[bookmark: _Hlk127880494]Appendix: supplementary methods and results to “The burden of antimicrobial resistance in the Americas in 2019: a cross-country systematic analysis”
This appendix provides further methodological details and supplementary results for “The burden of antimicrobial resistance in the Americas in 2019: a cross-country systematic analysis”. Parts of the appendix are taken directly from the appendix of the papers “Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis“1 and “The burden of bacterial antimicrobial resistance in the WHO European Region in 2019: a cross-country systematic analysis”2 which are referenced throughout the text.
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[bookmark: _Toc135992033]Section 1: List of Abbreviations

	Abbreviation
	Full phrase

	AMR
	antimicrobial resistance

	BSI
	bloodstream infections

	CDC
	Centers for Disease Control and Prevention

	CFR
	case fatality ratio

	CI
CLSI
DALYs
DDD
	confidence interval
Clinical and Laboratory Standards Institute
disability-adjusted life-years
defined daily dose

	FDA
GBD
	the Food and Drug Administration
Global Burden of Diseases, Injuries, and Risk Factors Study

	GLASS
HAQ
	Global Antimicrobial Resistance Surveillance System
Healthcare Access and Quality Index

	iNTS
	invasive non-typhoidal Salmonella

	LRI
	lower respiratory infection

	MCoD
MRSA
NAP
NARMS
OECD
PACCARB
PAF
PAHO
	multiple causes of death data
Methicillin-resistant S. aureus
National Action Plan
the National Antimicrobial Resistance Monitoring System
Organisation for Economic Co-operation and Development
Presidential Advisory Council on Combating Antibiotic-Resistant Bacteria
population attributable fraction
Pan-American Health Organization

	ReLAVRA
SDI
	The Latin American Antimicrobial Resistance Surveillance Network
Socio-demographic Index

	SEV
SIREVA
	summary exposure value
the regional system for vaccines

	ST-GPR
	spatiotemporal Gaussian process regression

	TB
	tuberculosis

	UI
USDA
	uncertainty interval
the US Department of Agriculture

	WHO
	World Health Organization

	
	


[bookmark: _Toc135992034]Section 2: Data sources
We use a subset of the input data described in the GB-AMR capstone paper.1 This subset has information on underlying cause or primary diagnosis at admission or sample specimen type to determine the infectious syndrome which have a positive culture of pathogen and did not have a sampling framework that would bias the aetiology estimation towards a specific pathogen (ie, did not deliberately sample until 100 cases of every pathogen of interest had been obtained). 
The input data source types that met these criteria were: 
[bookmark: _Toc135992035]Section 2.1: Multiple causes of death and vital registration (MCoD-VR) data. 
These are certificates from vital records provide the underlying, immediate and intermediate causes and conditions contributing to deaths observed in the following national health systems: 
• United States National Vital Statistics System 
• Brazil Mortality Information System 
• National Institute of Statistics (Italy) 
• Statistics South Africa 
• National Institute of Statistics and Geography (Mexico) 
• National Administrative Department of Statistics (Colombia) 
• Taiwan Ministry of Health and Welfare 
[bookmark: _Toc135992036]Section 2.2: Hospital discharge data. 
Hospital admissions and discharge data, which include primary and secondary diagnosis for each patient. 
• USA National Hospital Discharge Survey 
• USA State Inpatient Databases 
• Brazil Hospital Information System 
• Italy Hospital Inpatient Discharges 
• Sistema Automatizado de Egresos Hospitalarios (Mexico) 
• Austria Hospital Inpatient Discharges 
• New Zealand National Minimum Dataset
• Canada Discharge Abstract Database 
[bookmark: _Toc135992037]Section 2.3: Linkage data sources.   
For two of the hospital discharge sources mentioned above, namely Italy Friuli-Venezia Giulia and New Zealand National Minimum dataset, we have linked admission records to microbial positive cultures, which are referred as linkage data throughout the paper. 
 
[bookmark: _Toc135992038]Section 2.4: Mortality surveillance in the Child Health and Mortality Prevention Surveillance (CHAMPS) study.
It comprises under-5 mortality surveillance in South Africa, Mali, Bangladesh, Kenya, Ethiopia, and Mozambique. This study provides information about pathogens contributing to death by collecting a minimally invasive tissue sampling (MITS) in addition to vital records. 
[bookmark: _Toc135992039]Section 2.5: Literature review of the microbial aetiology of meningitis, maternal and neonatal sepsis, lower respiratory infections, urinary tract infections, skin infections, peritonitis, and bone and joint infections2
Search strings were used in PubMed to look systematically for the causative microorganisms of the following infectious syndromes:
Section 2.5.1: Meningitis
((meningitis[title]) AND (1990/05/01[PDat] : 2018/12/31[PDat]) AND ((etiolog*[title/abstract]) AND Humans[MeSH Terms])

Section 2.5.2: Maternal and neonatal sepsis and LRI aetiology
Aetiology terms, combined with OR:
· Infection (Infect*)
· Microbiology (Microbiolog*
· Aetiology (Aetiolog*)
· Etiology (Etiolog*)
· Virology (Virolog*)
· Bacteriology (Bacteriolog*)
· Fungus (fung*)
AND
Syndrome terms, combined with OR:
Maternal Sepsis
· puerperal sepsis (puerper* sepsis)
· maternal sepsis (matern* sepsis)
· puerperal septicaemia (puerper* septicaemia, American spelling too - septicemia)
· maternal septicaemia (matern* septicaemia, American spelling too - septicemia)
· puerperal infection (puerper* infection)
· maternal infection (matern* infection)
· puerperal bacteraemia (puerper* bacteraemia, American spelling too - bacteremia)
· maternal bacteraemia (matern* bacteraemia, American spelling too - bacteremia)
Neonatal Sepsis
· Neonatal sepsis (Neonat* sepsis within 3 or 5 words of each other)
· Neonatal septicaemia (Neonat* septicaemia within 3 or 5 words of each other, American spelling too - septicemia)
· Infant sepsis (Infant* sepsis)
· Infant septicaemia (Infant* septicaemia, American spelling too - septicemia)
· Neonatal bacteraemia (Neonat* bacteraemia, American spelling too - bacteremia)
· Infant bacteraemia (Infant* bacteraemia, American spelling too - bacteremia)
Lower respiratory infections
· LRI
· Lower respiratory infection
· LRTI
· Lower respiratory tract infection
· Pneumonia
Section 2.5.3: Urinary tract infections aetiology
("complicated"[Title/Abstract] OR "uncomplicated"[Title/Abstract]) AND (("Cystitis/etiology"[majr:noexp] OR "Cystitis/microbiology"[majr:noexp]) OR ("Pyelonephritis/etiology"[marj:noexp] OR "Pyelonephritis/microbiology"[majr:noexp]) OR ( "Urinary Tract Infections/etiology"[majr:noexp] OR "Urinary Tract Infections/microbiology"[majr:noexp])) OR ("Urinary tract infections"[tiab] AND ("etiology"[tiab] OR "microbiology"[tiab]))
(("urinary tract infection*"[title]) AND (1990/05/01[PDat] : 2018/12/31[PDat]) AND ((etiolog*[title/abstract] OR "Urinary Tract Infections/microbiology"[Mesh]) AND Humans[MeSH Terms]) NOT Review[ptyp]
Section 2.5.4: Skin infections aetiology 
(( "Cellulitis/epidemiology"[majr:noexp] OR "Cellulitis/etiology"[majr:noexp] OR "Cellulitis/microbiology"[majr:noexp]) OR ( "Pyoderma/epidemiology"[majr:noexp] OR "Pyoderma/etiology"[marj:noexp] OR "Pyoderma/microbiology"[majr:noexp]) OR
"Pressure Ulcer/microbiology"[majr:noexp])
(“skin and soft tissue infection”[title] OR cellulitis[title] OR erysipelas[title]) AND (1990/05/01[PDat] : 2018/12/31[PDat]) AND (etiolog*[title/abstract] OR "Cellulitis/microbiology"[Mesh]) AND Humans[MeSH Terms] NOT Review[ptyp]
Section 2.5.5: Intra-abdmoinal infection aetiology
(( "Peritonitis/epidemiology"[majr:noexp] OR "Peritonitis /etiology"[majr:noexp] OR "Peritonitis /microbiology"[majr:noexp] ) OR ( "Intraabdominal infections/epidemiology"[majr:noexp] OR "Intraabdominal infections /etiology"[marj:noexp] OR "Intraabdominal infections /microbiology"[majr:noexp]) OR ( "abdominal abscess/epidemiology"[majr:noexp] OR " abdominal abscess /etiology"[majr:noexp] OR "abdominal abscess/microbiology"[majr:noexp]))
Section 2.5.6: Bone and joint infections aetiology
("Osteomyelitis/etiology"[majr:noexp] OR "Osteomyelitis/microbiology"[majr:noexp] NOT 'chronic') OR ("Arthritis, infectious/etiology"[marj:noexp] OR "Arthritis, infectious/microbiology"[majr:noexp] NOT ‘lyme’)
Section 2.5.7: Relative risk studies for specific drug-bug combinations
("Acinetobacter baumannii"[MeSH Terms] AND "carbapenem resistance"[All Fields]) OR ("Acinetobacter baumannii"[ MeSH Terms] AND "carbapenem resistant"[All Fields])
('Escherichia coli'[MeSH Terms] AND 'carbapenem resistance'[All Fields]) OR ('Escherichia coli'[MeSH Terms] AND 'carbapenem resistant'[All Fields])
('Escherichia coli'[MeSH Terms] AND 'fluoroquinolone resistance'[All Fields]) OR ('Escherichia coli'[MeSH Terms] AND 'fluoroquinolone resistant'[All Fields])
('Escherichia coli'[MeSH Terms] AND 'third generation cephalosporin'[All Fields]) OR ('Escherichia coli'[MeSH Terms] AND ESBL OR extended-spectrum beta lactamase'[All Fields])
('Klebsiella pneumoniae'[MeSH Terms] AND 'third generation cephalosporin'[All Fields]) OR ('Klebsiella pneumoniae'[MeSH Terms] AND 'ESBL OR extended-spectrum beta lactamase'[All Fields])
('Klebsiella pneumoniae'[MeSH Terms] AND 'carbapenem resistance'[All Fields]) OR ('Klebsiella pneumoniae'[MeSH Terms] AND 'carbapenem resistant'[All Fields])
('Streptococcus pneumoniae'[MeSH Terms] AND 'penicillin resistance'[All Fields]) OR ('Streptococcus pneumoniae'[MeSH Terms] AND 'penicillin resistant'[All Fields])
('Pseudomonas aeruginosa'[MeSH Terms] AND 'carbapenem resistant'[All Fields] AND 'mortality' [MeSH Terms]) OR ('Pseudomonas aeruginosa'[MeSH Terms] AND 'carbapenem resistant' AND 'mortality' [All Fields])
('Enterococcus faec*'[MeSH Terms] AND 'vancomycin-resistant'[All Fields])
("haemophilus influenzae"[MeSH Terms] AND ("penicillin resistance"[MeSH Terms] OR ("penicillin"[All Fields] AND "resistance"[All Fields]) OR "penicillin resistance"[All Fields])) AND ("mortality"[Subheading] OR "mortality"[All Fields] OR "mortality"[MeSH Terms])
("streptococcus agalactiae"[MeSH Terms] AND ("azithromycin resistance"[MeSH Terms] OR ("azithromycin "[All Fields] AND "resistance"[All Fields]) OR " azithromycin resistance"[All Fields] OR "penicillin resistance"[MeSH Terms] OR ("penicillin"[All Fields] AND "resistance"[All Fields]) OR "penicillin resistance"[All Fields] OR "clindamycin resistance"[MeSH Terms] OR ("clindamycin"[All Fields] AND "resistance"[All Fields]) OR "erythromycin resistance"[All Fields] OR "erythromycin resistance"[MeSH Terms] OR ("erythromycin"[All Fields] AND "resistance"[All Fields]) OR "clindamycin resistance"[All Fields]) AND ("mortality"[Subheading] OR "mortality"[All Fields] OR "mortality"[MeSH Terms])
Section 2.5.8: Prevalence of resistance for specific organisms
Medical Subject Heading (MeSH) terms with free text terms in the title and abstract fields for Escherichia coli, Klebsiella pneumoniae, Streptococcus pneumoniae and Staphylococcus aureus with the terms for antimicrobial drug resistance (resistan*, suscept*, surveil*, etc), limited from 1990 up to the search date. The search was undertaken on MEDLINE, Ovid Embase, Global Health, Cochrane Library.
Medical Subject Headings (MeSH) and free text terms for the pathogens of interest (e.g. S. Typhi, S. Paratyphi A, enteric fever) with terms for antimicrobial resistance (e.g. resistan*, suscept*, surveil*). The search was undertaken on MEDLINE, Ovid Embase, Global Health, Cochrane Library, Scopus, Web of Science-Core Collection and LILACS regional WHO database.
Medical Subject Heading (MeSH) terms with free text terms in the title and abstract fields for non-typhoidal Salmonella or Salmonellosis (non-typhi or nontyph or non-typh Salmonel…) with the terms for antimicrobial drug resistance (resistan*, suscept*, surveil*, etc) and invasive (blood stream infection, septicaemia etc), limited from 1990 up to the search date. The search was undertaken on MEDLINE, Ovid Embase, Global Health, Cochrane Library, Scopus, Web of Science-Core Collection and LILACS regional WHO.
Medical Subject Heading (MeSH) terms with free text terms in the title and abstract fields for Shigella or Shigellosis with the terms for antimicrobial drug resistance (resistan*, suscept*, surveil*, etc), limited from 1990 up to the search date. The search was undertaken on MEDLINE, Ovid Embase, Global Health, Cochrane Library, Scopus, Web of Science-Core Collection and LILACS regional WHO database.
Medical Subject Heading (MeSH) terms with free text terms in the title and abstract fields for Neisseria gonorrhoeae, with the terms for antimicrobial drug resistance (resistan*, suscept*, surveil*, etc), MDR, XDR, limited from 1990 up to the search date. The search was undertaken on MEDLINE, Ovid Embase, Global Health, Cochrane Library, Scopus, Web of Science-Core Collection and LILACS regional WHO database.
[bookmark: _Toc135992040]Section 2.6: Exclusion criteria for literature reviews2
Studies were excluded from full text review if:
· The study did not include at least one of the following: E.coli, K.pneumoniae, S.pneumoniae, S.aureus or S.typhi/paratyphi
· The entire study was conducted before 1990
· Samples were collected before 1990
· Did not perform resistance testing
· Sample is non-representative (lab strains, only resistant strains)
· Included non-human samples
· Article type was a case study
· Article type was a commentary, editorial or review with no primary data
· Isolates were not from blood culture
· There were duplicated isolates
· Travellers/non-endemic country/ no location information
· Study did not test susceptibility to antimicrobials
· There were fewer than 10 consecutive isolates used for susceptibility testing
· Could not locate the full text
· The study was uninterpretable due to poor data quality
· Studies where data was aggregated with other pathogens
· Studies using non-sterile site/mixed isolates
· Studies with no iNTS AST data
[bookmark: _Toc135992041]Section 2.7: Laboratory-based passive surveillance data.
Laboratories based in hospitals or part of public and private laboratory networks have provided information on patient's specimens with positive pathogen growth. We infer the infectious syndrome from admission diagnosis if this is present in data.  If the former is not present, we use the type of specimen to infer the infectious syndrome of the patient. Some datasets include discharge disposition of the patient and whether the infection was identified after 48 hrs. from admission, which allow us to classify into community- or hospital-onset infections.
Section 2.7.1: Laboratory-based data with outcome:
· USA Becton, Dickinson, and Co. (BD) Insights, Research and Analytics Database microbiology test and in-patient hospital data: data procured by BD via MedMined. Covers a range of regions in the United States from 2011 to 2017.
· International Nosocomial Infection Control Consortium (INICC) surveillance online system: data from the INICC data collection software. ICU patient microbiology and hospital data from 50 countries across Latin America, Asia, the Middle East, eastern Europe, and Africa from 2009 to 2020.
· St. George's Hospital, University of London - Global Antimicrobial Resistance, Prescribing and Efficacy among Neonates and Children (SGUL-GARPEC) Project bloodstream infection data: Penta-sponsored global surveillance network focusing on neonatal and paediatric antimicrobial resistance and the organisms causing blood stream infections.
· Burden of Antibiotic Resistance in Neonates from Developing Societies (BARNARDS): BARNARDS includes locations in Nigeria, South Africa, Pakistan, Rwanda, Bangladesh, Ethiopia and India from 2015 to 2018.
· Lima, Peru Cayetano Heredia University (UPCH) antimicrobial resistance data: data from UPCH hospital sites across Lima, Peru with discharge disposition for infectious pulmonary disease 
Section 2.7.2: Laboratory-based data without outcome:
· SENTRY: SENTRY Antimicrobial Surveillance Program established by JMI Labs in 1997. Sites are in the USA, Europe, Latin America, parts of Asia, and the Western Pacific
· Pfizer ATLAS Programme: the Antimicrobial Testing Leadership and Surveillance (ATLAS) database includes the Tigecycline Evaluation Surveillance Trial (TEST), the Assessing Worldwide Antimicrobial Resistance Evaluation (AWARE) and the International Network for Optimal Resistance Monitoring (INFORM) programs. The study spans in coverage across more than 70 countries between 2004 and 2017. 
· WHO Meningitis surveillance: sentinel hospital surveillance of suspected meningitis cases among children under 5 years old and positive cultures, provided by the World Health Organisation (WHO) Global Rotavirus, Invasive Bacterial Vaccine Preventable Diseases Surveillance Network Collaboration from 2008 to 2020. 
· NARMS: The National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS) is a collaboration of agencies within The U.S. Department of Health and Human Services (HHS) (FDA and CDC) and the U.S. Department of Agriculture (USDA). It tracks enteric bacteria and selected animal pathogens and their resistance to antimicrobials, and data is available from 1997 onwards. 
· United States Active Bacterial Core Surveillance (ABCs) Reports: case reports on healthcare-associated Infections and community interface infections from the Emerging Infections Program (EIP) Network coordinated by the Center for Disease Control and Prevention (CDC).
· World Health Organization (WHO) Global Tuberculosis Programme
· GLASS: Global Antimicrobial Resistance Surveillance System by WHO
· Hospital Civil de Guadalajara Fray Antonio Alcalde, Mexico
· Canadian Antimicrobial Resistance Surveillance System
· SOAR: Survey on Antibiotic Resistance (SOAR) sponsored by GSK. 
· ReLAVRA and SIREVA: The Latin American Network for Antimicrobial Resistance Surveillance (ReLAVRA by its Spanish acronym) and the Serotype and Antimicrobial Resistance Surveillance Program (SIREVA by its English acronym) which are coordinated by the Pan-American Health Organization (WHO/PAHO)
· SMART: Study for Monitoring Antimicrobial Resistance Trends which monitors complicated intra-abdominal infections (cIAIs), complicated urinary tract infections (cUTIs) and respiratory infections worldwide, funded by Merck & Co.
[bookmark: _Toc135992042]Section 3: Supplementary methods: a summary of the estimation process1,2
[bookmark: _Toc135992043]Section 3.1: GBD 2019 framework
The study relies on Global Burden of Disease (GBD) 2019 fatal and non-fatal estimates, and a comprehensive description of data sources, data quality, statistical modelling and analyses for GBD 2019 have been reported elsewhere.3 A brief summary of the fatal and non-fatal estimation, including a flow chart of the processes, can be found in the appendix of Murray et al. (2022).1
[bookmark: _Toc135992044]Section 3.2: Deaths where infection plays a role and infectious syndrome estimation
Section 3.2.1: Input data 
Multiple causes of death (MCoD) data are individual-based records that provide underlying causes of death and two or more intermediate causes in the chain of death. Additionally, each record includes age, sex, residence, and the date of death.
Hospital record with multiple diagnoses and discharge status of death represents an individual-based hospital record of a patient that provides the main diagnosis and two or more additional diagnoses. Additionally, each record includes age, sex, residence, date of admission, date of discharge, and outcome (dead or alive). Only hospital discharges with discharge status of death were used in this component model, since we aimed to estimate the fraction of deaths that involve infection and the infectious syndrome distribution of those deaths.
Linkage data are generated using probabilistic methods in a defined population that link individual-based hospital data to individual-based MCoD data. Linkage data offer a wider dataset that includes main diagnosis, other diagnoses, underlying cause of death, and intermediate causes of death in the chain.  
Section 3.2.2: Data processing and mapping 
Within the WHO European region, data for Italy has been extracted at the subnational level by GBD 2019 age groups, sex, year, and causes of death and/or diagnoses, while data for the remaining countries have been analysed at the national level. This allowed us to expand the location-years of data that we had for each Socio-demographic Index (SDI)4 value.
Prepared data were mapped to GBD causes. The GBD cause list is a mutually exclusive and collectively exhaustive list of diseases and injuries. The GBD cause list is organised hierarchically to accommodate different purposes and needs of various users. The first two levels aggregate causes into general groupings. At Level 1, there are three cause groups: communicable, maternal, neonatal, and nutritional diseases (Group 1 diseases); non-communicable diseases (Group 2); and injuries (Group 3). These Level 1 aggregates are subdivided at Level 2 of the hierarchy into 22 cause groupings (eg, neonatal disorders, neurological disorders, and transport injuries). The disaggregation into Levels 3 and 4 contains the finest level of detail for causes captured in GBD 2019. See section 14, table S1 for the full GBD cause hierarchy by level. 
The underlying cause of death or main diagnosis for each record in the data was mapped to a GBD cause. After the mapping of underlying cause, we used the GBD 2019 garbage code redistribution algorithm (see appendix 1, section 2.4 in Vos et al.3) to ensure that all deaths had a plausible and specific underlying cause of death. The redistribution of garbage codes for underlying causes of death followed the same age and sex restrictions as GBD 2019. We did not redistribute garbage codes in the chain causes because the concept of a garbage code applies only to plausible underlying cause of death (see Rudd et al.5 and appendix 1, section 2.5 in Vos et al.3).
Section 3.2.3: Intermediate cause and infectious syndrome mapping hierarchy with modelling pathways
Within our modelling framework, an infectious syndrome is the infection directly responsible for sepsis and serves as the bridge between the underlying cause of death and sepsis. Infectious syndromes can be both underlying causes of death and intermediate causes of death.
For mapping underlying and intermediate causes of death and hospital diagnoses to sepsis and infectious syndromes, we designed a new map, called “AMR, sepsis, and infectious syndrome map”. This map is a list of mutually exclusive and collectively exhaustive infectious syndromes that we divided into four levels to form the infectious syndrome hierarchy. 
Each level of infectious syndrome is mutually exclusive and collectively exhaustive. Furthermore, the infectious syndrome hierarchy is internally consistent across any metric (eg, number, cause fraction)—aggregating across Level 3 syndromes gives us Level 2 syndromes, aggregating the Level 2 syndromes gives us Level 1 syndromes, and the total of Level 1 syndromes is equal to the value of sepsis (figure 4.4.2.1).
Level 0: All International Classification of Diseases 9th (ICD-9) or 10th revision (ICD-10) coded deaths divided into three groups: explicit sepsis (any death with the specific ICD code for sepsis in the MCoD chain or hospital diagnoses), implicit sepsis (any death with an infectious disease code in the underlying cause or cause chain, as well as with a specific organ dysfunction) and non-sepsis (any death that does not meet either of the two aforementioned criteria). More information can be found in the appendix of Murray et al. (2022).1 
Explicit sepsis (A40, R65.2 in ICD-10 and 039 in ICD-9): Any death has specific ICD code for sepsis in the MCoD chain or hospital diagnoses was considered explicit sepsis.5
· Implicit sepsis: Any death that has an infectious disease code in the underlying cause or cause chain and a specific organ dysfunction code was considered implicit sepsis 
· Non-sepsis: Any death that does not meet either of the two above criteria (section 14, tables S2, S3)
Of the estimated infection-related deaths with explicit sepsis or implicit sepsis and infectious diseases, 59.4% occur with communicable, maternal, neonatal, and nutritional underlying causes of death. 38.9% infection related deaths occur with non-communicable disease as the underlying cause of death, and 1.7% occur with injuries as the underlying cause of death. 
Level 1: All implicit and explicit sepsis deaths were divided into 12 Level 1 infectious syndromes and an “other” category. These are as follows: 1) Bacterial infections of the skin and subcutaneous systems; 2) Bloodstream infections; 3) Gonorrhoea and chlamydia; 4) Diarrhoea; 5) Endocarditis and other cardiac infections; 6) Infections of bones, joints and related organs; 7) Lower respiratory infections and all related infections in the thorax; 8) Meningitis and other bacterial central nervous system infections; 9) Peritoneal and intra-abdominal infections; 10) Tuberculosis; 11) Typhoid, paratyphoid, and invasive non-typhoidal Salmonella; 12) Urinary tract infection and pyelonephritis; 13) Other infections
Level 2: Each Level 1 infectious syndrome was divided into Level 2 infectious syndromes based on the pathogen type (eg, bacterial, fungal, viral) causing the infection. Examples include specified bacterial, unspecified bacterial, fungal, viral, and unspecified pathogen. 
Level 3: Each specified bacterial infectious syndrome in Level 2 was divided to Level 3 infectious syndromes by the culprit bacterial pathogen. Table S3 (section 14) shows this list and bacterial hierarchy.  
Due to our data often having multiple diagnoses associated with each record, a single case of sepsis could potentially map to multiple candidate infectious syndromes. Because multiple infectious syndrome assignments pose a risk of double counting, we employed an informative ranking hierarchy. The informative ranking allowed us to determine the infectious syndrome that provided the most information on the culprit pathogen. The goal of this hierarchy was to produce the most accurate pathogen burden estimate such that when there were multiple infectious syndromes, we prioritised the syndrome with the most distinctive distribution. For example, bloodstream infections (BSIs) are common infections in sepsis but there is often an earlier source of the infection such as a UTI, cellulitis, or LRI, and each has a unique pathogen distribution that provides more information than the distribution of BSI. In the event that a patient record reflected both BSI and LRI, we would assign the infectious syndrome based on the pathogen distribution that would be the most proximal aetiologic syndrome, LRI (please refer to the appendix of Murray et al. (2022)1 for more information). 
After mapping the underlying and chain causes of death, our database went through two separate modelling pathways. The first model estimated the fraction of deaths that are sepsis-related in each GBD cause; these sepsis-related deaths for non-infectious GBD causes were combined with GBD deaths for infectious causes to create the total envelope of all deaths where infection plays a role. The second pathway estimated each infectious syndrome as a fraction of sepsis-related mortality in each GBD cause. In the last step of infectious syndrome estimation, the fractions of sepsis by Level 1 infectious syndromes were squeezed to sum to one so as to not exceed the sepsis mortality envelope and multiplied by the sepsis estimate in each GBD cause by country and territory, age, and sex in 2019.
 
Section 3.2.4: First pathway – deaths where infection plays a role
We used a mixed-effects binomial logistic regression to model the logit of the fraction of sepsis-related deaths by GBD cause-age-sex-location, consistent with the modelling approach used by Rudd et al.5 Sex and Healthcare Access and Quality Index (HAQ Index)3 were included as covariates and a nested random effect on underlying cause of death was included. A separate model was run for each GBD 2019 age group (0–6, 7–27, 28-364 [days], 1–4, 5–9, 10–14, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59, 60–64, 65–69, 70–74, 75–79, 80–84, 85–89, 90–94, 95+ [years]):

 
Where   is a nested random effect on underlying cause of death. The nested random-effect’s structure in the model on underlying cause of death allowed the prediction of sepsis fractions where data were limited by borrowing information from diseases within the same group. There were 22 groups of underlying causes of death, each categorised by physiological relatedness. We produced our predictions and uncertainty intervals (UIs) by generating 1000 draws from the normal distribution of the fixed coefficients, separately for each GBD location, age group, sex, and cause in 2019. The means of our results were used for the point estimates and the 95% UIs were delineated using the 2.5th and 97.5th percentiles of the draws. Uncertainty is attributable to sample size variability between data sources, data availability, and model specifications. 
All underlying causes of death that are infectious diseases were included in the model; however, for these causes we used the GBD death estimates rather than the modelled sepsis estimate, since infection inherently plays a role in these deaths even if the pathway doesn’t include sepsis. These causes and their associated infectious syndromes are available in the appendix of Murray et al. (2022).1 For all other causes, we calculated the number of sepsis-related deaths in 2019 by multiplying our predictions of cause-, age group-, sex-, year-, and location-specific sepsis fractions by GBD 2019 death estimates. Finally, we aggregated our results to arrive at regional and global sepsis-related mortality in non-infectious underlying causes of death, which we combined with the GBD infectious disease deaths estimates to create the mortality envelope of all deaths related to infection.
 
Section 3.2.5: Second pathway – fraction of deaths where infection plays a role by infectious syndrome in each GBD cause
We used a mixed-effects binomial logistic regression to model the logit of the infectious syndrome fraction of sepsis-related mortality by GBD cause. The model covariates varied by infectious syndrome, and all models included HAQ Index as a covariate and most included a summary exposure value (SEV) scalar calculated for GBD 2019. To more accurately estimate the burden of pathogens responsible for infection, we separated infectious syndromes into hospital-acquired and community-acquired for LRI+ and UTI. More details on the infectious syndrome model covariates and age groups are found in the appendix of Murray et al. (2022).1
The infectious syndrome models were specified as mixed-effects binomial logistic regressions, one for each infectious syndrome and age group:


where  and  are vectors of length for covariates and is a nested random effect on underlying cause of death. The granularity of the age groups estimated for each infectious syndrome was chosen based on the age pattern of the infectious syndrome and the limitations of data sparsity.
As in the first pathway, we derived our predictions and UIs by generating 1000 draws from the normal distribution of the fixed coefficients separately for each GBD location, age group, sex, and cause in 2019. We used the means of our results for the point estimates and the 95% UIs were delineated using the 2.5th and 97.5th percentiles of the draws. 
We calculated the number of deaths attributable to each infectious syndrome in 2019 by multiplying our predictions of cause-, age group-, sex-, year-, and location-specific infectious syndrome fractions by our sepsis-mortality estimates from the first pathway. All infectious syndrome fractions were squeezed to sum to one prior to multiplication in order to ensure that we did not exceed the sepsis mortality envelope. 
Out of the 12 explicit Level 1 infectious syndromes included in our hierarchy, we excluded (i) tuberculosis (TB), (ii) typhoid, paratyphoid, and invasive non-typhoidal Salmonella, and (iii) gonorrhoea and chlamydia from our binomial mixed-effects linear regression model. Instead, we used the published results from GBD 20194 for these causes of death, as we believe the GBD 2019 estimates fully represent these infectious syndromes because they are usually not intermediate causes of death.
Section 3.2.6: Model validation
Infectious syndrome modelling aims to predict which cases of infection belong to a specific infectious syndrome, which is a multi-class classification problem. We therefore use the Area Under the Receiver Operating Characteristics (ROC) Curve (AUC) and accuracy to evaluate model performance. More information on this can be found in the appendix of Murray et al. (2022).1 

The out-of-sample strategy for this validation excluded 20% of the sample on each iteration. Table 3.2.6.1 reports the Accuracy and AUC score6 for each of the age groups within the infectious syndrome models and table 3.2.6.2 reports the same metrics for the sepsis models. 99% of the models have an AUC score between 0.7 and 1, indicating an overall excellent performance of this modelling framework.
Table 3.2.6.1: Accuracy and AUC score for out-of-sample validation of infectious syndrome models (GLOBAL)
	Model
	Age group name
	Accuracy
	AUC score

	CAI lower respiratory infections and all related infections in the thorax
	Post Neonatal to 5
	0.99
	1.00

	CAI lower respiratory infections and all related infections in the thorax
	70+ years
	0.99
	1.00

	CAI urinary tract infections and pyelonephritis
	0 to 39
	1.00
	1.00

	CAI urinary tract infections and pyelonephritis
	40 plus
	1.00
	1.00

	Diarrhoea
	Early Neonatal
	1.00
	1.00

	Diarrhoea
	Late Neonatal
	1.00
	1.00

	Diarrhoea
	1 to 4
	0.99
	1.00

	Diarrhoea
	20 to 24
	0.99
	1.00

	Diarrhoea
	25 to 29
	0.99
	1.00

	Diarrhoea
	30 to 34
	0.99
	1.00

	Diarrhoea
	35 to 39
	0.99
	1.00

	CAI lower respiratory infections and all related infections in the thorax
	5 to 69
	0.99
	0.99

	Diarrhoea
	Post Neonatal
	0.98
	0.99

	Diarrhoea
	5 to 9
	0.99
	0.99

	Diarrhoea
	10 to 14
	0.99
	0.99

	Diarrhoea
	15 to 19
	0.99
	0.99

	Diarrhoea
	40 to 44
	0.99
	0.99

	Diarrhoea
	45 to 49
	0.99
	0.99

	Diarrhoea
	95 plus
	0.99
	0.99

	Meningitis and other bacterial central nervous system infections
	Early Neonatal
	0.99
	0.99

	Meningitis and other bacterial central nervous system infections
	Late Neonatal
	1.00
	0.99

	Bacterial infections of the skin and subcutaneous systems
	Late Neonatal
	0.99
	0.98

	Diarrhoea
	50 to 54
	0.99
	0.98

	Diarrhoea
	85 to 89
	0.99
	0.98

	Diarrhoea
	90 to 94
	0.99
	0.98

	Endocarditis and other cardiac infections
	Early Neonatal
	0.99
	0.98

	Endocarditis and other cardiac infections
	Late Neonatal
	0.99
	0.98

	Endocarditis and other cardiac infections
	85 to 89
	0.99
	0.98

	Endocarditis and other cardiac infections
	90 to 94
	0.99
	0.98

	Endocarditis and other cardiac infections
	95 plus
	0.99
	0.98

	Meningitis and other bacterial central nervous system infections
	Post Neonatal
	0.99
	0.98

	Meningitis and other bacterial central nervous system infections
	1 to 4
	0.98
	0.98

	Meningitis and other bacterial central nervous system infections
	10 to 14
	0.97
	0.98

	Meningitis and other bacterial central nervous system infections
	25 to 29
	0.99
	0.98

	Meningitis and other bacterial central nervous system infections
	30 to 34
	0.99
	0.98

	Peritoneal and intra-abdominal infections
	25 to 29
	0.98
	0.98

	Peritoneal and intra-abdominal infections
	30 to 34
	0.98
	0.98

	Peritoneal and intra-abdominal infections
	35 to 39
	0.98
	0.98

	Peritoneal and intra-abdominal infections
	80 to 84
	0.98
	0.98

	Peritoneal and intra-abdominal infections
	85 to 89
	0.98
	0.98

	Peritoneal and intra-abdominal infections
	90 to 94
	0.98
	0.98

	Peritoneal and intra-abdominal infections
	95 plus
	0.99
	0.98

	Bacterial infections of the skin and subcutaneous systems
	95 plus
	0.98
	0.97

	Diarrhoea
	55 to 59
	0.99
	0.97

	Diarrhoea
	60 to 64
	0.99
	0.97

	Diarrhoea
	75 to 79
	0.99
	0.97

	Diarrhoea
	80 to 84
	0.99
	0.97

	Endocarditis and other cardiac infections
	10 to 14
	0.99
	0.97

	Endocarditis and other cardiac infections
	25 to 29
	0.99
	0.97

	Endocarditis and other cardiac infections
	30 to 34
	0.99
	0.97

	Endocarditis and other cardiac infections
	35 to 39
	0.99
	0.97

	Endocarditis and other cardiac infections
	40 to 44
	0.99
	0.97

	Endocarditis and other cardiac infections
	80 to 84
	0.99
	0.97

	Meningitis and other bacterial central nervous system infections
	5 to 9
	0.97
	0.97

	Meningitis and other bacterial central nervous system infections
	15 to 19
	0.98
	0.97

	Meningitis and other bacterial central nervous system infections
	20 to 24
	0.99
	0.97

	Meningitis and other bacterial central nervous system infections
	35 to 39
	0.99
	0.97

	Peritoneal and intra-abdominal infections
	Early Neonatal
	0.99
	0.97

	Peritoneal and intra-abdominal infections
	Late Neonatal
	0.99
	0.97

	Peritoneal and intra-abdominal infections
	1 to 4
	0.99
	0.97

	Peritoneal and intra-abdominal infections
	5 to 9
	0.98
	0.97

	Peritoneal and intra-abdominal infections
	20 to 24
	0.97
	0.97

	Peritoneal and intra-abdominal infections
	40 to 44
	0.97
	0.97

	Peritoneal and intra-abdominal infections
	75 to 79
	0.97
	0.97

	Bacterial infections of the skin and subcutaneous systems
	90 to 94
	0.98
	0.96

	Bloodstream infections
	Early Neonatal
	0.94
	0.96

	Bloodstream infections
	Late Neonatal
	0.95
	0.96

	Bloodstream infections
	Post Neonatal
	0.93
	0.96

	CAI lower respiratory infections and all related infections in the thorax
	Neonatal
	0.95
	0.96

	Diarrhoea
	65 to 69
	0.99
	0.96

	Diarrhoea
	70 to 74
	0.99
	0.96

	Endocarditis and other cardiac infections
	15 to 19
	0.99
	0.96

	Endocarditis and other cardiac infections
	20 to 24
	0.99
	0.96

	Endocarditis and other cardiac infections
	45 to 49
	0.99
	0.96

	Endocarditis and other cardiac infections
	50 to 54
	0.99
	0.96

	Endocarditis and other cardiac infections
	70 to 74
	0.99
	0.96

	Endocarditis and other cardiac infections
	75 to 79
	0.99
	0.96

	Meningitis and other bacterial central nervous system infections
	40 to 44
	0.99
	0.96

	Meningitis and other bacterial central nervous system infections
	45 to 49
	0.99
	0.96

	Peritoneal and intra-abdominal infections
	10 to 14
	0.97
	0.96

	Peritoneal and intra-abdominal infections
	15 to 19
	0.96
	0.96

	Peritoneal and intra-abdominal infections
	45 to 49
	0.97
	0.96

	Peritoneal and intra-abdominal infections
	70 to 74
	0.97
	0.96

	Bacterial infections of the skin and subcutaneous systems
	30 to 34
	0.99
	0.95

	Bacterial infections of the skin and subcutaneous systems
	85 to 89
	0.98
	0.95

	Bloodstream infections
	1 to 4
	0.91
	0.95

	Bloodstream infections
	95 plus
	0.94
	0.95

	Endocarditis and other cardiac infections
	5 to 9
	0.99
	0.95

	Endocarditis and other cardiac infections
	55 to 59
	0.99
	0.95

	Endocarditis and other cardiac infections
	60 to 64
	0.99
	0.95

	Endocarditis and other cardiac infections
	65 to 69
	0.99
	0.95

	Infections of bone, joints, and related organs
	10 to 14
	0.99
	0.95

	Infections of bone, joints, and related organs
	95 plus
	0.99
	0.95

	Peritoneal and intra-abdominal infections
	50 to 54
	0.96
	0.95

	Peritoneal and intra-abdominal infections
	55 to 59
	0.96
	0.95

	Peritoneal and intra-abdominal infections
	60 to 64
	0.96
	0.95

	Peritoneal and intra-abdominal infections
	65 to 69
	0.96
	0.95

	Bacterial infections of the skin and subcutaneous systems
	Early Neonatal
	0.99
	0.94

	Bacterial infections of the skin and subcutaneous systems
	25 to 29
	0.99
	0.94

	Bacterial infections of the skin and subcutaneous systems
	35 to 39
	0.99
	0.94

	Bacterial infections of the skin and subcutaneous systems
	40 to 44
	0.98
	0.94

	Bacterial infections of the skin and subcutaneous systems
	80 to 84
	0.98
	0.94

	Bloodstream infections
	5 to 9
	0.87
	0.94

	Bloodstream infections
	20 to 24
	0.89
	0.94

	Bloodstream infections
	25 to 29
	0.92
	0.94

	Bloodstream infections
	30 to 34
	0.93
	0.94

	Endocarditis and other cardiac infections
	1 to 4
	0.99
	0.94

	HAI lower respiratory infections and all related infections in the thorax
	Post Neonatal to 5
	0.97
	0.94

	Infections of bone, joints, and related organs
	0 to 9
	0.99
	0.94

	Infections of bone, joints, and related organs
	85 to 89
	0.99
	0.94

	Infections of bone, joints, and related organs
	90 to 94
	0.99
	0.94

	Meningitis and other bacterial central nervous system infections
	50 to 54
	0.99
	0.94

	Peritoneal and intra-abdominal infections
	Post Neonatal
	0.98
	0.94

	Bacterial infections of the skin and subcutaneous systems
	20 to 24
	0.99
	0.93

	Bacterial infections of the skin and subcutaneous systems
	45 to 49
	0.98
	0.93

	Bacterial infections of the skin and subcutaneous systems
	75 to 79
	0.98
	0.93

	Bloodstream infections
	35 to 39
	0.92
	0.93

	Bloodstream infections
	90 to 94
	0.94
	0.93

	Infections of bone, joints, and related organs
	80 to 84
	0.99
	0.93

	Meningitis and other bacterial central nervous system infections
	55 to 59
	0.99
	0.93

	Meningitis and other bacterial central nervous system infections
	60 to 64
	0.99
	0.93

	Meningitis and other bacterial central nervous system infections
	90 to 94
	0.99
	0.93

	Bacterial infections of the skin and subcutaneous systems
	50 to 54
	0.98
	0.92

	Bacterial infections of the skin and subcutaneous systems
	55 to 59
	0.97
	0.92

	Bacterial infections of the skin and subcutaneous systems
	60 to 64
	0.97
	0.92

	Bacterial infections of the skin and subcutaneous systems
	65 to 69
	0.97
	0.92

	Bacterial infections of the skin and subcutaneous systems
	70 to 74
	0.98
	0.92

	Bloodstream infections
	10 to 14
	0.85
	0.92

	Bloodstream infections
	40 to 44
	0.90
	0.92

	Bloodstream infections
	85 to 89
	0.93
	0.92

	Infections of bone, joints, and related organs
	75 to 79
	0.99
	0.92

	Meningitis and other bacterial central nervous system infections
	65 to 69
	0.99
	0.92

	Meningitis and other bacterial central nervous system infections
	70 to 74
	0.99
	0.92

	Meningitis and other bacterial central nervous system infections
	80 to 84
	0.99
	0.92

	Meningitis and other bacterial central nervous system infections
	85 to 89
	0.99
	0.92

	Meningitis and other bacterial central nervous system infections
	95 plus
	0.99
	0.92

	Bloodstream infections
	15 to 19
	0.84
	0.91

	Bloodstream infections
	80 to 84
	0.92
	0.91

	Infections of bone, joints, and related organs
	70 to 74
	0.99
	0.91

	Meningitis and other bacterial central nervous system infections
	75 to 79
	0.99
	0.91

	Bacterial infections of the skin and subcutaneous systems
	15 to 19
	0.98
	0.90

	Bloodstream infections
	45 to 49
	0.89
	0.90

	Infections of bone, joints, and related organs
	60 to 64
	0.99
	0.90

	Infections of bone, joints, and related organs
	65 to 69
	0.99
	0.90

	Bacterial infections of the skin and subcutaneous systems
	Post Neonatal
	1.00
	0.89

	Bloodstream infections
	50 to 54
	0.88
	0.89

	Bloodstream infections
	75 to 79
	0.91
	0.89

	Endocarditis and other cardiac infections
	Post Neonatal
	0.99
	0.89

	HAI lower respiratory infections and all related infections in the thorax
	5 to 69
	0.96
	0.89

	HAI lower respiratory infections and all related infections in the thorax
	70+ years
	0.96
	0.89

	Infections of bone, joints, and related organs
	55 to 59
	0.99
	0.89

	Bloodstream infections
	70 to 74
	0.90
	0.88

	Infections of bone, joints, and related organs
	15 to 19
	0.99
	0.88

	Infections of bone, joints, and related organs
	50 to 54
	0.99
	0.88

	Bacterial infections of the skin and subcutaneous systems
	1 to 4
	1.00
	0.87

	Bacterial infections of the skin and subcutaneous systems
	5 to 9
	0.99
	0.87

	Bacterial infections of the skin and subcutaneous systems
	10 to 14
	0.99
	0.87

	Bloodstream infections
	55 to 59
	0.88
	0.87

	Bloodstream infections
	60 to 64
	0.88
	0.87

	Bloodstream infections
	65 to 69
	0.89
	0.87

	HAI urinary tract infections and pyelonephritis
	40 plus
	0.99
	0.86

	Infections of bone, joints, and related organs
	25 to 29
	0.99
	0.85

	Infections of bone, joints, and related organs
	35 to 39
	0.99
	0.85

	Infections of bone, joints, and related organs
	40 to 44
	0.99
	0.84

	Infections of bone, joints, and related organs
	45 to 49
	0.99
	0.84

	Infections of bone, joints, and related organs
	30 to 34
	0.99
	0.83

	Infections of bone, joints, and related organs
	20 to 24
	0.99
	0.82

	HAI urinary tract infections and pyelonephritis
	0 to 39
	0.99
	0.77

	HAI lower respiratory infections and all related infections in the thorax
	Neonatal
	0.99
	0.50



Table 3.2.6.2: Accuracy and AUC score for out-of-sample validation of sepsis models (GLOBAL)
	Model
	Age group name
	Accuracy
	AUC score

	Sepsis
	25 to 29
	0.94
	0.95

	Sepsis
	15 to 19
	0.95
	0.94

	Sepsis
	20 to 24
	0.95
	0.94

	Sepsis
	30 to 34
	0.93
	0.94

	Sepsis
	1 to 4
	0.89
	0.93

	Sepsis
	35 to 39
	0.93
	0.93

	Sepsis
	5 to 9
	0.89
	0.92

	Sepsis
	10 to 14
	0.90
	0.92

	Sepsis
	95 plus
	0.96
	0.92

	Sepsis
	40 to 44
	0.93
	0.91

	Sepsis
	90 to 94
	0.96
	0.90

	Sepsis
	Post Neonatal
	0.88
	0.89

	Sepsis
	Late Neonatal
	0.87
	0.88

	Sepsis
	45 to 49
	0.93
	0.88

	Sepsis
	85 to 89
	0.96
	0.88

	Sepsis
	Early Neonatal
	0.91
	0.87

	Sepsis
	80 to 84
	0.96
	0.87

	Sepsis
	50 to 54
	0.93
	0.86

	Sepsis
	75 to 79
	0.95
	0.85

	Sepsis
	55 to 59
	0.94
	0.84

	Sepsis
	70 to 74
	0.95
	0.84

	Sepsis
	60 to 64
	0.94
	0.83

	Sepsis
	65 to 69
	0.94
	0.83
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Section 3.3.1: Input data 
Case fatality ratios (CFRs) were modelled for the pathogens and infectious syndromes of interest using all available data detailing the organism responsible for infection, the infectious syndrome, and patient outcome, which included hospital and microbial data. Input data for the CFR models were aggregated based on data source, year, GBD location, and age group (as well as hospital/community acquired status, in the case of the lower respiratory and urogenital infectious models). For lower respiratory and blood stream infections, for which CFRs could be vastly different in neonates, we modelled the following age groups: neonatal, post-neonatal–5 years, 5–50 years, 50–70 years, and 70 years and older. For all other infectious syndromes, we modelled the following age groups: neonatal–5 years, 5–50 years, 50–70 years, and 70 years and older. We excluded from the analysis any source-location-year-age with fewer than five cases and zero deaths.

To allow us to implement linear models, CFRs were logit-transformed. We used the delta method to compute the standard error of CFRs in logit space. To incorporate data with zero deaths, or with an equal number of deaths and cases, we applied a 1% offset, such that the CFRs for data with zero deaths was represented as 1% and the CFR for data with an equal number of deaths and cases was represented as 99%.
Pathogen-specific CFRs were modelled separately by infectious syndrome and were calculated as a function of HAQ Index and age. To account for heterogeneity across the sources of input data, we implemented a mixed-effects meta-regression framework, modelling data source as a random effect. We further incorporated a binary fixed-effect denoting whether the data source only included intensive care unit (ICU) patients, for which CFRs were expected to be higher. The pathogens of interest for each infectious syndrome were determined by prevalence in the data and expert opinion, with the goal of modelling approximately 90% of specified-pathogens associated with each infectious syndrome.
Section 3.3.2: Models ran for each infectious syndrome 
The interaction of the HAQ Index fixed-effect with the pathogen-specific fixed-effect allowed the relative deadliness of pathogens to vary depending on a location’s HAQ Index – this is termed an ‘interaction model’. For those pathogens with fewer than ten high quality data points below 0.7 HAQ Index, or those whose results in the interaction models indicated an unrealistically large influence of HAQ Index (eg, 70% CFR in low HAQ Index countries, 1% CFR in high HAQ Index countries), we modelled a pathogen-specific intercept with an HAQ Index fixed-effect shared across the pathogens. As a consequence of the single fixed-effect on HAQ Index, a pathogen that was predicted to be the deadliest in low HAQ Index countries would also be predicted to be the deadliest in high HAQ Index countries in these ‘intercept models.’ To estimate the CFRs for other known bacteria, which either were not selected as a pathogen of interest or lacked sufficient data for inclusion in the intercept models, we pooled all bacterial data together and estimated a single CFR curve from age, HAQ Index, and the data source heterogeneity covariates. Thus, up to three models were run for each infectious syndrome: 
1. an interaction model including data for all data rich pathogens and ‘other specified bacteria’ (which was included to inform the overall influence of HAQ Index on CFR, predictions were only generated for the data rich pathogens), 
2. an intercept model including data for data rich and data sparse pathogens, as well as ‘other specified bacteria’ (predictions were only generated for the data sparse pathogens), and 
3. an ‘other bacteria’ model that included data for all bacterial pathogens (predictions were generated by HAQ Index and age, without any pathogen specific term). 
For some infectious syndromes, the relative deadliness of a pathogen may be strongly determined by either the age of the patient or whether the infection was community- or hospital-acquired. For bloodstream infections, we ran two distinct sets of CFR models, one for neonates (0–27 days) and another for post neonates, to capture the differing dynamics of pathogen deadliness in these two populations. As is done for our other modelling processes, we also separate community-acquired and hospital-acquired cases in our CFR models for lower respiratory and urogenital infections. Because some data sources did not provide enough information to infer whether an infection was community- or hospital-acquired, but still included important information on the relative pathogenesis and the difference in CFRs across varying HAQ indices, infections of unknown origin were included in both the community-acquired and hospital-acquired models for these two syndromes. Any bias in these ‘unknown origin’ infections was adjusted for using a binary fixed-effect representing an ‘unknown origin’ infection, and predictions were generated for the community- and hospital-acquired infections only. 
Section 3.3.3: Modelling framework 
The data were analysed using a meta-analytic mixed effects structure. The main model can be specified as follows:

where
·  contains CFRs for data source 
· Design matrix  contains as columns the following covariates
· in all models:
· HAQ Index
· dummy-coded indicator for age group
· dummy-coded ICU indicator for data source (1 if data source only compiles information on ICU patients, 0 if a mix between ICU/non-ICU patients)
· in ‘interaction’ and ‘intercept’ models:
· dummy-coded indicator for pathogen
· in ‘interaction’ models only:
· interaction between pathogen and HAQ Index (product of dummy-coded pathogen columns and HAQ Index)
· in models evaluating community/hospital acquired infection (LRI+, UTI):
· dummy-coded variable indicating source of infection (1 if unknown source, 0 if community OR hospital acquired, depending on whether the model is evaluating community or hospital infections)
·  are fixed effect multipliers
·  are observation error terms with known variances
·  are data source-specific random intercepts with unknown covariance 
The underlying program used to fit the model (meta-regression, Bayesian, regularized, trimmed [MR-BRT]) is described elsewhere.7 The program allows specification of priors on  and , which were particularly useful when data for specific locations was very limited.
Section 3.3.4: Predictions and uncertainty 
Predictions for 2019 CFRs were generated for each country, age group, and pathogen as a function of each country’s HAQ Index, assuming mixed ICU/non-ICU patients and, in the case of models for UTI and LRI+, that the infection was community- or hospital-acquired (in contrast to infections of unknown origin). For pathogens with insufficient data to estimate a syndrome-specific CFR, we predicted out using the ‘other bacteria’ CFR associated with the infectious syndrome. Importantly, all of the CFRs we calculate by infectious syndrome are independent of that syndrome’s underlying cause.
Uncertainty estimates were generated using asymptotic uncertainty intervals. Specifically, for the model, the posterior uncertainty for the coefficients  is Gaussian, with mean and variance given below:
			            	 

where

 
The variance-covariance matrix was used to obtain 1000 draws for the coefficients, which are then used to get intervals for the predictions. 
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Section 3.4.1: Input data and pathogens selected for estimation
With this model, we aimed to estimate the distribution of pathogens causing each infectious syndrome. To get input data for this model, we gathered all available data sources described in section 2 that meet the following criteria:
· Sufficient diagnosis (for patient- or admission-level datasets) or sample specimen type (for isolate- or culture-level datasets) information for us to determine the infectious syndrome
· Information on which pathogen(s) caused the infection or which pathogen(s) were detected in an infectious sample, as determined through culture or genomic-based methods
· Did not have a strongly biased sampling framework across pathogens (for example, did not deliberately sample until 100 cases of every pathogen of interest had been obtained)
The input data source types that met these criteria in this study were:
· Multiple causes of death data
· Hospital discharge
· Linkage data
· Microbial data with and without outcome information
· Literature studies from the aetiology literature reviews
For each infectious syndrome, we selected roughly 10–20 pathogens to estimate explicitly in the pathogen distribution based on the following criteria:
· The prevalence of each pathogen in the raw data
· Clinical knowledge about the primary aetiologies of each infectious syndrome
· The amount of available data, which limits the number of pathogens that can be estimated successfully
In addition to the n pathogens for a given syndrome that we estimate explicitly, we also included an “other specified pathogens” category for every infectious syndrome, to which we mapped all other aetiologies identified in the data. Thus, the set of estimated pathogens for each infectious syndrome is mutually exclusive and collectively exhaustive of all possible aetiologies. Polymicrobial infections were either estimated explicitly or included in the “other” category, making all explicitly estimated individual pathogens mono-pathogenic. In addition to these criteria, we also considered the following factors:
· Since we were ultimately interested in estimating the burden of AMR in bacteria, we erred on the side of estimating bacteria with strong evidence of AMR, rather than bacteria with low evidence of AMR or non-bacterial aetiologies.
· Clinically relevant aetiologies differ from syndrome to syndrome, and we were unable to estimate all pathogens explicitly in every syndrome due to a lack of data. Therefore, the “other” pathogen category is composed of slightly different pathogens for every infectious syndrome, and can occasionally contain pathogens that are explicitly estimated for another infectious syndrome. We attempted to mitigate this by including bacteria with strong evidence of AMR in the estimation of all infectious syndromes whenever possible.
· We included enough explicitly estimated pathogens to ensure that the “other” category remained below 10% for all infectious syndromes.
For a list of pathogens covered in each infectious syndrome model, please refer to table 3.4.6 (pp 20-21).
Section 3.4.2: Data processing and analysis
We extracted and standardised the location, year, age, sex, diagnoses, specimen type, pathogens, and hospital- and community-acquired (HAI and CAI) status of each record in every dataset. These datasets report a variety of metrics, including deaths, admissions, cases, cultures, and isolates. While these metrics are not completely comparable (for example, a single patient may often have multiple cultures taken during a single hospital admission), we chose to standardise them into two categories: “deaths,” for any unit associated with an outcome of death, and “cases,” for any unit regardless of outcome. After standardising the data, we mapped every sample ID or tabulated figure in the data to infectious syndrome based on its diagnoses and specimen type. More details on this process can be found the appendix of Murray et al. (2022).1 
Some pathogens cause disease so rarely or are so commonly contaminants that we considered them to be contaminants, unlikely to be the true cause of disease. Examples include many Corynebacterium species and Staphylococcus epidermidis. We dropped all such contaminants from the analysis, as well as any record listed by treating clinicians in the data as a contaminant. We also dropped from the analysis all records where no pathogen was detected, or the patient diagnosis indicated an unspecified bacterium. This assumes that the distribution of pathogens among cases with known aetiology are the same as those with unknown aetiology; in other words that the probability of detection is the same for every pathogen. This assumption may break down if certain pathogens are more difficult to detect than others, or in cases where a pathogen is irregularly tested for within a laboratory. 
For data sources where multiple pathogens were listed per sample ID, we classified these cases according to the following criteria. First, if a case contained more than one of “unspecified bacteria,” “virus,” “fungus,” and another pathogen(s), we chose to drop all these pathogens except the one(s) most likely to be responsible for disease, with the following ranking from most to least likely: 1. Another pathogen(s); 2. Unspecified bacteria; 3. Virus; 4. Fungus. This was to drop co-occurrence profiles that we consider to be uninformative, like a viral infection co-occurring with a fungal infection. After applying this drop, we considered any sample ID that contained more than one pathogen to be polymicrobial. Polymicrobial was treated as a distinct pathogen category in all further analysis, and we were unable to include any AMR burden from polymicrobial infections in our final results, which possibly underestimates the burden of AMR by hiding infections caused by resistant pathogens of interest in the polymicrobial category.
Furthermore, in our approach we chose to assume that the relative prevalences of pathogens in datasets that do not report co-occurrence would be comparable to their mono-pathogenic counterparts in datasets that do report co-occurrence. This assumes that the co-occurrence of pathogens is random and is not correlated for certain pathogens. We did not have sufficient data to fully test the validity of this assumption, given that few datasets report the full universe of pathogens which may co-occur. When selecting pathogens for estimation, we took into account that the set of estimated pathogens for each infectious syndrome is mutually exclusive and collectively exhaustive of all possible aetiologies. Polymicrobial infections were either estimated explicitly or included in the “other” category, making all explicitly estimated individual pathogens mono-pathogenic. Additional factors that were considered can be found in the appendix of Murray et al. (2022).1
Section 3.4.3: Dealing with challenges in pathogen distribution appraisal
One of the central challenges of estimating pathogen distributions was that not every data source tested for or reported every possible aetiology of a given infectious syndrome. For example, many literature studies on the aetiologies of meningitis only report on bacterial aetiologies, and some surveillance systems only collect data on certain pathogens of interest. Only certain pathogens are referenced explicitly in the International Classification of Diseases (ICD), limiting which pathogens can be identified from ICD-based data types like MCoD and hospital discharge. Finally, some datasets reported only a subset of the pathogens that we are interested in for a given infectious syndrome, reporting the remaining aetiologies in an aggregate “other” category. These practices have led to inconsistencies in the “other” and “polymicrobial” categories across data sources. Datasets can either over or under-report “other,” and datasets that report fewer specific pathogens will automatically report fewer polymicrobial infections.
To address this problem, we maintained a list of data sources that we believe have sufficient testing and reporting to give unbiased estimates of other and polymicrobial for all syndromes, dropping any data on polymicrobial or other that did not come from these data sources. These data sources all had a complete sampling framework (eg, they do not limit the scope of aetologies that they test for) and reported their results without any deliberate aggregation. While we believe this list provided an accurate starting place for the estimation of other and polymicrobial, future work to improve this method would involve a more detailed analysis of sampling framework and reporting categories in each dataset, specific to each infectious syndrome.
There were two major exceptions to this method for handling “other specified pathogens.” First, determining the pathogenic aetiology of LRI with microbiology represents challenges that have been well described previously.8,9 In order to account for this limitation, we utilised a vaccine probe design to inform the Streptococcus pneumoniae cause fraction of LRI, consistent with the approach used in the GBD aetiology estimation process.10,11 In brief, we extracted the vaccine efficacy of the pneumococcal vaccine against all pneumonia from 18 vaccine probe studies with randomised-control trial, before-after, and cohort designs among children and adults. We then calculated the PAF of pneumonia due to S. pneumoniae in each study () based on these vaccine efficacies (), the vaccine efficacy of pneumococcal vaccine against vaccine-type pneumococcal pneumonia as pooled from three studies (two in children and one in adults) (), the percentage of the population covered by the pneumococcal vaccine as modelled in GBD (100% for RCTs) (),11 and the percent of serotypes covered by the vaccine12   (equation 6.2.6.1). We modelled a global age-specific PAF for S. pneumoniae based on these data in the MR-BRT environment and finally adjusted this PAF based on the vaccine coverage in children in every GBD location in 2019 and optimal vaccine efficacy in children () (equation 3.4.3.2). In adults (age 5+), we assumed the effects of vaccination on adults would be primarily indirect from vaccination in children, and included an adjustment factor on the vaccine efficacy to account for this, derived from Grijalva et al.13



In this vaccine probe analysis, () is not consistent with the “other” category in our model, since it includes all non-­S. pneumoniae aetiologies. We retained all of the data from the vaccine probe analysis as two categories, S. pneumoniae and “not S. pneumoniae” and addressed the inconsistencies between them and our other data using our modelling framework.
The second major exception involves several literature studies on the proportion of neonatal bacterial meningitis caused by Streptococcus agalactiae (Group B Streptococcus; GBS). We found that these literature studies were important to our estimation of the pathogen distribution of neonatal meningitis, which is distinct from other age groups because of its high proportion of GBS. However, these studies either only reported or were only extracted with two categories, GBS and “other bacterial, not GBS.” We retained both these categories and addressed the inconsistencies between them and our other data using our modelling framework.
Section 3.4.4: Age-sex splitting and standardizing measures
We standardised age and sex across all datasets to the following most-detailed groups using the GBD causes of death age-sex splitting algorithm for age:2 0–6, 7–27, and 28–364 days, and 1–4, 5–9, 10–14, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59, 60–64, 65–69, 70–74, 75–79, 80–84, 85–89, 90–94, 95+ years; and sex: male and female. This algorithm assumes that age-sex pattern of the death or case rate for a given infectious syndrome or pathogen is inherent to the pathology of the disease and is therefore constant across location and year. Details on how the algorithm was applied can be found in the appendix of Murray et al. (2022).1
The input data sources reported a variety of combinations of measures, including some that reported deaths only, some that reported cases only, and some that reported both cases and deaths. In order to standardise these measures to cases, we estimated infectious syndrome- and pathogen-specific CFRs and used these CFRs to convert all deaths-only datasets to cases. For any infectious syndrome or pathogen combination for which we did not have enough data to estimate plausible CFRs, we used a set of all-bacteria CFRs for that infectious syndrome instead. All modelling was done in case space.
Several of our microbial databases came exclusively from ICUs and were therefore heavily biased towards severe illness. In order to mitigate this bias, we dropped all information on cases in ICU-only datasets and recalculated implied cases based on reported deaths and our CFRs. No similar adjustment was made to attempt to account for biases between hospitalised and un-hospitalised populations, although we did account for HAI versus CAI for two infectious syndromes – LRI and thorax infections and UTI – within our modelling framework. The use of hospital-based data to calculate both pathogen-specific case fatality ratios and pathogen distributions biases our estimate of the distribution of pathogens in incident cases towards more severe disease, particularly for less-severe infectious syndromes like lower respiratory infections; adjusting for this bias would improve the accuracy of our non-fatal estimates.
Section 3.4.5: Modelling framework
To model the distribution of pathogens for each infectious syndrome, we developed a method for the multinomial estimation of partial and compositional observations (MEPCO). We assumed that the aetiologies of a given infectious syndrome followed a multinomial distribution. Due to inconsistencies in which pathogens are tested for and reported by different data sources, each data source contained partial observations of the possible outcomes of the underlying multinomial distribution. Certain data sources like the vaccine probe estimates and the GBS neonatal meningitis studies represent compositional observations, where pathogens like “not S. pneumoniae” and “other bacterial, not GBS” represent aggregates of more detailed pathogens. 
In order to use both partial and compositional data, we constructed a network model with the dependent variable as the log ratio of cases between different pathogens and estimated over a flexible parameterisation of multinomial parameters using a maximum likelihood approach. Consider a given infectious syndrome with a multinomial distribution of  mutually exclusive, collectively exhaustive aetiologies with probabilities, so that each  and . The likelihood of an observation of , where  = number of cases of pathogen  in a total sample of  infections (), is:


We modelled the probabilities using a composition of a link function with a linear predictor:

for observations , a vector of covariates , and a vector of coefficients for each pathogen . the appendix of Murray et al. (2022)1 contains a table with the covariates used for infectious syndrome model, which included a typical specification included an intercept term, HAQ Index, a categorical age group dummy for large age bins, and any relevant vaccine coverage proportions by country. However, we did not observe these probabilities directly. Rather, we observed ratios between sums of these probabilities, which reduce to ratios between sums of cases within each study. These observations therefore take the form:

where  is a weight of 0 or 1 that selects the mutually exclusive, collectively exhaustive most-detailed pathogens that make up observed pathogen A, which may be a composite observation. For example, for the “other bacterial, non-GBS” pathogen,  would be 1 for Staphyloccocus aureus, S. pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Listeria monocytogenes, K. pneumoniae, E. coli, and other pathogens and 0 for GBS and virus. We dropped all observations where either the numerator or denominator had 0 observed cases in order to make this calculation and a forthcoming log transform possible. This may bias the model towards overestimating less common pathogens.
It is not possible to infer all coefficients  from the observations, since they are all relative. However, if we fix all of the coefficients for one pathogen to 0 as a reference group, then we obtain a well-posed inverse problem, as long as there is enough data to estimate the remaining coefficients. Without loss of generality, we assumed  for all elements and obtain estimates of the remaining  by minimising the sum of the residuals between log-transformed observations  and corresponding log-transformed predictions from equation 3.3.5.4:

where  are variances corresponding to the data points. Equation 3.3.5.4 is a nonlinear likelihood minimisation problem that that we optimised using a standard implementation of the Gauss-Newton method.14 We then re-normalised the optimal coefficients to obtain final predictions of the probabilities of each pathogen:

To quantify the uncertainty of this estimate, we used asymptotic statistics to obtain the posterior distribution of . Specifically, using the Gauss-Newton Hessian approximation gave us the asymptotic information matrix for all  except for the reference pathogen, allowing us to sample draws of . For each  draw and given feature , we obtained a corresponding draw of  using equation 3.3.3.5.
Finally, to convert  for a given demographic group  from case space to deaths space, we transformed using our CFR estimate for demographic :

This network regression with covariates framework allowed us to use partial and composite data that reported on one or only a few pathogens, or that reported multiple pathogens aggregated together. Networks, however, can be unstable with sparse data and stable estimates have in some cases required the use of Bayesian priors in these models. In particular, we imposed Gaussian priors with mean 0 and non-zero variance on all coefficients except intercepts, to bias the model away from spurious effects driven by data sparsity. These priors were based on expert opinion and can improved with further empirical validation in the future (appendix of Murray et al.1).

Table 3.4.6: Pathogens included in each infectious syndrome model
	Infectious syndrome
	Pathogens assessed
	Model covariates
	Age groups

	Bloodstream infections
	Acinetobacter baumannii, Citrobacter spp., Enterobacter spp., Enterococcus faecalis, Enterococcus faecium, other enterococci, Escherichia coli, fungus, group A Streptococcus, group B Streptococcus, Klebsiella pneumoniae, Neisseria meningitidis, non-typhoidal Salmonella, polymicrobial, Proteus spp., Pseudomonas aeruginosa, Salmonella Typhi, Serratia spp., Staphylococcus aureus, Streptococcus pneumoniae
	HAQ Index,14 age group, age-standardised proportion of intravenous drug use,23 proportion coverage by PCV3 vaccine,33 indicator variable for Europe
	Neonatal,
Post-neonatal–5,
5–50,
50–70,
70+

	Infections of bones, joints, and related organs
	Enterococcus faecalis, Enterococcus faecium, other enterococci, Escherichia coli, group A Streptococcus, group B Streptococcus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus 
	HAQ Index, age group
	Under 5,
5–50,
50–70,
70+

	Endocarditis and other cardiac infections
	See bloodstream infection pathogens
	Not explicitly modelled. Pathogen distribution for bloodstream infections is used.
	Neonatal,
Post-neonatal–5,
5–50,
50–70,
70+

	Diarrhoea
	Adenovirus, Aeromonas spp., Amebiasis, Campylobacter spp., Clostridium difficile, cryptosporidium, enteropathogenic Escherichia coli, enterotoxigenic Escherichia coli, non-typhoidal Salmonella, norovirus, rotavirus, Shigella spp., Vibrio cholerae
	Not modelled here. GBD diarrhoea aetiology estimates are used.
	GBD most detailed age groups

	Lower respiratory infections and all related infections in the thorax
	Acinetobacter baumannii, Chlamydia spp., Enterobacter spp., Escherichia coli, fungus, group B Streptococcus, Haemophilus influenzae, Klebsiella pneumoniae, Legionella spp., Mycoplasma spp., polymicrobial, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pneumoniae, virus
	HAQ Index, proportion coverage by PCV3 vaccine, proportion coverage by Hib3 vaccine,33 age group, HAI/CAI
	Neonatal,
Post-neonatal–5,
5–50,
50–70,
70+

	Meningitis and other bacterial central nervous system infections
	Escherichia coli, group B Streptococcus, Haemophilus influenzae, Klebsiella pneumoniae, Listeria monocytogenes, Neisseria meningitidis, Staphylococcus aureus, Streptococcus pneumoniae, virus
	HAQ Index, proportion coverage by PCV3 vaccine, proportion coverage by Hib3 vaccine, age group, proportion of population covered by ’10-’15 MenAfriVac rollout1,34
	Neonatal,
Post-neonatal–5,
5-50,
50-70,
70+

	Peritoneal and intra-abdominal infections
	Citrobacter spp., Enterobacter spp., Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Klebsiella pneumoniae, other Klebsiella species, Proteus spp., Pseudomonas aeruginosa, Serratia spp., Staphylococcus aureus
	HAQ Index, age group
	Under 5, 
5–50, 
50–70, 
70+

	Bacterial infections of the skin and subcutaneous systems
	Acinetobacter baumannii, Enterobacter spp., Enterococcus faecalis, other enterococci, Escherichia coli, group A Streptococcus, group B Streptococcus, Klebsiella pneumoniae, Proteus spp., Pseudomonas aeruginosa, Staphylococcus aureus
	HAQ Index, age group
	Under 5, 
5–50, 
50–70, 
70+

	Urinary tract infections and pyelonephritis
	Acinetobacter baumannii, Citrobacter spp., Enterobacter spp., Enterococcus faecalis, Enterococcus faecium, other enterococci, Escherichia coli, group B Streptococcus, Klebsiella pneumoniae, Morganella spp., Proteus spp., Providencia spp., Pseudomonas aeruginosa, Serratia spp., Staphylococcus aureus
	HAQ Index, age group, HAI/CAI
	Under 5, 
5–50, 
50–70, 
70+


Group A Streptococcus = Streptococcus pyogenes. Group B Streptococcus = Streptococcus agalactiae. HAQ Index = Healthcare Access and Quality Index. HAI/CAI = hospital-acquired infection/community-acquired infection.  
Section 3.4.7: Exceptions and special handling
There were several notable exceptions and special handling decisions made for each individual pathogen distribution model, which we hope to address with more sustainable approaches in our future work. For example, for cardiac infections, we used the pathogen distribution for bloodstream infections rather than estimating specific distributions for these syndromes, due to a lack of complete literature reviews on the aetiologies and case-fatality rates of these syndromes. We consider this to be a serious limitation of our methodology, but do not anticipate that is seriously impactful on our final estimates.
In diarrhoea patients, cultures of specimens taken from the gastrointestinal tract, bowels, rectum, or stool are almost always affected by contaminants or pathogens that are not the cause of diarrhoea. For this reason, we believe that our input data and modelling framework are not able to accurately capture the aetiologies of diarrhoea. We chose to use GBD estimates of the aetiologies of diarrhoea in deaths instead of running our own model.13 Nonetheless, a major limitation of using such approach is that the GBD diarrhoea aetiology estimates are population attributable fractions (PAFs) for each pathogen. These PAFs may add to greater than 1 and the authors made no attempt to quantify the extent of co-occurrence of pathogens; the latter is inconsistent with the pathogen distribution estimation method used in our study, which quantifies polymicrobial infections and estimates all pathogens as mono-infections. Hence, in order to avoid duplication of cases in our framework, we had to make some assumptions about the co-occurrence of pathogens in diarrhoea (details provided in the appendix of Murray et al.1).
Certain skin and subcutaneous samples are easily affect by contaminants, colonization, and other pathogens that are not the cause of infection. For this reason, we considered microbial data and mortality surveillance to be too difficult to extract meaningful aetiology information from, and instead used only ICD-coded databases (multiple cause of death, hospital discharge, and linkage data) and literature studies as inputs into our model of the pathogen distribution of skin infections.
We dropped all data on S. pneumoniae for community-acquired LRI and thorax infections in non-neonatal age groups except our estimates from the vaccine probe analysis. Because dedicated anaerobic cultures were not routinely performed for peritoneal samples, we dropped all anaerobes observed in the data for and excluded anaerobes as an etiology of intra-abdominal infections. Moreover, due to the unique pattern of meningitis in neonates, particularly the high prevalence of GBS, we modeled neonatal and adult central nervous syndrome infections separately.
For three infectious syndromes, we did not run a pathogen distribution model – these are “Typhoid, paratyphoid, and invasive non-typhoidal Salmonella”, “Tuberculosis” and “Gonorrhoea and chlamydia” infectious syndromes. They are all caused by distinct pathogens whose individual burdens are already estimated in GBD as separate causes of death. Therefore, for these syndromes, we simply used GBD estimates.
Section 3.4.8: Model validation
To assess model validity, we calculated the root mean square error (RMSE) and coefficient of determination (R2) for each pathogen distribution model in proportion space for both in-sample and out-of-sample predictions. Proportions were predicted for each observation using the specific denominator observed from that study. For example, if a given study reported on only E. coli and S. pneumoniae, the predictions for model validation for this study were calculated as proportions of the total for E. coli and S. pneumoniae. In order to calculate out-of-sample fit, we perform non-exhaustive cross-validation, with each round of the validation holding out 1 country of data at a time. This leave-one-country-out approach simulates the prediction task of estimating the pathogen distribution of a country for which we have no data. 
R2 ranges from 0.784 to 0.867 in-sample and from 0.755 to 0.837 out of sample, indicating good model fit with only modest losses when data are moved out of sample. RMSE ranges from 0.129 to 0.149 in-sample and from 0.141 to 0.159 out of sample. Given that the data are expected to vary from the model predictions according to the observation-level variance, and the fact that the RMSEs are relatively consistent between in-sample and out-of-sample, these RMSEs are reasonable. Overall, these metrics show that these models have good fit and good out-of-sample predictive ability.
Table 3.4.8.1: In-sample and out-of-sample validation metrics for pathogen distribution models (GLOBAL)
	Infectious syndrome
	 Model type
	R2
	RMSE

	
	
	In sample
	Out of sample
	In sample
	Out of sample

	Bacterial infections of the skin and subcutaneous systems
	 
	0.808
	0.771
	0.129
	0.141

	Bloodstream infections
	 
	0.822
	0.785
	0.128
	0.141

	Infections of bones, joints, and related organs
	 
	0.858
	0.837
	0.141
	0.151

	Lower respiratory infections and all related infections in the thorax
	 
	0.810
	0.780
	0.142
	0.153

	Meningitis and other bacterial central nervous system infections
	Neonatal
	0.858
	0.803
	0.134
	0.158

	
	Non-neonatal
	0.867
	0.822
	0.129
	0.150

	Peritoneal and intra-abdominal infections
	 
	0.815
	0.812
	0.147
	0.148

	Urinary tract infections and pyelonephritis
	 
	0.784
	0.755
	0.149
	0.159


Out of sample metrics calculated using leave-one-country-out cross validation
[bookmark: _Toc135992047]Section 3.5: Prevalence of resistance
Section 3.5.1: Input data 
We identified line level and aggregate data on the prevalence of resistance in bacterial pathogens, which were linked to the country and year in which the infection was acquired, from datasets obtained from pharmaceutical companies, surveillance networks, academic institutions, and individual hospitals (see section 2). We supplemented microbiological data with systematic reviews following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines,15 to collect resistance data published from countries and territories where surveillance systems do not routinely collect data to ensure extensive coverage of the pathogen–drug combinations thought to contribute the greatest burden of drug resistant infections, which we termed core pathogen–drug combinations (table 3.5.1.1). Data on the prevalence of AMR in these pathogen–drug combinations were extracted from published literature and compiled into comprehensive datasets. The systematic reviews followed similar methodologies; a detailed description can be found either in published literature (S. Typhi and S. Paratyphi16) or in the corresponding PROSPERO records (E. coli, K. pneumoniae, S. aureus and S. pneumoniae PROSPERO registration CRD42019145148; Shigella species PROSPERO registration CRD42019127603; iNTS PROSPERO registration CRD42020189935; N. gonorrhoeae SPF unique identifier osf.io/4vy5n). The S. Typhi and S. Paratyphi A systematic review was expanded to include non-blood culture isolates for the current analysis. Forms were created, and screening and data extraction were completed using web-based systematic review software (DistillerSR, Evidence Partners, Ottawa, Canada) for all pathogens except Salmonella, for which a smaller number of manuscripts were identified.
For the prevalence of drug resistance in Mycobacterium tuberculosis for multi-drug resistance (MDR, characterised by isoniazid and rifampicin co-resistance) excluding extensive drug resistance (XDR, characterised by resistance to isoniazid, rifampicin, and fluoroquinolone, as well as either aminoglycosides or capreomycin) and XDR, we used previously published GBD results.2 To more comprehensively account for the burden of AMR in bacteria, we also estimated the prevalence of resistance for 71 supplementary pathogen–drug combinations for which we did not conduct a systematic literature review. Data for these supplementary combinations were extracted from the datasets obtained from pharmaceutical companies, academic institutes, and individual hospitals using the same processing procedure as was used for the core pathogen–drug combinations. The list of supplementary combinations is presented in table 3.5.1.2.
Table 3.5.1.1: Core pathogen–drug combinations
	Pathogen
	Antimicrobial

	Escherichia coli 
	Third-generation cephalosporins
Fluoroquinolones

	Klebsiella pneumoniae
	Third-generation cephalosporins
Carbapenems

	Staphylococcus aureus
	Methicillin

	Streptococcus pneumoniae
	Penicillin

	Salmonella Typhi & Paratyphi A
	Multidrug resistance  
Fluoroquinolones

	Invasive non-typhoidal Salmonella
	Fluoroquinolones

	Shigella species
	Fluoroquinolones

	Neisseria gonorrhoeae
	Third-generation cephalosporins

	Mycobacterium tuberculosis
	Isoniazid mono-resistance, Rifampicin mono-resistance



 


Table 3.5.1.2: Supplementary pathogen–drug combinations
	Pathogen
	Antimicrobial

	Acinetobacter baumannii
	Aminoglycosides, Anti-pseudomonal penicillin/Beta-lactamase inhibitors, Beta-lactam/Beta-lactamase inhibitors, Carbapenems, Third-generation cephalosporins, Fourth-generation cephalosporins, Fluoroquinolones

	Citrobacter species
	Aminoglycosides, Anti-pseudomonal penicillin/Beta-lactamase inhibitors, Carbapenems, Third-generation cephalosporins, Fourth-generation cephalosporins, Fluoroquinolones

	Enterobacter species
	Aminoglycosides, Anti-pseudomonal penicillin/Beta-lactamase inhibitors, Carbapenems, Fourth-generation cephalosporins, Fluoroquinolones, Trimethoprim-Sulfamethoxazole

	Enterococcus faecalis
	Fluoroquinolones, Vancomycin

	Enterococcus faecium
	Fluoroquinolones, Vancomycin

	Enterococcus species
	Fluoroquinolones, Vancomycin

	Escherichia coli
	Aminoglycosides, Aminopenicillin, Beta-lactam/Beta-lactamase inhibitors, Carbapenems, Trimethoprim-Sulfamethoxazole

	Group A Streptococcus
	Macrolide

	Group B Streptococcus
	Fluoroquinolones, Macrolide, Penicillin

	Haemophilus influenzae
	Aminopenicillin, Third-generation cephalosporins

	Klebsiella pneumoniae
	Aminoglycosides, Beta-lactam/Beta-lactamase inhibitors, Fluoroquinolones, Trimethoprim-Sulfamethoxazole

	Morganella species
	Third-generation cephalosporins, Fourth-generation cephalosporins, Fluoroquinolones

	Neisseria gonorrhoeae
	Fluoroquinolones 

	Proteus species
	Aminoglycosides, Aminopenicillins, Third-generation cephalosporins, Fluoroquinolones, Trimethoprim-Sulfamethoxazole

	Pseudomonas aeruginosa
	Aminoglycosides, Anti-pseudomonal penicillin/Beta-lactamase inhibitors, Carbapenems, Third-generation cephalosporins, Fourth-generation cephalosporins, Fluoroquinolones

	Serratia species
	Aminoglycosides, Anti-pseudomonal penicillin/Beta-lactamase inhibitors, Carbapenems, Third-generation cephalosporins, Fourth-generation cephalosporins, Fluoroquinolones 

	Staphylococcus aureus
	Fluoroquinolones, Macrolide, Trimethoprim-Sulfamethoxazole, Vancomycin

	Streptococcus pneumoniae
	Beta-lactam/Beta-lactamase inhibitors, Carbapenems, Third-generation cephalosporins, Fluoroquinolones, Macrolide, Trimethoprim-Sulfamethoxazole


Group A Streptococcus = Streptococcus pyogenes. Group B Streptococcus = Streptococcus agalactiae

Section 3.5.2: Data processing 
The prevalence of resistance for each pathogen–drug combination was calculated for each data source, by country and year. Whenever possible, we classified resistance using the most recent CLSI guidelines based on the MICs provided in the data. When MICs were unavailable, we deferred to lab interpretation to classify the isolates. All isolates determined to have intermediate resistance were classified as resistant. To determine the prevalence of resistance to a class of antibiotics (eg, fluoroquinolones), resistance to any one of the antibiotics in the class was sufficient to classify an isolate as resistant for line level data (ie, susceptibility data for individual isolates). For aggregate data (ie, the proportion of isolates resistant to various antibiotics), the highest prevalence of resistance to any antibiotic in the class was selected. Multidrug resistance in Salmonella species was defined as concurrent resistance to ampicillin/amoxicillin, chloramphenicol, and trimethoprim-sulfamethoxazole; and fluoroquinolone resistance was defined as ciprofloxacin minimum inhibitory concentration of 0.125 μg/ml or higher, or nalidixic acid resistance (CLSI breakpoint for Salmonella spp. were updated in 2012 to include 0.125 μg/ml as isolates with ‘decreased ciprofloxacin susceptibility’, and we have considered these as resistant). Nalidixic acid resistance was also used as a proxy for fluoroquinolone non-susceptibility for Shigella species.
To account for biased level of resistance found in tertiary care settings, we reviewed all input data used for the prevalence of resistance estimation and classified each data source as either tertiary, non-tertiary, or unknown/mixed designation, which was a commonly used classification for large resistance surveillance networks which don’t report on the hospitals they collect data from. We located datasets that either provided facility information at the line-level or reported samples from exclusively tertiary or non-tertiary facilities. Where possible, we used tertiary/non-tertiary assignments from the data providers. When no assignments were available, we classified sites as primary, secondary and following the definitions provided by Jamison et al.,16 as described in the appendix of Murray et al. (2022).1
Because the degree of bias in resistance between tertiary and non-tertiary data could vary, we ran a separate crosswalk for each super region and pathogen–drug super group combination. Certain bacteria and antimicrobials were clustered into super groups to provide the models with more robust input data, though, crucially, while a given model would contain several pathogen–drug combinations in its inputs, every matched pair was made comparing tertiary and non-tertiary values for the same combination. Bacteria were classified as follows (excluding those that would be robust to tertiary care bias, as well as Morganella spp. due to no input data for that pathogen from tertiary facilities): 
Table 3.5.2.1: Pathogens in each pathogen super group
	Pathogen super group
	Incorporated pathogens

	Gram-positives
	Enterococcus faecalis, Enterococcus faecium, Enterococcus spp., Group A Streptococcus, Group B Streptococcus, Staphylococcus aureus, Streptococcus pneumoniae

	Enterobacterales
	Citrobacter spp., Enterobacter spp., Escherichia coli, Haemophilus influenzae, Klebsiella pneumoniae, Proteus spp., Serratia spp.

	Pseudomonadales
	Acinetobacter baumannii, Pseudomonas aeruginosa


 
Only one group of antimicrobials was clustered to create an antimicrobial super group, the β-lactam group, which was comprised of: aminopenicillin, anti-pseudomonal penicillin, β-lactamase inhibitors, carbapenems, third and fourth generation cephalosporins, methicillin, and penicillin. All other antibiotic classes (aminoglycosides, fluoroquinolones, macrolides, sulfanoamides, and vancomycin) each individually comprised their own antimicrobial super group.
To allow us to implement linear models, resistance values were logit-transformed. We used the delta method to compute the standard error of the prevalence of resistance in logit space. To incorporate data with zero resistance, or with complete resistance, we applied a 0.1% offset, such that the prevalence of resistance for data with zero resistance was represented as 0.1% and the prevalence of resistance for data with total resistance was represented as 99.9%. We then used the MR-BRT modelling framework to estimate the logit difference of tertiary and non-tertiary data for each super region-pathogen/antimicrobial ‘super combination’, including a random effect for each pathogen–drug combination within the super combination and employing a positivity prior to enforce the constraint that the tertiary data exceed or be equal to the non-tertiary data.
After modelling the difference between tertiary and non-tertiary data, we implemented the models to adjust all the country-level tertiary input data that was indicated as biased. We then used the adjusted prevalence of resistance estimates from tertiary care facilities and unadjusted prevalence of resistance from non-tertiary/mixed care facilities as data inputs for the prevalence of resistance models. As was done before, resistance values were offset prior to logit-transformation to allow the use of linear models; data with zero resistance or complete resistance was offset by 2%. Exceptions to this offset were made for two combinations, Staphylococcus aureus/vancomycin and Group B Streptococcus/penicillin, which were anticipated to often have values beneath 2% resistance. For these combinations, we applied a 0.5% offset instead.
Section 3.5.3: Modelling framework 
The prevalence of AMR in each pathogen–drug combination was modelled separately. For the core combinations, excluding N. gonorrhoeae/3GC, we selected a range of spatially- and temporally-explicit health and socio-demographic-related covariates with biologically plausible associations to the prevalence of AMR in each pathogen from the Global Health Data Exchange (http://ghdx.healthdata.org/), and from published literature.17 This list was narrowed down by fitting a lasso penalised regression model between the data and the covariates for each dataset (using the ‘glmnet’ package version 3.0.2 in R version 3.6.1) and selecting the most influential covariates in each of the pathogen–drug models to be taken forward. For the supplementary pathogen–drug combinations and N. gonorrhoeae/3GC, we utilised a standard set of covariates for all models: HAQ Index, pigs per capita (as a proxy for antibiotic use in animal husbandry), mean temperature, and antibiotic consumption of the antibiotic class relevant to each pathogen–drug combination. Determining more individualised sets of covariates for each of these supplementary pathogen–drug combinations is an ongoing focus for future extensions of this research. All of the covariates used in our models are available in the appendix of Murray et al. (2022).1
Due to the high heterogeneity of the input datasets, we outliered data points found to have the most extreme values for the prevalence of resistance. An initial generalised linear model (GLM) was fit to the data and covariates and input data points that lay outside of two times the median absolute deviation from the modelled estimate for each location were determined to be outliers and removed. The GLM was fit with nested random effects based on the location to capture spatial effects, and was fit using the ‘lme4’ package version 1.1-21 in R version 3.6.1. 
After the removal of extreme values, the datasets were used to fit spatiotemporal statistical models of the prevalence of AMR. Firstly, we used a stacked ensemble model to fit the associations between selected covariates and data. For each of the pathogen–drug combinations, we considered the following child models for inclusion: generalised additive models (GAM), penalised regression models (elastic-net, ridge, lasso), random forest, cubist, and neural-networks. Models were fit in R version 3.6.1, using the packages ‘CARET’ version 6.085, ‘mgcv’ version 1.8.31, and ‘glmnet’ version 3.0.2. We fit the child models using five-fold cross validation for each combination and selected the best performing, non-correlated child models based on the out-of-sample predictive performance (final covariates for each pathogen–drug combination are shown in table S8). We then calculated the R2-weighted mean of the estimates of the child models, constraining the coefficients to sum to one, and used these ensemble estimates to fit a spatiotemporal Gaussian process regression (ST-GPR) model for each pathogen–drug combination. 
ST-GPR is described in detail elsewhere.1,3 In brief, spatial and temporal weights were applied to the residuals of the stacked ensemble model; these were then added to the modelled estimates to smooth them in time and space. A Gaussian process regression (GPR) was then fit, and the mean prevalence of AMR was calculated from 1000 draws of the GPR for each location and year with endemic disease. The 1000 draws of the model were taken through to the next stage of calculations to propagate uncertainty throughout. 
Section 3.5.4: Resistance profiles 
To accurately assess the burden associated with resistance to each antibiotic, we needed to first understand the landscape of multidrug-resistant bacteria, for which the burden would be shared across several antibiotics. We therefore estimated, for each bacteria studied, a set of ‘resistance profiles’ characterised as the probabilities for each possible combination of resistance/susceptibility for all of the antibiotics analyzed. For example, for a bacterium for which we assessed three antibiotics, we would estimate eight probabilities: SSS, SSR, SRS, RSS, SRR, RSR, RRS, and RRR (S – susceptible, R – resistant). These probabilities encompass the entire set of possibilities of resistance for the bacterium and sum to 1.
For a pathogen for which we assessed n antibiotics, resistance profiles were estimated by optimising over a 2n - 1-dimensional probability simplex with  linear constraints. Every such set of resistance profiles corresponds to a full specification of a multivariate binomial distribution. The target set of constraints were as follows:
· The inferred marginal probability of resistance for each antibiotic (the prevalence of resistance to an antibiotic irrespective of all others analyzed) exactly matches the estimates from our prevalence of resistance models. Since there are n antibiotics, this set comprises n constraints.
· The inferred pairwise likelihood of co-resistance for each pair of antibiotics exactly matches the likelihood inferred from the marginal probability of each antibiotic in the pair, and the Pearson correlation of resistance between the two antibiotics observed across all of the laboratory data we compiled. These represent  additional constraints.

The input format for these constraints with an example case can be found in the appendix of Murray et al. (2022).1 However, there is no a priori guarantee that the observables generate a feasible solution. To prevent the constraints from delineating an infeasible probability simplex (for example, an input suggesting the individual resistances to antibiotics A and B are both above 90% but the probability of co-resistance to A and B is below 10%), we solved an optimization problem that identified, for each input matrix, the closest feasible set of input constraints and a corresponding set of resistance profiles that fits these constraints. The 1-simplex in any dimension is specified by 
                                                   (3.5.5.1)
Each marginal observation and each pairwise co-resistance correspond to a linear constraint, where a sum over a subset of the  in the simplex should be a given value : 

where  is a ‘mask vector’ of zeros and ones, used to pick out the appropriate summands. Overall, there are  such affine constraints. The optimisation problem we solve is to find the nearest feasible simplex given these constraints: 


Where  can be used to provide importance weights for the data. This is a least squares problem with linear equality and inequality constraints (corresponding to the simplex), and can be solved very efficiently even for relatively large n (such as 10 co-occurring antibiotic classes). The result is guaranteed to return the probability simplex closest to the specified constraint, even if the original set of constraints is infeasible, and corresponding set of resistance profiles that fits this nearest simplex.
To propagate uncertainty, we repeat this procedure for each of the 1,000 draws we estimate for prevalence of antibiotic resistance. To generate the i-th draw of our resistance profiles, we input the i-th draw of the marginal probability of resistance for each antibiotic analyzed for a given pathogen into the probability simplex optimization algorithm. Updating the marginal probabilities of resistance in turn influences the probabilities of co-resistance, and each element of the input we feed the algorithm is unique to the i-th draw. The optimization is also initialised randomly for every draw. This process is implemented for each country, resulting in 1000 resistance profiles for each country for each pathogen in our analysis. The Pearson correlations of co-resistance that we derive from the input data are assumed to be constant across location, sex, and infectious syndrome. 
Section 3.5.5: Model validation 
Validation of prevalence of resistance modelling occurs in two instances. For the ensemble estimates, machine-learning candidate models are validated using five random holdout sets, and we select models correlated below a Pearson correlation coefficient threshold of 0.8 which showed the best performance based on the R2 predictive validity for the out-of-sample predictions. These intermediary results are not reported in this paper because they do not pertain to the final prevalence of resistance estimate. 
We then validate the entire ensemble ST-GPR process by calculating in-sample and out-of-sample accuracy metrics. Accuracy is measured as the proportion of correctly classified resistant/susceptible isolates based on the modelled estimate and the raw data’s prevalence of resistance. More information on this can be found in the appendix of Murray et al. (2022).1 For out-of-sample cross-validation, we withheld, at the outset of the ensemble modelling process, a set of countries with data as a holdout group: for the core-combinations we withheld 20% of countries each iteration, for 5 total holdout sets, while for the supplementary-combinations we withheld 10% of countries each iteration, for 10 holdout sets. Table 3.5.5.1 reports the accuracy metric for each pathogen–drug combination. Our in-sample accuracy values range from 77.2% to 99.8%, while our out-of-sample accuracy values range from 57.1% to 99.7%.1

Table 3.5.5.1: In-sample and out-of-sample accuracy estimates for prevalence of resistance models (GLOBAL)
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	[bookmark: _Toc131938143]FQ
	[bookmark: _Toc131938144]0.982
	[bookmark: _Toc131938145]0.856

	[bookmark: _Toc131938146]Enterococcus faecalis
	[bookmark: _Toc131938147]Vanco
	[bookmark: _Toc131938148]0.993
	[bookmark: _Toc131938149]0.987

	[bookmark: _Toc131938150]Enterococcus faecium
	[bookmark: _Toc131938151]FQ
	[bookmark: _Toc131938152]0.992
	[bookmark: _Toc131938153]0.985

	[bookmark: _Toc131938154]Enterococcus faecium
	[bookmark: _Toc131938155]Vanco
	[bookmark: _Toc131938156]0.976
	[bookmark: _Toc131938157]0.703

	[bookmark: _Toc131938158]Escherichia coli
	[bookmark: _Toc131938159]3GC
	[bookmark: _Toc131938160]0.977
	[bookmark: _Toc131938161]0.973

	[bookmark: _Toc131938162]Escherichia coli
	[bookmark: _Toc131938163]AG
	[bookmark: _Toc131938164]0.979
	[bookmark: _Toc131938165]0.96

	[bookmark: _Toc131938166]Escherichia coli
	[bookmark: _Toc131938167]Aminopenicillin
	[bookmark: _Toc131938168]0.959
	[bookmark: _Toc131938169]0.915

	[bookmark: _Toc131938170]Escherichia coli
	[bookmark: _Toc131938171]BL-BLI
	[bookmark: _Toc131938172]0.932
	[bookmark: _Toc131938173]0.909

	[bookmark: _Toc131938174]Escherichia coli
	[bookmark: _Toc131938175]CP
	[bookmark: _Toc131938176]0.988
	[bookmark: _Toc131938177]0.972

	[bookmark: _Toc131938178]Escherichia coli
	[bookmark: _Toc131938179]FQ
	[bookmark: _Toc131938180]0.983
	[bookmark: _Toc131938181]0.98

	[bookmark: _Toc131938182]Escherichia coli
	[bookmark: _Toc131938183]TMP-SMX
	[bookmark: _Toc131938184]0.907
	[bookmark: _Toc131938185]0.903

	[bookmark: _Toc131938186]Group A Streptococcus
	[bookmark: _Toc131938187]Macrolide
	[bookmark: _Toc131938188]0.987
	[bookmark: _Toc131938189]0.863

	[bookmark: _Toc131938190]Group B Streptococcus
	[bookmark: _Toc131938191]FQ
	[bookmark: _Toc131938192]0.993
	[bookmark: _Toc131938193]0.731

	[bookmark: _Toc131938194]Group B Streptococcus
	[bookmark: _Toc131938195]Macrolide
	[bookmark: _Toc131938196]0.986
	[bookmark: _Toc131938197]0.907

	[bookmark: _Toc131938198]Group B Streptococcus
	[bookmark: _Toc131938199]PCN
	[bookmark: _Toc131938200]0.997
	[bookmark: _Toc131938201]0.992

	[bookmark: _Toc131938202]Haemophilus influenzae
	[bookmark: _Toc131938203]3GC
	[bookmark: _Toc131938204]0.995
	[bookmark: _Toc131938205]0.981

	[bookmark: _Toc131938206]Haemophilus influenzae
	[bookmark: _Toc131938207]Aminopenicillin
	[bookmark: _Toc131938208]0.958
	[bookmark: _Toc131938209]0.849

	[bookmark: _Toc131938210]Klebsiella pneumoniae
	[bookmark: _Toc131938211]3GC
	[bookmark: _Toc131938212]0.981
	[bookmark: _Toc131938213]0.985

	[bookmark: _Toc131938214]Klebsiella pneumoniae
	[bookmark: _Toc131938215]AG
	[bookmark: _Toc131938216]0.983
	[bookmark: _Toc131938217]0.901

	[bookmark: _Toc131938218]Klebsiella pneumoniae
	[bookmark: _Toc131938219]BL-BLI
	[bookmark: _Toc131938220]0.979
	[bookmark: _Toc131938221]0.832

	[bookmark: _Toc131938222]Klebsiella pneumoniae
	[bookmark: _Toc131938223]CP
	[bookmark: _Toc131938224]0.987
	[bookmark: _Toc131938225]0.992

	[bookmark: _Toc131938226]Klebsiella pneumoniae
	[bookmark: _Toc131938227]FQ
	[bookmark: _Toc131938228]0.935
	[bookmark: _Toc131938229]0.755

	[bookmark: _Toc131938230]Klebsiella pneumoniae
	[bookmark: _Toc131938231]TMP-SMX
	[bookmark: _Toc131938232]0.973
	[bookmark: _Toc131938233]0.816

	[bookmark: _Toc131938234]Morganella spp.
	[bookmark: _Toc131938235]3GC
	[bookmark: _Toc131938236]0.922
	[bookmark: _Toc131938237]0.834

	[bookmark: _Toc131938238]Morganella spp.
	[bookmark: _Toc131938239]4GC
	[bookmark: _Toc131938240]0.974
	[bookmark: _Toc131938241]0.917

	[bookmark: _Toc131938242]Morganella spp.
	[bookmark: _Toc131938243]FQ
	[bookmark: _Toc131938244]0.928
	[bookmark: _Toc131938245]0.839

	[bookmark: _Toc131938246]Mycobacterium tuberculosis (new)
	[bookmark: _Toc131938247]Mono INH
	[bookmark: _Toc131938248]0.993
	[bookmark: _Toc131938249]0.966

	[bookmark: _Toc131938250]Mycobacterium tuberculosis (new)
	[bookmark: _Toc131938251]Mono RIF
	[bookmark: _Toc131938252]0.996
	[bookmark: _Toc131938253]0.987

	[bookmark: _Toc131938254]Mycobacterium tuberculosis (retreated)
	[bookmark: _Toc131938255]Mono INH
	[bookmark: _Toc131938256]0.982
	[bookmark: _Toc131938257]0.968



3GC = Third-generation cephalosporins. 4GC = Fourth-generation cephalosporins. AG = Aminoglycosides. Anti-pseudomonal = Anti-pseudomonal penicillin/Beta-Lactamase inhibitors. BL-BLI = Beta Lactam/Beta-lactamase inhibitors. CP = Carbapenems. FQ = Fluoroquinolones. MDR excluding XDR in TB = Multi-drug resistance excluding extensive drug resistance in TB. MDR in S. Typhi and Paratyphi = Multi-drug resistance in Salmonella Typhi and Paratyphi. Mono INH = Isoniazid mono-resistance. Mono RIF = Rifampicin mono-resistance. PCN = Penicillin. TMP-SMX = Trimethoprim-Sulfamethoxazole. Vanco = Vancomycin. XDR in TB = Extensive drug resistance in TB.
[bookmark: _Toc135992048]Section 3.6: Relative risk
Section 3.6.1: Input data and data processing
The input data for the relative risk estimation step included literature data that provided relative risk of death for resistant and susceptible organisms and hospital-based microbiology surveillance data linked to outcomes, as well as other clinical parameters (eg, demographics, diagnoses). Published studies were identified from a recent meta-analysis performed by Cassini and colleagues.18 
The data inputs for the excess duration estimates were literature data that reported on length of stay for resistant and susceptible organisms and hospital-based microbiology surveillance data that were linked to outcomes as well as various other clinical parameters (eg, demographics, diagnoses). The number of days between a positive specimen date and discharge date was used to obtain the mean duration of infection. We took into account days elapsed between admission and discharge as mean duration of stay if this was the only piece of information provided in the study. We also considered median duration of infection or median duration of stay if the study only provided this piece of information. 
Relative risk estimates were extracted from primary literature as were study characteristics that described the adjustments made by the study. When no adjustments were made, or an adjusted odds ratio was presented, we extracted the crude relative risk. For hospital data that contained admission diagnoses, diagnoses were mapped to GBD Level 2 causes. Admission diagnoses were mapped to GBD causes using ICD codes when provided; when admission diagnoses were free-text entries, they were mapped using two expert reviews.
Section 3.6.2: Modelling overview
The measure of excess risk used to estimate the fatal burden of AMR was the relative risk of death from an infection with a pathogen resistant to the antibiotic of interest as compared to an infection of the same site with the same organism that was susceptible to the antibiotic of interest. The relative risk estimate was produced after adjusting for various potential confounders including age, admission diagnosis (mapped to GBD causes), site of culture, and hospital versus community onset. Because of data sparsity, a single measure of relative risk was estimated for each pathogen–drug combination, representing a global estimate for all sites of infection and all underlying causes. 
When data availability allowed it, relative risk from hospital-based microbiology surveillance data was estimated after adjusting for age, admission diagnosis, site of culture, and hospital- versus community-acquired infection, otherwise a crude relative risk was used. The adjusted estimates of relative risks were then included with the crude relative risks in a two-stage nested mixed effects meta-regression model using MR-BRT. The stage one model was a meta-regression for each antibiotic class, which was used to produce a prior for the stage two model. We considered study-specific adjustments such as age of patients, admission diagnosis, site of culture and hospital-versus community acquired infection as potential covariates to be included in the second stage. Covariate selection was based on a set of log-linear models with a range of Lasso penalty parameters, and only statistically significant covariates were selected. The stage two model was run for each antibiotic class with a random effect for pathogen and fixed effects for study level characteristics that described whether the relative risk estimate from a study or dataset adjusted for each parameter using the prior from the stage one model for the antibiotic class. 


Where  is a bias covariate, is a random effect for pathogen n within an antibiotic class, measurement error, d is antibiotic class and  and  are vectors of length  for  covariates. From this stage two model, we produced 1000 draws to estimate the relative risk of death and uncertainty attributable to resistance for each pathogen–drug combination.
For non-fatal burden estimation, we estimated the excess duration attributable to resistance – comparing the length of hospital stay for an infection with a pathogen resistant to the antibiotic of interest to an infection of the same site with the same organism that was susceptible to the antibiotic of interest. For community-acquired infections the entire duration of length of stay was attributed to the infection, whereas for hospital-acquired infections we used the time from first positive culture to time of discharge to estimate length of stay. To address the potential confounding effect of longer admissions resulting in higher probability of acquiring resistant infections, we adjusted the relative length of stay obtained from patient level data for the number of hospital days prior to culture positivity. We observed a generally lower relative length of stay when we applied this adjustment, which was expected. We then used the same two-stage nested mixed effects meta-regression modelling framework described for fatal estimation to produce a relative length of stay attributable to resistance for each pathogen–drug combination. One exception to this estimation process was Neisseria gonorrhoeae, which had too little data to produce an estimate on the impact of resistance on duration of illness. As a result, we produced a YLD estimate based on the excess duration of illness for a given antibiotic class.
The analysis of relative risk followed the definitions of the prevalence of resistance step (section 3.5) as closely as possible. Both analyses identified resistance to a given antibiotics class if the isolate had an intermediate or resistant interpretation to any one of the antibiotics in that given class. But the analysis of relative risk diverged from the analysis of prevalence of resistance in the following circumstances. First, the relative risk step included molecular resistance testing if this was the only data provided by a study, eg, β-lactamase or mecA positive pathogens; this could potentially misclassify some resistant organisms as sensitive if they had an alternate mechanism for resistance, such as a porin alteration leading to carbapenem resistance. Second, the relative risk estimate produced was for sterile sites of infection, as there was limited data from non-sterile sites. Third, it was not possible to assess relative risk of multidrug-resistant pathogens because of limited data availability and because it did not fit in the modelling strategy at the antibiotic class level. Instead, the relative risk of each of the components of multidrug-resistant pathogens was calculated and the antibiotic class with the highest relative risk was used; for Salmonella Typhi this was relative risk to Trimethoprim-Suflamethoxazole. Fourth, we had limited availability of data on fatalities attributable to Salmonella Paratyphi and Shigella species; as a result, we used fatal relative risk estimates from Salmonella Typhi as a proxy. Fifth, there were limited data on fatalities attributable to resistant N. gonorrhoeae, so we excluded the fatal estimate for this pathogen. Finally, the relative risk of Mycobacterium tuberculosis was assessed for multidrug and extensively drug-resistant infections as reported previously in GBD. Estimates of relative risk of death for sterile sources of specimen across 88 pathogen–drug combinations can be viewed in the appendix of Murray et al. (2022).1 

Section 3.6.3: Model validation
We report three summary metrics to evaluate the relative risk of death models: the root-mean squared error (RMSE), the Mean Average Error (MAE) and the percent coverage of observed data within the full variance of the model. These three metrics were calculated using the real relative risk ratio in the whole sample of data and also by holding out 25% of the sample within antibiotic class in 4 iterations. 1
Table 3.6.3.1: In-sample and out-of-sample performance metrics for relative risk of death models 
	Antibiotic class
	MAE
	RMSE
	Coverage

	
	in-sample
	out-of-sample
	in-sample
	out-of-sample
	in-sample
	out-of-sample

	Vancomycin
	0.71
	0.65
	1.33
	0.94
	82%
	82%

	Fluoroquinolones
	0.73
	0.75
	1.61
	1.52
	88%
	90%

	Third-generation cephalosporins
	0.75
	0.76
	1.63
	1.49
	93%
	93%

	Macrolide
	0.71
	0.73
	1.25
	1.24
	95%
	94%

	Methicillin
	0.65
	0.67
	1.3
	1.13
	96%
	94%

	Penicillin
	0.48
	0.69
	0.83
	0.97
	96%
	98%

	Carbapenem
	0.64
	0.64
	1.54
	1.29
	98%
	97%

	Aminoglycosides
	0.37
	0.41
	0.61
	0.58
	100%
	100%

	Aminopenicillin
	0.9
	0.86
	1.82
	1.68
	100%
	100%

	Anti-pseudomonal penicillin/Beta-Lactamase inhibitors
	0.76
	0.8
	1.76
	1.64
	100%
	100%

	Beta Lactam/Beta-lactamase inhibitors
	0.36
	0.3
	0.61
	0.37
	100%
	100%

	Fourth-generation cephalosporins
	1.22
	1.54
	3.21
	3.46
	100%
	100%

	Trimethoprim-Sulfamethoxazole
	0.64
	0.6
	1.17
	0.97
	100%
	100%



This approach for relative risk estimation had several limitations, most were attributable to data sparsity. First, it is likely that the impact of resistance on mortality is different across locations. In locations where overall health-care access and quality are lower, the impact of resistance may be smaller because the management of susceptible infections is sub-optimal. Conversely, in locations where broad, second- and third-line antimicrobials are not available, one would expect the impact of resistance to be greater. Second, it is possible that the relative risk of death attributable to resistance is different across anatomical sites of infection because of variable penetrance of antibiotics to different anatomical locations. As we continue efforts to expand data collection and reporting, we hope to be able to address these limitations in future iterations.

[bookmark: _Toc135992049]Section 3.7: Counterfactuals and AMR estimation
Section 3.7.1: Estimating AMR burden with counterfactual of no infection
We computed two counterfactuals to estimate the drug-resistant burden. First, we estimated the burden of AMR using the counterfactual of no infection. We estimated the fatal burden of individual pathogen–drug combinations by taking the product of the deaths for each underlying cause, fraction of deaths related to infection, infectious syndrome fraction, fatal pathogen fraction, and fatal prevalence of resistance and then summed across all infectious syndromes and underlying causes:

where D = deaths, S = fraction related to infection, M = infectious syndrome fraction, P = fatal pathogen fraction, R = fatal prevalence of resistance, J = cause, L = syndrome, K = pathogen, d = drug. To produce an estimate of deaths with resistance to any antibiotic estimated, we employed the same formula but used the fatal prevalence of resistance to any antibiotic using the resistance profiles, described previously. We calculated the fatal prevalence of resistance R for a given drug  based on the non-fatal prevalence of resistance  and relative risk of death  for this drug:

We calculated the fatal prevalence of resistance to any antibiotic estimated based on the non-fatal prevalences of each resistance profile, incorporating all resistance profiles  that are resistant to at least 1 drug with corresponding relative risks , determined by the method described below (section 3.7.2):

We then estimated YLLs using standard GBD methods to convert age-sex specific deaths into YLLs.4
For the non-fatal estimate, we first estimated the incidence of each infectious syndrome in each underlying cause. For infectious underlying causes, we simply used the incidence estimated in GBD. For non-infectious underlying causes, we divided the infectious syndrome deaths () by the syndrome- and pathogen-specific CFRs calculated in section 5, aggregated across pathogen using the nonfatal pathogen distribution  calculated above. 

We then took the product of the infectious syndrome incidence, the non-fatal pathogen fraction, and the non-fatal prevalence of resistance and summed across all infectious syndromes and underlying causes to get incidence with resistance for every pathogen and drug. As with the fatal estimate, to produce an estimate of incident infections with resistance to any antibiotic, we used the same formula and used the non-fatal prevalence of resistance to any antibiotic estimated from the resistance profiles.
We then calculated YLDs for each pathogen. For some GBD causes, we simply used the GBD YLD estimates and multiplied them by the corresponding nonfatal pathogen distribution (table 8.1.2) For all other causes, we multiplied together the infectious syndrome incidence, the non-fatal pathogen fraction, and a syndrome-specific YLDs per incident case rate, calculated using a proxy cause from GBD.4 To estimate the YLDs per incident case rate, we extracted GBD incidence and YLD estimates for the proxy causes and divided the YLDs by the incidence for each age, sex, and location. Three infectious syndromes are not estimated in the GBD, and therefore have no standard sequelae or disability weights: bloodstream infections, intra-abdominal infections, and bone and joint infections. For the proxy causes for these three syndromes, we used the closest approximate disease as determined by a group of experts in infectious diseases and epidemiology. This approach is a significant limitation of the study and should be improved in future work.
To get the YLDs associated with resistance for each pathogen, we used the non-fatal prevalences of resistance for each drug and resistance profile and relative length of stay (LOS) for each pathogen–drug combination to calculate the fraction of YLDs associated with resistance for each pathogen, using equations analogous to equations 3.7.1.2 and 3.7.1.3. We multiplied this fraction by the YLDs for each pathogen to get YLDs associated with resistance to each pathogen–drug combination and YLDs associated with resistance any antibiotics estimated. We then added YLLs and YLDs to produce the DALY estimate for burden associated with resistance. 
Section 3.7.2: Estimating AMR burden with counterfactual of infection with susceptible organism
For the second counterfactual – comparing resistant to susceptible infections – we calculated mutually exclusive pathogen–drug estimates. To do this, we first estimated the population attributable fraction of deaths () for each resistance profile with resistance to at least 1 drug, . The inputs for the PAF were the non-fatal prevalence of the given resistance profile, , and the relative risk of death for resistant infection compared to susceptible infection for each drug, . Because of data sparsity, we were unable to calculate the relative risk for every possible resistance profile, and so instead used the highest relative risk of all of the drugs in the resistance profile. For example, if for a resistance profile of resistant to penicillin and fluoroquinolones, the relative risk was 1.1 for penicillin and 1.4 for fluoroquinolones, we would use a relative risk of 1.4 for this profile. The mortality PAF is calculated as a multi-category exposure:

where d* is the drug in the resistance profile  with the highest relative risk.
We then took the product of the deaths for each underlying cause, fraction of deaths related to infection, infectious syndrome fraction, fatal pathogen fraction, and the mortality PAF for each resistance profile to get the deaths attributable to resistance for every resistance profile:

When the resistance profile described resistance to more than one antibiotic, the deaths were then distributed to the component pathogen–drug combinations based on the excess risk of the pathogen–drug combination divided by the sum of the excess risk of all pathogen–drug combinations in the resistance profile. For a resistance profile  with resistance to drugs :

For co-resistance amongst beta-lactam antibiotics (ie, carbapenems, 4GC, 3GC, antipseudomonal, BL/BLI, aminopenicillins, and penicillin), we used a different approach to redistributing burden. Similar to Cassini et al., we applied a hierarchy such that the burden was categorically attributed to the broadest beta-lactam antibiotic, rather than split the burden between multiple beta-lactam antibiotics.5 When a pathogen was resistant to multiple beta-lactams and a non-beta-lactam antibiotic, we first applied the hierarchy to determine the ‘highest’ beta-lactam resistance and then generated redistribution weights using only the ‘highest’ beta-lactam and the non-beta-lactams. We then used these attributable death estimates to estimate YLLs using standard GBD methods to convert age-sex specific deaths to YLLs. 
A similar approach was taken to estimate non-fatal burden for the counterfactual of antibiotic-susceptible infection. We first assumed that antibiotic resistance has no effect on the attack rate of pathogens; therefore, there are 0 incident cases attributable to resistance and all non-fatal burden comes from increased length of illness. To quantify the extent of this increased length of illness, we first produced a length of stay (LOS) PAF for each resistance profile using the non-fatal prevalence of resistance and relative LOS for resistant infections as compared to susceptible infections in a method analogous to equation 3.7.2.1. Because of data sparsity, we were unable to calculate the relative LOS for every resistance profile, and so instead used the relative LOS for the drug with the highest relative LOS in the profile. We then took the product of the YLDs for each infectious syndrome, the non-fatal pathogen distribution, and the LOS PAF to produce attributable YLD estimates. This assumes that the attributable LOS PAF is equally applicable to all sequelae, which is an assumption made because of a lack of data on the impact of resistance on the likelihood of different sequelae and the duration of specific sequelae. Specifically for AMR, this assumption fails to account for the fact that patients with resistant infections are more prone to re-infection, treatment failure and long term sequelae as compared to patients with susceptible ones, and we acknowledge this is a significant limitation that should be improved in future work. We then added YLLs and YLDs to produce an estimate of DALYs attributable to resistance.
Because of the optimisation approach used to derive each resistance profile, the prevalence of resistance to for a given pathogen–drug as modelled using ensemble ST-GPR (section 3.5.3), , will not necessarily be exactly equal to the sum of all resistance profiles  that include resistance to drug . Due to this inconsistency, in extremely rare cases, an estimate of AMR burden in the susceptible counterfactual may slightly exceed the corresponding estimate of AMR burden in the no infection counterfactual for a specific pathogen–drug. We consider the ensemble ST-GPR estimate to be more accurate than the resistance profiles, since the latter are based on Pearson correlations of multidrug resistance that are calculated from limited microdata and generalised to all locations. For this reason, we cap all individual pathogen–drug estimates of burden for the susceptible counterfactual, which are based on the resistance profiles, to the burden for the no infection counterfactual, which are based on the ensemble ST-GPR estimates.
Section 3.7.3: Excluded combinations
Although our approach attempted to be exhaustive and include all clinically-relevant pathogen–drug combinations, there are two combinations included in the WHO priority list for which we could not produce an estimate. The first is clarithromycin resistance in Helicobacter pylori and the second is fluoroquinolone resistance in Campylobacter species. These were excluded due to limited data availability, as highlighted by a recent study in the European Union that found that, as of 2019, no member countries had implemented publicly accessible, mandatory reporting surveillance programmes for these two pathogen–drug combinations.19 H. pylori and Campylobacter spp. are commonly diagnosed without culture so resistance profiles are uncommon in passive surveillance systems. The burden of H. pylori is not currently estimated in GBD, though some of the consequent diseases are, like peptic ulcer disease and gastric cancer. Producing a burden estimate of H. pylori was outside the scope of this work, and without a pathogen burden estimate, we could not produce an estimate of the burden attributable to clarithromycin-resistant H. pylori. In contrast, GBD does produce an estimate on the burden of Campylobacter spp. There were, however, too few data to produce an estimate on the excess risk of death or duration associated with fluoroquinolone resistance and limited data to inform a global prevalence of resistance estimate. Given these limitations, we did not produce burden estimates for clarithromycin-resistant H. pylori or fluoroquinolone-resistant Campylobacter spp. Because of the lack of data on risk of death associated with drug-resistant Neisseria gonorrhoeae, we were unable to produce an estimate of the fatal burden of resistance so produce only a non-fatal estimate. Many potential pathogen–drug combinations were excluded due to the spectrum of antimicrobial activity (ie, vancomycin and E. coli), intrinsic resistance (eg, BL/BLI resistance in Pseudomonas aeruginosa) or resistance that is exceedingly common (eg, penicillin resistance in S. aureus); these combinations were decided by a group of experts in infectious diseases, microbiology, epidemiology, and population health. A final constraint was the computational burden of estimating more than seven antibiotic classes for a single pathogen. Because of the approach to co-resistance described in section 3.5, each antibiotic class added led to an exponential increase in the computation needs and anything above seven antibiotic classes was not tenable. As additional data are made available, we plan to add clinically relevant combinations and iterate on the computational approach so that we can describe the burden of bacterial AMR more comprehensively.  
[bookmark: _Toc135992050]Section 3.8: Special considerations
Section 3.8.1: The use of defined daily doses (DDDs) and breakpoint interpretations
Although used pervasively, the DDD metric is not ideal and is often misunderstood, which is why novel approaches to quantify drug utilisation have been proposed recently, especially for the paediatric population.20,21 As DDD aims to capture a dosing regimen intended for a 70-kg adult patient, concentrating on the frequency and the duration of a single-unit dose, this is not always an accurate representation of prescribed doses in certain countries22. Bruyndonckx et al.23 demonstrated how the typical content of an original antibiotic package has significantly increased in European countries over time, with substantial differences between countries and antibiotic groups (apart from fluoroquinolones); this alone has important implications for understanding the link between antibiotic usage and resistance development, and consequently on resultant mortality rates. Likewise, inconsistent associations and predictions of resistance can be observed when DDDs are compared with different metrics, such as “packages per 1000 inhabitants per day (PID)”.24 We should also consider mathematical and theoretical models that indicate how consumption-resistance relationships are usually nonlinear,25 while patient-related determinants of antibiotic use must also be taken into account.26 These are some of the reasons why we have decided to pursue separate mortality analyses for different antibiotic groups, prompted also by the recent ECDC/EFSA/EMA report (ie, ECDC in collaboration with European Food Safety Authority and European Medicine Agency),27 and we expect that our research may influence the development of an optimal metric for future estimations.
In addition, from 2019, EUCAST has changed the long-held definitions of antimicrobial susceptibility testing (AST) categories susceptible (S), intermediate (I), and resistant (R) to susceptible with standard dosing regimen, susceptible with increased exposure, and resistant, respectively.28 This is in contrast with CLSI clinical breakpoints29 and methodology, which uses the classic trifecta of AST categories, although they are also changing their approach towards ‘susceptible - dose dependent’ instead of intermediate category for several pathogen-drug combinations.


[bookmark: _Toc135992051]Section 4: Supplementary Tables and Figures
Supplementary Figure 1. Flowchart of antimicrobial resistance fatal and non-fatal estimation steps
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[image: ]Supplementary Figure 2. DALYs (count) attributable to bacterial antimicrobial resistance by pathogen-drug combinations, 2019.








Supplementary Figure 3. DALYs (count) associated with bacterial antimicrobial resistance by pathogen-drug combinations, 2019.
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Supplementary Figure 4. Deaths (age−standardised rate per 100k) attributable to bacterial antimicrobial resistance by pathogen and country, 2019






	

Supplementary Figure 5. Deaths (age−standardised rate per 100k) associated with bacterial antimicrobial resistance by pathogen and country, 2019




Supplementary Figure 6. DALYs (age−standardised rate per 100k) attributable to bacterial antimicrobial resistance by pathogen and country, 2019



Supplementary Figure 7. DALYs (age−standardised rate per 100k) associated with bacterial antimicrobial resistance by pathogen and country, 2019



Supplementary Figure 8. Distribution of deaths (proportion) not associated with, associated with, and attributable to AMR by infectious syndrome.
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Supplementary Figure 9. Age−standardised mortality rate associated with AMR by Socio−demographic Index, 2019



Supplementary Figure 10. Age−standardied mortality rate attributable to AMR by Socio−demographic Index, 2019



Supplementary Figure 11. Prevalence of Methicillin-resistant Staphylococcus aureus in countries of the Americas, 2019.
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Supplementary Figure 12. Strategising AMR prevention: Infection control and antimicrobial stewardship
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Figure 13: Age and sex−specific AMR mortality rates for the Region of the Americas and six GBD regions



Figure 14: S. pneumoniae vaccination and AMR mortality



Supplementary Table 1: Pathogen-drug combinations with the largest number of deaths and age-standardised mortality rates per 100 000 by counterfactual and country in the Americas, 2019.
	Country
	Counterfactual
	Pathogen
	Antibiotic class
	Deaths (count)
	Age standardized rate per 100,000

	Antigua and Barbuda
	associated
	Acinetobacter baumannii
	Fluoroquinolones
	8.60 (4.84 - 13.5)
	  9.7 (5.5 - 15.2)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	1.69 (0.79 - 2.87)
	1.9 (0.9 - 3.3)

	Argentina
	  associated  
	Staphylococcus aureus
	  Methicillin  
	6,810 (5,480 – 8,450)
	  15.1 (12.1 - 18.7)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	1,940 (955 – 3,090)
	4.3 (2.1 - 6.9)

	Barbados
	  associated  
	Escherichia coli
	  Aminopenicillin  
	60.2 (44.4 - 80.6)
	  20.2 (14.9 - 27.1)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	15.2 (7.01 - 25.1)
	5.1 (2.4 - 8.4)

	Belize
	  associated  
	Escherichia coli
	  Aminopenicillin  
	24.6 (17.3 - 33.9)
	  6.0 (4.2 - 8.3)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	4.60 (2.11 - 7.77)
	1.1 (0.5 - 1.9)

	Bolivia
	  associated  
	Klebsiella pneumoniae
	  Beta Lactam/Beta-lactamase inhibitors  
	1,580 (1,110 – 2,150)
	  13.2 (9.3 - 17.9)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	309 (138 - 526)
	2.6 (1.2 - 4.4)

	Brazil
	  associated  
	Staphylococcus aureus
	  Macrolide  
	24,600 (19,400 – 31,410)
	  11.4 (9.0 - 14.5)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	4,410 (2,000 – 7,390)
	2.0 (0.9 - 3.4)

	Canada
	  associated  
	Escherichia coli
	  Aminopenicillin  
	2,620 (1,830 – 3,660)
	  7.2 (5.0 - 10.0)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	489 (197 - 871)
	1.3 (0.5 - 2.4)

	Chile
	  associated  
	Staphylococcus aureus
	  Methicillin  
	2,130 (1,560 – 2,880)
	  11.7 (8.6 - 15.9)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	597 (284 - 989)
	3.3 (1.6 - 5.4)

	Colombia
	  associated  
	Escherichia coli
	  Aminopenicillin  
	3,540 (2,380 – 5,120)
	  7.4 (5.0 - 10.7)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	777 (350 – 1,330)
	1.6 (0.7 - 2.8)

	Costa Rica
	  associated  
	Staphylococcus aureus
	  Methicillin  
	415 (268 - 616)
	  8.8 (5.7 - 13.1)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	121 (57.0 - 206)
	2.6 (1.2 - 4.4)

	Cuba
	  associated  
	Acinetobacter baumannii
	  Fourth-generation cephalosporins  
	1,120 (627 – 1,870)
	  9.9 (5.5 - 16.5)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	189 (81.2 - 352)
	1.7 (0.7 - 3.1)

	Dominica
	  associated  
	Acinetobacter baumannii
	  Third-generation cephalosporins  
	11.4 (6.42 - 18.0)
	  16.6 (9.4 - 26.1)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	1.93 (0.87 - 3.27)
	2.8 (1.3 - 4.8)

	Dominican Republic
	  associated  
	Escherichia coli
	  Aminopenicillin  
	931 (577 – 1,420)
	  8.6 (5.3 - 13.0)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	203 (90.7 - 352)
	1.9 (0.8 - 3.2)

	Ecuador
	  associated  
	Escherichia coli
	  Beta Lactam/Beta-lactamase inhibitors  
	1,510 (1,000 – 2,200)
	  8.6 (5.7 - 12.5)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	296 (129 - 508)
	1.7 (0.7 - 2.9)

	El Salvador
	  associated  
	Escherichia coli
	  Aminopenicillin  
	698 (448 – 1,010)
	  11.2 (7.2 - 16.2)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	157 (71.2 - 271)
	2.5 (1.1 - 4.3)

	Grenada
	  associated  
	Acinetobacter baumannii
	  Anti-pseudomonal penicillin/Beta-Lactamase inhibitors  
	11.4 (6.62 - 17.8)
	  11.0 (6.4 - 17.2)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	2.46 (1.17 - 4.03)
	2.4 (1.1 - 3.9)

	Guatemala
	  associated  
	Klebsiella pneumoniae
	  Beta Lactam/Beta-lactamase inhibitors  
	1,920 (1,310 – 2,690)
	  10.8 (7.4 - 15.1)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	389 (163 - 673)
	2.2 (0.9 - 3.8)

	Guyana
	  associated  
	Staphylococcus aureus
	  Methicillin  
	99.0 (66.1 - 144)
	  12.9 (8.6 - 18.6)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	25.8 (12.2 - 44.2)
	3.3 (1.6 - 5.7)

	Haiti
	  associated  
	Streptococcus pneumoniae
	  Trimethoprim-Sulfamethoxazole  
	1,670 (1,200 – 2,230)
	  13.5 (9.7 - 18.0)  

	
	attributable
	Klebsiella pneumoniae
	Third-generation cephalosporins
	178 (48.1 - 388)
	1.4 (0.4 - 3.1)

	Honduras
	  associated  
	Escherichia coli
	  Aminopenicillin  
	1,070 (720 – 1,540)
	  10.9 (7.3 - 15.7)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	160 (70.4 - 277)
	1.6 (0.7 - 2.8)

	Jamaica
	  associated  
	Acinetobacter baumannii
	  Third-generation cephalosporins  
	271 (146 - 441)
	  9.6 (5.2 - 15.7)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	52.7 (24.0 - 95.4)
	1.9 (0.9 - 3.4)

	Mexico
	  associated  
	Escherichia coli
	  Aminopenicillin  
	14,800 (10,100 – 20,800)
	  11.9 (8.1 - 16.7)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	2,470 (1,090 – 4,180)
	2.0 (0.9 - 3.3)

	Nicaragua
	  associated  
	Escherichia coli
	  Aminopenicillin  
	512 (333 - 743)
	  7.9 (5.1 - 11.4)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	114 (51.2 - 195)
	1.8 (0.8 - 3.0)

	Panama
	  associated  
	Escherichia coli
	  Aminopenicillin  
	302 (193 - 442)
	  7.3 (4.6 - 10.6)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	64.6 (28.0 - 112)
	1.6 (0.7 - 2.7)

	Paraguay
	  associated  
	Escherichia coli
	  Aminopenicillin  
	505 (333 - 729)
	  7.3 (4.8 - 10.5)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	136 (63.0 - 231)
	2.0 (0.9 - 3.3)

	Peru
	  associated  
	Staphylococcus aureus
	  Methicillin  
	3,920 (2,810 – 5,390)
	  11.5 (8.3 - 15.9)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	1,030 (467 – 1,690)
	3.0 (1.4 - 5.0)

	Saint Kitts and Nevis
	  associated  
	Acinetobacter baumannii
	  Fluoroquinolones  
	6.67 (3.82 - 10.3)
	  11.2 (6.4 - 17.3)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	1.42 (0.67 - 2.36)
	2.4 (1.1 - 4.0)

	Saint Lucia
	  associated  
	Acinetobacter baumannii
	  Third-generation cephalosporins  
	18.7 (10.6 - 29.5)
	  10.7 (6.1 - 16.9)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	4.20 (1.98 - 7.14)
	2.4 (1.1 - 4.1)

	Saint Vincent and the Grenadines
	  associated  
	Acinetobacter baumannii
	  Anti-pseudomonal penicillin/Beta-Lactamase inhibitors  
	13.4 (7.46 - 21.0)
	  11.8 (6.6 - 18.6)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	2.76 (1.30 - 4.70)
	2.4 (1.2 - 4.2)

	Suriname
	  associated  
	Escherichia coli
	  Aminopenicillin  
	61.2 (43.4 - 83.0)
	  10.6 (7.5 - 14.4)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	12.2 (5.77 - 20.7)
	2.1 (1.0 - 3.6)

	The Bahamas
	  associated  
	Escherichia coli
	  Aminopenicillin  
	38.0 (25.9 - 54.4)
	  10.1 (6.9 - 14.4)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	5.67 (2.26 - 9.95)
	1.5 (0.6 - 2.6)

	Trinidad and Tobago
	  associated  
	Staphylococcus aureus
	  Methicillin  
	160 (100 - 245)
	  11.6 (7.2 - 17.7)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	41.7 (18.7 - 72.8)
	3.0 (1.4 - 5.2)

	United States
	  associated  
	Staphylococcus aureus
	  Macrolide  
	38,200 (26,900 – 53,800)
	  11.7 (8.2 - 16.4)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	8,730 (3,710 – 15,400)
	2.7 (1.1 - 4.7)

	Uruguay
	  associated  
	Escherichia coli
	  Aminopenicillin  
	558 (420 - 734)
	  16.2 (12.2 - 21.4)  

	
	attributable
	Staphylococcus aureus
	Methicillin
	74.0 (30.3 - 128)
	2.2 (0.9 - 3.7)

	Venezuela
	  associated  
	Escherichia coli
	  Aminopenicillin  
	1,950 (1,230 – 2,940)
	  7.0 (4.4 - 10.5)  

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	433 (193 - 785)
	1.5 (0.7 - 2.8)








Supplementary Table 2: Pathogen-drug combinations with the largest number of DALYs and age-standardised DALY rates per 100 000 by counterfactual and country in the Americas, 2019.
	Country
	Counterfactual
	Pathogen
	Antibiotic class
	DALYs (count)
	Age standardized rate per 100,000

	Antigua and Barbuda
	associated
	Acinetobacter baumannii
	Fluoroquinolones
	195 (108 - 313)
	 220.7 (122.5 - 353.3) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	38.7 (17.9 - 67.0)
	43.7 (20.2 - 75.7)

	Argentina
	  associated  
	Staphylococcus aureus
	 Methicillin 
	126,000 (99,200 – 163,000)
	 280.0 (220.0 - 360.6) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	35,900 (17,300 – 58,000)
	79.6 (38.4 - 128.6)

	Barbados
	  associated  
	Escherichia coli
	 Aminopenicillin 
	1,120 (798 – 1,530)
	 375.8 (267.8 - 514.5) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	284 (129 - 485)
	95.3 (43.3 - 162.7)

	Belize
	  associated  
	Escherichia coli
	 Aminopenicillin 
	754 (517 - 1050)
	 183.8 (126.0 - 255.3) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	147 (66.6 - 248)
	35.8 (16.2 - 60.5)

	Bolivia
	  associated  
	Streptococcus pneumoniae
	 Trimethoprim-Sulfamethoxazole 
	63,500 (47,800 – 82,000)
	 528.7 (398.3 - 683.0) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	10,400 (4,550 – 18,000)
	86.8 (37.9 - 149.8)

	Brazil
	  associated  
	Staphylococcus aureus
	 Macrolide 
	598,000 (454,000 – 780,000)
	 276.1 (209.5 - 359.9) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	107,000 (46,600 – 181,000)
	49.3 (21.5 - 83.3)

	Canada
	  associated  
	Escherichia coli
	 Aminopenicillin 
	43,500 (29,500 – 62,300)
	 119.2 (80.8 - 170.6) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	8,500 (3,330 – 15,400)
	23.3 (9.1 - 42.2)

	Chile
	  associated  
	Staphylococcus aureus
	 Methicillin 
	40,800 (28,000 – 57,400)
	 224.3 (153.7 - 315.6) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	11,400 (5,250 – 19,400)
	62.7 (28.9 - 106.6)

	Colombia
	  associated  
	Escherichia coli
	 Aminopenicillin 
	80,800 (52,700 – 119,000)
	 169.0 (110.4 - 248.4) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	19,800 (9,050 – 34,100)
	41.4 (18.9 - 71.4)

	Costa Rica
	  associated  
	Staphylococcus aureus
	 Methicillin 
	9,560 (5,950 – 14,600)
	 202.6 (126.2 - 309.8) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	3,000 (1,260 – 4,860)
	59.3 (26.8 - 103.1)

	Cuba
	  associated  
	Acinetobacter baumannii
	 Fourth-generation cephalosporins 
	22,300 (12,300 – 36,800)
	 196.2 (108.5 - 324.1) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	3,580 (1,510 – 6,710)
	31.5 (13.3 - 59.1)

	Dominica
	  associated  
	Acinetobacter baumannii
	 Third-generation cephalosporins 
	245 (137 - 383)
	 356.5 (200.1 - 557.3) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	43.9 (19.5 - 76.5)
	63.9 (28.4 - 111.4)

	Dominican Republic
	  associated  
	Klebsiella pneumoniae
	 Beta Lactam/Beta-lactamase inhibitors 
	34,900 (22,300 – 51,700)
	 321.0 (205.3 - 474.8) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	7,160 (3,070 – 12,400)
	65.8 (28.2 - 113.5)

	Ecuador
	  associated  
	Klebsiella pneumoniae
	 Beta Lactam/Beta-lactamase inhibitors 
	42,900 (28,700 – 60,400)
	 243.7 (163.4 - 343.2) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	8,010 (3,440 – 14,100)
	45.5 (19.6 - 80.0)

	El Salvador
	  associated  
	Escherichia coli
	 Aminopenicillin 
	16,500 (10,200 – 25,000)
	 263.8 (163.3 - 398.9) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	3,690 (1,660 – 6,500)
	59.0 (26.5 - 103.9)

	Grenada
	  associated  
	Acinetobacter baumannii
	 Anti-pseudomonal penicillin/Beta-Lactamase inhibitors 
	276 (162 - 4267)
	 267.8 (157.0 - 413.3) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	61.8 (29.0 - 103)
	59.9 (28.1 - 99.3)

	Guatemala
	  associated  
	Streptococcus pneumoniae
	 Trimethoprim-Sulfamethoxazole 
	77,100 (55,200 – 106,000)
	 433.6 (310.5 - 594.0) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	13,400 (5,580 – 23,600)
	75.2 (31.4 - 132.5)

	Guyana
	  associated  
	Staphylococcus aureus
	 Methicillin 
	3,148 (2,020 – 4,670)
	 408.4 (262.3 - 605.9) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	818 (384 – 1,400)
	106.1 (49.9 - 182.2)

	Haiti
	  associated  
	Streptococcus pneumoniae
	 Trimethoprim-Sulfamethoxazole 
	116,000 (82,800 – 154,000)
	 936.9 (667.9 - 1244.4) 

	
	attributable
	Klebsiella pneumoniae
	Third-generation cephalosporins
	10,200 (2,760 – 21,700)
	82.0 (22.3 - 174.8)

	Honduras
	  associated  
	Escherichia coli
	 Aminopenicillin 
	32,500 (21,100 – 46,900)
	 331.2 (215.5 - 478.1) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	5,210 (2,300 – 9,220)
	53.1 (23.4 - 93.9)

	Jamaica
	  associated  
	Acinetobacter baumannii
	 Third-generation cephalosporins 
	6,140 (3,390 – 9,920)
	 218.3 (120.5 - 353.0) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	1,260 (570 – 2,300)
	45.0 (20.3 - 81.8)

	Mexico
	  associated  
	Escherichia coli
	 Aminopenicillin 
	380,000 (254,000 – 541,000)
	 304.1 (203.5 - 432.7) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	68,200 (30,100 – 116,000)
	54.6 (24.1 - 93.1)

	Nicaragua
	  associated  
	Escherichia coli
	 Aminopenicillin 
	15,000 (9,880 – 21,500)
	 230.0 (151.7 - 330.2) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	3,710 (1,670 – 6,330)
	57.0 (25.6 - 97.3)

	Panama
	  associated  
	Escherichia coli
	 Aminopenicillin 
	7,520 (4,780 – 11,300)
	 180.7 (115.0 - 270.5) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	1,740 (754 – 3,050)
	41.8 (18.1 - 73.3)

	Paraguay
	  associated  
	Staphylococcus aureus
	 Methicillin 
	13,700 (8,970 – 20,100)
	 198.2 (129.5 - 290.7) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	3,750 (1,700 – 6,490)
	54.0 (24.7 - 93.6)

	Peru
	  associated  
	Streptococcus pneumoniae
	 Trimethoprim-Sulfamethoxazole 
	98,800 (68,200 – 138,000)
	 290.5 (200.6 - 406.0) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	24,200 (11,200 – 40,900)
	71.1 (32.8 - 120.4)

	Saint Kitts and Nevis
	  associated  
	Acinetobacter baumannii
	 Fluoroquinolones 
	172 (97.3 - 271)
	 288.3 (163.5 - 455.0) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	36.8 (16.9 - 62.2)
	61.8 (28.5 - 104.6)

	Saint Lucia
	  associated  
	Acinetobacter baumannii
	 Third-generation cephalosporins 
	418 (235 - 668)
	 239.1 (134.3 - 382.6) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	97.4 (45.7 - 168)
	55.8 (26.2 - 96.3)

	Saint Vincent and the Grenadines
	  associated  
	Acinetobacter baumannii
	 Anti-pseudomonal penicillin/Beta-Lactamase inhibitors 
	309 (174 - 486)
	 272.7 (153.5 - 429.3) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	67.5 (31.4 - 117)
	59.7 (27.7 - 103.5)

	Suriname
	  associated  
	Escherichia coli
	 Aminopenicillin 
	1,670 (1,130 – 2,340)
	 289.7 (196.4 - 405.5) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	362 (167 - 631)
	62.9 (29.0 - 109.5)

	The Bahamas
	  associated  
	Escherichia coli
	 Aminopenicillin 
	966 (642 – 1,410)
	 256.2 (170.3 - 374.5) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	147 (57.5 - 264)
	39.0 (15.3 - 70.1)

	Trinidad and Tobago
	  associated  
	Staphylococcus aureus
	 Methicillin 
	3,810 (2,300 – 6,020)
	 274.5 (165.9 - 433.7) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	989 (437 – 1,750)
	71.3 (31.5 - 125.9)

	United States
	  associated  
	Staphylococcus aureus
	 Macrolide 
	734,000 (496,000 – 1,060,000)
	 223.9 (151.2 - 323.7) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	167,000 (70,700 – 300,000)
	51.0 (21.6 - 91.4)

	Uruguay
	  associated  
	Escherichia coli
	 Aminopenicillin 
	8,860 (6,520 – 12,000)
	 257.8 (189.8 - 348.2) 

	
	attributable
	Staphylococcus aureus
	Methicillin
	1,240 (506 – 2,210)
	36.0 (14.7 - 64.3)

	Venezuela
	  associated  
	Streptococcus pneumoniae
	 Macrolide 
	53,400 (35,600 – 76,700)
	 190.3 (126.8 - 273.2) 

	
	  attributable  
	Staphylococcus aureus
	Methicillin
	12,200 (5,410 – 22,200)
	43.6 (19.3 - 79.1)



Supplementary Table 3: Deaths and DALYs attributable to and associated with AMR by GBD Region.
	

	GBD Region
	Associated with AMR
	Attributable to AMR

	
	Deaths
	DALYs
	Deaths
	DALYs

	
	Counts
	Rate per 100k
	Counts
	Rate per 100k
	Counts
	Rate per 100k
	Counts
	Rate per 100k

	Andean Latin America
	40,200 (28,900-54,300)
	63.2 (45.4-85.4)
	1,210,000 (853,000-1,680,000)
	1,906.4 (1,341.3-2,640.4)
	10,100 (7,050-13,900)
	15.9 (11.1-21.9)
	301,000 (207,000-421,000)
	472.9 (326.2-661.6)

	Caribbean
	26,900 (19,000-37,200)
	64.2 (45.3-88.7)
	1,020,000 (733,000-1,410,000)
	 2,444.4 (1,750.9-3,365.6) 
	 6,670 (4,590-9,460) 
	 15.9 (11-22.6) 
	 249,000 (174,000-344,000) 
	594.4 (414.7-820.9)

	Central Latin America
	127,000 (86,700-177,000)
	50.6 (34.7-70.9)
	3,670,000 (2,500,000-5,180,000)
	1,467.4 (1,000.3-2,070.1)
	32,600 (22,000-46,200)
	13 (8.8-18.5)
	933,000 (632,000-1,330,000)
	373.3 (252.9-532.9)

	High-income North America
	186,000 (129,000-260,000)
	51 (35.4-71.5)
	3,620,000 (2,410,000-5,190,000)
	 992.7 (662.5-1,424.9) 
	 44,800 (30,300-63,900) 
	 12.3 (8.3-17.5) 
	 872,000 (567,000-1,270,000) 
	239.4 (155.6-348.3)

	Southern Latin America
	48,200 (36,800-62,300)
	72.3 (55.1-93.4)
	950,000 (699,000-1,260,000)
	1,423.9 (1,047.3-1,890.5)
	12,400 (9,280-16,500)
	18.6 (13.9-24.7)
	244,000 (176,000-334,000)
	365.3 (264.3-501.1)

	Tropical Latin America
	141,000 (105,000-186,000)
	63 (47.1-83.1)
	3,660,000 (2,690,000-4,930,000)
	 1,637.5 (1,201.4-2,204.3) 
	 34,000 (24,800-46,000) 
	 15.2 (11.1-20.6) 
	 882,000 (638,000-1,210,000) 
	394.4 (285.4-541.9)







Supplementary Table 4. Relative risk estimates for sterile sources of specimen across 88 pathogen-drug combinations.
	Pathogen
	Drug
	Sample size
	Mean relative risk
	Lower bound
	Upper bound

	Acinetobacter baumannii
	Anti-pseudomonal penicillin/Beta-lactamase inhibitors
	948
	1.31
	1.12
	1.52

	Acinetobacter baumannii
	Beta-lactam/Beta-lactamase inhibitors
	1555
	1.27
	1.11
	1.44

	Acinetobacter baumannii
	Carbapenem
	3232
	1.42
	1.27
	1.58

	Acinetobacter baumannii
	Fourth-generation cephalosporins
	1439
	1.31
	1.14
	1.51

	Acinetobacter baumannii
	Third-generation cephalosporins
	2055
	1.35
	1.13
	1.62

	Acinetobacter baumannii
	Aminoglycosides
	2066
	1.1
	0.97
	1.25

	Acinetobacter baumannii
	Fluoroquinolones
	3020
	1.38
	1.21
	1.56

	Citrobacter spp.
	Aminoglycosides
	4069
	1.09
	0.94
	1.28

	Citrobacter spp.
	Anti-pseudomonal penicillin/Beta-lactamase inhibitors
	3127
	1.32
	1.14
	1.53

	Citrobacter spp.
	Carbapenem
	3097
	1.48
	1.25
	1.76

	Citrobacter spp.
	Fluoroquinolones
	4387
	1.36
	1.18
	1.57

	Citrobacter spp.
	Fourth-generation cephalosporins
	2718
	1.31
	1.1
	1.56

	Citrobacter spp.
	Third-generation cephalosporins
	3984
	1.38
	1.16
	1.64

	Enterobacter spp.
	Aminoglycosides
	15211
	1.19
	1.06
	1.34

	Enterobacter spp.
	Anti-pseudomonal penicillin/Beta-lactamase inhibitors
	11857
	1.23
	1.13
	1.34

	Enterobacter spp.
	Carbapenem
	13299
	1.53
	1.4
	1.67

	Enterobacter spp.
	Fluoroquinolones
	17552
	1.28
	1.17
	1.4

	Enterobacter spp.
	Fourth-generation cephalosporins
	11482
	1.31
	1.18
	1.45

	Enterobacter spp.
	Trimethoprim-Sulfamethoxazole
	14798
	1.09
	0.98
	1.21

	Enterococcus faecalis
	Fluoroquinolones
	1126
	1.43
	1.24
	1.64

	Enterococcus faecalis
	Vancomycin
	36
	1.7
	1.39
	2.07

	Enterococcus faecium
	Fluoroquinolones
	4082
	1.37
	1.14
	1.64

	Enterococcus faecium
	Vancomycin
	9242
	1.54
	1.39
	1.7

	Other Enterococci
	Fluoroquinolones
	107
	1.28
	1.07
	1.55

	Other Enterococci
	Vancomycin
	7730
	1.37
	1.29
	1.46

	Escherichia coli
	Aminoglycosides
	164196
	1.2
	1.16
	1.25

	Escherichia coli
	Aminopenicillin
	157276
	1.21
	1.17
	1.25

	Escherichia coli
	Beta-lactam/Beta-lactamase inhibitors
	143458
	1.15
	1.11
	1.18

	Escherichia coli
	Carbapenem
	131382
	1.7
	1.5
	1.93

	Escherichia coli
	Trimethoprim-Sulfamethoxazole
	164240
	1.14
	1.11
	1.18

	Group A Streptococcus
	Macrolide
	130
	1.07
	0.89
	1.29

	Group B Streptococcus
	Fluoroquinolones
	44
	1.26
	1.04
	1.53

	Group B Streptococcus
	Macrolide
	465
	1.18
	0.99
	1.41

	Group B Streptococcus
	Penicillin
	15
	1.29
	1.06
	1.57

	Haemophilus influenzae
	Aminopenicillin
	1438
	1.27
	1.06
	1.51

	Haemophilus influenzae
	Third-generation cephalosporins
	308
	1.48
	1.23
	1.79

	Klebsiella pneumoniae
	Aminoglycosides
	51811
	1.24
	1.17
	1.32

	Klebsiella pneumoniae
	Beta-lactam/Beta-lactamase inhibitors
	46753
	1.19
	1.13
	1.25

	Klebsiella pneumoniae
	Fluoroquinolones
	53414
	1.19
	1.12
	1.26

	Klebsiella pneumoniae
	Trimethoprim-Sulfamethoxazole
	51737
	1.12
	1.06
	1.19

	Morganella spp.
	Fluoroquinolones
	3290
	1.26
	1.1
	1.44

	Morganella spp.
	Fourth-generation cephalosporins
	2352
	1.23
	1.02
	1.49

	Morganella spp.
	Third-generation cephalosporins
	3407
	1.33
	1.12
	1.58

	Proteus spp.
	Aminoglycosides
	21844
	1.1
	1.01
	1.2

	Proteus spp.
	Aminopenicillin
	20638
	1.01
	0.94
	1.09

	Proteus spp.
	Fluoroquinolones
	22141
	1.13
	1.05
	1.21

	Proteus spp.
	Trimethoprim-Sulfamethoxazole
	21838
	1.06
	0.98
	1.14

	Proteus spp.
	Third-generation cephalosporins
	18775
	1.27
	1.08
	1.5

	Pseudomonas aeruginosa
	Aminoglycosides
	39341
	1.03
	0.98
	1.09

	Pseudomonas aeruginosa
	Anti-pseudomonal penicillin/Beta-lactamase inhibitors
	36016
	1.3
	1.22
	1.37

	Pseudomonas aeruginosa
	Carbapenem
	41177
	1.27
	1.22
	1.32

	Pseudomonas aeruginosa
	Fluoroquinolones
	47417
	1.19
	1.15
	1.23

	Pseudomonas aeruginosa
	Fourth-generation cephalosporins
	34020
	1.24
	1.17
	1.31

	Pseudomonas aeruginosa
	Third-generation cephalosporins
	31041
	1.35
	1.15
	1.59

	Serratia spp.
	Aminoglycosides
	5250
	1.05
	0.93
	1.19

	Serratia spp.
	Anti-pseudomonal penicillin/Beta-lactamase inhibitors
	3003
	1.17
	1.01
	1.35

	Serratia spp.
	Carbapenem
	3639
	1.39
	1.2
	1.63

	Serratia spp.
	Fluoroquinolones
	5252
	1.09
	0.94
	1.26

	Serratia spp.
	Fourth-generation cephalosporins
	3928
	1.17
	0.99
	1.38

	Serratia spp.
	Third-generation cephalosporins
	5960
	1.29
	1.09
	1.52

	Staphylococcus aureus
	Fluoroquinolones
	37963
	1.07
	1.02
	1.11

	Staphylococcus aureus
	Macrolide
	53005
	1.06
	1.02
	1.09

	Staphylococcus aureus
	Trimethoprim-Sulfamethoxazole
	59632
	1.17
	1.09
	1.25

	Streptococcus pneumoniae
	Beta-lactam/Beta-lactamase inhibitors
	1419
	1.14
	0.95
	1.37

	Streptococcus pneumoniae
	Carbapenem
	1947
	1.37
	1.16
	1.61

	Streptococcus pneumoniae
	Fluoroquinolones
	6499
	1.23
	1.05
	1.45

	Streptococcus pneumoniae
	Macrolide
	7348
	1.05
	0.94
	1.17

	Streptococcus pneumoniae
	Trimethoprim-Sulfamethoxazole
	5413
	1.14
	1.01
	1.28

	Streptococcus pneumoniae
	Third-generation cephalosporins
	10457
	1.33
	1.13
	1.57

	Escherichia coli
	Fluoroquinolones
	171311
	1.31
	1.27
	1.35

	Escherichia coli
	Third-generation cephalosporins
	163801
	1.37
	1.17
	1.61

	Klebsiella pneumoniae
	Carbapenem
	41943
	1.68
	1.56
	1.82

	Klebsiella pneumoniae
	Third-generation cephalosporins
	52090
	1.36
	1.16
	1.6

	Mycobacterium tuberculosis
	Extensive drug resistance
	428524
	2.59
	2.46
	2.72

	Mycobacterium tuberculosis
	Isoniazid mono-resistance
	14537
	1.19
	0.84
	1.67

	Mycobacterium tuberculosis
	Multidrug resistance
	427342
	2.5
	1.17
	4.74

	Mycobacterium tuberculosis
	Rifampicin mono-resistance
	7161
	1.39
	1.06
	1.77

	Non-typhoidal Salmonella
	Fluoroquinolones
	42
	1.23
	1.01
	1.5

	Salmonella Paratyphi*
	Fluoroquinolones
	24
	1.24
	1.02
	1.52

	Salmonella Paratyphi*
	Multidrug resistance
	25
	1.24
	1.03
	1.5

	Salmonella Typhi
	Fluoroquinolones
	24
	1.24
	1.02
	1.52

	Salmonella Typhi
	Multidrug resistance**
	25
	1.24
	1.03
	1.5

	Shigella spp.
	Fluoroquinolones***
	24
	1.24
	1.02
	1.52

	Staphylococcus aureus
	Methicillin
	95696
	1.43
	1.2
	1.7

	Streptococcus pneumoniae
	Penicillin
	30849
	1.27
	1.18
	1.36

	Staphylococcus aureus
	Vancomycin
	53623
	1.52
	1.28
	1.81

	Sample size are the admission reported with known discharge disposition and antimicrobial susceptibility test. 

	* Salmonella Typhi estimates are used as proxy for Salmonella Paratyphi

	** Trimethoprim-Sulfamethoxazole resistant Salmonella Typhi estimates are used as proxy for Salmonella Typhi Multidrug resistant

	*** Fluoroquinolone resistant Salmonella Typhi estimates are used as proxy for Fluoroquinolone resistant Shigella spp.
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Supplementary Table 5: Data points (cases or deaths) included in each primary modelling step by GBD region and the fraction of countries represented in each GBD region.
	Region
	1. Sepsis and Infectious Syndrome Models
	Fraction of countries represented in 1.
	2. Case Fatality Rate
	Fraction of countries represented in 2.
	3. Pathogen Distribution
	Fraction of countries represented in 3.
	4. Prevalence of Resistance
	Fraction of countries represented in 4.
	5. Relative Risk
	Fraction of countries represented in 5.

	Andean Latin America
	0
	0/3
	1447
	2/3
	          630,543 
	3/3
	         536,710 
	3/3
	     11,993 
	2/3

	Caribbean
	0
	0/19
	273
	3/19
	92,111
	16/19
	69,979
	10/19
	529
	1/19

	Central Latin America
	             8,128,021 
	2/9
	            277,212 
	6/9
	          921,735 
	9/9
	         844,374 
	9/9
	     20,210 
	5/9

	High-income North America
	           74,648,127 
	2/3
	16,021,100
	2/3
	35,797,723
	2/3
	34,956,150
	3/3
	14,070,904
	2/3

	Southern Latin America
	                       -   
	0/3
	               2,885 
	2/3
	       1,360,950 
	3/3
	      1,254,471 
	3/3
	       5,000 
	1/3

	Tropical Latin America
	           19,438,083 
	1/2
	378,457
	1/2
	1,090,322
	2/2
	311,688
	2/2
	6,838
	1/2

	Data points are sourced from a variety of sources including, but not limited to, multiple cause of death data, hospital discharges, literature studies, and microbiology data with and without outcome.  
	
	

	Several data sources inform multiple modeling steps. Therefore, data points should not be summed across a row as that will lead to duplication. 
	
	
	
	
	

	For more information on the data types used and the modeling steps that they inform, see section 2 of the appendix. 
	
	
	
	
	
	





Supplementary Table 6: All-cause mortality and number of deaths involving infection, associated with and attributable to AMR, by countries in the WHO Region of the Americas, 2019.
	
	

	Country
	All-cause deaths
	Fraction of all-cause deaths that involved infection
	Deaths involving infection
	Fraction of deaths involving infection that are associated with resistance
	Death associated with resistance
	Fraction of deaths involving infection that are attributable to resistance
	Death attributable to resistance
	

	
	Counts (95% UI)
	Age-standardized mortality rate per 100 000 (95% UI)
	Percent (95% UI)
	Counts (95% UI)
	Age-standardized mortality rate per 100 000 (95% UI)
	Percent (95% UI)
	Counts (95% UI)
	Age-standardized mortality rate per 100 000 (95% UI)
	Percent (95% UI)
	Counts (95% UI)
	Age-standardized mortality rate per 100 000 (95% UI)
	 

	Antigua and Barbuda
	 610 (542 - 685) 
	682.6 (609.9 - 763.1)
	 19.4% (14.6% - 25.7%) 
	118 (86 - 158)
	135.4 (99.5 - 180.2)
	 41.3% (38.2% - 44.2%) 
	49 (33 - 68)
	 55.6 (37.9 - 77.1) 
	10.5% (9.2% - 12.0%)
	12 (8 - 18)
	 14.2 (9.5 - 20.2) 
	

	Argentina
	349,000 (342,000 - 356,000)
	649.3 (635.3 - 664.8)
	24.4% (19.8% - 30.0%)
	84,900 (69,000 - 105,000)
	157.6 (127.5 - 195.1)
	41.5% (39.5% - 43.5%)
	35,300 (27,400 - 44,700)
	65.1 (50.4 - 82.6)
	10.6% (9.2% - 12.1%)
	8,980 (6,780 - 11,800)
	16.6 (12.5 - 21.8)
	

	Barbados
	 3,090 (2,660 - 3,540) 
	670.5 (574.1 - 773.8)
	 22.1% (17.4% - 28.0%) 
	684 (514 - 899)
	151.3 (112.7 - 200.3)
	 45.6% (42.8% - 48.2%) 
	312 (226 - 419)
	 67.6 (48.6 - 91.2) 
	11.5% (9.8% - 13.3%)
	79 (55 - 109)
	 17.0 (11.9 - 23.7) 
	

	Belize
	1,990 (1,780 - 2,230)
	695.3 (622.8 - 776.4)
	23.1% (17.7% - 29.6%)
	460 (344 - 599)
	160.7 (121.3 - 209.2)
	34.1% (31.2% - 36.9%)
	158 (108 - 220)
	57.8 (39.8 - 79.9)
	8.5% (7.4% - 9.8%)
	39 (27 - 56)
	14.5 (9.8 - 20.4)
	

	Bolivia
	 75,900 (63,500 - 88,800) 
	896.5 (761.8 - 1033.3)
	 29.7% (23.6% - 37.5%) 
	22,500 (16,600 - 29,600)
	254.5 (188.2 - 334.7)
	 44.6% (39.5% - 47.8%) 
	10,100 (7,220 - 13,600)
	 116.9 (83.7 - 158.0) 
	11.0% (9.4% - 12.9%)
	2,490 (1,770 - 3,430)
	 29.0 (20.4 - 40.2) 
	

	Brazil
	 1,410,000 (1,380,000 - 1,450,000) 
	633.1 (615.9 - 650.9)
	 22.0% (17.2% - 28.0%) 
	311,000 (244,000 - 394,000)
	143.0 (112.3 - 181.5)
	 44.2% (42.3% - 46.1%) 
	138,000 (103,000 - 182,000)
	 63.2 (47.4 - 82.9) 
	10.7% (9.6% - 11.8%)
	33,200 (24,200 - 45,000)
	 15.2 (11.2 - 20.4) 
	

	Canada
	 288,000 (285,000 - 292,000) 
	410.3 (404.7 - 416.3)
	 13.7% (9.9% - 18.6%) 
	39,500 (28,700 - 53,500)
	55.7 (39.7 - 76.1)
	 32.6% (30.5% - 34.8%) 
	12,900 (8,830 - 18,100)
	 18.3 (12.3 - 25.9) 
	7.3% (6.3% - 8.4%)
	2,890 (1,960 - 4,180)
	 4.1 (2.7 - 6.0) 
	

	Chile
	 113,000 (110,000 - 116,000) 
	489.0 (474.4 - 505.2)
	 18.6% (14.1% - 24.5%) 
	21,000 (15,900 - 27,800)
	91.2 (68.7 - 120.2)
	 48.2% (46.0% - 50.3%) 
	10,200 (7,360 - 13,700)
	 43.7 (31.6 - 59.1) 
	12.9% (11.1% - 14.8%)
	2,720 (1,930 - 3,770)
	 11.7 (8.3 - 16.2) 
	

	Colombia
	 247,000 (198,000 - 306,000) 
	463.8 (370.3 - 578.1)
	 17.5% (13.0% - 23.2%) 
	43,200 (29,400 - 61,500)
	83.3 (56.5 - 118.5)
	 41.9% (39.6% - 44.1%) 
	18,200 (11,800 - 26,500)
	 34.6 (22.4 - 50.6) 
	10.9% (9.6% - 12.4%)
	4,720 (3,020 - 7,060)
	 9.0 (5.8 - 13.5) 
	

	Costa Rica
	 24,400 (19,700 - 30,100) 
	479.2 (385.4 - 593.1)
	 17.1% (12.3% - 23.3%) 
	4,190 (2,770 - 6,090)
	82.8 (54.6 - 120.7)
	 45.0% (42.8% - 47.3%) 
	1,890 (1,210 - 2,800)
	 37.3 (23.8 - 55.3) 
	11.5% (9.8% - 13.3%)
	484 (304 - 731)
	 9.5 (6.0 - 14.4) 
	

	Cuba
	 106,000 (89,700 - 124,000) 
	552.8 (465.9 - 652.2)
	 17.1% (13.2% - 22.2%) 
	18,100 (13,400 - 24,900)
	95.3 (70.0 - 131.2)
	 37.4% (34.2% - 40.5%) 
	6,830 (4,700 - 10,000)
	 35.9 (24.6 - 52.9) 
	9.2% (7.8% - 10.7%)
	1,680 (1,120 - 2,520)
	 8.8 (5.8 - 13.3) 
	

	Dominica
	 735 (636 - 863) 
	857.0 (734.3 - 1014.2)
	 19.5% (14.5% - 25.9%) 
	144 (100 - 198)
	174.6 (121.5 - 241.4)
	 41.8% (38.3% - 44.7%) 
	60 (39 - 86)
	 72.0 (46.5 - 103.5) 
	10.7% (9.3% - 12.1%)
	16 (10 - 23)
	 18.4 (11.7 - 27.1) 
	

	Dominican Republic
	 70,500 (57,300 - 87,100) 
	766.3 (628.5 - 939.3)
	 20.1% (15.0% - 26.3%) 
	14,200 (9,640 - 20,100)
	149.5 (101.7 - 212.0)
	 38.6% (35.0% - 41.9%) 
	5,500 (3,440 - 8,270)
	 59.4 (37.4 - 89.4) 
	9.7% (8.4% - 11.2%)
	1,390 (870 - 2,090)
	 15.0 (9.4 - 22.6) 
	

	Ecuador
	 92,500 (76,600 - 113,000) 
	655.4 (544.7 - 798.2)
	 22.3% (17.0% - 28.9%) 
	20,600 (15,000 - 28,200)
	146.8 (106.8 - 200.6)
	 44.8% (42.3% - 47.3%) 
	9,290 (6,430 - 13,100)
	 66.9 (46.4 - 94.1) 
	11.6% (10.2% - 13.1%)
	2,410 (1,620 - 3,440)
	 17.3 (11.7 - 24.6) 
	

	El Salvador
	 40,200 (31,800 - 50,200) 
	640.7 (503.2 - 804.5)
	 20.5% (15.7% - 26.8%) 
	8,230 (5,650 - 11,600)
	132.4 (90.0 - 187.1)
	 41.0% (38.1% - 44.0%) 
	3,390 (2,210 - 4,930)
	 54.5 (35.3 - 79.6) 
	10.4% (8.9% - 12.0%)
	857 (546 - 1,290)
	 13.8 (8.7 - 20.8) 
	

	Grenada
	 819 (761 - 877) 
	824.7 (769.2 - 880.9)
	 20.7% (15.7% - 27.0%) 
	170 (127 - 222)
	177.8 (133.8 - 230.5)
	 42.3% (39.4% - 45.0%) 
	72 (50 - 99)
	 74.2 (52.4 - 101.2) 
	10.7% (9.4% - 12.2%)
	18 (12 - 26)
	 18.8 (13.0 - 26.3) 
	

	Guatemala
	94,800 (75,900 - 118,000)
	827.5 (675.4 - 1008.7)
	28.6% (23.3% - 35.1%)
	27,100 (19,500 - 36,900)
	234.5 (172.0 - 314.1)
	43.2% (40.6% - 45.7%)
	11,800 (8,090 - 16,500)
	104.5 (72.9 - 145.7)
	10.5% (9.1% - 12.0%)
	2,850 (1,920 - 4,030)
	25.5 (17.4 - 35.6)
	

	Guyana
	 6,680 (5,340 - 8,290) 
	1129.3 (916.4 - 1378.8)
	 20.7% (15.7% - 27.0%) 
	1,390 (955 - 1,950)
	235.8 (164.1 - 328.5)
	 41.5% (38.6% - 44.4%) 
	579 (373 - 855)
	 102.7 (67.6 - 148.4) 
	10.6% (9.1% - 12.0%)
	147 (93 - 218)
	 26.2 (16.9 - 38.0) 
	

	Haiti
	 99,700 (82,000 - 121,000) 
	1267.1 (1044.0 - 1563.0)
	 33.6% (27.0% - 40.8%) 
	33,500 (25,800 - 42,800)
	372.1 (277.2 - 489.7)
	 30.3% (27.1% - 33.4%) 
	10,200 (7,220 - 14,000)
	 121.3 (84.0 - 170.6) 
	7.4% (6.3% - 8.5%)
	2,470 (1,700 - 3,460)
	 30.0 (20.0 - 42.4) 
	

	Honduras
	 52,600 (46,200 - 62,400) 
	900.1 (825.9 - 1035.5)
	 23.3% (17.2% - 30.5%) 
	12,200 (8,800 - 16,700)
	201.5 (146.3 - 270.0)
	 42.7% (38.7% - 45.8%) 
	5,240 (3,530 - 7,380)
	 90.4 (61.4 - 126.2) 
	10.7% (9.2% - 12.3%)
	1,320 (886 - 1,880)
	 22.8 (15.5 - 32.4) 
	

	Jamaica
	 19,700 (16,300 - 23,600) 
	636.8 (522.9 - 772.6)
	 17.9% (12.8% - 24.5%) 
	3,530 (2,390 - 5,000)
	118.1 (79.5 - 168.8)
	 40.3% (37.2% - 43.3%) 
	1,430 (907 - 2,110)
	 47.5 (29.9 - 70.4) 
	10.6% (9.2% - 12.1%)
	376 (232 - 566)
	 12.5 (7.7 - 18.7) 
	

	Mexico
	 738,000 (655,000 - 828,000) 
	660.3 (587.5 - 737.2)
	 20.1% (14.5% - 27.3%) 
	149,000 (105,000 - 206,000)
	133.3 (94.5 - 183.8)
	 47.0% (45.0% - 49.0%) 
	70,100 (47,400 - 100,000)
	 63.0 (42.9 - 89.6) 
	12.3% (10.7% - 13.9%)
	18,300 (12,400 - 26,100)
	 16.4 (11.3 - 23.4) 
	

	Nicaragua
	29,200 (24,900 - 33,600)
	725.0 (627.0 - 818.7)
	20.6% (15.0% - 27.5%)
	6,020 (4,290 - 8,320)
	138.0 (97.9 - 190.6)
	40.6% (37.5% - 43.7%)
	2,460 (1,640 - 3,530)
	59.1 (39.4 - 85.1)
	10.4% (8.9% - 12.1%)
	630 (408 - 917)
	15.2 (9.9 - 22.0)
	

	Panama
	 19,800 (15,900 - 24,600) 
	469.0 (375.0 - 583.8)
	 20.9% (16.1% - 27.3%) 
	4,150 (2,910 - 5,780)
	99.2 (69.5 - 138.4)
	 36.8% (33.9% - 39.6%) 
	1,530 (1,000 - 2,270)
	 36.6 (23.9 - 54.4) 
	9.2% (7.9% - 10.7%)
	382 (245 - 572)
	 9.1 (5.8 - 13.7) 
	

	Paraguay
	 34,200 (27,100 - 42,700) 
	615.7 (490.0 - 767.4)
	 20.5% (15.5% - 26.7%) 
	7,000 (4,770 - 9,910)
	125.9 (86.1 - 178.4)
	 43.5% (40.8% - 46.1%) 
	3,050 (2,010 - 4,490)
	 56.1 (37.0 - 81.9) 
	11.2% (9.8% - 12.8%)
	786 (508 - 1,170)
	 14.4 (9.4 - 21.3) 
	

	Peru
	 152,000 (119,000 - 194,000) 
	465.5 (361.5 - 594.9)
	 29.1% (24.0% - 35.5%) 
	44,300 (32,100 - 60,400)
	135.6 (98.0 - 184.9)
	 47.0% (44.7% - 49.1%) 
	20,900 (14,600 - 29,200)
	 64.0 (44.7 - 89.6) 
	11.8% (10.1% - 13.6%)
	5,220 (3,580 - 7,420)
	 16.0 (11.0 - 22.8) 
	

	Saint Kitts and Nevis
	 500 (454 - 567) 
	891.1 (822.5 - 1003.4)
	 23.1% (15.8% - 32.5%) 
	115 (78 - 167)
	202.0 (141.7 - 283.3)
	 34.1% (23.4% - 42.2%) 
	39 (27 - 54)
	 70.0 (48.4 - 97.6) 
	8.8% (5.8% - 11.4%)
	10 (7 - 14)
	 18.0 (12.1 - 25.8) 
	

	Saint Lucia
	 1,410 (1,230 - 1,610) 
	709.9 (617.6 - 816.5)
	 18.8% (13.9% - 25.2%) 
	265 (188 - 363)
	137.8 (97.6 - 189.6)
	 41.8% (38.9% - 44.6%) 
	111 (74 - 159)
	 57.0 (37.8 - 81.8) 
	10.9% (9.5% - 12.4%)
	29 (19 - 42)
	 14.8 (9.6 - 21.6) 
	

	Saint Vincent and the Grenadines
	 1,030 (921 - 1,150) 
	840.4 (754.7 - 940.4)
	 19.5% (14.4% - 25.7%) 
	200 (145 - 268)
	169.0 (123.1 - 225.6)
	 39.6% (36.6% - 42.6%) 
	80 (54 - 112)
	 66.4 (44.8 - 93.5) 
	10.2% (8.9% - 11.6%)
	20 (14 - 30)
	 17.0 (11.3 - 24.7) 
	

	Suriname
	 4,370 (3,750 - 5,090) 
	777.9 (668.0 - 905.8)
	 22.4% (17.1% - 29.0%) 
	980 (707 - 1,320)
	180.2 (130.7 - 242.5)
	 39.6% (36.7% - 42.3%) 
	390 (263 - 545)
	 71.6 (48.5 - 99.6) 
	10.0% (8.7% - 11.3%)
	98 (65 - 141)
	 18.1 (12.0 - 25.6) 
	

	The Bahamas
	2,730 (2,320 - 3,260)
	755.2 (645.4 - 896.7)
	19.5% (14.8% - 25.3%)
	533 (392 - 723)
	149.3 (110.0 - 201.9)
	40.4% (37.7% - 43.4%)
	217 (149 - 309)
	62.6 (43.7 - 88.3)
	9.6% (8.5% - 11.0%)
	52 (34 - 75)
	14.9 (10.0 - 21.4)
	

	Trinidad and Tobago
	 11,800 (9,170 - 15,000) 
	690.5 (538.5 - 876.8)
	 16.6% (11.7% - 22.8%) 
	1,950 (1,270 - 2,860)
	118.5 (77.2 - 173.8)
	 46.5% (43.7% - 49.1%) 
	911 (558 - 1,400)
	 54.4 (33.3 - 83.6) 
	11.9% (10.3% - 13.4%)
	232 (138 - 363)
	 13.8 (8.3 - 21.6) 
	

	United States
	 2,950,000 (2,920,000 - 2,970,000) 
	528.2 (524.0 - 532.6)
	 13.9% (10.0% - 18.9%) 
	408,000 (294,000 - 559,000)
	72.9 (51.8 - 100.9)
	 42.2% (40.3% - 44.1%) 
	173,000 (120,000 - 243,000)
	 30.7 (21.0 - 43.4) 
	10.2% (8.8% - 11.8%)
	41,900 (28,300 - 59,600)
	 7.4 (5.0 - 10.7) 
	

	Uruguay
	 33,800 (33,000 - 34,800) 
	597.5 (579.3 - 618.0)
	 18.8% (14.5% - 24.4%) 
	6,360 (4,880 - 8,250)
	109.8 (83.1 - 143.8)
	 43.8% (41.5% - 46.1%) 
	2,790 (2,050 - 3,750)
	 47.4 (34.4 - 63.9) 
	10.9% (9.5% - 12.3%)
	692 (496 - 952)
	 11.8 (8.4 - 16.3) 
	

	Venezuela
	 187,000 (147,000 - 237,000) 
	672.9 (529.9 - 850.8)
	 16.5% (12.0% - 22.3%) 
	30,900 (20,400 - 45,200)
	112.9 (74.6 - 164.5)
	 38.6% (35.8% - 41.3%) 
	12,000 (7,460 - 18,300)
	 43.8 (27.5 - 66.4) 
	9.8% (8.5% - 11.2%)
	3,050 (1,870 - 4,700)
	 11.1 (6.9 - 17.1) 
	

	Abbreviations: AMR = Antimicrobial resistance, UI = Uncertainty Intervals, WHO = World Health Organization.
	


 


Supplementary Table 7: Overall antimicrobial resistance burden by steps in the estimation, 2019.
	Country
	All-cause death
	Deaths involving infection
	Associated with AMR
	Attributable to AMR

	
	Counts
	Age-standardized death rate per 
100 000
	Fraction of all deaths that involve infection
	Counts
	Age-standardized death rate per 100 000
	Fraction of deaths involving infection that are associated with resistance
	Counts 
	Age-standardized death rate per 100 000
	Fraction of deaths involving infection that are attributable to resistance
	Counts
	Age-standardized death rate per 100 000 

	Canada
	288,000
(285,000 - 292,000)
	410.3
(404.7 - 416.3)
	13.7%
(9.9% - 18.6%)
	39,500
(28,700 - 53,500)
	 55.7
(39.7 - 76.1) 
	32.6%
(30.5% - 34.8%)
	 12,900
(8,830 - 18,100) 
	18.3
(12.3 - 25.9)
	 7.3%
(6.3% - 8.4%) 
	2,890
(1,960 - 4,180)
	4.1
(2.7 - 6.0)

	Antigua and Barbuda
	610
(542 - 685)
	682.6
(609.9 - 763.1)
	19.4%
(14.6% - 25.7%)
	118
(86 - 158)
	135.4
(99.5 - 180.2)
	41.3%
(38.2% - 44.2%)
	49
(33 - 68)
	55.6
(37.9 - 77.1)
	10.5%
(9.2% - 12.0%)
	12
(8 - 18)
	14.2
(9.5 - 20.2)

	Argentina
	 349,000
(342,000 - 356,000) 
	649.3
(635.3 - 664.8)
	 24.4%
(19.8% - 30.0%) 
	84,900
(69,000 - 105,000)
	 157.6
(127.5 - 195.1) 
	41.5%
(39.5% - 43.5%)
	 35,300
(27,400 - 44,700) 
	65.1
(50.4 - 82.6)
	 10.6%
(9.2% - 12.1%) 
	8,980
(6,780 - 11,800)
	16.6
(12.5 - 21.8)

	Barbados
	 3,090
(2,660 - 3,540) 
	670.5
(574.1 - 773.8)
	22.1%
(17.4% - 28.0%)
	684
(514 - 899)
	151.3
(112.7 - 200.3)
	45.6%
(42.8% - 48.2%)
	312
(226 - 419)
	67.6
(48.6 - 91.2)
	11.5%
(9.8% - 13.3%)
	79
(55 - 109)
	17.0
(11.9 - 23.7)

	Belize
	 1,990
(1,780 - 2,230) 
	695.3
(622.8 - 776.4)
	 23.1%
(17.7% - 29.6%) 
	460
(344 - 599)
	 160.7
(121.3 - 209.2) 
	34.1%
(31.2% - 36.9%)
	 158
(108 - 220) 
	57.8
(39.8 - 79.9)
	 8.5%
(7.4% - 9.8%) 
	39
(27 - 56)
	14.5
(9.8 - 20.4)

	Bolivia
	75,900
(63,500 - 88,800)
	896.5
(761.8 - 1033.3)
	29.7%
(23.6% - 37.5%)
	22,500
(16,600 - 29,600)
	254.5
(188.2 - 334.7)
	44.6%
(39.5% - 47.8%)
	10,100
(7,220 - 13,600)
	116.9
(83.7 - 158.0)
	11.0%
(9.4% - 12.9%)
	2,490
(1,770 - 3,430)
	29.0
(20.4 - 40.2)

	Brazil
	 1,410,000
(1,380,000 - 1,450,000) 
	633.1
(615.9 - 650.9)
	 22.0%
(17.2% - 28.0%) 
	311,000
(244,000 - 394,000)
	 143.0
(112.3 - 181.5) 
	44.2%
(42.3% - 46.1%)
	 138,000
(103,000 - 182,000) 
	63.2
(47.4 - 82.9)
	 10.7%
(9.6% - 11.8%) 
	33,200
(24,200 - 45,000)
	15.2
(11.2 - 20.4)

	Chile
	 113,000
(110,000 - 116,000) 
	489.0
(474.4 - 505.2)
	18.6%
(14.1% - 24.5%)
	21,000
(15,900 - 27,800)
	91.2
(68.7 - 120.2)
	48.2%
(46.0% - 50.3%)
	10,200
(7,360 - 13,700)
	43.7
(31.6 - 59.1)
	12.9%
(11.1% - 14.8%)
	2,720
(1,930 - 3,770)
	11.7
(8.3 - 16.2)

	Colombia
	 247,000
(198,000 - 306,000) 
	463.8
(370.3 - 578.1)
	 17.5%
(13.0% - 23.2%) 
	43,200
(29,400 - 61,500)
	 83.3
(56.5 - 118.5) 
	41.9%
(39.6% - 44.1%)
	 18,200
(11,800 - 26,500) 
	34.6
(22.4 - 50.6)
	 10.9%
(9.6% - 12.4%) 
	4,720
(3,020 - 7,060)
	9.0
(5.8 - 13.5)

	Costa Rica
	 24,400
(19,700 - 30,100) 
	479.2
(385.4 - 593.1)
	17.1%
(12.3% - 23.3%)
	4,190
(2,770 - 6,090)
	82.8
(54.6 - 120.7)
	45.0%
(42.8% - 47.3%)
	1,890
(1,210 - 2,800)
	37.3
(23.8 - 55.3)
	11.5%
(9.8% - 13.3%)
	484
(304 - 731)
	9.5
(6.0 - 14.4)

	Cuba
	 106,000
(89,700 - 124,000) 
	552.8
(465.9 - 652.2)
	 17.1%
(13.2% - 22.2%) 
	18,100
(13,400 - 24,900)
	 95.3
(70.0 - 131.2) 
	37.4%
(34.2% - 40.5%)
	 6,830
(4,700 - 10,000) 
	35.9
(24.6 - 52.9)
	 9.2%
(7.8% - 10.7%) 
	1,680
(1,120 - 2,520)
	8.8
(5.8 - 13.3)

	Dominica
	735
(636 - 863)
	857.0
(734.3 - 1014.2)
	19.5%
(14.5% - 25.9%)
	144
(100 - 198)
	174.6
(121.5 - 241.4)
	41.8%
(38.3% - 44.7%)
	60
(39 - 86)
	72.0
(46.5 - 103.5)
	10.7%
(9.3% - 12.1%)
	16
(10 - 23)
	18.4
(11.7 - 27.1)

	Dominican Republic
	 70,500
(57,300 - 87,100) 
	766.3
(628.5 - 939.3)
	 20.1%
(15.0% - 26.3%) 
	14,200
(9,640 - 20,100)
	 149.5
(101.7 - 212.0) 
	38.6%
(35.0% - 41.9%)
	 5,500
(3,440 - 8,270) 
	59.4
(37.4 - 89.4)
	 9.7%
(8.4% - 11.2%) 
	1,390
(870 - 2,090)
	15.0
(9.4 - 22.6)

	Ecuador
	92,500
(76,600 - 113,000)
	655.4
(544.7 - 798.2)
	22.3%
(17.0% - 28.9%)
	20,600
(15,000 - 28,200)
	146.8
(106.8 - 200.6)
	44.8%
(42.3% - 47.3%)
	9,290
(6,430 - 13,100)
	66.9
(46.4 - 94.1)
	11.6%
(10.2% - 13.1%)
	2,410
(1,620 - 3,440)
	17.3
(11.7 - 24.6)

	El Salvador
	 40,200
(31,800 - 50,200) 
	640.7
(503.2 - 804.5)
	 20.5%
(15.7% - 26.8%) 
	8,230
(5,650 - 11,600)
	 132.4
(90.0 - 187.1) 
	41.0%
(38.1% - 44.0%)
	 3,390
(2,210 - 4,930) 
	54.5
(35.3 - 79.6)
	 10.4%
(8.9% - 12.0%) 
	857
(546 - 1,290)
	13.8
(8.7 - 20.8)

	Grenada
	 819
(761 - 877) 
	824.7
(769.2 - 880.9)
	20.7%
(15.7% - 27.0%)
	170
(127 - 222)
	177.8
(133.8 - 230.5)
	42.3%
(39.4% - 45.0%)
	72
(50 - 99)
	74.2
(52.4 - 101.2)
	10.7%
(9.4% - 12.2%)
	18
(12 - 26)
	18.8
(13.0 - 26.3)

	Guatemala
	 94,800
(75,900 - 118,000) 
	827.5
(675.4 - 1008.7)
	 28.6%
(23.3% - 35.1%) 
	27,100
(19,500 - 36,900)
	 234.5
(172.0 - 314.1) 
	43.2%
(40.6% - 45.7%)
	 11,800
(8,090 - 16,500) 
	104.5
(72.9 - 145.7)
	 10.5%
(9.1% - 12.0%) 
	2,850
(1,920 - 4,030)
	25.5
(17.4 - 35.6)

	Guyana
	6,680
(5,340 - 8,290)
	1129.3
(916.4 - 1378.8)
	20.7%
(15.7% - 27.0%)
	1,390
(955 - 1,950)
	235.8
(164.1 - 328.5)
	41.5%
(38.6% - 44.4%)
	579
(373 - 855)
	102.7
(67.6 - 148.4)
	10.6%
(9.1% - 12.0%)
	147
(93 - 218)
	26.2
(16.9 - 38.0)

	Haiti
	 99,700
(82,000 - 121,000) 
	1267.1
(1044.0 - 1563.0)
	 33.6%
(27.0% - 40.8%) 
	33,500
(25,800 - 42,800)
	 372.1
(277.2 - 489.7) 
	30.3%
(27.1% - 33.4%)
	 10,200
(7,220 - 14,000) 
	121.3
(84.0 - 170.6)
	 7.4%
(6.3% - 8.5%) 
	2,470
(1,700 - 3,460)
	30.0
(20.0 - 42.4)

	Honduras
	 52,600
(46,200 - 62,400) 
	900.1
(825.9 - 1035.5)
	23.3%
(17.2% - 30.5%)
	12,200
(8,800 - 16,700)
	201.5
(146.3 - 270.0)
	42.7%
(38.7% - 45.8%)
	5,240
(3,530 - 7,380)
	90.4
(61.4 - 126.2)
	10.7%
(9.2% - 12.3%)
	1,320
(886 - 1,880)
	22.8
(15.5 - 32.4)

	Jamaica
	 19,700
(16,300 - 23,600) 
	636.8
(522.9 - 772.6)
	 17.9%
(12.8% - 24.5%) 
	3,530
(2,390 - 5,000)
	 118.1
(79.5 - 168.8) 
	40.3%
(37.2% - 43.3%)
	 1,430
(907 - 2,110) 
	47.5
(29.9 - 70.4)
	 10.6%
(9.2% - 12.1%) 
	376
(232 - 566)
	12.5
(7.7 - 18.7)

	Mexico
	 738,000
(655,000 - 828,000) 
	660.3
(587.5 - 737.2)
	20.1%
(14.5% - 27.3%)
	149,000
(105,000 - 206,000)
	133.3
(94.5 - 183.8)
	47.0%
(45.0% - 49.0%)
	70,100
(47,400 - 100,000)
	63.0
(42.9 - 89.6)
	12.3%
(10.7% - 13.9%)
	18,300
(12,400 - 26,100)
	16.4
(11.3 - 23.4)

	Nicaragua
	 29,200
(24,900 - 33,600) 
	725.0
(627.0 - 818.7)
	 20.6%
(15.0% - 27.5%) 
	6,020
(4,290 - 8,320)
	 138.0
(97.9 - 190.6) 
	40.6%
(37.5% - 43.7%)
	 2,460
(1,640 - 3,530) 
	59.1
(39.4 - 85.1)
	 10.4%
(8.9% - 12.1%) 
	630
(408 - 917)
	15.2
(9.9 - 22.0)

	Panama
	19,800
(15,900 - 24,600)
	469.0
(375.0 - 583.8)
	20.9%
(16.1% - 27.3%)
	4,150
(2,910 - 5,780)
	99.2
(69.5 - 138.4)
	36.8%
(33.9% - 39.6%)
	1,530
(1,000 - 2,270)
	36.6
(23.9 - 54.4)
	9.2%
(7.9% - 10.7%)
	382
(245 - 572)
	9.1
(5.8 - 13.7)

	Paraguay
	 34,200
(27,100 - 42,700) 
	615.7
(490.0 - 767.4)
	 20.5%
(15.5% - 26.7%) 
	7,000
(4,770 - 9,910)
	 125.9
(86.1 - 178.4) 
	43.5%
(40.8% - 46.1%)
	 3,050
(2,010 - 4,490) 
	56.1
(37.0 - 81.9)
	 11.2%
(9.8% - 12.8%) 
	786
(508 - 1,170)
	14.4
(9.4 - 21.3)

	Peru
	 152,000
(119,000 - 194,000) 
	465.5
(361.5 - 594.9)
	29.1%
(24.0% - 35.5%)
	44,300
(32,100 - 60,400)
	135.6
(98.0 - 184.9)
	47.0%
(44.7% - 49.1%)
	20,900
(14,600 - 29,200)
	64.0
(44.7 - 89.6)
	11.8%
(10.1% - 13.6%)
	5,220
(3,580 - 7,420)
	16.0
(11.0 - 22.8)

	Saint Kitts and Nevis
	 500
(454 - 567) 
	891.1
(822.5 - 1003.4)
	 23.1%
(15.8% - 32.5%) 
	115
(78 - 167)
	 202.0
(141.7 - 283.3) 
	34.1%
(23.4% - 42.2%)
	 39
(27 - 54) 
	70.0
(48.4 - 97.6)
	 8.8%
(5.8% - 11.4%) 
	10
(7 - 14)
	18.0
(12.1 - 25.8)

	Saint Lucia
	1,410
(1,230 - 1,610)
	709.9
(617.6 - 816.5)
	18.8%
(13.9% - 25.2%)
	265
(188 - 363)
	137.8
(97.6 - 189.6)
	41.8%
(38.9% - 44.6%)
	111
(74 - 159)
	57.0
(37.8 - 81.8)
	10.9%
(9.5% - 12.4%)
	29
(19 - 42)
	14.8
(9.6 - 21.6)

	Saint Vincent and the Grenadines
	 1,030
(921 - 1,150) 
	840.4
(754.7 - 940.4)
	 19.5%
(14.4% - 25.7%) 
	200
(145 - 268)
	 169.0
(123.1 - 225.6) 
	39.6%
(36.6% - 42.6%)
	 80
(54 - 112) 
	66.4
(44.8 - 93.5)
	 10.2%
(8.9% - 11.6%) 
	20
(14 - 30)
	17.0
(11.3 - 24.7)

	Suriname
	 4,370
(3,750 - 5,090) 
	777.9
(668.0 - 905.8)
	22.4%
(17.1% - 29.0%)
	980
(707 - 1,320)
	180.2
(130.7 - 242.5)
	39.6%
(36.7% - 42.3%)
	390
(263 - 545)
	71.6
(48.5 - 99.6)
	10.0%
(8.7% - 11.3%)
	98
(65 - 141)
	18.1
(12.0 - 25.6)

	The Bahamas
	 2,730
(2,320 - 3,260) 
	755.2
(645.4 - 896.7)
	 19.5%
(14.8% - 25.3%) 
	533
(392 - 723)
	 149.3
(110.0 - 201.9) 
	40.4%
(37.7% - 43.4%)
	 217
(149 - 309) 
	62.6
(43.7 - 88.3)
	 9.6%
(8.5% - 11.0%) 
	52
(34 - 75)
	14.9
(10.0 - 21.4)

	Trinidad and Tobago
	 11,800
(9,170 - 15,000) 
	690.5
(538.5 - 876.8)
	16.6%
(11.7% - 22.8%)
	1,950
(1,270 - 2,860)
	118.5
(77.2 - 173.8)
	46.5%
(43.7% - 49.1%)
	911
(558 - 1,400)
	54.4
(33.3 - 83.6)
	11.9%
(10.3% - 13.4%)
	232
(138 - 363)
	13.8
(8.3 - 21.6)

	United States
	 2,950,000
(2,920,000 - 2,970,000) 
	528.2
(524.0 - 532.6)
	 13.9%
(10.0% - 18.9%) 
	408,000
(294,000 - 559,000)
	 72.9
(51.8 - 100.9) 
	42.2%
(40.3% - 44.1%)
	 173,000
(120,000 - 243,000) 
	30.7
(21.0 - 43.4)
	 10.2%
(8.8% - 11.8%) 
	41,900
(28,300 - 59,600)
	7.4
(5.0 - 10.7)

	Uruguay
	33,800
(33,000 - 34,800)
	597.5
(579.3 - 618.0)
	18.8%
(14.5% - 24.4%)
	6,360
(4,880 - 8,250)
	109.8
(83.1 - 143.8)
	43.8%
(41.5% - 46.1%)
	2,790
(2,050 - 3,750)
	47.4
(34.4 - 63.9)
	10.9%
(9.5% - 12.3%)
	692
(496 - 952)
	11.8
(8.4 - 16.3)

	Venezuela
	 187,000
(147,000 - 237,000) 
	672.9
(529.9 - 850.8)
	 16.5%
(12.0% - 22.3%) 
	30,900
(20,400 - 45,200)
	 112.9
(74.6 - 164.5) 
	38.6%
(35.8% - 41.3%)
	 12,000
(7,460 - 18,300) 
	43.8
(27.5 - 66.4)
	 9.8%
(8.5% - 11.2%) 
	3,050
(1,870 - 4,700)
	11.1
(6.9 - 17.1)





Supplementary Table 8. Summary of deaths and DALYs by infectious syndrome for countries in the WHO Region of the Americas, 2019.
	

	Infectious syndrome
	Deaths [counts (95%UI)]
	Disability Adjusted Life Years (DALYs) [counts (95%UI)]

	
	Deaths which involved infection
	Caused by bacteria
	DALYs which involved infection
	Caused by bacteria

	All
	 1,327,000 (993,000 - 1,751,000) 
	920,000 (664,000 - 1,242,000)
	 38,595,000 (28,843,000 - 50,344,000) 
	 23,347,000 (16,810,000 - 31,528,000) 

	LRI and thorax infections
	 472,000 (386,000 - 584,000) 
	293,000 (233,000 - 375,000)
	 11,160,000 (8,877,000 - 14,012,000) 
	 7,125,000 (5,538,000 - 9,103,000) 

	BSI
	 336,000 (190,000 - 551,000) 
	266,000 (149,000 - 439,000)
	 10,051,000 (6,140,000 - 15,335,000) 
	 7,541,000 (4,500,000 - 11,611,000) 

	Intra-abdominal infections
	208,000 (138,000 - 296,000)
	181,000 (120,000 - 259,000)
	4,998,000 (3,219,000 - 7,268,000)
	4,333,000 (2,778,000 - 6,326,000)

	UTI
	 85,000 (67,000 - 110,000) 
	80,000 (63,000 - 103,000)
	 1,487,000 (1,155,000 - 1,980,000) 
	 1,404,000 (1,090,000 - 1,875,000) 

	Other infections
	 67,000 (52,000 - 85,000) 
	--
	 5,079,000 (3,688,000 - 6,798,000) 
	--

	Bacterial skin infections
	 57,000 (32,000 - 104,000) 
	47,000 (24,000 - 89,000)
	 1,176,000 (650,000 - 2,137,000) 
	 970,000 (511,000 - 1,814,000) 

	Diarrhoea
	45,000 (39,000 - 53,000)
	4,420 (1,940 - 8,180)
	2,750,000 (2,208,000 - 3,521,000)
	390,000 (141,000 - 794,000)

	Cardiac infections
	 22,000 (15,000 - 28,000) 
	19,000 (13,000 - 25,000)
	 474,000 (345,000 - 617,000) 
	 423,000 (307,000 - 551,000) 

	Tuberculosis
	 20,000 (18,000 - 23,000) 
	20,000 (18,000 - 23,000)
	 777,000 (688,000 - 890,000) 
	 777,000 (688,000 - 890,000) 

	CNS infections
	 9,250 (6,450 - 14,000) 
	5,300 (3,640 - 8,290)
	 499,000 (350,000 - 740,000) 
	 281,000 (193,000 - 419,000) 

	Bone and joint infections
	4,310 (1,290 - 10,000)
	3,720 (1,120 - 8,700)
	96,000 (28,000 - 228,000)
	84,000 (25,000 - 199,000)

	Gonorrhoea and chlamydia
	 451 (415 - 486) 
	451 (415 - 486)
	 32,000 (26,000 - 42,000) 
	 32,000 (26,000 - 42,000) 

	Typhoid, paratyphoid, and iNTS
	316 (220 - 636)
	316 (220 - 636)
	15,000 (9,700 - 26,000)
	15,000 (9,700 - 26,000)

	Abbreviations: BSI = Bloodstream Infection, CNS = Central Nervous System, DALYs = Disability Adjusted Life Years, iNTS = invasive Non-typhoidal Salmonella, LRI = Lower Respiratory Infection, UI = Uncertainty Intervals, UTI = Urinary Tract Infection, WHO = World Health Organization
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	1
	Define the indicator(s), populations (including age, sex, and geographic entities), and time period(s) for which estimates were made.
	Main text methods section (deaths which involved an infection and their infectious syndrome)

	2
	List the funding sources for the work.
	Main text abstract section (funding statement) and acknowledgements section

	Data Inputs

	   For all data inputs from multiple sources that are synthesized as part of the study:

	3
	Describe how the data were identified and how the data were accessed. 
	Main text methods section (data inputs) and supplementary appendix sections 2, 3.2.1, 3.3.1, 3.4.1, 3.5.1, and 3.6.1 

	4
	Specify the inclusion and exclusion criteria. Identify all ad-hoc exclusions.
	Supplementary appendix section 2

	5
	Provide information on all included data sources and their main characteristics. For each data source used, report reference information or contact name/institution, population represented, data collection method, year(s) of data collection, sex and age range, diagnostic criteria or measurement method, and sample size, as relevant. 
	Supplementary appendix (section 2) and https://ghdx.healthdata.org/gbd-2019/data-input-sources

	6
	Identify and describe any categories of input data that have potentially important biases (e.g., based on characteristics listed in item 5).
	Main text limitations section and supplementary appendix section 3

	   For data inputs that contribute to the analysis but were not synthesized as part of the study:

	7
	Describe and give sources for any other data inputs. 
	GBD 2019 estimates: https://ghdx.healthdata.org/gbd-results-tool

	   For all data inputs:

	8
	Provide all data inputs in a file format from which data can be efficiently extracted (e.g., a spreadsheet rather than a PDF), including all relevant meta-data listed in item 5. For any data inputs that cannot be shared because of ethical or legal reasons, such as third-party ownership, provide a contact name or the name of the institution that retains the right to the data.
	Data inputs and/or contact information available at:
https://ghdx.healthdata.org/gbd-2019/data-input-sources

	Data analysis

	9
	Provide a conceptual overview of the data analysis method. A diagram may be helpful. 
	Main text methods section

	10
	Provide a detailed description of all steps of the analysis, including mathematical formulae. This description should cover, as relevant, data cleaning, data pre-processing, data adjustments and weighting of data sources, and mathematical or statistical model(s). 
	Supplementary appendix section 3

	11
	Describe how candidate models were evaluated and how the final model(s) were selected.
	Supplementary appendix section 3

	12
	Provide the results of an evaluation of model performance, if done, as well as the results of any relevant sensitivity analysis.
	Supplementary appendix section 3

	13
	Describe methods for calculating uncertainty of the estimates. State which sources of uncertainty were, and were not, accounted for in the uncertainty analysis.
	Main text methods section and supplementary appendix section 3

	14
	State how analytic or statistical source code used to generate estimates can be accessed.
	Main text methods section (link to GitHub code will be available at the time of publication)

	Results and Discussion

	15
	Provide published estimates in a file format from which data can be efficiently extracted.
	CSV files are available upon request to the corresponding author

	16
	Report a quantitative measure of the uncertainty of the estimates (e.g. uncertainty intervals).
	Uncertainty intervals are provided for all estimates throughout the main text (summary, results, and discussion sections)

	17
	Interpret results in light of existing evidence. If updating a previous set of estimates, describe the reasons for changes in estimates.
	Main text (research in context, introduction, and discussion sections)

	18
	Discuss limitations of the estimates. Include a discussion of any modelling assumptions or data limitations that affect interpretation of the estimates.
	Main text limitations section and supplementary appendix (section 3)


This checklist should be used in conjunction with the GATHER statement and Explanation and Elaboration document, found on gather-statement.org
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Micro w/ diag & outcome = Microbial data with diagnosis and outcome.

Micro w/o diag & w/ outcome = Microbial data without diagnosis and with outcome.
Micro w/ diag & no outcome = Microbial data with diagnosis and without outcome.
Micro w/o diag & no outcome = Microbial data without diagnosis and without outcome.
Full descriptions of each data type are provided in the appendix section 2.




