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OBJECTIVE—Low birth weight is associated with an increased
risk of type 2 diabetes. The mechanisms underlying this associ-
ation are unknown and may represent intrauterine programming
or two phenotypes of one genotype. The fetal insulin hypothesis
proposes that common genetic variants that reduce insulin
secretion or action may predispose to type 2 diabetes and also
reduce birth weight, since insulin is a key fetal growth factor. We
tested whether common genetic variants that predispose to type
2 diabetes also reduce birth weight.

RESEARCH DESIGN AND METHODS—We genotyped single-
nucleotide polymorphisms (SNPs) at five recently identified type
2 diabetes loci (CDKAL1, CDKN2A/B, HHEX-IDE, IGF2BP2,
and SLC30A8) in 7,986 mothers and 19,200 offspring from four
studies of white Europeans. We tested the association between
maternal or fetal genotype at each locus and birth weight of the
offspring.

RESULTS—We found that type 2 diabetes risk alleles at the
CDKAL1 and HHEX-IDE loci were associated with reduced birth
weight when inherited by the fetus (21 g [95% CI 11–31], P � 2 �
10�5, and 14 g [4–23], P � 0.004, lower birth weight per risk
allele, respectively). The 4% of offspring carrying four risk alleles
at these two loci were 80 g (95% CI 39–120) lighter at birth than
the 8% carrying none (Ptrend � 5 � 10�7). There were no
associations between birth weight and fetal genotypes at the
three other loci or maternal genotypes at any locus.

CONCLUSIONS—Our results are in keeping with the fetal
insulin hypothesis and provide robust evidence that common
disease-associated variants can alter size at birth directly through
the fetal genotype. Diabetes 58:1428–1433, 2009

R
educed birth weight is associated with late-onset
diseases including type 2 diabetes, hypertension,
and heart disease (1). The cause of this associ-
ation is not known. It is often proposed to reflect

fetal programming in utero in response to maternal mal-
nutrition in pregnancy (2). An alternative explanation is
that genetic variants that increase disease risk could also
reduce fetal growth. In accordance with the fetal insulin
hypothesis (3), we proposed that genetic variants that
reduce insulin secretion or insulin sensitivity might reduce
birth weight as well as predisposing to type 2 diabetes in
adulthood, since fetal insulin is a key fetal growth factor.

The fetal insulin hypothesis was initially based on
observations of subjects with glucokinase (GCK) muta-
tions, whose birth weight is reduced by 533 g (4) and who
have mild hyperglycemia postnatally. Markedly reduced
birth weights in patients with monogenic diabetes due to
mutations in the INS, INSR, IPF1, KCNJ11, ABCC8, and
HNF1B genes (3,5–8) have further established the princi-
ple that gene variants can cause both low birth weight and
diabetes. However, mutations causing monogenic diabetes
are too rare to explain the association between reduced
birth weight and type 2 diabetes observed in population
studies.

There is epidemiological support for the fetal insulin
hypothesis. Offspring of fathers who go on to develop type
2 diabetes later in life have lower birth weights than those
born to fathers who do not develop diabetes (9–12). This
is consistent with the fetus inheriting, on average, 50% of
the father’s genetic predisposition to diabetes and this
genetic predisposition reducing fetal growth.

Maternal genotypes may have opposing effects on off-
spring birth weight compared with fetal genotypes (4).
Type 2 diabetes risk alleles, which are present in the
mother and which raise maternal glycemia in pregnancy,
will increase fetal growth by increasing fetal insulin secre-
tion. Maternal inheritance of common risk alleles in the
GCK and TCF7L2 genes, which predispose to hyperglyce-
mia and type 2 diabetes, respectively, were reproducibly
associated with higher offspring birth weight (13,14). How-
ever, neither of these risk alleles at TCF7L2 and GCK or
the type 2 diabetes risk alleles in the PPARG and KCNJ11
genes was associated with birth weight directly through
the fetal genotype (13–15).
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In this study, we aimed to further test the relationship
between known type 2 diabetes variants and size at birth.
We selected variants at five loci (CDKAL1, CDKN2A/B,
HHEX-IDE, IGF2BP2, and SLC30A8), recently identified
through type 2 diabetes genome-wide association studies
(16–21), that have not been investigated in relation to fetal
growth. Each of these loci has been shown to predispose
to diabetes by reducing insulin secretion (22–24). We used
data from 19,200 offspring and 7,986 mothers from four
studies of white Europeans to test the hypothesis that
these variants are associated with birth weight, either
through the fetal or maternal genotype.

RESEARCH DESIGN AND METHODS

Subjects included in our analyses were selected from four studies (Table 1).
The Avon Longitudinal Study of Parents and Children (ALSPAC) (25) is a
prospective study that recruited pregnant women from Bristol, U.K., with
expected delivery dates between April 1991 and December 1992. The Exeter
Family Study of Childhood Health (EFSOCH) (26) is a prospective study of
children born between 2000 and 2004 and their parents from a geographically
defined region of Exeter, U.K. The Northern Finland Birth Cohort of 1966
(NFBC1966) (27) is a study of individuals born in the two northern-most
provinces of Finland to women with expected dates of delivery in 1966. The
1958 British Birth Cohort (1958BC) (28) is a national cohort of subjects from
the U.K. born during the same week in March 1958. Fetal DNA was available
from all studies, and maternal DNA was available in the ALSPAC and EFSOCH
studies. In all studies, birth weight and gestational age were obtained from
hospital records. Important covariates were recorded, including maternal
prepregnancy BMI, parity, and maternal smoking. Subjects included in the
analyses were of white European ancestry, were singleton births, and were
born at gestational age �36 weeks. All subjects (or for children, their parents)
gave informed consent, and ethics approval was obtained from the local
review committee for each study.
Genotyping. One single nucleotide polymorphism (SNP) was chosen to repre-
sent the type 2 diabetes association signal at each of the five loci (rs10946398
[CDKAL1], rs10811661 [CDKN2A/B], rs1111875 [HHEX-IDE], rs4402960
[IGF2BP2], and rs13266634 [SLC30A8]). Genotyping was performed using stan-
dard methods with robust quality-control criteria, details of which are presented
in the online appendix (available at http://diabetes.diabetesjournals.org/cgi/
content/full/db08-1739/DC1).
Statistical analysis

Analysis of fetal genotype and birth weight. Within each of the four
studies, we examined the association between birth weight and fetal genotype
for each SNP using linear regression, with genotype coded as zero, one, or two
risk alleles and sex and gestational age as covariates. Consistent with previous
studies confirming associations of five SNPs with type 2 diabetes (16–20), we
used an additive genetic model, assuming a constant change in birth weight
per additional risk allele. The distribution of birth weight was approximately
normal, so it was not transformed for analysis. Subjects with extreme birth
weight values (�4 SD from the sex mean) were removed before analysis (see
the online appendix). We repeated the analysis, with maternal prepregnancy
BMI; smoking; parity; and, in the EFSOCH study, maternal fasting glucose
included as additional covariates.

We produced meta-analysis statistics and plots using the inverse-variance
method (fixed effects), implemented in the METAN module developed for
Stata (StataCorp, College Station, TX) (29). Summary data were pooled from
the linear regression analyses performed in the individual studies. We used the
I 2 statistic to estimate the percentage of total variation in study estimates that
is due to between-study heterogeneity (30). In addition, we used Cochran’s Q

test to evaluate the evidence for between-study heterogeneity. By performing
meta-analyses of summary data from individual studies, we avoided any
potential confounding effect of allele frequency differences between the
Finnish and U.K. studies.
Analysis of maternal genotype and offspring birth weight. Within each of
the two studies with maternal genotype available (ALSPAC and EFSOCH), we
examined the association between birth weight and maternal genotype for
each SNP using linear regression under the same model as was used for fetal
genotype, with sex and gestational age as covariates. We combined data from
the two studies using inverse-variance meta-analysis. Since we tested the
associations with birth weight of 1) fetal and 2) maternal genotypes for all five
SNPs, we used � � 0.05/10 to make study-wide adjustments of P values.
Adjustment of maternal and fetal genotype effects for one another.

Maternal and fetal genotypes are not independent (r � �0.5) and may have
opposing effects on birth weight (4). To examine the effects of maternal and
fetal genotypes that were independent of one another, we used the mother-
offspring pairs from the ALSPAC and EFSOCH cohorts with both maternal and
fetal genotype available (n � 5,342–5,507). Within each study, we performed
a linear regression analysis of birth weight against maternal genotype, fetal
genotype, sex, and gestation. We performed two meta-analyses for each SNP,
combining regression coefficients from the two studies for fetal, and then
maternal, genotype.
Analysis of the combined effects of CDKAL1 and HHEX-IDE on birth

weight. To assess the combined effect of the fetal risk alleles at CDKAL1 and
HHEX-IDE on birth weight, we generated a risk allele score (from 0 to 4) for
individuals genotyped at both loci. We then performed a linear regression
analysis, within each of the four studies, of birth weight against the fetal risk
allele score (additive model), sex, and gestation. We combined the per–risk
allele effect sizes and SEs using inverse-variance meta-analysis (n � 18,438).
To gain estimates of the differences in birth weights between individuals with
no risk alleles and individuals with either one, two, three, or four risk alleles,
we repeated the within-study analysis including the fetal risk allele score as
indicator variables and then meta-analyzed the effect size estimates for each
comparison.

RESULTS

The fetal risk alleles of SNPs rs10946398 (CDKAL1) and
rs1111875 (HHEX-IDE) were associated with reduced
birth weight in the meta-analysis (21 g [95% CI 11–31], P �
2 � 10�5, and 14 g [4–23], P � 0.004, lower birth weight
per risk allele, respectively) (Table 2 and Fig. 1) (see Table
3 for individual study results). Fetal genotypes at the other
three loci were not associated with birth weight (all P �
0.01). The variability of effect size estimates among studies
was consistent with random statistical fluctuations, sug-
gesting no underlying heterogeneity (all P � 0.1). Adjust-

TABLE 1
Clinical characteristics of subjects

Study
ALSPAC children* EFSOCH children* NFBC1966 1958BC

Year(s) of birth 1991–1993 2000–2004 1965–1967 1958
Total n (% male)† 7,687 (52.0) 763 (53.1) 4,838 (48.0) 5,912 (50.4)
Birth weight (g) 3,482 � 480 3,507 � 475 3,534 � 491 3,345 � 489
Gestation (weeks) 40 (39–41) 40 (39–41) 40 (39–41) 40 (39–41)
Maternal age (years) 28 (25–32) 31 (27–34) 27 (23–34) 27 (23–31)
Maternal prepregnancy BMI (kg/m2) 22.14 (20.47–24.38) 23.03 (21.14–25.63) 22.68 (20.96–24.80) 22.53 (20.55–24.51)
Primiparous births 43.5 45.0 31.1 37.3
Maternal smoking during pregnancy 21.3 14.1 13.3 32.3

Data are means � SD, median (interquartile range), or percentages. *Maternal genotype available: ALSPAC (n � 7,176) and EFSOCH (n �
810) (includes total number of mothers genotyped for at least one SNP, with offspring birth weight available, regardless of whether fetal
genotype was also available). †Includes individuals of white European ancestry, from a singleton pregnancy, with birth weight available, born
at a minimum gestational age of 36 weeks, and genotyped for at least one of five SNPs.
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ment for additional covariates of birth weight made little
difference to the results (data not shown).

In the two studies with maternal DNA available, mater-
nal genotypes at five loci were not associated with off-
spring birth weight (all P � 0.05; except HHEX-IDE, P �
0.045) (online appendix Table 1). Using the mother-
offspring pairs with both genotypes available (n � 5,342–
5,507), we assessed the association of fetal genotype with
birth weight that was independent of maternal genotype
(online appendix Table 2). For CDKAL1, the per–risk
allele effect size estimate of the association between fetal
genotype and birth weight was �25 g (95% CI �43 to �7)

(P � 0.005) before adjustment for maternal genotype and
�36 g (�56 to �16) (P � 0.0005) after adjustment. In
accordance with this, the maternal risk allele at CDKAL1
showed a nominal association with increased birth weight
after adjustment for fetal genotype (P � 0.04). For HHEX-
IDE, the per–risk allele effect size estimate of the associ-
ation between fetal genotype and birth weight was �25 g
(�43 to �9) (P � 0.003) before adjustment for maternal
genotype and �29 g (�48 to �10) (P � 0.003) after
adjustment. The maternal risk allele at HHEX-IDE showed
no association with birth weight after adjustment for fetal
genotype (P � 0.5).

Using 18,438 individuals from all four studies, we com-
bined information from the CDKAL1 and HHEX-IDE loci
into a fetal risk allele score and tested the association with
birth weight. We observed a 17-g (95% CI 10–24) reduction
in birth weight per additional risk allele (P � 5 � 10�7).
The 4% of offspring who carried four type 2 diabetes risk
alleles were 80 g (39–120) lighter at birth than the 8%
carrying none (Fig. 2).

DISCUSSION

Using a total of 19,200 offspring and 7,986 mothers from
four studies of white Europeans, we have shown that fetal
inheritance of the type 2 diabetes risk alleles at CDKAL1
and HHEX-IDE is associated with reduced birth weight.
This is consistent with the fetal insulin hypothesis (3) and
provides the first robust evidence that common disease-
associated genetic variants can directly influence size at
birth. While the individual effect sizes were small, our
combined analysis showed a difference in birth weight of
80 g (95% CI 39–120) between offspring carrying four risk
alleles and those carrying none. This is similar to the effect
on birth weight of a mother smoking three cigarettes per
day in the third trimester of pregnancy (31).

We did not observe an association between maternal
genotype and offspring birth weight. However, maternal
and fetal genotypes are 50% correlated and may confound
each other. When we assessed the effects of maternal and
fetal genotype that were independent of one another using
mother-offspring pairs, the effect size of the association
between fetal genotype and birth weight at CDKAL1
changed from �25 g (95% CI �43 to �7) to �36 g (�56 to
�16). This suggests that maternal and fetal genotypes at
this locus may have opposing effects on birth weight, as
has been observed in mother-offspring pairs with heterozy-
gous mutations in the GCK gene (4). However, this result
requires confirmation in further large studies of mothers
and offspring.

We acknowledge some limitations to our study. First,
although we have studied the largest cohorts available for
genetic studies of birth weight, our power to detect effects

TABLE 2
Meta-analysis of the association of birth weight with fetal genotype

Locus (SNP)
Total n in

meta-analysis
Per–risk allele effect size

�g (95% CI)	 P

CDKAL1 (rs10946398) 18,679 �21 (�31 to �11) 2 � 10�5

CDKN2A-2B (rs10811661) 18,751 11 (�1 to 24) 0.07
HHEX-IDE (rs1111875) 18,958 �14 (�23 to �4) 0.004
IGF2BP2 (rs4402960) 18,187 4 (�6 to 14) 0.43
SLC30A8 (rs13266634) 18,702 12 (2–21) 0.02

Analyses are adjusted for sex and gestational age.

Overall 

Study 

EFSOCH

NFBC1966

1958BC

ALSPAC

-21 (-31, -11)

-1 (-48, 47)

-35 (-54, -16)

-13 (-31, 5)

-20 (-35, -5)

-60 0 60-40 -20 20 40

Overall 

NFBC1966

ALSPAC

EFSOCH

1958BC

Study 

-14 (-23, -4)

-16 (-34, 3)

3 (-41, 46)

1 (-16, 18)

-25 (-39, -11)

-60 0 60-40 -20 20 40

HHEX-IDE: per–fetal risk allele change in birth 
weight, in grams (95% CI)

A

B

CDKAL1: per–fetal risk allele change in birth
weight, in grams (95% CI)

FIG. 1. A: Meta-analysis plot showing the association of fetal CDKAL1

genotype with birth weight across all four studies (overall P � 2 �
10�5; total n � 18,679; heterogeneity statistics: I2 � 19.9%, P � 0.29).
B: Meta-analysis plot showing association of fetal HHEX-IDE genotype
with birth weight across all four studies (overall P � 0.004; total n �
18,958; heterogeneity statistics: I2 � 49.7%, P � 0.11). Analyses are
adjusted for sex and gestational age.
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of maternal genotype was limited due to its availability in
only two of four studies (maximum n � 7,821). While this
gave us 80% power to detect changes in birth weight of
30 g for the most common minor allele (frequency 40%;
� � 0.005), we estimate that we would have needed a
maternal sample size ranging from n � 10,200 to 19,250 to
detect effects of 20 g per risk allele, given the allele
frequency variation of the SNPs tested. The second limi-
tation is that we have only studied individuals of European
origin. Further studies are needed in large cohorts of other
ethnic groups. Third, our statistical evidence for associa-
tion of CDKAL1 (P � 2 � 10�5) and HHEX-IDE (P �
0.004) with birth weight does not meet the generally
accepted criterion for genome-wide adjustment. However,
the robust prior evidence for association of all five loci
with type 2 diabetes (P 
 5 � 10�8) (32) and the
association of each with insulin secretion (22–24) indicate
that such an adjustment would be too stringent. In addi-
tion, the associations survive study-wide adjustment (P 

0.005), suggesting that they are unlikely to be false-
positives. Finally, it is also possible that population sub-
structure has influenced our results, but the use of meta-
analysis across studies that individually consist of white
Europeans from relatively homogenous regions means
that this is unlikely.

The majority of type 2 diabetes genetic variants increase
diabetes risk by reducing �-cell function (22–24,32). Ge-
netic variants at CDKAL1 and HHEX-IDE are associated
with reduced �-cell function in adults, and we hypothesize
that the associations with birth weight are mediated via
reduced fetal insulin secretion. As cord insulin was not
measured in our fetal samples, we cannot test this hypoth-
esis directly. Our results and previous studies (14,15)
support heterogeneity in the impact of common type 2
diabetes variants on fetal growth, and this could suggest
differences in the timing of the �-cell defect. If a variant
reduces fetal insulin secretion in utero, this could result in
reduced birth weight (e.g., CDKAL1 and HHEX-IDE). If
insulin secretion is reduced at child-bearing age, this could
result in maternal hyperglycemia and hence increased
offspring birth weight (e.g., TCF7L2 [14]). Finally, if insu-
lin secretion is not reduced until old age, then birth weight
will not be altered. The heterogeneity of fetal effects on
birth weight is consistent with rare autosomal dominant
forms of young-onset diabetes, in which different genetic
aetiologies have contrasting impacts on fetal growth
(4,8,33).

The associations of the CDKAL1 and HHEX-IDE vari-
ants with reduced birth weight provide the first direct
evidence that common genetic variation may account, in
part, for the epidemiological association between reduced
birth weight and type 2 diabetes. This is a crucial addition
to the observations of patients with rare mutations that
first established the principle of a genetic link between low
birth weight and diabetes (3–8) but that are too rare to
explain the epidemiological data. It is important to
appreciate that genetic associations cannot explain all
of the epidemiological data, in particular the associa-
tions seen in identical twins (34,35), and the associa-
tions we have seen explain 
0.2% of the variation in
birth weight. However, the association between type 2
diabetes and birth weight is not strong and it is possible,
with the identification of additional type 2 diabetes gene
variants, that genetic factors will explain a substantial
fraction of the correlation between low birth weight and
type 2 diabetes. An alternative mechanism, which has
gained support from experimental animal models, is
that low birth weight results from maternal malnutri-
tion, and subsequent programming in utero results in a
predisposition to diabetes (2). The roles for genetic
variation and programming are not mutually exclusive.
However, further work to define the relative contribu-
tions of these two potential mechanisms is important
because if a large component of the association is
genetic, then this would argue against targeting preven-
tative interventions to pregnant women to influence the
health outcomes of their offspring (36).

In conclusion, our study provides the first robust evi-
dence that common type 2 diabetes susceptibility variants
can alter size at birth directly through the fetal genotype.
Risk alleles at CDKAL1 and HHEX-IDE are both associ-
ated with reduced birth weight. This is consistent with the
fetal insulin hypothesis, which proposed that predisposi-
tion to both type 2 diabetes and low birth weight are two
phenotypes of a single genotype and explains, at least in
part, the association of low birth weight with type 2
diabetes.
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