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A B S T R A C T   

Introduction: Pupillometry, the measurement of eye pupil diameter, is a well-established and objective modality 
correlated with cognitive workload. In this paper, we analyse the pupillary response of ultrasound imaging 
operators to assess their cognitive workload, captured while they undertake routine fetal ultrasound examina
tions. Our experiments and analysis are performed on real-world datasets obtained using remote eye-tracking 
under natural clinical environmental conditions. 
Methods: Our analysis pipeline involves careful temporal sequence (time-series) extraction by retrospectively 
matching the pupil diameter data with tasks captured in the corresponding ultrasound scan video in a multi- 
modal data acquisition setup. This is followed by the pupil diameter pre-processing and the calculation of pu
pillary response sequences. Exploratory statistical analysis of the operator pupillary responses and comparisons 
of the distributions between ultrasonographic tasks (fetal heart versus fetal brain) and operator expertise (newly- 
qualified versus experienced operators) are performed. Machine learning is explored to automatically classify the 
temporal sequences into the corresponding ultrasonographic tasks and operator experience using temporal, 
spectral, and time-frequency features with classical (shallow) models, and convolutional neural networks as deep 
learning models. 
Results: Preliminary statistical analysis of the extracted pupillary response shows a significant variation for 
different ultrasonographic tasks and operator expertise, suggesting different extents of cognitive workload in 
each case, as measured by pupillometry. The best-performing machine learning models achieve receiver oper
ating characteristic (ROC) area under curve (AUC) values of 0.98 and 0.80, for ultrasonographic task classifi
cation and operator experience classification, respectively. 
Conclusion: We conclude that we can successfully assess cognitive workload from pupil diameter changes 
measured while ultrasound operators perform routine scans. The machine learning allows the discrimination of 
the undertaken ultrasonographic tasks and scanning expertise using the pupillary response sequences as an index 
of the operators’ cognitive workload. A high cognitive workload can reduce operator efficiency and constrain 
their decision-making, hence, the ability to objectively assess cognitive workload is a first step towards under
standing these effects on operator performance in biomedical applications such as medical imaging.   

1. Introduction 

Workload is a multi-dimensional and complex concept. It can be 
divided into physical load and mental load [1]. The physical component 
comprises the corporeal strain placed on the person during the task. The 
mental load involves the psychological effort to perform a specific task. 
In the literature, the terms cognitive workload (CW) and mental work
load are synonymously used [2]. An increase in CW in medical practice 
can lead to undesirable consequences such as information overload, 

mental fatigue, decrease in situational awareness, and errors in 
decision-making. The starting point to better understand the implica
tions of CW on the clinical workforce, is to develop methods to quan
titatively measure and analyse CW in routine clinical practice. 

A wide number of strategies have been used to measure CW. These 
can be broadly divided into three groups [2]. The first group includes 
psychometric instruments, with examples such as surveys, self-reports and 
questionnaires, which subjectively measure the perceived CW of a 
subject. The second group comprises of quantitative performance 
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measurements, including total duration and efficiency in completing a 
given task. The third group involves the use of quantitative physiological 
measurements, such as eye-tracking to measure pupil diameter changes, 
electrocardiogram (ECG) monitoring, and electroencephalogram (EEG) 
tracing. In this paper, we specifically emphasize on the subset of 
methods from the third group, which incorporate state-of-the-art eye-
tracking technology to analyse and automatically predict CW of opera
tors performing fetal ultrasound scans in a clinical setting. 

Pupillometry, the study of eye pupil diameter changes, is a well- 
established modality that enables the measurement of CW [3]. Pupil
lary dilation is related to increase in CW via an increased sympathetic 
nervous system activity. Pupillometry has been suggested as an objec
tive and robust method to measure CW, and otherwise unobservable 
insights into CW can be gleaned using pupillometric analysis [4]. 

Ultrasonography is one of the most widely used medical imaging 
technologies worldwide and the preferred choice for screening and 
monitoring fetal well-being due to its non-invasiveness, absence of 
ionising radiation, high accessibility, high reliability, and relatively low 
costs. In this paper, we present the first study investigating ultrasound 
operator pupillary response to assess their cognitive workload during 
routine diagnostic ultrasound imaging. We consider this problem in the 
context of second-trimester fetal ultrasound screening. In many coun
tries, a second-trimester (gestational age of 18–22 weeks) ultrasound 
scan is offered to all pregnant women for a detailed assessment of the 
fetal anatomy and growth. For instance, in the United Kingdom (UK), 
the second-trimester scan guidelines are regulated by the National 
Health Service (NHS) under the Fetal Anomaly Screening Programme 
(FASP) [5]. During a full-length routine second-trimester ultrasound 
scanning session, an operator (a sonographer or fetal medicine doctor) 
views defined fetal anatomical structures called standard planes, 
including the head and brain, the heart, the abdomen, the limbs, the 
spine, and additional structures such as the hands and the feet, umbilical 
cord insertion, and maternal structures such as the uterine arteries. The 
second-trimester fetal ultrasound scan provides an interesting case study 
of cognitive workload assessment of ultrasound operators, whereby 
operator pupillary response is measured using non-contact eye-tracking 
technology, while they perform real-world scans. 

1.1. Motivation 

In routine obstetric ultrasound scanning, the second-trimester scan is 
considered to be one of the most mentally challenging scans because of 
the large number of mandatory standard planes, the prerequisite to 
comprehensively assess small structures (such as the heart which is 
typically 20 mm in diameter at the time of scan), and other associated 
challenges; specifically, ultrasound operators have to dynamically 
adjust the probe position in real-time to acquire the best diagnostic 
imaging plane, while overcoming artifacts induced by maternal habitus, 
fetal bone ossification, and fetal movement, thus requiring sharp hand- 
eye coordination skills [6]. Concurrently, the operator is required to 
instantaneously decide whether the imaging plane meets quality criteria 
and displays normal anatomical and functional features [7]. Analysis of 
operator clinical workflow of second-trimester ultrasound scans reveals 
that scanning is operator-dependent and difficult to perform, with 
arbitrary types, order, and time-distributions of the scanning tasks [8]. 
As these scans demand significant cognitive effort from the ultrasound 
operators, it is beneficial to quantitatively analyse operator CW to assess 
operators’ mental overload and fatigue, which would help to avoid 
medical errors and improve overall patient outcomes. Moreover, 
assessment of CW is potentially useful to automatically characterise 
operator expertise and provide actionable feedback during their 
training, for example, on ultrasound simulators. We are motivated to 
explore pupillometry as a tool to assess operator CW due to its preva
lence in analysing cognitive tasks in multiple other areas [3]. This paper 
contributes towards establishing a meaningful relationship between 
operators’ pupillary changes and CW and developing objective 

computer-aided machine learning-based methods for task and skill 
characterization in clinical fetal ultrasound scanning. 

Eye-tracking devices have advanced in recent years and provide 
adequate temporal resolution and precision to detect relatively small 
changes in the pupil diameter. Eye-tracking for continuous assessment 
of objective CW by measurement of pupil diameter changes is therefore 
possible [2]. Specifically, remote non-contact eye trackers have been 
increasingly used for pupillometric measurement of CW [9]. Such a 
capability is potentially well-suited for a clinical medical imaging 
setting, where remote eye trackers can be placed under the display 
screen facing the eyes of the operator (e.g., radiologists, pathologists, 
ultrasound operators including sonographers and sonologists) while 
they view medical images on a display monitor. In this way, operator 
pupillometric measurements can be made without disturbing or hin
dering the operator, leading to unobtrusive and continuous experiments 
for the analysis of CW. Thus, in routine settings, measuring CW by 
eye-tracking can be considered favourable compared to other categories 
of physiological measurements such as ECG and EEG, which are usually 
obtrusive and controlled. Other advantages of eye-tracking for mea
surement of CW include reliability (accuracy), objectivity, and contin
uous measurement throughout the operator activity. Hence, we are 
encouraged to investigate changes in pupil diameter of ultrasound im
aging operators using remote eye-tracking technology. 

Most literature on pupillometric measurements of CW consider strict 
and controlled conditions, with a very limited number of examples 
addressing real-world and uncontrolled scenarios, such as [10]. In 
contrast to the existing carefully controlled studies, our experiments 
have been performed using multi-modal data acquired from routine 
ultrasound scanning, which makes this study unique and challenging. 
There are two key challenges. Firstly, for real-world acquisition settings, 
the acquired data will contain noise, outliers, and artifacts compared to 
data obtained in controlled experiments. We have addressed this prob
lem by using bespoke pupillometric data pre-processing (details in 
Section 5.1). Secondly, pupil diameter changes have been shown to 
correlate with environmental conditions, such as changes in ambient 
lighting, distance from the target, head positioning, and underlying eye 
disease, in addition to higher-level cognitive processes such as thinking 
or memorising [2]. In controlled pupillometric experiments, these are 
carefully monitored. However, in real-world experiments, such as ours, 
it is impossible to control these environmental factors, and this may lead 
to errors in observations [10]. To address this problem, we have made 
the following assumptions in our experiments. As a single routine ul
trasound scan is usually completed in a single session of 20–40 min in 
the ultrasound scan room, the indoor lighting conditions are assumed to 
be constant during one scan. Furthermore, here the distance from the 
target is the distance between the operator and the display screen of the 
ultrasound machine (where the eye tracker is mounted); this is usually 
standard for a cart-based ultrasound machine and assumed constant 
during the scan. This distance is also recorded in the eye-tracking data 
(details in Section 3.2). For ultrasound operators, the head position is 
upright and remote eye-tracking automatically compensates for small 
head movements, hence, this factor has negligible effect. Lastly, all op
erators in our experiments have normal-to-corrected vision without any 
known eye condition or disease. 

We explore two aspects of the ultrasound scanning process, namely, 
task load and operator experience, with reference to the cognitive effort 
exertion of ultrasound operators. Firstly, the characteristics of the un
dertaken ultrasonographic task can lead to varying pupillary responses 
depending on the perceived cognitive difficulty of the particular task. 
Hence, in theory, the operator pupil diameter changes can allow dif
ferentiation between easy and difficult scanning tasks. Another aspect is 
the scanning expertise depending on the operator’s experience, which 
may lead to different extents of CW, hence, different pupillary responses. 
For instance, one may expect that an experienced operator will have a 
lower CW for a task when compared to a newly-qualified operator. 
Therefore, we can hypothesize that suitable modelling and learning of 
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the temporal pupil diameter changes may allow differentiation between 
scanning tasks and operator experience that is measured in years of 
scanning since qualification. 

1.2. Contribution 

We hypothesize that there are measurable variations in the opera
tor’s cognitive effort during acquisition of a routine second-trimester 
fetal ultrasound scan that can be measured via pupil diameter 
changes. Specifically, the study considers three questions:  

1. Can pupil diameter changes, measured using eye-tracking during 
routine fetal ultrasound scans and acquired in sustained indoor 
scanning conditions, be used to assess operator cognitive workload?  

2. Do pupil diameter changes of operators depend on the sonography 
task at hand and their scanning expertise, which, in turn determines 
their resulting cognitive workload?  

3. Can temporal changes in pupil diameter be utilised in advanced 
machine learning-based models to automatically predict the sonog
raphy task and the scanning experience of the operators? 

The specific contributions of the study are the following.  

1. We propose a systematic multi-modal data acquisition, pre- 
processing, and analysis pipeline to estimate the pupil diameter 
changes of ultrasound operators via eye-tracking technology. The 
multi-modal data acquisition involves the simultaneous recording of 
scan video and eye-tracking datasets, followed by retrospective 
matching of pupil diameter data with events captured in the scan 
videos. We address the pertinent challenges of uncontrolled real- 
world datasets using bespoke pre-processing and pupillary 
response sequence calculation for our experiments.  

2. We investigate operator pupil diameter change as an index of 
cognitive workload. We statistically study two aspects of ultrasound 
image acquisition that can lead to CW variations and the corre
sponding pupil diameter changes, namely, the ultrasonographic task 
and the operator experience. A quantitative measure of operator CW 
during scanning can be derived from the distribution of pupil 
diameter changes, which is found to vary more significantly among 
tasks with reference to the anatomical structures being scanned, and 
less significantly among experience groups with reference to oper
ator expertise.  

3. We develop machine learning algorithms to automatically infer the 
undertaken ultrasonographic task and operator experience given a 
measured temporal pupillary response. We comparatively evaluate 
the different inference models as well as the effect of windowing 
around event triggers. 

1.3. Related work 

Today, pupillometry, the study of eye pupil diameter, is a recognised 
modality that enables the measurement of cognitive controlled tasks [3], 
and several existing works suggest a meaningful relationship between 
pupil diameter changes and cognitive workload. We review the relevant 
literature in this section as the following. 

It was early experimental research on pupillometry in the early 
1960s that first suggested that pupillometry can be used to measure CW. 
Original work by Hess and Polt [11] found that mean changes in the 
pupil size of the eye observed during solving simple multiplication 
problems can be used as a direct measure of mental activity. Subsequent 
early studies showing that pupil diameter increase with higher cognitive 
demands include the pupillometric analysis for listening effort in a 
pitch-discrimination task [12], and pupil diameter response study dur
ing short-term memory tasks [13]. Recent studies in this direction 
include the assessment of pupil diameter changes in response to easy and 
difficult arithmetic problems using more advanced and portable 

eye-tracking technology [14], and the use of task-evoked pupillometry 
to differentiate the short-term memory capacity of children and adults 
[15]. A study that emphasizes real-world conditions in pupillometry 
experiments for four general visual search tasks (e.g., spot the difference 
between two images and find words hidden in a matrix) is described in 
Ref. [10], where the authors use task-evoked pupil dilation response to 
differentiate between the tasks and the users. They also use machine 
learning with statistical features and support vector machines (SVMs) to 
learn the pupillary response of event and non-event tasks. However, it 
was found that the binary classification performance metrics are not 
particularly higher than chance, owing to real-world experimental 
conditions and inter-observer variability. In contrast, the learning 
methods studied in this paper explore sophisticated hand-crafted fea
tures with classical machine learning, as well as deep learning, and as we 
will show, achieve reasonable classification performance metrics. A set 
of studies involve multi-modal fusion of physiological data such as sig
nals (e.g., ECG, EEG) and eye-tracking information (e.g., pupil diameter 
response) to infer cognitive states [16], such as identifying human 
emotions [17]. A preliminary multi-modal learning method for operator 
skill characterization in clinical fetal ultrasound using spatial video, 
gaze, and pupillometric data is presented in Ref. [18]. 

In medical sciences and biomedical research, the use of advances in 
pupillometry has been relatively recent. A study using physician pupil 
diameter to distinguish between novices and experts, and perceived easy 
and difficult tasks, is described in Ref. [4], and within the specific 
domain of resuscitation medicine in Ref. [19]. A survey of mental 
workload assessment of clinicians using electronic health record sys
tems, including eye-tracking based pupillometric experiments, is pre
sented in Ref. [2]. For instance, pupil diameter changes are explored as 
one of the measures in usability assessment for electronic health record 
systems [20]. Another study [21], investigates gaze behaviour including 
pupillary response to differentiate between junior and expert surgeons 
in abdominal open surgery. Pupil response to changes in surgical diffi
culty for laparoscopic surgery is analysed in Ref. [22]. A study to assess 
mental operations by exploring differences between pupil dilation re
sponses in alerting, orienting, and executive conflict monitoring tasks, is 
reported in Ref. [23]. 

The above studies confirm that pupil diameter changes are correlated 
with both the cognitive task undertaken, and the expertise of the user 
who performs the task. In context of routine ultrasound imaging, in a 
pilot study, we statistically analyse the global pupillary response as an 
index of CW that shows significant difference between easy and difficult 
task groups and operator experience [24]. In this paper, we leverage the 
ideas from pupillometry and biomedical data science to thoroughly 
analyse pupil diameter changes of ultrasound operators, in order to 
assess CW with respect to specific complex ultrasonographic tasks and 
operator experience, and to develop machine learning models that 
automatically infer the undertaken ultrasonographic task and the op
erator’s expertise using only their pupillary response. To the best of our 
knowledge, there are no other existing pupillometric studies in routine 
ultrasound imaging. 

2. Method overview 

The overall method for analysing pupillary response of ultrasound 
imaging operators is presented in the block diagram in Fig. 1. Corre
spondingly, the paper is organised as follows. Section 3 describes the 
experimental setup with multi-modal data acquisition, and Section 4 
explains clip extraction, annotation and resulting pupillometric data
sets. Section 5 presents the pupillary data processing method, including 
data pre-processing and temporal sequence extraction. Section 6 reports 
the statistical distributions in the resulting datasets. Section 7 explains 
feature extraction, classical and deep machine learning models, obser
vations, and windowing effects for ultrasonographic task classification, 
and Section 8 for operator experience classification. Section 9 discusses 
the study findings in detail, and Section 10 concludes the paper. 
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3. Multi-modal data acquisition and experimental setup 

The multi-modal data used in this paper was acquired as part of the 
Perception Ultrasound by Learning Sonographic Experience (PULSE) 
study.1 This study was approved by the UK Research Ethics Committee 
(Reference 18/WS/0051). For the purposes of this study, pregnant 
women with a singleton pregnancy attending pregnancy care at the 
Oxford University Hospitals NHS Foundation Trust, UK, were prospec
tively enrolled. Written informed consent was given by all participating 
pregnant women, as well as operators who participated in the study. 
Data were stored according to approved data governance rules. 

3.1. Fetal ultrasound scan videos 

Women who agreed were consented to have their full-length routine 
second-trimester ultrasound scan video recorded. All ultrasound scans 
included in this study were performed using a commercial Voluson E8 
version BT18 (General Electric Healthcare, Zipf, Austria) ultrasound 
machine equipped with standard curvilinear (C2-9-D, C1-5-D), and 3D/ 
4D (RAB6-D) probes. The LCD monitor has a resolution of 1920 × 1080 
pixels and refreshes at a frequency of 60 Hz. The video signal was 
recorded from the scanner using lossless compression and sampled at the 
rate of 30 frames per second [25]. The average duration of a full-length 
second-trimester routine examination was 36.2 ± 11.6 min, with an 
average of 65,089 frames per scan video. Video data were stored as. mp4 
video files, and each video file was converted to individual video frames 
stored as. png image files. 

3.2. Eye-tracking data 

Synchronised eye tracking was undertaken during the ultrasound 
scan acquisition using a remote eye-tracker (Tobii Eye-tracking Eye 
Tracker 4C, Danderyd, Sweden). The eye tracker was rigidly attached 
just below the display screen of the standard ultrasound system, with a 
magnetic mounting bracket as per the instruction of the product. The 
acquisition setup is shown in Fig. 2. 

Pupil diameters of operators were measured by the eye tracker 
during scan acquisition. In the eye model of the eye tracker used, the 
pupil size is defined as the actual, internal physical size of the pupil [26]. 
The eye tracker outputs pupil size for each eye (in mm), together with 

each spatial gaze point (relative x and y coordinates) and 3D eye posi
tion of each eye at 90 Hz with corresponding timestamps, effectively 
recording three data points per video frame. The eye-tracking data were 
stored for later processing. For the scans studied in the datasets, the 
mean distance between operator pupil and display screen is 59.11 cm 
with a standard deviation of 5.46 cm. 

Operators did not have any visual or other signal to know that the 
eye-tracking device was functioning. Operators were free to adjust the 
height of the chair, and the inclination of the monitor. They operated the 
ultrasound probe in order to perform ultrasound examinations without 
being affected by the presence of an eye tracker, hence, real-world and 
clinically relevant eye-tracking data were recorded. The calibration of 
the eye tracker was previously studied in Ref. [25], where the eye 
tracker was calibrated for each operator following a 9-point calibration 
protocol. 

4. Dataset preparation 

4.1. Video clip extraction 

The pupil diameter datasets were created corresponding to video 
clips of pre-defined scanning tasks extracted from full-length scan 
videos, as explained next. For video clip extraction, the scanning pa
rameters were automatically extracted for each video frame in the full- 
length US scan video using optical character recognition [27] on the 
display screen. Under these, the ‘Freeze’ state for each frame was 
automatically detected and recorded as a technical annotation. A video 
clip was defined with respect to a freeze frame. In the scan, video is 

Fig. 1. Method overview.  

Fig. 2. Acquisition setup for eye-tracking.  

1 Project PULSE, funded by the European Research Council (grant ERC ADG- 
2015 694581) https://www.eng.ox.ac.uk/pulse. 
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typically frozen when a standard plane, according to the UK FASP pro
tocol [5], is found. After freezing, the operator performs, for example, 
diagnostic inspections, biometric measurements, measurements using 
Doppler or Pulse Doppler and obtaining the optimal surface rendering. 
Hence, from the pupillometric point of view, freezing of the video can be 
detected as an ‘event’ or action when the operator CW is expected to 
change. For instance, before freezing, operators are often refining the 
view selection (fine-tuning), and after freezing, they are interpreting the 
content on the screen. Using the video clip definition and extracted 
‘Freeze’ states, a full-length ultrasound scan video was automatically 
segmented in time to extract video clips. Specifically, 100 frames (3.3 s) 
were selected before the first detected frozen frame and a variable 
number after this frame, depending on the location of the last sequential 
frozen frame. A schematic of video clip extraction is shown in Fig. 3. 

4.2. Anatomical annotation 

A semi-automatic annotation method [8] was applied to obtain 
non-overlapping labelled video clips from full-length ultrasound scan 
videos depicting individual scanning tasks based on the viewed anat
omy. Here, the extracted video clips were either visually inspected and 
manually annotated, or automatically annotated using a machine 
learning-based annotation model. In the latter case, fixed-length 
manually labelled clips were used for training deep spatio-temporal 
neural networks, and annotations of unlabelled clips were inferred 
using the trained networks. For manual annotation, a total of 
twenty-three labels were identified by a clinical expert. It was found that 
the most commonly occurring ultrasonographic tasks were ‘Heart’ and 
‘Brain’, indicating that operators spent most time on one of these two 
tasks. These two tasks also showed a high accuracy in automatic anno
tation algorithm (>80%) [8,28]. These two tasks were selected for 
pupillometry analysis. The automatically labelled clips of these tasks 
were further manually inspected to filter out misclassified clips. An 
example video clip for each of these ultrasonographic tasks is depicted in 
Fig. 4. 

4.3. Datasets for pupillometric experiments 

For our experiments, we select a large subset of the PULSE dataset 
containing 380 routine full-length manually and automatically labelled 
second-trimester fetal ultrasound scans from 380 different women. 
These scans were undertaken by a total of 12 operators. The operators 
were separated into two groups based on their experience in sonogra
phy, namely newly-qualified (NQ) operators and experienced (XP) op
erators. The NQ group consists of three operators with less than or equal 
to two years of scanning experience (O1, O2 and O3), and XP group has 
nine operators with more than two years of scanning experience 
(O4–O12). The total number of scans performed by the NQ group were 
231, and 149 scans were performed by the XP group. The distribution of 
the ultrasound scans among the different operators is given in Table 1. 

Using the extracted and labelled video clips from full-length scans, 
we extract the corresponding pupil diameter sequences of the two ul
trasonographic tasks, namely, Brain and Heart. Each pupil diameter 
sequence consists of pupil diameters for the left and the right eye, as 
recorded by the eye tracker. A total of 769 Brain sequences (505 for NQ 

operators and 264 for XP operators) were extracted with a mean dura
tion (standard deviation) of 31.5 (24.4) seconds. A total of 1694 Heart 
sequences (1062 for NQ operators and 632 for XP operators) were 
extracted with a mean duration (standard deviation) of 26.1 (33.8) 
seconds. For the operator experience groups, a total of 1567 sequences 
were extracted for NQ operators with a mean duration (standard devi
ation) of 19.4 (18.7) seconds, and 896 sequences for XP operators with a 
mean duration (standard deviation) of 24.3 (28.3) seconds. The 
sequence durations show a high variability, as in a second-trimester fetal 
ultrasound scan, the type, duration and order of the ultrasonographic 
tasks are arbitrary, and depend on several factors such as complexity of 
the task, fetal position, and operator expertise [8]. We have explained 
the difference in sequence durations in detail in Section 6. The distri
butions of the Brain and Heart sequences among the different operators 
(and corresponding experience groups) are shown in Table 1. 

5. Pupillary data processing 

We outline the pupillary data processing methods in this section. 
Firstly, the recorded raw pupil diameter data is processed using bespoke 
pre-processing. Then, a task-evoked pupillary response is calculated 
from the processed pupil diameter. 

5.1. Pupil diameter pre-processing 

Raw eye-tracking data collected directly from the eye tracker in 
uncontrolled experiments may contain noise or artifact samples, and 
discontinuities due to acquisition conditions (e.g., direction of gaze may 
not always be towards the screen when the operator interacts with the 
subject leading to missing data, brightness of the room may vary during 
the scan). These factors can lead to unwanted changes in pupillary 
response in addition to those associated with CW, thus, adversely 
affecting pupil size analysis. Therefore, it is necessary to perform pre- 
processing of the pupil diameter data to increase the reliability of CW 
inference from the corresponding pupil diameter variations. 

To pre-process the pupil diameter data, we follow the guidelines 
prescribed by Ref. [29] for biomedical applications. This involves three 
steps, namely, removing noise and outliers, interpolating missing data 
and smoothing the raw signal. The sequential steps are briefly described 
as follows. Firstly, invalid samples (noise and outliers) are identified as 
samples outside the median absolute deviation of pupil dilation speeds, 
edge artifacts, trend-line deviation outliers, temporally isolated samples, 
and samples that are simply outside of a predefined feasible range, 
typically 1.5 mm–9 mm. This step identifies and rejects outliers due to 
system errors, blinks and look-away moments. After obtaining valid raw 
signal samples, gaps between these samples are interpolated by 
upsampling at a high sampling rate (1000 Hz). The resulting signal is 
smoothed using a zero-phase low-pass filter, with a cutoff frequency of 4 
Hz. All the parameters in the pre-processing step are kept identical to 
those recommended in Ref. [29]. 

Examples of pupil diameter sequences before and after the pre- 
processing stage are shown in Fig. 5 for the Brain task and Fig. 6 for 
the Heart task. Observe that noisy samples are removed, gaps in data are 
filled, and the signal is smoothed. Moreover, in the processed Brain 
sequence, the dilation after freeze frame may be indicative of increase in 

Fig. 3. Schematic of video clip extraction.  
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operator CW just after freezing the screen to perform biometric mea
surements; in contrast, constriction after first freeze in the processed 
Heart sequence represents decrease in workload when a desirable plane 
is found (as a sign of relief or when the operator views the beating 
heart), but then the workload increases with time when different heart 
views need to be inspected and the probe needs to be carefully man
oeuvred again. 

5.2. Pupillary response sequence calculation 

Absolute pupil diameters have a heterogeneous numerical range and 
exhibit inter-observer variability depending on a subject’s biological 
traits. Hence, absolute pupil diameter measurements need to be nor
malised to make them biologically invariant, such that measurements 

derived from multiple subjects can be combined. 
Task-Evoked Pupillary Response (TEPR) is defined as the stimulus- 

induced increase in pupil diameter relative to a pre-stimulus baseline 
period [3,9]. We calculate the TEPR from the processed pupil diameters 
to make the pupillary response invariant to the biological characteristics 
of individual users. However, since the data is acquired ‘in the wild’ 
during real-world ultrasound scans, thus, there is no defined 
pre-stimulus baseline task. Selecting the beginning of the routine scan as 
the pre-stimulus baseline is not a good choice because operators may 
deeply concentrate on determining the fetal position in this time. 
Therefore, this parameter is replaced by a rest pupil diameter that is 
computed as the minimum pupil diameter of the operator while per
forming a scan, obtained from the processed pupil diameters for a given 
scan. The rest pupil diameter is analogous to a pre-stimulus baseline, as 

Fig. 4. Example video clips for the two ultrasonographic tasks (a) Brain (b) Heart. Orange outline represents non-frozen frames and blue outline represents 
frozen frames. 

Table 1 
Distribution of scans and pupil diameter sequences with operators and their scanning experience.  

Experience Group Newly-qualified (NQ) Experienced (XP) Total 

Operator (Years) O1(0) O2(1) O3(2) O4(3) O5(5) O6(6) O7(7) O8(8) O9(10) O10(10) O11(14) O12(15)  
Ultrasound Scans 122 88 21 6 4 16 1 3 2 28 83 6 380 
Brain Sequences 229 232 44 9 10 39 1 7 3 51 132 12 769 
Heart Sequences 665 245 152 24 27 60 6 32 11 113 321 38 1694  

Fig. 5. Example pupil diameter Brain sequence (a) before and (b) after pre-processing.  

Fig. 6. Example pupil diameter Heart sequence (a) before and (b) after pre-processing.  
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we assume that an increase in the CW would lead to pupil dilation, 
which represents an increase in the pupil diameter from rest. Hence, the 
TEPR Δd for a task-evoked pupil diameter dte, given rest pupil diameter 
dr is calculated by Equation (1). 

Δd(%) =
dte − dr

dr
× 100% (1) 

The task-evoked pupillary response is illustrated in Fig. 7. A TEPR 
sequence is computed from each corresponding mean pupil diameter 
sequence. Temporal changes in operator pupillary response are repre
sented by the TEPR sequences. 

6. Statistical data analysis 

We performed an exploratory analysis on the raw pupil diameter 
measurements for the ultrasound scan datasets. For this, we plotted the 
histogram and box-whisker plot of the raw pupil diameter data. We 
found that the mean, median, and quantiles of the distribution are 4.61 
mm, 4.49 mm, 4.01 mm (0.25 quantile), and 5.20 mm (0.75 quantile). 
From the histogram in Fig. 8(a), we observed that the distribution has a 
small positive (right) skew compared to a normal distribution, and the 
skewness was computed as 0.31. The depicted normal distribution has 
the parameters as mean 4.61 mm and standard deviation 0.82 mm. In 
Fig. 8(b), the box-whisker plot also shows a small difference between the 
median and the mean (green dot); notches were used to represent the 
confidence interval of the median, but these are very small and not 
noticeable in the figure. 

After establishing the distribution characteristics, we compare the 
statistical distributions for the pupil diameter responses recorded before 
and after the freeze event, for observed anatomical structures based on 
the ultrasonographic task at hand, and operator experience groups. We 
present box-whisker plots for each group in the comparison, and report 
Δ as the difference in the mean TEPR percentage of the two compared 
distributions meanTEPRgroup1 − meanTEPRgroup2. To test the statistical 
significance of the difference between distributions of the two compared 
groups, we perform a two-sample Kolmogorov-Smirnov test [30], a 
non-parametric test that returns a decision for the null hypothesis that 
the data in the groups are from the same continuous distribution, and 
the alternative hypothesis is that the data in groups are from different 
continuous distributions. The result of the test is 1 if the test rejects the 
null hypothesis at the 5% significance level (p < 0.05), and 0 otherwise. 

6.1. Before and after freeze event 

Pupillary responses are compared before and after the first freeze 
event in the TEPR sequences. Fig. 9(a) shows the box-whisker plot of the 
pupillary response distributions. This shows a significantly higher 
overall TEPR values after the freeze event compared to before the freeze 
event in the sequences (Δ = 1.99%, p < 0.05). This result is indicative of 

higher overall cognitive load of operators after they freeze the scan 
video on the ultrasound machine including interpretation of the frozen 
frames, such as diagnostic inspection and biometric measurements, in 
comparison to the fine-tuning stage before freezing the live scan video. 

In Fig. 9(b) and (c), we plot the mean TEPR sequence with 95% CI, 
before and after the freeze event, respectively. We find that mean pu
pillary response begins to increase near freeze in the TEPR sequence 
before the freeze action is performed, representing an increase in CW of 
operators at this time. A high value just after freeze action and a sharp 
decrease afterwards shows that the operators’ CW decreases immedi
ately after they find a suitable view and freeze it. We also observe that 
the pupillary response gradually increases after the first freeze in the 
TEPR sequence, indicative of CW build-up during the interpretation of 
frozen frames. 

6.2. Observed anatomical structures 

Pupillary responses of the Brain and Heart ultrasonographic tasks are 
compared. Fig. 10(a) shows the box-whisker plot of the pupillary 
response distributions. It shows a significantly higher overall TEPR for 
Brain compared to Heart (Δ = 2.20%, p < 0.05). This result is indicative 
of higher cognitive load of operators while observing the fetal head and 
brain anatomical structures compared to the fetal heart and thorax. 

In Fig. 10(b), we plot the mean TEPR sequence with the 95% CI for 
each of the two ultrasonographic tasks. We observe that the mean TEPR 
sequence decreases with time for Brain and increases with time for Heart 
sequences. This is interesting to observe, and suggests that CW for 
observing Brain and neighbouring structures is higher in the fine-tuning 
stage and the beginning of the interpretation task and then decreases 
gradually, whereas, an opposite phenomenon is observed for Heart and 
nearby anatomies. For the Brain sequences, a higher CW in the fine- 
tuning stage suggests that the operators exert higher amount of cogni
tive efforts to perform the precise localisation of the brain for accurate 
biometric measurements. For the Heart sequences, the increase in CW 
during interpretation may be explained by the complexity of interpret
ing the frozen standard planes of the fetal heart in comparison to the 
fetal brain at 20 weeks of gestation. There are two standard fetal brain 
planes, namely, Transventricular (TV) and Transcerebellar (TC), and 
five standard fetal heart planes, namely, Three Vessel Trachea (3 V T), 
Right Ventricular Outflow Tract (RVOT), Left Ventricular Outflow Tract 
(LVOT), Four Chamber View (4CH) and Situs, along with Doppler views. 
Each of the heart standard planes have more features to be assessed in 
comparison to any other fetal organ. Additionally, heart is a smaller 
structure and requires more operator concentration during interpreta
tion of frozen frames. 

Furthermore, an important observation is that Heart sequences have 
a shorter mean duration than Brain sequences as depicted in the figure. 
The difference in the mean durations of the Heart and the Brain se
quences can be explained as the following. In a previous related study, 
operator clinical workflow was analysed in the second-trimester clinical 
fetal ultrasound scans [8], where it was found that a freehand scan is 
difficult to perform and operator-dependent, as it consists of arbitrary 
task types, order, and time-distributions, with multiple attempts and 
repetitions if the tasks were not successfully completed earlier. The 
reason for difference in the mean durations is two-fold. Firstly, the 
acquisition of the Brain sequences involves precise biometric measure
ments such as the head circumference (HC) and the biparietal diameter 
(BPD), in contrast there are no biometric measurements involved for the 
acquisition of the Heart sequences, leading to longer duration for the 
Brain sequences. Secondly, heart is a smaller structure and a higher 
number of heart standard planes are needed to be acquired compared to 
the brain, hence, operators may require multiple attempts to scan the 
heart, leading to a higher number of repetitions if the planes are not 
satisfactorily captured earlier. In contrast, during the brain scanning, 
operators can analyse the visual information with fewer attempts and 
repetitions in the scan. This has led to a lower mean duration for the Fig. 7. Task-evoked pupillary response calculation for our experiments.  

H. Sharma et al.                                                                                                                                                                                                                                



Computers in Biology and Medicine 135 (2021) 104589

8

individual Heart sequences compared to the Brain sequences. 

6.3. Operator experience 

Pupillary responses of the NQ and XP experience groups are 
compared. Fig. 11(a) shows the box-whisker plot of the pupillary 
response distributions for NQ and XP experience groups. It shows 
slightly higher overall TEPR for XP compared to NQ (Δ = 0.84%, p <
0.05), indicating a higher CW exertion by experienced operators 
compared to newly-qualified operators. This observation is contrary to 
intuition. A pilot study was previously performed to compare the pu
pillary responses of newly-qualified and experienced operators for the 
predominant anatomical tasks in ultrasound scans [24]. In that study, 
we observed that the global pupillary response of the NQ operators was 
slightly higher compared to the XP operators. However, in this paper, 

the Heart and the Brain ultrasonographic tasks are selected due to the 
reasons outlined in Section 4.2, and the distribution is found only for the 
task-specific TEPR sequences. This observation indicates that experi
enced operators demonstrate a slightly higher CW compared to 
newly-qualified operators for these two complex tasks. Moreover, the 
overall pupillary response difference between the two skill groups is 
lower compared to the previous comparisons, which indicates that the 
pupillary response values are closer for the two experience groups, and it 
can be more difficult to discriminate between experience levels based on 
these values. 

In Fig. 11(b), we plot the mean TEPR sequence with the 95% CI for 
each of the two skill groups. We observe that the mean TEPR sequence 
gradually increases with time for NQ operators, whereas it sharply de
creases with time for XP operators. The observation suggests that 
experienced operators concentrate more during the fine-tuning of the 

Fig. 8. Distribution of raw pupil diameters (a) Histogram (b) Box-whisker plot.  

Fig. 9. Pupillary response before and after freeze event. (a) Distributions of TEPR values and Mean TEPR sequences with 95% CI (b) before and (c) after freeze event.  
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anatomical views and rapidly feel a lower CW as they progress into the 
interpretation of the given anatomical structures, whereas the newly- 
qualified operators experience a higher CW into the interpretation 
stage including inspection and biometric measurements. 

Moreover, we observe that NQ sequences have a shorter mean 
duration than XP sequences. The difference in the mean duration of the 
sequences captured by the NQ and the XP operators can be explained as 
the following. From clinical workflow analysis [8], it was observed that 
the NQ operators show higher disorder (entropy), with a greater number 
of attempts and repetitions of the scan tasks. For complex anatomies 
such as the Heart and the Brain, it is intuitive that individual sequence 
durations of the NQ operators would be lower compared to the XP op
erators, due to a lower clinical experience, thereby, less capability to 
complete these tasks in succession and repeating these later if they were 
not satisfactorily performed earlier in the scan. 

The above comparative analyses of the TEPR values suggest that 
there exist perceivable variations in the pupillary responses, thereby 
indicating measurable differences in the CW of ultrasound operators, 
depending on the observed anatomical structures and their scanning 
experience. We further explore these two factors by training machine 
learning models with features extracted from temporal TEPR sequences 
to automatically distinguish between ultrasonographic tasks and oper
ator experience groups. 

7. Machine learning for observed anatomical structures 

After extracting the corresponding TEPR sequences from the 

processed pupil diameters, each sequence is treated as a separate time- 
series with associated binary class labels for the ultrasonographic task, 
namely, Brain or Heart. Machine learning models are trained to auto
matically classify the TEPR sequences into one of the two tasks. Uniform 
windowing of the sequences on either side of the triggering event is 
comparatively evaluated using the best-performing learned models. 

7.1. Feature extraction and classification 

Hand-crafted features including temporal, spectral and time- 
frequency features, are extracted from the pupillary response se
quences and used to train classical machine learning models inferring 
the ultrasonographic tasks. Deep learning models are also explored in 
this context which do not require hand-crafted feature extraction. The 
feature extraction and classification methods are explained next. 

7.1.1. Temporal features 
In this category, the temporal characteristics of the TEPR sequences 

are emphasized, and statistical features are directly computed for each 
time-series. The computed eight temporal features are mean, median, 
minima, maxima, standard deviation, inter-quartile range, skewness, 
and kurtosis. 

7.1.2. Spectral features 
Here, the discrete Fourier transform of each TEPR time-series is 

computed. This is followed by finding the statistics of the spectrum, 
specifically, frequencies of the K = 4 amplitude peaks, mean frequency, 

Fig. 10. Pupillary response for Heart and Brain ultrasonographic tasks. (a) Distributions of TEPR values (b) Mean TEPR sequence with 95% CI.  

Fig. 11. Pupillary response for NQ and XP experience groups. (a) Distributions of TEPR values (b) Mean TEPR sequence with 95% CI.  
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median frequency, maximum amplitude, total power, and mean power, 
resulting in a total of nine spectral features. 

7.1.3. Time-frequency features 
This feature group involves wavelet analysis of the TEPR time-series 

to obtain a time-frequency representation of the signal [31]. Here, each 
TEPR sequence is first partitioned into windows, followed by the 
application of a multi-scale wavelet transform at five levels of decom
position. For the wavelet coefficients, eight statistical features are 
computed, namely, the mean, variance, standard deviation, energy, 
kurtosis, skewness, waveform length and entropy. A total of 240 
time-frequency features are obtained for this feature group. 

7.1.4. Classical machine learning 
The hand-crafted features are used for binary classification using 

support vector machine (SVM) learners. SVM models are trained using 
radial basis function (RBF) kernels to distinguish between the two ul
trasonographic tasks. Default hyperparameter settings [32] are used as 
we perform experiments for different classification problems (ultraso
nographic tasks and operator experience), and we want to demonstrate 
multi-task characteristics of the machine learning method using the 
pupillary response data. Since the datasets are unbalanced for both the 
observed anatomical structures and the operator expertise, the Synthetic 
Minority Oversampling Technique (SMOTE) [33] is applied to balance 
the binary class labels for the extracted features. 

7.1.5. Deep learning using convolutional neural networks 
We explore Convolutional Neural Networks (CNN) to learn the 

salient features of temporal pupillary response sequences, and to classify 
these into one of the two ultrasonographic tasks. The CNN models are 
designed in two ways. First, a one-dimensional (1D) CNN model is 
investigated that directly learns features from one-dimensional TEPR 
time-series. Second, a two-dimensional (2D) CNN based on the ResNet- 
18 CNN architecture is learnt using two-dimensional images obtained 
from wavelet scalograms from the corresponding TEPR time-series. 

7.1.5.1. 1D CNN. A simple and lightweight 1D CNN architecture is 
employed, which extracts features from the TEPR sequence to perform 
classification. The CNN architecture comprises of a cascade of three 
identical layers of 1 × 5 1D kernel convolutions with 64 filters followed 
by ReLU nonlinearity, batch normalisation, dropout (p = 0.2) and 
maxpooling, followed by a global average pooling, fully-connected, and 
softmax layer for classification. A low complexity CNN architecture is 
designed to allow efficient parametrisation with respect to the limited 
size of the datasets. The total number of trainable parameters in the 
proposed 1D CNN architecture is 1,857,714. The weights of the 1D CNN 
architecture are randomly initialised for training the TEPR sequences, as 
there is no existing pre-trained 1D CNN with a closely associated domain 
to the temporal pupil diameter datasets that could be used for transfer 
learning. Initially, randomly initialised long-short term memory (LSTM) 
units, popular with time-series data, were also investigated but were not 
found suitable for the pupillary response signals in the studied datasets. 
The reasons for such behaviour could be a smaller-sized data compared 
to large-scale data required for complex training of the LSTM units, and 
the nature of the pupillary response signal itself. 

7.1.5.2. Wavelet scalograms with 2D CNN. Wavelet scalograms are time- 
frequency plots of the absolute value of the wavelet transform of the 
signal representing the proportion of energy for each wavelet coeffi
cient. These are useful tools in time-series analysis allowing the detec
tion of the most representative scales in the signals [34]. We compute a 
wavelet scalogram for each TEPR sequence and the resulting 
two-dimensional data is used to train a 2D CNN. A ResNet-18 CNN ar
chitecture [35] is selected for the image-based training, as it provides a 
good balance of network size and accuracy on general image 

classification. Deeper and heavier networks may provide a higher ac
curacy for general images, but are unsuitable for smaller datasets lead
ing to overfitting. A ResNet-18 CNN pre-trained on ImageNet [36] is 
used, and weights are fine-tuned using the wavelet scalograms of the 
TEPR sequences. The last fully-connected and softmax layers are 
replaced for the given class labels. The total number of trainable pa
rameters in the 2D CNN architecture is 11,181,314. 

7.1.5.3. Training process. The training of both deep learning models 
was performed with the following hyperparameter settings. Stochastic 
gradient descent with momentum (μ = 0.9) was used as the optimiser to 
update network parameters. The initial learning rate was set to 0.01 
with a drop of 0.1 after every 10 epochs. The networks were trained for a 
total of 50 epochs. A batch size of 32 was used during training. 

Since deep learning models, like classical machine learning, can be 
adversely affected by imbalanced datasets, leading to undesirable biases 
in the learnt models, we trained the CNNs using balanced data. This was 
achieved by random undersampling, as the SMOTE method was not 
applicable here due to a different nature of the data consisting of TEPR 
sequences of uneven length and 2D scalogram images, in contrast to 
equal-length hand-crafted features. In each training round, the number 
of samples of each class was set equal to the number of samples of the 
least represented class of the training dataset. For instance, training data 
in one round consisted of 592 samples each for the Brain and the Heart 
ultrasonographic tasks. 

In order to process the TEPR sequences by the CNNs, these also 
needed to be adjusted for length due to their uneven durations. Zero- 
padding, a standard operation used for time-series length adjustment, 
was applied to the TEPR sequences for the 1D CNN. Truncation was not 
performed to prevent information loss. In contrast, scalograms for 2D 
CNN were computed after making sequences equal in length to the 
average sequence length, which involved either zero-padding for shorter 
sequences, or truncation for larger sequences. It is important to note that 
zero-padding to maximum length was not employed for 2D CNNs, as this 
led to unreasonable aspect ratios in the resulting scalogram images. 

7.2. Performance evaluation 

7.2.1. Cross-validation 
The discrimination ability of the extracted features learnt with 

classical machine learning method, and deep learning methods was 
evaluated through five-fold cross-validation to differentiate between the 
pupillary response of Heart and Brain sequences. A scan-wise split was 
implemented in each round of cross-validation. The same cross- 
validation splits were used for evaluating the different machine 
learning methods, to ensure a fair comparison between the methods. The 
reported standard metrics for both binary classification experiments 
include the mean and standard deviation of the accuracy of each class 
label and the overall accuracies, computed over the cross-validation 
rounds. 

Table 2 depicts the evaluation results for learning the pupillary 

Table 2 
Performance evaluation for discrimination of ultrasonographic tasks. Values are 
mean and standard deviation computed over the five-fold cross-validation 
rounds.  

Extracted 
Features 

Learning 
Method 

Accuracy 
Brain 

Accuracy 
Heart 

Overall 
Accuracy 

Temporal SVM 0.44 ± 0.05 0.67 ± 0.02 0.60 ± 0.03 
Spectral SVM 0.45 ± 0.07 0.70 ± 0.06 0.62 ± 0.03 
Time- 

Frequency 
SVM 0.59 ± 0.04 0.83 ± 0.02 0.75 ± 0.02 

TEPR 
Sequence 

1D CNN 0.84 ± 0.17 0.96 ± 0.06 0.87 ± 0.10 

Scalogram ResNet18 2D 
CNN 

0.64 ± 0.15 0.58 ± 0.10 0.60 ± 0.03  
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response sequences using the explored machine learning methods to 
discriminate between the Heart or Brain tasks. 

From the above results, we observe that the best-performing method 
for this problem learns the temporal TEPR sequence directly using a 1D 
CNN model, with an accuracy of 0.87, and outperforms other models in 
both Brain and Heart accuracy. Wavelet-based time-frequency hand- 
crafted features learnt by classical SVM models also show reasonable 
performance, with an accuracy of 0.75. We observe that the scalogram 
with image-based CNN model is not as successful as the former 
mentioned models. Specifically, it is unable to achieve good classifica
tion for Heart sequences; the main reason being the sequence length 
adjustment that has led to either zero-padding or truncation of unevenly 
long sequences. For the Heart sequences, a high standard deviation of 
duration (Section 4.3) indicates that these sequences have highly un
even lengths, thus processing these for uniform length, followed by 
scalogram computation may not be suitable and leads to lower perfor
mance. Furthermore, the simpler temporal and spectral features with 
classical machine learning do not lead to as accurate classification as the 
other proposed methods. Overall, the 1D CNN-based deep learning 
models outperformed the 2D CNN and hand-crafted features with clas
sical machine learning, to achieve a more accurate classification 
discriminating between the ultrasonographic tasks as Heart or Brain. 

7.2.2. Effect of sequence windowing 
The experiments for comparative evaluation of machine learning 

methods preserved the original length of the TEPR sequences. However, 
recent research has shown promising results using symmetric window
ing of the pupillary response sequences on either side of event triggers 
[10]. Hence, in this section, we explore symmetric windows around the 
first detected freeze, which is the triggering event for the pupillary 
response sequences. 

Specifically, sequence windowing is explored for classification of 
ultrasonographic tasks using all the described machine learning 
methods. For each method, we comparatively analyse receiver operating 
characteristics (ROCs) and area under the curve values for the four 
windowing cases: original sequence length (asymmetric), a 1 s window 
on each side of first freeze (symmetric-1 sec), a 2 s window on each side 
of first freeze (symmetric-2 sec), and a 3 s window on either side of first 
freeze (symmetric-3 sec). 

We observe that the quantitative results of sequence windowing are 
consistent with our observations in Table 2 for ultrasonographic task 
classification. The best ROC metrics in all the four windowing cases are 
achieved using the 1D CNN method, which is also the best-performing 
method in the cross-validation experiment. Moreover, performance of 
the other methods after windowing effects shows the same order as 
obtained earlier, i.e., time-frequency features, spectral features, 
scalogram-based 2D CNN, and temporal features (in decreasing order of 
classification accuracy). Hence, we subsequently report in detail, the 
effect of sequence windowing for the 1D CNN method. 

The comparative ROC curves for 1D CNN method are depicted in 
Fig. 12 for ultrasonographic task classification. From the ROC curves, we 
observe that for the discrimination of ultrasonographic tasks, symmetric 
windowing of the pupillary response sequences on each side of the 
freeze event shows superior performance compared to the original 
asymmetric windows. This observation is consistent with the results 
reported in Ref. [10]. A reason for a lower area under curve (AUC) for 
asymmetric length sequences is that the zero-padding applied to the 
TEPR sequence for length adjustment to train the 1D CNN model, can 
perturb the composition of the original pupillary response sequence. 
Therefore, using the experimentally best-performing machine learning 
method and the best sequence windowing, we achieve an average area 
under ROC curve as 0.98 for ultrasonographic task classification. 

7.2.3. Generalisability 
Generalisability of machine learning models trained on physiological 

data is a known challenge. We previously explored the generalisability 
of machine learning models trained on the acquired datasets in the 
PULSE study for other problems such as operator workflow analysis 
using videos [8] and skill assessment using probe motion data [37]. We 
observed that the performance of the models generally decreases when 
prediction is performed on unseen operators. This behaviour can be 
attributed to a limited amount of data for individual operators with high 
inter-operator variability and the scan imbalance among operators and 
experience groups (Table 1). In Ref. [37], we used domain adaptation to 
make the models operator invariant and overcome the generalisability 
issue. 

To investigate the generalisation power of the proposed machine 
learning models, we performed operator hold-out validations which 
could give a better idea about how well the models predict ultrasono
graphic tasks from the pupillary responses of unseen operators. From 
Table 1, we observe that there are more XP operators (9) compared to 
the NQ operators (3), however, the number of scans is usually lower for 
individual XP operators than NQ operators. Hence, we selected hold-out 
test sets consisting of all the pupillary response sequences from certain 
NQ (O3) and XP (O4, O10, O12) operators, and the training set consisted 
of the sequences from the remaining operators. The selection was per
formed such that the hold-out sets do not reduce the size of the training 
set substantially and have sufficient sequences for testing from the 
different categories. We report the best-generalising model as time- 
frequency features with SVM-based classical machine learning 
method, with accuracy for Brain as 0.54 ± 0.03, accuracy for Heart as 
0.78 ± 0.04 and overall accuracy as 0.72 ± 0.02. As expected, the 
metrics are lower compared to cross-validation due to high inter- 
operator variability and limited sized datasets with data imbalance 
among operators and experience groups. Overall, the classical machine 
learning (shallow) models outperform the deep learning models, as the 
latter show bias towards one of the two classes, which reiterates the 
requirement of more large-scale data to train the deep networks. 

Fig. 12. ROC curves for sequence windowing for ultrasonographic task classification for (a) Brain and (b) Heart.  
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8. Machine learning for operator experience 

Each TEPR time-series has an associated binary class label as the 
operator experience group based on the scanning experience the ultra
sound operator, namely, NQ or XP group. Machine learning models are 
trained to automatically classify the TEPR sequences into one of the two 
experience groups. Uniform windowing of the sequences on either side 
of the triggering event is comparatively evaluated using the best- 
performing machine learning models as in Section 7. 

8.1. Feature extraction and classification 

Hand-crafted features, such as temporal, spectral and time-frequency 
features, are extracted from the pupillary response sequences for 
training classical machine learning models. Under deep learning, con
volutional neural networks are explored. The feature extraction and 
classification methods for operator experience classification are iden
tical to those explained in Section 7.1 for ultrasonographic task 
classification. 

8.2. Performance evaluation 

8.2.1. Cross-validation 
Cross-validation is performed for operator experience classification 

in the same manner as explained in Section 7.2.1 for ultrasonographic 
task classification. Table 3 depicts the evaluation results for learning 
pupillary response sequences to discriminate between the operator 
experience groups as NQ and XP. 

We observe that, in general, the performance of the explored 
methods at discriminating experience groups is lower compared to that 
for discriminating ultrasonographic tasks, which can be attributed to the 
former being a more complex classification problem. We note this 
because, during the statistical analysis (Section 6), we observed lower 
difference in the distributions of TEPR values between the two groups 
NQ and XP, suggesting a harder classification problem. Moreover, an 
interesting observation is that hand-crafted methods with classical ma
chine learning have outperformed deep learning methods. A possible 
explanation for this observation is the use of random under sampling to 
balance datasets in deep learning (as opposed to SMOTE of features in 
classical machine learning), which may have resulted in lower-sized 
datasets in certain cross-validation rounds due to a high class imbal
ance between the NQ and XP samples, whereas it is well-established that 
deep learning works favourably with large-scale data. Wavelet-based 
features with SVM models outperform the other methods in all met
rics, with a mean accuracy of 0.75. Other proposed methods have a 
comparable performance. 1D CNN does not perform favourably for the 
XP operators. 

8.2.2. Effect of sequence windowing 
Sequence windowing is explored for the classification of operator 

experience group using all the machine learning methods. For each 
method, we compare the receiver operating characteristics (ROCs) and 

area under the curve values for the four sequence windowing cases, as 
mentioned in Section 7.2.2. 

From detailed analysis we observe that, consistent with our obser
vation in Table 3, the highest ROC metrics in all the four windowing 
cases are achieved using time-frequency features with SVM-based clas
sical machine learning method. Moreover, performance of the other 
classification methods after windowing effects shows the same order as 
obtained earlier, i.e., temporal features, spectral features, scalogram- 
based 2D CNN, and 1D CNN (in decreasing order of classification ac
curacy). The best-performing method, namely, time-frequency features 
with SVM is considered for investigating the effect of sequence win
dowing for operator experience classification. 

The ROC curves of the four windowing cases using time-frequency 
features with SVMs for operator experience classification are shown in 
Fig. 13. A comparative analysis of the ROC curves shows that the orig
inal asymmetric TEPR sequences are consistently more effective than the 
symmetrically windowed sequences for experience classification. The 
observation suggests that it is important to preserve the original length 
of the pupillary response sequences in order to infer operator experience 
using machine learning, as this may not only depend on the pupil 
diameter changes in the vicinity of the freeze event trigger, but on the 
overall pupillary response of operators during the entire scan. We can 
conclude that the best-performing classification model has an average 
area under ROC curve of 0.80 for operator experience classification. 

8.2.3. Generalisability 
In order to investigate the generalisation power of the proposed 

machine learning methods for operator experience classification, we 
performed operator hold-out validations similar to those explained in 
Section 7.2.3. This was done to understand whether the models are able 
to predict the operator experience from the pupillary responses of un
seen operators. Interestingly, the best-generalising model is the same as 
observed in cross-validation and sequence windowing, i.e., time- 
frequency features with SVM-based classical machine learning 
method, with accuracy for NQ as 0.57 ± 0.02, accuracy for XP as 0.42 ±
0.10 and overall accuracy as 0.54 ± 0.04. The performance for 
discriminating operator experience is lower compared to discriminating 
ultrasonographic tasks, due to a more complex problem, as observed in 
the previous experiments. The metrics are lower compared to cross- 
validation due to similar reasons as for ultrasonographic task classifi
cation. Again, the classical machine learning (shallow) models outper
form the deep learning models, as explained in Section 7.2.3. 

9. Discussion 

In the data processing stage, we performed a systematic pre- 
processing of the pupil diameters using bespoke guidelines and 
observed more desirable characteristics of the processed data compared 
to the raw data. On performing exploratory statistical analysis on the 
operators’ pupillary response, we observed measurable differences be
tween before and after triggering events, anatomical structures, and 
scanning expertise, that helped us assess the operator’s mental workload 
during the different stages of the scan. Two classification problems were 
investigated using the temporal pupillary response sequences and ma
chine learning methods, namely, discrimination of ultrasonographic 
tasks and operator experience. For discriminating the pupillary response 
for observed anatomical structures based on undertaken ultrasono
graphic tasks, deep learning methods proved to be more accurate (Brain 
84%, Heart 96%). For discriminating the pupillary response between 
different operator experience groups, time-frequency features with 
classical (shallow) machine learning achieved better classification per
formance than deep learning (NQ 81%, XP 63%). From this context, we 
identify the factors to consider in interpreting our findings, limitations, 
and opportunities for future work as the following. 

Firstly, the correlation of the operator CW was found stronger with 
the ultrasonographic task at hand, than with the operator experience, 

Table 3 
Performance evaluation for discrimination of operator experience. Values are 
mean and standard deviation computed over the five-fold cross-validation 
rounds.  

Extracted 
Features 

Learning 
Method 

Accuracy 
NQ 

Accuracy 
XP 

Overall 
Accuracy 

Temporal SVM 0.69 ± 0.04 0.59 ± 0.04 0.66 ± 0.03 
Spectral SVM 0.70 ± 0.01 0.51 ± 0.05 0.63 ± 0.03 
Time- 

Frequency 
SVM 0.81 ± 0.04 0.63 ± 

0.05 
0.75 ± 0.04 

TEPR Sequence 1D CNN 0.72 ± 0.15 0.38 ± 0.24 0.62 ± 0.06 
Scalogram ResNet18 2D 

CNN 
0.57 ± 0.16 0.55 ± 0.14 0.58 ± 0.03  
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both statistically and via machine learning. This result may be influ
enced by the currently assumed definitions of the NQ and XP experience 
groups with a threshold at 2 years. The choice of 2 years as the threshold 
was recommended by fetal ultrasound specialists and led to a lower data 
imbalance compared to other thresholds. An interesting future direction 
would be to vary this threshold, if more data was available. A second 
consideration is that the classification rates reflect the relatively limited 
size of datasets and class imbalance in the routinely acquired data, un
derlying complexity of the naturally acquired pupil diameters, and dif
ficulty of the given classification tasks. Our generalisability analysis 
suggests that inter-operator variability and data imbalance among op
erators could lead to overfitting, and the proposed methods need to be 
tested on large-scale datasets with higher number of operators in each 
experience group and more scans per operator. Thus, acquisition of 
more data would allow further refinement of modelling. Lastly, if our 
analysis was to be applied to other biomedical imaging applications, our 
initial assumptions about environmental conditions during real-world 
ultrasound scanning may require revision. 

In summary, the study proposes a systematic multi-modal data 
acquisition, pre-processing, and analysis pipeline to estimate the pupil 
diameter changes of ultrasound operators via non-contact eye-tracking 
technology. From the perspective of practical usability, the study pro
vides insights to inform understanding of the operators’ mental efforts 
during diagnostic medical imaging that can help increase the acquisition 
efficiency and reduce human errors in the clinical care pathways. Other 
potential practical applications include objective operator skill assess
ment for training and education, and enhancement of human-computer 
interfaces for better imaging technology design. Under this vision, in 
future, it would be interesting to investigate the manual activities of 
image acquisition and understand the physical component of operator 
workload (for example, repetitive strain injuries of ultrasound opera
tors) for a comprehensive workflow analysis in the clinical scan room. 

10. Conclusion 

This paper explores ideas of Sonography Data Science and Pupillometry 
to analyse pupil diameter changes of ultrasound imaging operators for 
the assessment of their cognitive or mental workload in the context of 
clinical fetal ultrasound scanning. We presented a comprehensive 
pipeline to acquire and analyse multi-modal data in real-world settings, 
including remote eye-tracking and scan video data. We performed sys
tematic pre-processing and sequence extraction (time-series) of the pu
pillary responses of multiple ultrasound imaging operators. We 
performed an exploratory statistical analysis on the operators’ pupillary 
responses and observed measurable variations in the scan reflecting 
their cognitive workload, for example, between ultrasonographic tasks 
and scanning expertise. Furthermore, we explored machine learning 
models using classical (shallow) and deep learning for the automatic 
inference of the ultrasonographic task and scanning experience using the 

temporal pupillary response sequences. We investigated the effects of 
sequence windowing around triggering events and generalisability on 
the classification performance of the learned models. The ability to 
objectively assess cognitive workload can be the first step towards un
derstanding how this may affect the observer’s performance in routine 
diagnostic medical imaging. 

11. Implementation details 

MATLAB® 2020a was used for the data analysis, visualisation, and 
performance evaluation. Hand-crafted features were extracted and 
SVMs for classical machine learning were trained using MATLAB func
tions. Wavelet analysis for classical machine learning was based on the 
functions in MECLab Toolbox [38,39] with required modifications. 
MATLAB Deep Learning Toolbox was used for the design, training and 
classification using the 1D CNN and 2D CNN models. One NVIDIA GTX 
1070 (8 GB) graphics card was used for deep learning. All the data 
analysis was performed on a workstation containing Microsoft® Win
dows 10 64-bit operating system with Intel®Core i7 processor at 3.60 
GHz. 
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