of Aggrecan Fragments 
Released Using Neoepitope Antibodies for Detecting Aggrecan 
Neoepitopes 
 Proteins were resolved by SDS/PAGE using ammediol gels 

 [27] , and stained with either Coomassie brilliant blue R-250 or 
silver according to Schevchenko et al.  [28] . To detect responsible 
metalloproteinases that degrade cartilage aggrecan, the media 
containing 0–100  � g GAG was digested with chondroitinase ABC 
and keratanase, following which, samples were subjected to West-
ern blotting analyses using BC-3 monoclonal antibody or anti-
ALGS antibody for aggrecanase-generated fragments and BC-14 
monoclonal antibody for MMP-generated fragments, as de-
scribed by Gendron et al.  [29] .

  Purification of FN, Expression and Purification of 
Recombinant FNfs 
 FN was purified from plasma using gelatin-Sepharose affinity 

chromatography as described by Weiss and Reddi  [30] . The con-
centration of the purified FN was calculated by molar extinction 
coefficients.

  Human FN cDNA was obtained by RT-PCR of RNA extracted 
from human HepG2 cells. A total of 5  � g total RNA was obtained 
from 300  !  10 6  cells. mRNA was purified from total RNA using 
an mRNA purification kit and reverse transcribed using super-
script II RT into cDNA. cDNAs encoding various recombinant 
FNfs were generated by PCR using primers described in  table 1 . 
The PCR products were ligated into the PCR-Blunt vector and 
transformed into TOP10 cells. After confirming DNA sequences, 
respective fragments were ligated into pET-3a for recombinant 
FN III domains spanning the III 12, 13, 14 and V region. All re-
combinant proteins were histidine (6 ! )-tagged at the N-terminus 
and the pET vector harbouring FNf cDNA was introduced into 
BL21-(DE3) cells. Transformed cells were grown until the optical 
density reached 0.5 at 600 nm and then incubated for 3.5 h, after 

0.1 m M  IPTG had been added. Bacterial pellets were harvested by 
centrifugation, resuspended in TBS and passed through a French 
press (ThermoSpectraphor) 3 times, then spun at 10,000  g  for 15 
min.

  Recombinant FNfs were purified from the soluble fraction by 
applying the soluble proteins to a nickel-NTA affinity column. 
The column was washed with 10 column volumes of 50 m M  Tris/
HCl pH 7.5, 150 m M  NaCI and 60% isopropanol to remove LPS, 
as described previously  [31] . It was then eluted by 100 m M  imid-
azole in 50 m M  Tris/HCl pH 7.5 and 150 m M  NaCl. After the 
nickel-NTA column purification step all three proteins were ho-
mogeneous by SDS-PAGE. Levels of LPS in the recombinant FNfs 
and control media were measured using the Limulus amoebocyte 
assay (Cambrex) and were detectable in the range 0–100 pg/ml. 
For all purified recombinant proteins and conditioned media, lev-
els were undetectable using this assay. LPS levels required for car-
tilage stimulation are in the  � g/ml range  [20] .

  RT-PCR Experiments on Isolated Porcine Chondrocytes 
 Cartilage was incubated with Pronase E (1 mg/ml per 1 g car-

tilage) for 30 min at 37   °   C, followed by collagenase (1 mg/ml per
1 g cartilage) for 5 h at 37   °   C. The digest was passed through a 70-
 �  M  cell strainer, then centrifuged for 5 min at 1,400 rev/min. Pel-
lets were washed, resuspended in DMEM containing 10% fetal 
calf serum. Cells were counted and plated on 24-well plates (1.5-
cm diameter) at a density of 1 million cells per well (100% conflu-
ent). Isolated chondrocytes were cultured in DMEM (2 ml) that 
had been supplemented with 10% fetal calf serum, HEPES (25 
m M ), penicillin (1.25 units/ml), streptomycin (100  � g/ml) and 
amphotericin B (2  � g/ml) in a humidified atmosphere of 95% air, 
5% CO 2  at 37   °   C.

  For RT-PCR, porcine chondrocytes (1  !  10 6  cells/well) were 
stimulated with IL-1 �  (10 ng/ml), FNf domains (1  �  M ) or controls 
for 24 h. After culture, RNA was extracted from cells using an 
mRNA purification kit as directed by the manufacturer. For each 
treatment, 10  � g RNA was subjected to RT-PCR to obtain cDNA. 
The cDNA produced was then subjected to PCR for several gene 
products shown in  table 2  as previously described  [31] .

  Metabolic Labelling of Chondrocytes with  35 S 
 Confluent porcine chondrocytes (1  !  10 6  cells/well) were 

stimulated overnight with IL-1, recombinant FN domains, FN or 
medium alone. The following morning, the stimulus was re-
moved, the cells were washed with 2 ml Met/Cys-free medium for 
1 h, then 15  � Ci  35 S was added to each well in a volume of 150  � l. 
Cells were incubated for a further 6 h at 37   °   C. After this, the con-
ditioned medium was spun at 13,000 rpm for 5 min. The super-
natant was removed and added to 40  � l 4 !  sample buffer and 
boiled for 10 min. Samples were then run on SDS-PAGE using 
10% Tris-glycine gels. The gels were removed and silver-stained. 
Gels were dried on a gel dryer for 2 h and then exposed to autora-
diography overnight. Bands of interest were subjected to pro-
teomic analysis as described below.

  Mass-Spectrometric Analysis 
 Silver- or Coomassie-stained protein bands of SDS/PAGE were 

excised with a scalpel and digested in gel with trypsin using an 
Investigator ProGest (Huntingdon, UK) robotic digestion system 
 [32] . Tandem electrospray mass spectra were recorded using a Q-
TOF mass spectrometer (Waters, Manchester, UK) interfaced to 
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a Waters CapLC capillary chromatograph. Samples were dis-
solved in 0.1% aqueous formic acid, injected onto a 300- � m  !  
15-mm Pepmap C18 column (LC Packings, Amsterdam, The 
Netherlands), and eluted with an acetonitrile/0.1% formic acid 
gradient. A survey scan over the m/z range of 400–1,300 was used 
to identify protonated peptides with charge states of 2, 3 or 4, 
which were automatically selected for data-dependent MS/MS 
analysis, and fragmented by collision with argon. The resulting 
product ion spectra were transformed onto a singly charged  m/z  
axis using a maximum entropy method (MaxEnt 3, Waters) and 
proteins were identified by correlation of uninterpreted spectra to 

entries on Swiss-Prot and TrEMBL, using the ProteinLynx Glob-
al Server (version 1.1, Waters). Hits which rested on a single 
matching peptide were confirmed by manual interpretation of 
sequence-specific fragment ions using the MassLynx program 
PepSeq (Waters).

  Statistical Analysis 
 The GAG release assay in cartilage explants was evaluated us-

ing Graphpad Prism software (version 4). Mean values were cal-
culated for each treatment in triplicate and expressed as mean  8  
SEM (n = 3). Significance was analyzed with an unpaired 2-tailed 
Student t test and defined as p  !  0.05. For band densitometry of 
Western blots and RT-PCR, results were scanned using a Biorad 
densitometer and pixel intensity quantified using Phoretix soft-
ware (Totallab, Newcastle, UK). Data was plotted for mean band 
intensity  8  SEM (n = 3).

  Results 

 Activity of Recombinant FNfs 
 Specific domains of the C-terminal heparin-binding 

region of FN were generated to test how they regulate ag-
grecanase activity. Fragments comprising the III 12, III 
13, III 14, III 12–14, III 13-14 and the V region were ex-
pressed as recombinant proteins using an  E. coli  expres-
sion system ( fig. 1 ). All proteins were histidine tagged and 
purified using nickel-NTA affinity chromatography 

Table 1.  Primer sequences for recombinant FN domains

Primer Sequence

Recombinant FNf III 12–14
Sense 5� ATA CAT ATG CAT CAT CAT CAT CAT CAT CCT GCA CCA ACT GAC CTG AAG 3�
Antisense 5� GCC GGA TCC TTA TGT CTT TTT CCT TCC AAT CAG GGG 3�

Recombinant FNf III 13-14
Sense 5� ATA CAT ATG CAT CAT CAT CAT CAT CAT AAT GTC AGC CCA CCA AGA AGG 3�
Antisense 5� GCC GGA TCC TTA TGT CTT TTT CCT TCC AAT CAG GGG 3�

Recombinant FNf III 12
Sense 5� ATA CAT ATG CAT CAT CAT CAT CAT CAT CCT GCA CCA ACT GAC CTG AAG 3�
Antisense 5� GCC GGA TCC TTA CTC CAG AGT GGT GAC AAC ACC 3�

Recombinant FNf III 13
Sense 5� ATA CAT ATG CAT CAT CAT CAT CAT CAT AAT GTC AGC CCA CCA AGA AGG 3�
Antisense 5� GCC GGA TCC TTA AGT GGA GGC GTC GAT GAC 3�

Recombinant FNf III 14
Sense 5� ATA CAT ATG CAT CAT CAT CAT CAT CAT GCC ATT GAT GCA CCA TCC ACC C 3�
Antisense 5� GCC GGA TCC TTA TGT CTT TTT CCT TCC AAT CAG GGG 3�

Recombinant FNf V region
Sense 5� ATA CAT ATG CAT CAT CAT CAT CAT CAT GAC GAG CTT CCC CAA CTG GTA AC 3�
Antisense 5� GCC GGA TCC TTA TCC TAC ATT CGG CGG GTA TGG TC 3�

Primers for the desired region in FN were made. Constructs contained NdeI (CAT ATG) and BamHI (GGA TCC) restriction en-
zyme sites for vector insertion. The CAT repeating sequence denotes a histidine tag at the N-terminus.

Table 2.  Primers for RT-PCR performed on DNA extracted from 
porcine chondrocytes

Primer Sequence

ADAMTS-4
Sense 5� ACC ACT TTG ACA CAG CCA TTC TG 3�
Antisense 5� ACC CCC ACA GGT CCG AGA GCA G 3�

ADAMTS-5
Sense 5� TGT GCT GTG ATT GAA GAC GAT 3�
Antisense 5� GAC TGC AGG AGC GGT AGA TGG 3�

GAPDH
Sense 5� CAT GGA GAA GGC TGG GGC TC 3�
Antisense 5� ATG AGG TCC ACC ACC CTG TT 3�
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( fig.  1 ). The recombinant fragments were tested using 
normal porcine articular cartilage explants. Levels of 
GAG release were measured after a 2-day culture period 
using the DMMB assay ( fig. 2 ). The FN III 12–14 (1  �  M ) 
domains maintained high levels of cartilage-degrading 
activity comparable to the positive control IL-1 �  (10 ng/
ml). When domains were tested singly, the III 12 domain 
had no activity and was comparable to background levels. 
Furthermore, fragments consisting of the III 13 and III 
14 domains had high levels of GAG-releasing and aggre-
canase activity. Since the FN III 13-14 domains have pre-
viously been shown to have synergistic binding  [33] , they 
were expressed as a recombinant fragment and were 
found to stimulate the highest levels of GAG release 
( fig. 2 ). In order to investigate specific aggrecanase activ-
ity induced by the distinct FN domains, the conditioned 

medium from the experiment in  figure 2 a was deglyco-
sylated with chondroitinase and keratanase and then 
subjected to Western blotting using neoepitope antibod-
ies specific for aggrecanase- and MMP-cleaved neoepit-
opes. Results showed that the highest activity was ob-
served for FN III 13-14, suggesting that these domains are 
critical for aggrecanase induction by the C-terminal hep-
arin-binding region in cartilage ( fig. 2 ). Of note, FN III 
12 and the V region were unable to stimulate aggrecana-
se activity in cartilage ( fig.  2 ). Results using the MMP 
cleavage-dependent neoepitope antibody showed that 
cleavage of aggrecan was predominantly dependent on 
aggrecanases and not MMPs in this 2-day culture exper-
iment, since conditioned medium from the same experi-
ment did not show any MMP-cleaved neoepitopes ( fig. 2 b, 
c). In order to test the dose-response effect of FN III 13-
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  Fig. 1.  Recombinant FN domains synthesized.  a  Domain structure 
of FN comprising the type I, II and III repeats. The affinity of cer-
tain domains for specific molecules e.g. fibrin, heparin and colla-
gen and the location of splice variants ED-B, ED-A, V and C regions 
are shown.  b  Regions covered by the recombinant proteins that 

were synthesized with the corresponding amino acid residues and 
the molecular weight of each protein.  c  Coomassie-stained gel 
showing 10  � g of each recombinant protein analyzed by SDS-PAGE 
(12% gel) under reducing conditions. Lanes: 1 = FN III 12–14, 2 = 
FN III 13-14, 3 = FN III 12, 4 = FN III 13, 5 = FN III 14, 6 = V region. 
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14, the levels of aggrecan loss by this recombinant frag-
ment were compared with full-length FN and IL-1 �  
served as a positive control ( fig. 2 d). FN III 13-14 induced 
a dose-dependent release of aggrecan loss in the micro-
molar range which was comparable to the positive control 
IL-1 �  (10 ng/ml) at the highest concentration. In com-
parison, full-length FN induced no significant levels of 
GAG release.

  FN III 13-14 Upregulate ADAMTS-4 and ADAMTS-5 
in Chondrocytes 
 Since the highest activity was observed for FN III 13-

14, these domains were tested for their ability to regulate 

ADAMTS-4 and ADAMTS-5. Porcine chondrocytes 
were treated for 24 h with recombinant III 13-14, full-
length FN and IL-1 �  (10 ng/ml) as a positive control. Re-
sults showed that IL-1 �  upregulated ADAMTS-5 mes-
senger RNA by RT-PCR ( fig.  3 ). ADAMTS-4 mRNA
was also upregulated by FN III 13-14, but to a lesser de-
gree than ADAMTS-5 ( fig.  3 ). When the specific do-
mains were compared, FN III 12 induced virtually no 
ADAMTS-4 or ADAMTS-5 activity in chondrocytes. In 
comparison, the levels of induction of ADAMTS-4 and 
ADAMTS-5 for FN III 13 and FN III 14 alone were high-
er than FN III 12, but not as high as FN III 13-14, suggest-
ing that FN III 13-14 have synergistic effects.
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  Fig. 2.  Proteoglycan loss induced by FN 
domains in cartilage explant cultures. 
 a  Porcine cartilage was stimulated with 
IL-1 �  (10 ng/ml) as a positive control, re-
combinant FN domains at 1  �  M  concen-
tration each or control (medium alone) for 
2 days. The conditioned medium was then 
harvested and analyzed for GAG release 
using the DMMB assay (n = 3). Statisti-
cally significant values:  *  p  !  0.05. Equal 
volumes of conditioned media (50  � l) 
from the experiment ( a ) were deglycosyl-
ated and Western blots performed for ag-
grecanase-cleaved neoepitopes using the 
BC-3 antibody recognizing the N-termi-
nal sequence   374 ARGSV ( b ) and the BC-14 
antibody recognizing the N-terminal se-
quence  342 FFGVG ( c ).  c  A positive con-
trol of aggrecan cleaved with MMP-3 
which was then immunoblotted using the 
 342 FFGVG antibody is shown on the right. 
 d  The dose-response effect of the most po-
tent FN III domains, namely FN III 13-14, 
was tested in the 0.01–1  �  M  range. IL-1 �  
(10 ng/ml) served as a positive control and 
control medium and full-length FN 
(1  �  M ) were negative controls. Statistically 
significant values:  *  p  !  0.05. 
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  FN III 13-14 Mediate Aggrecanase Activity via TLR4 
in Cartilage 
 Previous work by other groups has suggested that 

chronic inflammatory pathways stimulated by the EDA 
of FN are mediated through TLR4  [21, 22] . Such work 
prompted us to investigate the catabolic effects of FN III 
13-14 on aggrecanase induction using C57BL6 wild-type 
and TLR4–/– null mice. Conventional catabolic factors 
for cartilage degradation, namely IL-1 and also LPS, 
which is known to signal through TLR4  [34] , were used 
as positive controls in our experiments. In these experi-
ments, murine hip cartilage was cultured with treatments 
for a 48-hour period. Following this, conditioned medi-
um was harvested and assayed for aggrecanase neoepit-
ope activity using the anti-ALGS antibody (which is the 
corresponding sequence to ARGS in mice). Signal inten-
sity from Western blots was measured and results showed 
that in the wild-type mice, the positive controls IL-1 (10 
ng/ml) and LPS (10 ng/ml) were effective at inducing 
strong aggrecanase-generated neoepitopes ( fig.  4 a). FN 
III 13-14 at 1  �  M  induced strong aggrecanase activity 
in the murine system equivalent to the positive con-
trols. When the same experiment was performed in the 
TLR4–/– null mice, signals for LPS were strongly dimin-
ished. It is known that LPS activity is mediated through 
TLR4; therefore, these results were expected. Further-
more, the FN III 13-14 signal was strongly diminished in 
the TLR4–/– mice, suggesting that the activity of FN III 

13-14 is also mediated via TLR4. Studies were also con-
ducted in TLR2–/– mice, but no change in aggrecanase 
neoepitopes compared to the wild-type mice was ob-
served (data not shown).

  TLRs require co-receptors for activity and include 
MD2 for TLR4 or CD36 for TLR2. TLR signalling re-
quires adaptor proteins, including MyD88, Mal, TRIF 
and TRAM, which are recruited to specific receptors  [34] . 
In order to investigate further the pathways involved in 
the activity of FN III 13-14, cultures were performed us-
ing cartilage from MyD88-null mice since MyD88 has 
been shown to be a downstream adaptor molecule for 
TLR4 stimulation. Results showed inhibition of aggreca-
nase neoepitope signal for IL-1 and LPS, as would be ex-
pected, since both molecules act via TLR4 and signal 
through MyD88 ( fig. 4 b). The signal for FN III 13-14 was 
reduced with a similar reduction to IL-1 and LPS, sug-
gesting that the activity of FN III 13-14 is also mediated 
via the TLR4/MyD88 pathway.

  FN III 13-14 Synergize with IL-1 and TNF to Induce 
Aggrecanase Activity 
 After establishing that FN III 13-14 induced aggreca-

nase activity in joint tissue, we were interested in investi-
gating whether other ligands of the TLR superfamily syn-
ergize with FN domains to enhance cartilage degrada-
tion. We utilized TNF and IL-1 �  at 0.1 ng/ml and 0.1- �  M  
FN III 13-14 domains ( fig. 5 ). Results showed that over a 
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  Fig. 3.  Analysis of aggrecanase gene products induced by FN do-
mains. Primary porcine chondrocytes were isolated using colla-
genase digestion. After resting overnight, cells (1  !  10                 6 /well) 
were washed 3 times in serum-free medium and stimulated for
24 h with IL-1 (10 ng/ml), FN III 12, FN III 13, FN III 14 and FN 

III 13-14, all at 1              �  M  in serum-free medium. After the culture pe-
riod, RNA was isolated from cells and subjected to RT-PCR for 
ADAMTS-4 and ADAMTS-5 with GAPDH as controls. Results 
show fold change for ADAMTS-4 or ADAMTS-5 compared with 
GAPDH controls (n = 3). Statistically significant values:        *  p  !  0.05. 



 Sofat   /Robertson   /Wait   

 

J Innate Immun 2012;4:69–7976

6-day culture period the aggrecanase neoepitope signal 
increased synergistically with IL-1 �  and TNF at 0.1 ng/
ml combined with FN III 13-14 (0.1  �  M ), but not when 
each of the treatments was cultured alone with cartilage 
explants.

  FN III 13-14 Upregulate Secretion of Proteases and 
Pro-Inflammatory Molecules 
 The C-terminal heparin-binding region has previous-

ly been shown to upregulate the production of collagen-
binding proteins in cartilage including cartilage oligo-
meric matrix protein and chondroadherin  [6] . To inves-
tigate whether the FN III 13-14 domains were regulating 
the production of other proteins in chondrocytes, a meth-
od previously described for stimulating isolated chon-
drocytes in monolayer culture was utilized  [35] . The syn-
thesis and secretion of proteins by metabolically labelling 
chondrocyte cultures with  35 S-Met-Cys and separating 
the secreted proteins by SDS-PAGE was performed with 
full-length FN and FN III 13-14, and IL-1 �  served as a 
positive control. Conditioned medium from treated cells 
was collected and run on SDS-PAGE ( fig.  6 ). The gels 
were silver-stained, dried and newly synthesized proteins 
were detected by autoradiography. Radiolabelled bands 
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  Fig. 4.  FN III 13-14 mediate aggrecanase activity via TLR4.    a  Hip 
explants from 6-week-old C57B6 wild-type and TLR 4–/– null 
mice were dissected and rested in serum containing medium for 2 
days. After this, explants were washed 3 times in serum-free me-
dium and subjected to treatment with control medium (no addi-
tives), FN III 13-14 (1  �    M ), IL-1     �  (10 ng/ml) and LPS (10 ng/ml). 
After 2 days’ culture, conditioned medium was harvested and 
equal volumes of conditioned medium (50  � l) were deglycosylated 

using chondroitinase and keratanase. The samples were subjected 
to Western blotting using the anti-ALGS neoepitope antibody. The 
signal intensity of the samples (from triplicate wells, n = 3) was 
measured using Phoretics software and expressed as a mean and 
SEM.  b  Hip explants from Myd88–/– mice were treated with the 
same factors as described in  a . Following 2 days’ culture, condi-
tioned medium was harvested, deglycosylated and subjected to 
Western blotting as described in  a  with the anti-ALGS antibody.                             
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  Fig. 5.  Synergy between FN III 13-14, IL-1 and TNF in the induc-
tion of proteoglycan loss. FN III 13-14 (0.1      �    M ), IL-1     �  (10 ng/ml) 
or TNF- �  (10 ng/ml) were cultured alone, or in combination with 
porcine articular cartilage over a 6-day culture period in serum-
free medium. Conditioned medium was harvested every 2 days 
and replaced with fresh medium. At the end of the experiment, 
equal volumes of conditioned medium (50  � l) were deglycosyl-
ated using chondroitinase and keratanase. The samples were sub-
jected to Western blotting and GAG release was measured using 
the anti-ARGSV neoepitope antibody. The signal intensity of the 
samples (from triplicate wells, n = 3) was measured using Phoretix 
software and expressed as mean and SEM.                                   
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that corresponded with silver-stained bands were ex-
cised, digested with trypsin and analyzed by MALDI MS. 
For IL-1, the proteins identified included MMP-3, MMP-
1 and gp38 (the porcine homologue of human gp39). As 
previously published, the IL-1 �  response stimulated 14-
kDa serum amyloid-like protein A (SAA). In comparison, 
FN III 13-14 produced a distinct signature from IL-1 
( fig. 6 ). In addition to some proteins whose secretion was 
induced by both FN III 13-14 and IL-1 � , including MMP-
3 and SAA, FN III 13-14 also upregulated hsp70. FN III 
13-14 also induced the synthesis of S100 protein. This was 
in addition to MMP-3 and SAA whose synthesis was in-
duced by both IL-1 �  and FN III 13-14. The only protein 

gp38 gp38

SAA

gp38 gp38

SAA

S100 protein

Hsp70
MMP-3

MMP-1
MMP-3

Control IL-1 FN FN III 13-14

  Fig. 6.  Changes in synthesis of secreted proteins in isolated chon-
drocytes in response to IL-1     � , FN III 13-14 domains and full-
length FN. Isolated chondrocytes cultured for 48 h were serum-
starved (2 h) and left unstimulated (control C) or stimulated for 
18 h with IL-1 �  (10 ng/ml), FN III 13-14 (1  �  M ) or full-length FN 
(1      �                            M ). The following day, cells were washed for 30 min in Met-
Cys-free medium and then incubated for 6 h with medium con-
taining  35 S-Met-Cys. Medium was removed, clarified by centrifu-
gation and subjected to SDS-PAGE (12% gel). The gel was silver-
stained, dried and autoradiographed to visualize newly 
synthesized proteins. For identification of radiolabelled bands 
that corresponded to silver-stained ones, the gel was rehydrated 
and the silver-stained bands were cut out and digested with tryp-
sin. Tryptic digests were analyzed by mass spectrometry. The 
newly synthesized metabolically labelled proteins identified by 
mass spectrometry were: MMP-1, MMP-3, hsp70, S100 protein, 
gp38 and SAA.           

which was induced by both FN III 13-14 and full-length 
FN was gp38. These data suggest that FN III 13-14 regu-
late distinct pathways in comparison with full-length FN 
that only appears upon fragmentation.

  Discussion 

 Extracellular matrix components form an essential 
scaffold in tissues, such as cartilage, that maintain cells 
within a structural framework. Degradation of the ex-
tracellular matrix by proteolytic enzymes is a key step in 
altering cellular behaviour during development, tissue 
remodelling and repair  [36] . FNfs are produced during 
injury and their expression is increased in injured ar-
thritic tissues  [37, 38] . Our study has shown that within 
the C-terminal heparin-binding domain of FN, the FN 
III 13-14 domains are endogenous molecules that induce 
catabolic pathways in joint tissue. Previously, a 40-kDa 
C-terminal heparin-binding fragment was shown to 
stimulate the production of MMPs in joint tissue. The 
C-terminal heparin-binding region induced MMP-3 
and MMP-13 in cartilage  [7] . This fragment also induced 
MMP-1, MMP-3 and MMP-13 production in RA syno-
vial fibroblasts  [18] . Our study has shown that the FN III 
13-14 domains within the C-terminal heparin-binding 
region are critical for the induction of degradative path-
ways in joint tissue. Previous work by other groups has 
described how fragments of FN generated by proteolytic 
cleavage are detectable in arthritic tissue in the micro-
molar range  [37, 38] . Peters et al.  [38]  also described FNfs 
from the synovial fluid of subjects with osteoarthritis 
and rheumatoid arthritis that include the FN III 13 and 
14 domains  [38] . It is therefore likely that such fragments, 
once in their cleaved form, reveal cryptic epitopes that 
are then available to interact with receptors such as TLRs 
in mediating further tissue destruction and inflamma-
tion.

  We have demonstrated that the FN III 13-14 domains 
regulate aggrecanase activity. In 2004, Hashimoto et al. 
 [23]  showed that the C-terminal heparin-binding FNf in-
hibits the activity of recombinant full-length ADAMTS-4 
but not shorter ADAMTS-4 species lacking the spacer 
domain. Our study has found that FN III 13-14 regulate 
the aggrecanase activity in cartilage explant cultures. 
While we observed that FN III 13 and 14 alone caused 
significant GAG release ( fig. 2 ), these fragments seemed 
to have only very limited effects on aggrecanase expres-
sion ( fig. 3 ). It is possible that the FN III 13 and 14 do-
mains upregulate the production of other proteases in 
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