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Sl lml -na l ' y  
To evaluate the effectiveness of vaccine protection from infected cells from another individual 
of the same species, vaccinated rhesus macaques (Macaca mulatta) were challenged with peripheral 
blood mononuclear cells from another animal diagnosed with acquired immune deficiency syndrome 
(AIDS). Half of the simian immunodeficiency virus (SIV)-vaccinated animals challenged were 
protected, whereas unprotected vaccinates progressed as rapidly to AIDS. Protection was unrelated 
to either total antibody titers to human cells, used in the production of the vaccine, to HLA 
antibodies or to virus neutralizing activity. However, analysis of the serotype of each animal 
revealed that all animals protected against cell-associated virus challenge were those which were 
SIV vaccinated and which shared a particular major histocompatibility complex (MHC) class 
I allele (Mamu-A26) with the donor of the infected cells. Cytotoxic T lymphocytes (CTL) specific 
for SIV envelope protein were detected in three of four protected animals vs. one of four unprotected 
animals, suggesting a possible role of MHC class I-restricted CTL in protection from infected 
blood cells. These findings have possible implications for the design of vaccines for intracellular 
pathogens such as human immunodeficiency virus (HIV). 

T o facilitate the design of effective vaccines for prevention 
of HIV infection and/or progression to AIDS, an un- 

derstanding of the immunological mechanisms that elicit pro- 
tection from infected cells as well as cell free virus are needed 
(1). Studies in animal models have been important in estab- 
lishing efficacy of various vaccine preparations of HIV-1 in 
chimpanzees (Pan troglodytes), and of various vaccines prepared 
from HIV-2 and related SIV strains that can be tested in ma- 
caque species. Protection from infection with ceU-free ho- 
mologous virus challenge has been demonstrated in chim- 
panzees and a correlation between high virus neutralizing 
titers and protection from ceU-free infection appears to be 
emerging (2-4). Passive immunization studies in both the 
chimpanzee and macaque models support the role of anti- 
bodies in protection from infection from ceU-free challenge 
(5, 6). Homologous protection of chimpanzees from HIV-1 
infected cells has been reported (7). However, the mechanism(s) 
of protection from infected cells in that study were not evi- 
dent, nor, due to the natural resistance of chimpanzees to 
AIDS (8) is it possible to evaluate the virulence of the chal- 

lenge or possible benefit of vaccination on protection from 
disease progression in that species. 

In the SIV macaque model of AIDS, whole inactivated 
vaccines have been used to study mechanisms of protection, 
immunisation schedules, doses, and adjuvants in vaccine 
efficacy studies. Although problems of producing both the 
whole virus vaccine and the challenge virus on human cell 
lines while performing the studies in rhesus monkeys have 
become apparent (9-11), they can be circumvented by chal- 
lenging with virus stocks propagated on macaque cells. How- 
ever, to date, independent investigators have failed to achieve 
protection from SIV infection in macaques from virus prepa- 
rations propagated on macaque cells. 

In the design of vaccines to prevent lentivirus infection, 
it must be considered that HIV/SIV infection may occur by 
transmission of an intracellular as well as a cell-free virus (1). 
We set out to confirm our earlier preliminary observations 
(12) and to determine if solid long-term protection from pri- 
mary uncultured cell-associated SIV infection and/or disease 
could be achieved. Furthermore, by comparing various im- 
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munological responses as well as the immunogenetic back- 
ground of protected and unprotected animals we attempted 
to gain further insight into the possible mechanisms involved 
in vaccine protection from PBMCs from another SIV-infected 
macaque. We report new findings that vaccine protection from 
infected blood cells was related to sharing of a particular MHC 
class I allele between the SIV-infected donor and SIV-vac- 
cinated animals protected from infection. These findings sug- 
gest the importance of  evoking cell-mediated responses in 
the design of  effective HIV vaccine strategies. 

Materials and Methods 
Immunization, Challenge, and Virological Follow-up of Ani- 

mals. Twelve captive rhesus macaques (M. mulatta) derived from 
an outbred pedigreed MHC-typed colony were used for cell-asso- 
ciated challenge. Eight were immunized with two different whole 
inactivated SIV vaccine preparations and four controls were im- 
munized with two different corresponding measle virus vaccines 
as described previously (12). Briefly, the SIV vaccines were prepared 
from whole SIV virions either inactivated with formalin and mixed 
with the adjuvant muramyl dipeptide (MDP), or inactivated with 
/~ propiolactone and incorporated into immune stimulating com- 
plexes (ISCOMs). All twelve animals were challenged intravenously 
with an in vivo titrated, uncultured stock of PBMC taken directly 
from a rhesus macaque infected with SIVm~m and diagnosed with 
AIDS at the time of euthanasia. Plasma (P1.) Ag and virus isola- 
tion (VI) assays were performed as previously described (12). Blood 
transfusion to naive recipients was performed from animals that 
appeared to be protected and from an infected animal as a control. 

PCR Assays. For the detection of SIVm~32H provirus, PCK 
was performed on PBMC DNA at weeks 12 and 21 post challenge 
at a sensitivity of 1 copy in 1.0-1.5 x 10 s cells. Lymph node and 
bone marrow biopsies were taken at '~1 yr post challenge on all 
SIV vaccinated animals except for animal IIM which died at 35 
wk post challenge with AIDS (confirmed in all cases by necropsy). 

Antibody Responses. Virus neutralization (VN) titers were de- 
termined in quadruplicate on plasma taken from the day of chal- 
lenge and tested in a microtiter neutralization assay. The number 
of virus negative wells detected by immunoperoxidase staining for 
virus antigen was then used to calculate the neutralization dose 
50% endpoint (NDs0) for each sample by the method of Spear- 
mann-Karber. To determine if antibodies to human C8166 cells (used 
for propagation of SIV used for vaccination) were induced in im- 
munized rhesus monkeys and correlated with vaccine protection, 
we mixed 10-fold dilutions of postimmunization serum from each 
monkey with either fresh or formalin-fixed C8166 cells or rhesus 
PBMCs from various monkey. Endpoints were determined by meas- 
uring fluorescence intensity by FACS | analysis (Becton Dickinson 
& Co., Mountain View, CA). Assays to detect antibodies to HLA 
class I proteins were performed as described (11). To determine if 
Mamu class I allde-specific antibodies were induced by SIV vacci- 
nation with human cell line (C1866)-propagated whole virus vac- 
cine and correlated with protection, complement-dependent lysis 
assays were performed (13). Briefly, sera obtained from protected 
and unprotected animals receiving SIV vaccines were tested for their 
ability to lyse; (a) the human T cell line C8166 used for SIV vac- 
cine production; (b) no. 1XC, the rhesus monkey B cell line de- 
rived from PBMC used for the vaccine challenge; (c) the rhesus 
monkey B cell line derived from animal no. A12, and; (d) SP/20, 
a mouse B cell line used for control. All prevaccination sera tested 
were negative, and only in some cases did postvaccination serum 

give positive results. Wells were scored on a scale from 1 to 6. Scores 
>5 were considered positive. 

MHC Analysis and CTL Responses. Mamu-specific allosera were 
used for MHC typing of the outbred pedigreed M. mulatta in this 
colony (13). Within our rhesus colony, at least 13 Mamu-A alleles 
can be identified with the following frequencies: Mamu-A2 (0.036), 
-All (0.110), -A13 (0.074), -A14 (0.029), -A17 (0.068), -A18 (0.069), 
-A20 (0.015), -A24 (0.097), -A25 (0.031), -A26 (0.244), -A29 (0.059), 
-A31 (0.013), and -A32 (0.155). At least 13 Mamu-B alleles have 
been identified with the frequencies of Mamu-B1 (0.029), -B3 
(0.030), -B5 (0.038), -B6 (0.195), -B9 (0.155), -B10 (0.146), -B19 
(0.103), -B21 (0.004), -B22 (0.048), -B23 (0.073), -B27 (0.007), 
-B28 (0.045), and -B33 (0.029). The B null alleles have a frequency 
of 0.099. It should be noted that there is no correlation between 
the nomenclature of the various HLA and Mamu-A and -B alleles 
since the numbering of both systems is arbitrarily chosen. One- 
dimensional isoelectric focusing was used to compare MHC class 
I gene product isoelectric point differences with serotyping (our 
manuscript in preparation). MHC sequence analyses were performed 
as described (14). Gp120 directed cytotoxic T cell activity of SIV- 
challenged macaques was detected as reported (15) with the fol- 
lowing modifications. Briefly, CTL activity against three pools of 
overlapping env peptides was measured prechallenge and at 4-11 
wk post challenge. The percent gp120-specific release is shown as 
percent specific release on gp120-peptide pulsed targets less per- 
cent specific release on control medium pulsed targets at an E/T 
ratio of 30:1. The following peptide pools were used to sensitize 
target cells: gp120 EVA 774 1-19; gp120 EVA 774 20-25; and gp120 
EVA 774 26-49. Peptides were 10 aa overlapping 20 mers based 
on consensus sequence of the SIVm~2Sl/32H isolate. Peptides 5, 38, 
and 46 were not available. Effector cells used were cryopreserved 
macaque PBMC isolated by LSM (Organon Teknika, Oss, The 
Netherlands) density gradient centrifugation, prepared either by 
Con A activation (5/~g/ml; Sigma Chemical Co., St. Louis, MO) 
and Ib2 expansion for 6 d or by cocultivation for 9-13 d with au- 
tologous peptide-pulsed feeder cells. Briefly, 5-10 x 106 PBMC 
were placed in 1 ml of KPMI 1640 containing 10% FCS in 24-well 
plates together with 10-20 x 106 2,500 rad irradiated 10-d-old 
peptide-pulsed autologous Con A blasts. Autologous Con A blasts 
were prepulsed for 2 h with a pool of 46 overlapping gp120 pep- 
tides at a concentration of 12.5 #g/ml peptide. On day 3, rlL-2 
was added to effector cell cultures at a final concentration of 20 
U/ml. Cells were maintained for 6 d (Con A) or 9-13 d (peptide 
pulse) and placed over Ficoll before the assay. CTL assays were per- 
formed using autologous Herpes payio immortalized B lymphocyte 
cell lines or Con A blasts labeled with 0.1 mCi Na2CrO4 for 1 h, 
then pulsed with medium (unpulsed controls) or with pools of 
peptides at 25 #g/ml per peptide for i h followed by a 16-h peptide 
incubation period at 2.5 #g/ml per peptide. Subsequently, target 
cells were washed two times and plated at 104 cells/well in 96-wall 
U-shaped plates at various effector/target ratios. After 5 h at 37~ 
supernatants were harvested and counted in a gamma counter. Per- 
centages of specific 51Cr release were calculated as 100x (ex- 
perimental release - spontaneous release):(maximum release - 
spontaneous release). All experimental values were calculated in 
duplicate while maximum and spontaneous releases were performed 
in quadruplicate. Responses of 10% or more above specific lysis 
of control targets, were scored as positive. 

Results and Discuss/on 
After challenge, all control animals vaccinated with measles 

virus became plasma antigen positive at 2 wk post challenge 
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Table 1. Vaccine type, VN Titers, Clinical and Virological Status 

P1 Ag Clinical VI 
Vaccine Macaque VN titersS wk + status PBMC 

PCR Transfusion recipients* 

PBMC LN BM Ab VI PCR CD4 

SIV-iscom 

SIV-mdp 

Controls 
MV-iscom 

MV-mdp 

8653 905 - Diarrhea + + + + 
4097 34 - AIDS (122wt) + + + + 
8668 269 - Protected . . . .  
8730 453 - Protected . . . .  

i 

8645 538 - Protected . . . . . . . .  
8649 190 - Protected . . . . . . . .  
IlM 190 - AIDS (35wt) + + + + + 1~ 
KP 80 - AIDS (54wt) + + + + 

8672 - 2 ~ AIDS (39wt) + + 
8679 - 2, - ,  27m AIDS (101wt) + + 

2CA - 2 A s y m p t o m a t i c  + + 

1YH - 2 AIDS (80wt) + + 

Plasma antigen (Pl Ag) is shown as the week post challenge in which animals had detectable virus antigen in plasma and persistent levels thereafter 
(indicated as ~ ). VN titers on the day of challenge are shown. VI results on PBMCs at week 6 post challenge are shown, and tests were performed 
at routine intervals post challenge. All animals positive at week 6 were consistently positive thereafter except for no. 2CA who has become periodically 
virus isolation negative but remains PCR positive. The absence of infection of protected animals was confirmed by blood transfusion to naive recipients* 
who remained negative by all criteria, in contrast to the transfusion recipient from one vaccinated but unprotected animal. PCR results from naive 
recipients 14 wk after blood transfusion from protected vaccinated donors and IlM, an unprotected animal, are shown. Clinical status is described 
as protected (uninfected), asymptomatic (infected), and (wt) ~ week of death post challenge. 

and SIV could be isolated from PBMC at 6 wk  and time 
points thereafter (Table 1). O f  the eight SIV vaccinates chal- 
lenged intravenously wi th  SIV-infected rhesus macaque 
PBMC, animals nos. 8668, 8730, 8645, and 8649 remained 
negative by all criteria (Table 1). SIV vaccinates nos. 8653, 
4097, I lM,  and KP, remained plasma antigen negative, pos- 
sibly due to vaccine-induced anti-SIV antibodies, but after 
6 wk,  SIV could be isolated and at 12 wk  provirus could 
be detected in PBMCs. Three of four of  these animals 
progressed to AIDS and died. One  of  these vaccinates 
progressed faster to AIDS and died before any of the controls 
(Table 1). As seen in Table 1, the absence of virus in pro- 
tected animals was confirmed by blood transfusion to naive 
recipients who  remained negative by all criteria, in contrast 
to the transfusion recipient from one vaccinated but un- 
protected animal (Table 1). P C R  on lymph node and bone 
marrow biopsies from protected animals 1 yr post challenge 
failed to demonstrate evidence of virus infection. 

To investigate the mechanism of protection observed, we 
first analyzed humoral immune  responses to both  SIV and 
to human cells. Uninfected C8166 cells have been reported 

to elicit protection from challenge with human cell grown 
SIV in a group of  immunized cynomolgus macaques. In that 
study, in contrast to neutralizing antibodies, anticell anti- 
bodies were found to correlate with protection (9). As seen 
in Table 1, no association was found between virus neutralizing 
activity and protection. Moreover, we were unable to find 
a correlation between protection and the level of  total anti- 
bodies to the vaccine substrate (C8166) measured either by 
ELISA or by fluorescent flow cytometry (data not shown). 
It has been described that whole inactivated C8166 cell- 
propagated SIV vaccines induce antibodies that react wi th  
H L A  class I molecules (17) and in one report these antibodies 
were found to correlate with vaccine protection from cell- 
free challenge (16). The  presence of  M H C  proteins bound 
to lentiviruses propagated on human cell lines has been de- 
scribed (10, 17-19), and antibodies to M H C  are reported to 
inhibit virus infection in vitro (10). The mechanism of  pro- 
tection when both the vaccine and challenge virus are pro- 
duced on the same xenogenic (human) cell line appear to be 
due to immune responses to foreign cell components carried 
by the virus after budding from foreign cells (10, 11). A1- 
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Figure 1. Antibodies to HLA class I proteins with sera from vacci- 
nated macaques. Vaccines were as follows: SIV-ISCOM; formalin-inactivated 
SIV-MDP (muramyl dipeptide adjuvant); measles virus (MV)-ISCOM; MV- 
MDP; and from an SlVm~.32, infected, unvaccinated macaque (INF). The 
positive control consisted of a human class I dimer-specific mAb W6/32. 
(U, unprotected, P, protected). Titers to flz-mieroglobulin are shown 
above each lane. 

though this problem was circumvented by using an in vivo- 
derived rhesus monkey PBMC challenge, we wished to rule 
out that antibodies to these foreign cell components including 
foreign HLA and other cellular antigens found on human 
cells, were not mediating protection as reported in experi- 
ments in which the challenge virus was propagated on human 
cells (9, 11, 16). 

To determine if the cell-associated vaccine protection was 
related to anti-MHC class I antibodies, we performed im- 
munoprecipitation analysis for MHC proteins using lysed 
C8166 cells with sera from protected and unprotected ma- 
caques taken on the day of challenge (Fig. 1). Additionally, 
antibody titers to flz-microglobulin were determined by 
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Figur~ 2. Deduced amino acid sequences of the o~ 1 and 2 domains 
of rhesus macaque MHC class I A locus molecules. Identity to the con- 
sensus displayed on top is indicated by a dash. Amino acids are depicted 
by their one letter code. The Mamu-A26.1 and -A26.2 are isolated from 
A26 positive animals from Indian origin, whereas the Mamu-A26.4 allele 
was isolated from animal 4097, which has an A26 positive serotyping but 
is from Burma. Sequence analyses have been performed as described (14). 

ELISA. As can be seen, no correlation with protection from 
infected cells with fl2-microglobulin antibody titers or the 
ability of sera to immunoprecipitate HLA class I proteins in 
general was found. Subsequently, we considered whether vac- 
cination with SIV whole virus vaccines propagated on the 
C8166 human cell line had induced an allospecific humoral 
response capable of recognizing the 1XC cells used for chal- 
lenge. Although vaccination induced allospecific antibody re- 
sponses developed in some of the macaques, the presence of 
such antibodies did not correlate with protection from chal- 
lenge with PBMC from macaque no. 1XC (data not shown). 

We next asked whether MHC-restricted cellular immu- 
nity played a role in vaccine protection. The MHC class I 
and II types of the challenge donor and of the vaccinated 
recipients were determined and compared. The MHC system 
of the rhesus macaque has been designated MhcMamu, and 
by using alloantisera, a high number of Mamu-A, -B, and 

Table 2. MHC Serotype and gp120-Directed cytotoxic T Cell Activity of SIV-vaccinated Macaques 
between 4 and 11 wk Post Challenge 

MhcMamu- SIV gp120-directed CTL responses 

Macaque No. Vaccine A B DR env peptides 

Challenge donor 

Protected 

Unprotected 

1XC 26, 14 10, 10 3, 3 

1-19 20-25 26-49 
8668 SIV-iscom 26, 11 10, 1 3, 1 9 8 22 

8730 SIV-iscom 26, 25 19, 6 1, 3 0 0 0* 

8645 SIV-mdp 26, 18 23, 1 5, 4 11 31 7 

8649 SIV-mdp 26, 26 19, 6 8, 1 9 42 34 

8653 SIV-iscom 13, 14 6, 23 5, 3 0 0 0 

4097 SIV-iscom 35, 26* 10, - 8, 101 0 0 0* 

KP SIV-mdp 24, 35 10, 19 3, 4 3 0 51" 

I lM SIV-mdp 24, 24 6, 23 3, 2 0 0 7 

" Con A blasts; underlined responses were those 10% or more above specific lysis of control targets and scored as positive. 
* Macaque no. 4097 was the only Mamu-A26 positive animal originating from another geographically isolated population possessing a Mamu-A26 
subtype. 
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-DR alleles can be detected. Analysis of protected vs. non- 
protected animals revealed that a MHC class I allele, Mamu- 
A26, was found to be shared between all protected monkeys 
and monkey no. 1XC, the SIV-infected challenge donor of 
the PBMC (Table 2). This suggested that vaccination and 
sharing of MHC class I alleles could be related to the mecha- 
nism of protection. However, one of the four SIV-vaccinated 
animals that was infected after ceU-associated challenge (no. 
4097) also shared the Mamu-A26 serotype. Interestingly, an- 
imal no. 4097 was the only macaque in this study not origi- 
nating from India and thus may have a different Mamu-A26 
subtype. This would be consistent with the finding that geo- 
graphically separated populations of humans also may possess 
different types of MHC class I alleles, due to rapid evolution 
(20). Sequencing studies indeed showed that Indian and Bur- 
mese macaques possess related but different Mamu-A26 al- 
leles that are recognized by the same typing sera (Fig. 2). 
The correlation between SIV vaccine protection and the In- 
dian Mamu-A26 allele was found to be highly significant 

<0.005, Fisher's exact test). The two measles-vaccinated 
monkeys, which also expressed the Mamu-A26 allele, were 
not protected from SIV infection. In addition, we followed 
these animals for over 2 yr post challenge and studied sur- 
vival time of SIV-vaccinated animals as compared with measles- 
vaccinated controls. SIV vaccination did not appear to pro- 
long survival after animals became infected. Of the four SIV 
vaccinees that became infected after cell-associated challenge, 
three have developed AIDS, one of which was the Mamu- 
A26 serotype no. 4097 (the three with AIDS have died). Simi- 
larly, three of the four measles-vaccinated controls have de- 
veloped AIDS and died (Table 1). Hence, there appears to 
be no beneficial effect of SIV vaccination in preventing progres- 
sion to AIDS if SIV infection occurs, nor any advantage of 
having Mamu-A26 serotype in prolonging survival after in- 

fection (Tables 1 and 2). However, SIV vaccination and sharing 
of a particular Mamu-A26 allele (Fig. 2) was an advantage 
in preventing infection from cell-associated challenge from 
an infected animal having this same allele. 

SIV infected or vaccinated rhesus macaques may develop 
MHC class I-restricted CTLs (15). Interestingly, gp120- 
directed responses were only demonstrated in protected animals 
after and not before challenge (Table 2). Apparently, vacci- 
nation-induced SIV-specific CTL precursor levels were boosted 
either by antigen presenting 1XC cells, or by undetectable 
limited virus replication. Consequently, it may be speculated 
that the mechanism of protection observed in animals nos. 
8668, 8645, and 8649 (Tables 1 and 2), depends on an MHC- 
restricted cell-mediated defence to eliminate infectious 1XC 
cells. The evidence for the role of MHC dass I-restricted 
CTL in the observed vaccine protection from infected cells 
is suggested from this study. However, no unique subregion 
of gp120 was identified as target for CTL (Table 2). It is not 
unlikely therefore, that, besides Marnu-A26, other alleles were 
involved in the presentation of viral peptides on autologous 
infected cells. Alternatively, the Mamu-A26 allotype may have 
possibly played a role through other MHC-mediated mecha- 
nisms such as epitope selection (21). As a control experiment 
to determine if the Mamu-A26 allotype also played a role 
in protection from cell-free challenge, macaques immunized 
with the same SIV vaccines and protected from challenge with 
human cell grown SIV (12), were rechallenged with monkey 
cell grown cell-free SIVmac251/32H after revaccination. All of 
these monkeys became infected, three of which were Mamu- 
A26 positive (data not shown). Hence, it appears that the 
mechanism is not Mamu-A26 linked resistance to infection 
in general, but that it is a specific mechanism that involves 
protection from infected cells sharing this MHC allele. 
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