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1. Introduction

Babesia are tick-borne haemoprotozoan parasites, that cause
severe and sometimes fatal infections in cattle, dogs and other
mammals. Babesia bovis infects cattle in tropical and sub-tropical
areas and exerts a high economic burden in regions that can least
afford it [1,2]. Babesia parasites share many similarities, including
their asexual blood-stage niche with other single-celled parasites
such as Plasmodia, although comparative studies of these two par-
asites are few.

The membrane transporters of disease-causing, eukaryotic,
unicellular parasites are being examined as targets for chemothera-
peutic agents. In particular, glucose transporters have been studied

Abbreviations: BboHT1/2, Babesia bovis hexose transporter 1/2; PfHT, Plasmod-
ium falciparum hexose transporter; GLUT1, human facilitative glucose transporter 1;
PCR, polymerase chain reaction; PBS, phosphate-buffered saline; Compound 3361,
3-O-(undec-10-en)-yl-d-glucose.
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intensively in kinetoplastids and apicomplexan organisms includ-
ing Plasmodium and Toxoplasma species [3]. Previous studies on
three Babesia species have examined glucose uptake into intact
infected erythrocytes [4,5]. B. bovis infected bovine erythrocytes are
far more permeable to glucose than uninfected erythrocytes due
to the activity of a novel non-saturable channel/pore-like mech-
anism [5]. However, little is known about the molecular nature of
this pathway or of any other glucose transport pathways, which are
active during the intra-erythrocytic phase of the Babesia parasite’s
life cycle.

A Plasmodium falciparum hexose transporter (PfHT) has been
cloned and characterised by function [6]. Localised to the parasite
plasma membrane, PfHT is a facilitative carrier protein, phylogenet-
ically related to mammalian glucose transporters (known as GLUTs,
which belong to the major facilitative superfamily of transport pro-
teins). Furthermore, PfHT has been validated as a drug target [7].

The aims of this work were to (i) identify potential facilita-
tive hexose transporters in the B. bovis genome, (ii) clone, express,
and characterise functionally candidate hexose transporters, using
the Xenopus laevis oocyte heterologous expression system, and (iii)
assess B. bovis hexose transporters as possible drug targets.

http://www.sciencedirect.com/science/journal/01666851
mailto:hstaines@sgul.ac.uk
dx.doi.org/10.1016/j.molbiopara.2008.06.010
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2. Materials and methods

2.1. Materials

Cytochalasin B, phloridzin, phloretin, and glucose analogues
were obtained from Sigma–Aldrich (Dorset, UK). 3-O-(undec-
10-en)-yl-d-glucose (compound 3361) and �-glucogallin were
prepared, as described previously [8,9]. Radioisotopes ([14C]d-
glucose and [14C]d-fructose) were obtained from Amersham
(Bucks, UK). Inhibitors were added to cell suspensions as stock
solutions in dimethyl sulphoxide.

2.2. Identification and cloning of Babesia hexose transporter
sequences

Sequence data for B. bovis and B. bigemina were obtained from
two sources: the Babesia bovis Genome Sequencing Project at
http://www.vetmed.wsu.edu/research vmp/babesia-bovis (Texas
T2Bo strain) and The Wellcome Trust Sanger Institute at
http://www.sanger.ac.uk (B. bovis Israel strain and B. bigemina Aus-
tralian isolate). The latter sequence data were produced by the
Babesia bovis EST Sequencing Group and the Babesia bigemina
Sequencing Group at the Sanger Institute and can be obtained
from ftp://ftp.sanger.ac.uk/pub/pathogens/babesia and ftp://ftp.
sanger.ac.uk/pub/pathogens/Babesia/bigemina, respectively.

Using TBLASTN searches, two putative glucose transporter open
reading frames (ORFs) were identified in the Texas strain genome
(and partially identified in the Israel strain genome), on account
of having significant homology with the published sequences
for PfHT and GLUT1. These were termed B. bovis hexose trans-
porter 1 (BboHT1; GeneBankTM accession number EU239929) and 2
(BboHT2; GeneBankTM accession number EU239930). For the Texas
strain, the two ORFs were continuous, in the same orientation on
chromosome 1 and separated by just over 1000 nucleotides.

Polymerase chain reactions (PCR) on genomic DNA from B. bovis
Israel isolate (clonal line C61411), using AccuPrime Taq polymerase,
was carried out with primers designed to introduce BglII restriction
sites and a strong eukaryotic Kozak consensus sequence in front of
the initiation codon (CACCATG). Due to the incomplete sequence
coverage of the Israel isolate, the Texas strain genome was used
to generate primers when appropriate. Due to differences between
the two genomes (see Section 4), care was taken to ensure that the
synthetic primer sequences designed, using the Texas genome, did
not introduce sequences from the Texas strain into the PCR prod-

ucts (by sequencing PCR products that independently covered these
regions) or, if they did, that any changes were synonymous.

The resulting products were subcloned into BglII sites in the
oocyte expression vector pSP64-T, which contains 5′- and 3′-
untranslated Xenopus laevis �-globin sequences. The final product
was verified by sequence analysis. Capped cRNA was then tran-
scribed in vitro from Xba1 and EcoRI linearised BboHT1 and BboHT2
plasmids, respectively, using SP6 RNA polymerase (MEGAscriptTM

SP6, Ambion, Texas, USA) according to the manufacturer’s protocol.

2.3. Expression in Xenopus oocytes and functional studies

X. laevis oocytes were prepared and used in transport stud-
ies as previously described [10]. Briefly, oocytes were harvested
and connective tissue removed with collagenase treatment
(2 mg/ml) for 2 h, while shaking. Oocytes were maintained at
18 ◦C in modified Barth’s medium supplemented with 10 mg/l
penicillin–streptomysin mix (Sigma–Aldrich, Dorset, UK). On the
following day, stage V–VI oocytes were selected and microin-
jected with cRNA (20–40 ng in 30 nl of water) encoding BboHT1/2
template or with a comparable amount of diethylpyrocarbonate-
ical Parasitology 161 (2008) 124–129 125

treated water. The oocytes were used for transport studies 48–72 h
after cRNA injection.

Transport measurements were performed at room tempera-
ture, unless stated otherwise, on groups of 6–8 oocytes in Barth’s
medium containing, unless stated otherwise, either 38 �M d-
glucose (3 �M radio-labelled and 35 �M unlabelled) or 100 �M d-
fructose (2 �M radio-labelled and 98 �M unlabelled), and varying
amounts of modulators, when required. After initial time-courses
were performed (see Section 3), transport was measured over
10 min and corrected for uptake into paired, water-injected con-
trols. The latter was performed to correct transport estimations for
endogenous uptake, which can vary significantly between separate
sets of oocytes (up to five-fold in the experiments reported here).
All uptakes were linear for the times used in these assays and each
result was confirmed by at least three independent experiments.

2.4. B. bovis in vitro cultivation and invasion assays

B. bovis (Israel strain, clonal line C61411 [11]) was cultured in
vitro in bovine erythrocytes in 24-well plates (1.2 ml total volume)
or in 25 cm2 bottles (15 ml volume) as described previously [12].
Cultures were grown in M199 medium supplemented with 40%
adult bovine serum from a selected donor and 25 mM sodium bicar-
bonate at a packed cell volume of 5% at 37 ◦C, under an atmosphere
of 5% CO2 in air. The parasitaemia of the in vitro culture was kept
between 0.3% and 8% by dilution daily.

B. bovis in vitro invasion assays into normal and glucose-depleted
bovine erythrocytes were performed, using free merozoites liber-
ated from their host cells by electropulsing, as described previously
[12]. Bovine erythrocytes were depleted of glucose by two washes
in 10 volumes of VyMs buffer (a special solution used to maintain
bovine erythrocytes in good condition during storage [13]) without
glucose followed by 16 h of storage in VyMs without glucose. Prior
to experimentation two additional washes were performed.

3. Results

3.1. Sequence analysis

Using sequence homology to PfHT, two putative Babesia bovis
hexose transporter sequences (BboHT1 and BboHT2) were identi-
fied and cloned from an Israeli isolate (see Section 2). BboHT1 and
BboHT2 encode polypeptides of 472 and 587 amino acid residues,
respectively, with estimated sizes of 51 and 63 kDa. BboHT1 has

40% and 47% amino acid sequence similarity compared with GLUT1
and PfHT, respectively; BboHT2 has 31% and 37%. A comparison of
amino acid sequences between BboHT1 and BboHT2 determined
46% similarity.

As with other hexose transporters, both BboHT1 and BboHT2
are predicted to have 12 membrane spanning regions, using
hydropathy plot analysis (with the SOSUI tool at bp.nuap.nagoya-
u.ac.jp/sosui). In order to look for residues of functional importance,
predicted membrane-spanning sequences for BboHT1/2 and PfHT
were aligned with those of GLUT1 and residues shown in muta-
genesis experiments to be of significance in the GLUT1 exofacial
binding site examined specifically [14]. Of the 37 GLUT1 residues
identified in this way, 13 were identical to aligned residues in PfHT,
10 were identical to aligned residues in BboHT1, and 9 were identi-
cal to aligned residues in BboHT2. An alignment of transmembrane
helices V and VII is shown as an example (Fig. 1).

3.2. Transport kinetics

Radiotracer assays, using the Xenopus laevis oocyte heterol-
ogous expression system, were performed to assess if either

http://www.vetmed.wsu.edu/research_vmp/babesia-bovis
http://www.sanger.ac.uk/
ftp://ftp.sanger.ac.uk/pub/pathogens/babesia
ftp://ftp.sanger.ac.uk/pub/pathogens/Babesia/bigemina
ftp://ftp.sanger.ac.uk/pub/pathogens/Babesia/bigemina
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Fig. 1. Alignments of transmembrane helices V and VII from GLUT1 with PfHT, BboH
GLUT1 and shading indicates residues at the exofacial binding site of GLUT1, define
residue.

BboHT1 or BboHT2 are facilitative glucose transporters. Over a
1 h period at room temperature, the uptake of d-glucose (38 �M
external concentration) in oocytes injected with BboHT2 mRNA
was 2.5 ± 1.0 pmol/oocyte, while the uptake in water-injected con-
trol oocytes was 3.6 ± 1.7 pmol/oocyte (mean ± SEM; n = 3; P = 0.6;

unpaired, two-tailed Student’s t-test). In addition, no differences
in uptake rates were found between control and BboHT2 mRNA-
injected oocytes for d-sorbitol, d-fructose and myo-inositol (data
not shown).

Oocytes injected with BboHT1 mRNA demonstrated a large (typ-
ically 5–10-fold) increase in d-glucose uptake when compared
with water-injected controls, 2–3 days after injection. Experi-
ments at room temperature with 38 �M d-glucose, demonstrated
linear uptake kinetics over 1 h (data not shown). The mean
uptake of d-glucose after 1 h in oocytes injected with BboHT1
mRNA was 58 ± 12 pmol/oocyte, compared with an uptake of
8.8 ± 1.9 pmol/oocyte (mean ± SEM; n = 3) in water-injected con-
trols. In the presence of 10 mM d-glucose linear uptake kinetics
were lost after approximately 15 min (data not shown) so a 10 min
time period was used for influx assays.
d-Fructose uptake also increased in oocytes expressing BboHT1

when compared with uptake in water-injected controls, having
linear kinetics over 1 h (100 �M d-fructose at room temperature
(data not shown)), and a mean uptake value of 44 ± 7 pmol/oocyte
(compared with 15 ± 4 pmol/oocyte in water-injected controls;
mean ± SEM; n = 3). These data suggest that d-glucose transport

Fig. 2. Concentration-dependence of the influx ofd-glucose in oocytes injected with
BboHT1 mRNA. All values presented were first corrected for the uptake of d-glucose
into water-injected controls. Data are averaged from three experiments, each on
oocytes from a different toad, and are shown as means ± SEM.
ical Parasitology 161 (2008) 124–129

HT1) and BboHT2 (BbHT2). Bold letters indicate conserved residues compared with
eing accessible to p-chloromercuribenzene-sulphonic acid if mutated to a cysteine

via BboHT1 is approximately four times faster than d-fructose (at
relatively low, non-saturating concentrations).

Fig. 2 shows the concentration-dependence of d-glucose influx
kinetics, with values for Km of 0.84 ± 0.54 mM and Vmax of
1181 ± 501 pmol/(oocyte.h) (mean ± SEM; n = 3).

3.3. Temperature and pH

The effect of temperature (5–32 ◦C) on the transport ofd-glucose
via BboHT1 is shown in Fig. 3. An Arrhenius plot (Fig. 3 Inset)
revealed the energy of activation (Ea) to be 64 ± 3 kJ mol−1 or
15 ± 1 kcal mol−1 (mean ± SEM; n = 3). To test for the effect of pH,
assays for d-glucose influx via BboHT1 over a range of pH values
(5.5–9.0) were performed and no pH sensitivity was observed (data
not shown).

3.4. Inhibitor studies

Fig. 4 shows the effects of hexose transporter modulators on
the influx of d-glucose (38 �M external concentration) mediated
by BboHT1 in oocytes. Cytochalasin B (50 �M) inhibited d-glucose
influx, but there was little inhibition by phloridzin and phloretin
(both at 50 �M). Replacement of Na+ by either K+ or choline did

Fig. 3. Temperature-dependence of the influx of d-glucose in oocytes injected with
BboHT1 mRNA. Inset: Arrhenius plot constructed from the data in the main figure.
All values presented were first corrected for the uptake of d-glucose into water-
injected controls. The extracellular d-glucose concentration was 38 �M. Data are
averaged from three experiments, each on oocytes from a different toad, and are
shown as means ± SEM.
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Fig. 5. Effect of compound 3361 on the influx of d-glucose in oocytes injected with
BboHT1 mRNA. All values were first corrected for the uptake ofd-glucose into water-
injected controls and are presented as a percentage of paired experiments performed
in the absence of compound 3361. The extracellular d-glucose concentration was
38 �M. Data are averaged from four experiments, each on oocytes from a different
toad, and are shown as means ± SEM.
Fig. 4. Effect of modulators on the influx of d-glucose in oocytes injected with
BboHT1 mRNA. All values were first corrected for the uptake of d-glucose into
water-injected controls and are presented as a percentage of paired experiments
performed in the absence of any modulators. The extracellular d-glucose concen-
tration was 38 �M. Data are averaged from three experiments, each on oocytes from
a different toad, and are shown as means ± SEM. Control, influx in oocytes injected
with BboHT1 mRNA in the absence of modulators; CytoB, cytochalasin B (50 �M);
Phdz, phloridzin (50 �M); Phrt, phloretin (50 �M); No Na+, sodium-free Barth’s
medium where Na+ was replaced with equimolar choline chloride; l-Gluc, l-glucose
(10 mM); d-Fruct, d-fructose (10 mM); 1-DOG, 1-deoxy-d-glucose (10 mM); 2-DOG,
2-deoxy-d-glucose (10 mM); d-Mann, d-mannitol (10 mM); 3-DOG; 3-deoxy-d-
glucose (10 mM); 3-O-MG, 3-O-methyl-d-glucose (10 mM); d-Galac, d-galactose
(10 mM); 6-DOG, 6-deoxy-d-glucose (10 mM).

not alter d-glucose transport. The presence of either l-glucose or
d-fructose (both at 10 mM) in the medium reduced the influx of
d-glucose by less than 20%.

The ligand interactions between BboHT1 and d-glucose were
assessed, using d-glucose analogues (all at 10 mM concentrations).
1-Deoxy-d-glucose, 2-deoxy-d-glucose, d-mannose (the 2-epimer
of glucose), 3-deoxy-d-glucose, and 3-O-methyl-d-glucose all
reducedd-glucose uptake via BboHT1 by greater than 50% of control
values. In contrast, d-galactose (the 4-epimer of glucose) or 6-
deoxy-d-glucose competed relatively poorly withd-glucose uptake
via BboHT1.

An O-3 derivative of d-glucose was also examined in greater
detail because it is a specific inhibitor of PfHT [7]. This 3-O-
(undec-10-en-)-1-yl-d-glucose derivative, (compound 3361) has an

apparent Ki value (the dissociation constant for inhibitor bind-
ing, which can be derived from the IC50 value, the concentration
of inhibitor required to reduce transport by 50%, using the equa-
tion Ki = IC50/(1 + [substrate]/Km)) of approximately 50 �M for PfHT
mediated glucose uptake. Fig. 5 shows the effect of compound
3361 on d-glucose transport via BboHT1. Compound 3361 inhib-
ited d-glucose transport with an apparent Ki value of 4.1 ± 0.9 �M
(mean ± SEM; n = 4). �-Glucogallin, which has anti-babesial prop-
erties [15], was tested to see if it inhibited d-glucose transport via
BboHT1 but was ineffective at concentrations up to 100 �M (data
not shown).

3.5. Growth and invasion assays

Compound 3361, cytochalasin B and �-glucogallin were tested
in in vitro growth assays of B. bovis (Fig. 6A). Cytochalasin B and �-
glucogallin inhibited completely in vitro growth at concentrations
of 8 and 100 �M, respectively, with IC50 values (the concentration
of inhibitor required to reduce parasite growth by 50%) between 1
and 10 �M. However, there was no effect of compound 3361 (up to
100 �M) on parasite growth.

Fig. 6. Effect of compound 3361 (circles), cytochalasin B (squares) and �-glucogallin
(triangles) on the in vitro growth of B. bovis parasites (A) and B. bovis merozoite
invasion into normal (closed symbols) and glucose-depleted (open symbols) bovine
erythrocytes (B). For growth assays, in vitro cultures were established at an initial
parasitaemia of 0.3% and the final parasitaemia was determined after 48 h of growth
and expressed as a percentage of control experiments performed in the absence of
inhibitors. For invasion assays, the parasitaemia was determined 2 h after initiating
invasion and expressed as a percentage of control experiments performed in the
absence of inhibitors (100% invasion normally represented a parasitaemia between
0.5% and 1% after 2 h). Data are averaged from three experiments and are shown as
means ± SEM.
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Cytochalasin B inhibits B. bovis merozoite invasion of bovine
erythrocytes [12] so invasion assays were also used to exam-
ine compound 3361, cytochalasin B and �-glucogallin (Fig. 6B).
The assays, which use glucose-free media (see Section 2), were
performed using both normal and glucose-depleted bovine ery-
throcytes (the latter having an invasion rate of approximately two
thirds of the former). �-Glucogallin did not inhibit measurably
invasion of normal or glucose-depleted bovine erythrocytes (data
not shown), indicating that its effect on in vitro cultivation of B.
bovis is due to inhibition of the intracellular growth phase. In
contrast, cytochalasin B inhibited strongly parasite invasion into
normal bovine erythrocytes, inhibiting well over half of the inva-
sions measured in control experiments at a concentration of 1 �M.
This effect was enhanced by the use of glucose-depleted bovine ery-
throcytes. Similarly, compound 3361 inhibited erythrocyte invasion
in a glucose-dependent fashion, as invasion was blocked only into
glucose-depleted bovine erythrocytes.

4. Discussion

This study has identified two putative B. bovis hexose trans-
porters, using genome sequences for the Texas T2Bo and Israeli
strains [16,17]. Significant inter-strain sequence differences are
obvious when comparing nucleotide sequences for BboHT1 (95.8%
nucleotide identity resulting in a predicted 97.7% conservation of
amino acid sequence). BboHT2 is even more variable between
strains with 83.1% of nucleotide conservation between the two
BboHT2 sequences (giving 83.8% conservation of amino acids).
The functional significance of BboHT1 variability has not been
examined, but does not alter any known functionally important
residues (see below). Orthologues of BboHT1 and 2 were also
found in the B. bigemina genome sequence (see supplementary file
for alignments). However, while both BboHT1 and 2 had all the
hallmarks of hexose transporters (discussed below), it was only
possible to characterise functionally BboHT1 in Xenopus oocytes.
There are several possible reasons for unsuccessful functional char-
acterisation in heterologous expression systems [18]. Attempts to
localise BboHT2 to the oocyte plasma membrane, with tagged (c-
myc) versions, were inconclusive (data not shown) and so, in the
absence of additional data to support its functional expression, it is
not possible to comment further on the role of BboHT2.

In addition to the 12 predicted transmembrane helices and
amino acid sequence similarities with GLUT1 and PfHT, BboHT1
(and BboHT2) contains many functionally important residues

or motifs associated with facilitative hexose transporters. These
include GRR/K motifs in the hydrophilic loops that connect trans-
membrane segments II and III and transmembrane segments VIII
and IX, some, but not all, conserved residues involved in the exo-
facial binding of glucose (see Fig. 1), and a tryptophan residue in
helix XI, which is involved in cytochalasin B binding [14]. Func-
tionally, BboHT1 is a Na+-independent, cytochalasin B-sensitive,
stereo-selective, saturable hexose pathway confirming that BboHT1
is a member of the facilitative sugar transporter family [19].

Both putative hexose transporter sequences are present in the
B. bovis EST sequencing project. As the cDNA library used in this
project was derived from infected erythrocyte cultures [17], this
suggests that they are expressed during the erythrocytic phases
of the parasite’s life cycle. Unlike human erythrocytes, bovine ery-
throcytes have a naturally low permeability to d-glucose although
infection by the B. bovis parasite increases the erythrocyte’s per-
meability to d-glucose significantly [5]. This increase is via a
channel/pore-like mechanism, which is characteristically neither
stereo-specific nor saturable (unlike BboHT1). It could therefore be
hypothesised that the intra-erythrocytic B. bovis parasite is able to
obtain a supply ofd-glucose from the plasma reservoir (maintained
ical Parasitology 161 (2008) 124–129

at 3.5 mM under normal conditions) via the novel channel/pore-like
mechanism in sequence with BboHT1 on the parasite plasma mem-
brane. Further experimentation is required to localise BboHT1 and
characterise d-glucose transport across the parasite plasma mem-
brane. However, experiments to determine the latter are technically
challenging and will require the development of protocols to (i)
remove/permeablise the host plasma membrane and (ii) dissect
glucose transport from other factors such as metabolism, binding
and experimental “noise”.

While the B. bovis genomes contain the majority of sequences
for enzymes involved in oxidative metabolism [16,17], the lack
of coding sequence for pyruvate dehyrogenase (required to pro-
duce acetyl CoA) and the low abundance of malate dehydrogenase
(involved in the tricarboxylic acid cycle) from blood-stage para-
site preparations [20] suggest that blood-stage B. bovis derives its
energy primarily from glycolysis. Infected bovine erythrocytes con-
sume significantly more d-glucose than uninfected erythrocytes
[21]. This, coupled with the increased permeability of the host’s
plasma membrane to d-glucose [5], suggests that parasite survival
is dependent on a supply of d-glucose. However, compound 3361,
previously reported to kill P. falciparum by inhibition of PfHT [7],
had no effect on B. bovis growth rates. This is somewhat unex-
pected given that compound 3361 is at least 10-fold more potent
at inhibiting BboHT1 compared with PfHT when the two trans-
porters are expressed in oocytes, a result that makes BboHT1 the
most susceptible of hexose transporters tested to date [22].

There are several possible reasons for the lack of observed
effect. Compound 3361 may not reach the intraerythrocytic site
of BboHT1. Alternatively, another d-glucose transport pathway
is present, which is insensitive to compound 3361 (for example
BboHT2), or the parasite is not reliant completely on d-glucose
as an energy source and is able to obtain energy from other sub-
strates. With regard to the latter, one possibility is that parasites can
oxidise glutamate via glutamate dehydrogenase (present in blood-
stage preparations [20]) and feed the resulting �-ketoglutarate
into the tricarboxylic acid cycle. Also, BboHT1 may have functional
redundancy that requires near complete inhibition before affect-
ing parasite growth. These data cannot validate BboHT1 as a drug
target or distinguish between these possibilities.

Given that B. bovis invasion assays work in the absence of
glucose-containing media, an interesting observation from this
study is the ability of cytochalasin B and compound 3361 to inhibit
parasite invasion via a mechanism(s) that is dependent on the host’s
cytosolicd-glucose concentration. One possible explanation for this

observation is that the parasites do require d-glucose for invasion
and are able to obtain it as it leaks from the uninfected erythro-
cytes (or obtain it directly as the parasites invade), although further
studies would be required to confirm this hypothesis.

The number of apicomplexan parasite hexose transporters
characterised functionally is steadily growing [6,23,24], allowing
detailed comparison. The Km value of BboHT1 for d-glucose is
0.84 mM, which is similar to the Km values of the hexose trans-
porters from the human malarial parasites, P. falciparum (PfHT;
0.97 mM), P. vivax (PvHT; 0.85 mM), and P. knowlesi (PkHT; 0.67 mM)
but higher than those for the rodent malarial parasite, P. yoelii
(PyHT; 0.12 mM) and the human pathogen, Toxoplasma gondii
(TgHT; 0.03 mM). The relatively high Km value (low affinity) of
BboHT1 for d-glucose suggests that parasites may access a rela-
tively rich supply of d-glucose or that they do not depend wholly
on d-glucose for energy.

The low temperature-dependence of BboHT1 activity is similar
to other apicomplexan hexose transporters [25]. This is consistent
with the possible requirement of these transporters to function
during parasite growth within invertebrate vectors (which live
between 22 and 26 ◦C). The exception is the high temperature-
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dependence, T. gondii hexose transporter, consistent with the fact
that T. gondii does not use an invertebrate vector. Like all other
apicomplexan hexose transporters tested so far [6,25], BboHT1 is
sensitive to cytochalasin B (consistent with the presence of a con-
served tryptophan residue in helix XI, involved in cytochalasin
binding [14]), is Na+-independent, pH-insensitive and is depen-
dent on its substrates containing an O-4 hydroxyl group for high
affinity interaction. However, it is the only apicomplexan hexose
transporter, characterised so far, that is not dependent on its sub-
strates containing an O-3 hydroxyl group (in the same way that PfHT
is the only apicomplexan hexose transporter that is not dependent
on its substrates containing an O-6 hydroxyl group [6]). This dif-
ference may help to identify residues or motifs that are involved in
binding O-3 (and O-6) hydroxyl groups, which could help to explain
the increased effect compound 3361 has upon BboHT1 when com-
pared with other hexose transporters. These comparative studies
may lead to improved rational drug design focusing on hexose
transporters of parasites such as the P. falciparum orthologue that
is validated as a drug target.

The ability of BboHT1 to transport fructose is also notewor-
thy. All the reported apicomplexan hexose transporters have been
shown to transport fructose [24,25], even though the reason behind
retaining this ability is not obvious for Toxoplasma and Babesia
parasites. While able to transport d-fructose, BboHT1 has a lower
affinity for d-fructose than for d-glucose (>10-fold), as suggested
by the minor effect 10 mM d-fructose exerted on d-glucose influx
(see Fig. 4). This is consistent with findings from PfHT, which has
Km values for d-glucose and d-fructose transport of approximately
1 and 12 mM, respectively [25]. Based on functional evidence for
PfHT and sequence comparison for the other apicomplexan hexose
transporters, including BboHT1, their ability to transport fructose
does not involve the fructose selectivity filter found in helix VII of
mammalian GLUTs [26]. Instead of this filter, a conserved glutamine
residue in PfHT is important functionally for fructose transport
[24,27]. However, BboHT1 does not contain this residue, raising
the possibility that other novel sequences have evolved to allow
fructose transport in Babesia parasites.

When taken with previous studies on mammalian GLUTs [23],
other apicomplexan hexose transporters [6,24,25,27] and the hex-

ose transporters of the kinetoplastidae [3,28], our studies increase
understanding of how apicomplexan parasites adapt to different
micro-environments. They also explore the possibility of targeting
this class of transporter in different pathogens.
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