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In the supplementary material, we describe the experiments and results of the initial exploratory stage of the video
description pipeline to determine suitable spatio-temporal network architectures for video clip classification. This was
performed to facilitate fully-automatic labelling of full-length ultrasound (US) scan videos.

1 Summary of Spatial and Spatio-temporal Network Architectures
In Sharma et al. (2019), an exploratory spatial analysis was performed for a subset of the US scan video dataset. Three
CNN architectures, namely VGG16, VGG19 (Simonyan and Zisserman, 2014) and SonoNet-64 (Baumgartner et al.,
2017) (a variant of VGG16), were compared due to their reported good classification performance on natural images
and fetal US images, respectively. The analysis was extended to more recent CNN architectures for natural images
such as DenseNet-201 (Huang et al., 2017) and MobileNet (Howard et al., 2017). Empirically, SonoNet-64 CNN
consistently outperformed the vanilla CNN architectures on spatial subsets and therefore it was selected as the base
2D CNN on which to build the spatio-temporal models (Sharma et al., 2019). Also, feature-based and end-to-end
spatio-temporal methods were compared in Sharma et al. (2019). However, here we only consider the latter, as these
are more conveniently learnt in a single training stage. Furthermore, it has been previously observed that methods
based solely on appearance without the use of optical flow could lead to comparable performance for general video
classification (Diba et al., 2018). Hence, an additional optical flow input is not considered due to the substantial
computational overhead of pre-computing and storing optical flow images for the large-scale US scan video dataset,
with each video consisting of thousands of frames.

Table 1 shows all the network architectures considered in the initial exploratory stage. We perform an ablation
study, where the individual spatial and spatio-temporal network architectures are compared. Then, we perform model
fusions of the individual architectures in different combinations. The notations represent the following layers: CN2

or CN3: 2D or 3D convolution respectively, BN : batch normalisation, MP : max-pooling, LSTM : long-short term
memory unit, FC: fully connected layer, TD: time-distributed layer, CC: concatenation, SM : softmax, and GAP2

or GAP3: global average pooling in 2D or 3D respectively. The arguments for these elements (if present) are (Feature
depth, Kernel size). Nc represents the total number of classes, 12 in the current experiments.

2 Results and Discussion
Quantitative analysis of the investigated models is summarised in Table 2. Highest values of individual metrics from
each architecture type are marked in bold. The ablation study confirms that the spatial CNN SonoNet-64 (FT) shows
superior performance than the other spatial CNN architectures, and the temporally inflated CNN Sono-2Dt-CNN (RI)
is superior among the two randomly initialised spatio-temporal models. This observation is consistent with the findings
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Table 1: Deep Network Architectures

Type Network Name Total
Params

Trainable
Params Network Architecture

Spatial

SonoNet-64
(PT), SonoNet-64
(RI), SonoNet-64
(FT) (Baum-
gartner et al.,
2017)

14.87M 14.87M

2 × [CN2(64, 3 × 3), BN ],MP2(2 × 2), 2 × [CN2(128, 3 ×
3), BN ],MP2(2 × 2), 3 × [CN2(256, 3 × 3), BN ],MP2(2 ×
2), 3 × [CN2(512, 3 × 3), BN ],MP2(2 × 2), 3 × [CN2(512, 3 ×
3), BN ], CN2(256, 1× 1), BN ], CN2(Nc, 1× 1), BN ], GAP2, SM

Spatio-
temporal

Sono-2Dt-LRCN
(RI)

11.79M 11.79M

TD{2 × [CN2(64, 3 × 3), BN ],MP2(2 × 2), 2 × [CN2(128, 3 ×
3), BN ],MP2(2 × 2), 3 × [CN2(256, 3 × 3), BN ],MP2(2 ×
2), 3 × [CN2(512, 3 × 3), BN ],MP2(2 × 2), CN2(256, 1 ×
1), BN ], CN2(Nc, 1 × 1), BN ], GAP2}, LSTM(256), FC(1024),
FC(512), FC(128), FC(Nc), SM

Sono-2Dt-CNN
(RI) (Sharma
et al., 2019)

23.04M 23.04M

2× [CN3(64, 3×3×3), BN ],MP3(1×2×2), 2× [CN3(128, 3×3×
3), BN ],MP3(1× 2× 2), 3× [CN3(256, 3× 3× 3), BN ],MP3(1×
2×2), 3× [CN3(512, 3×3×3), BN ],MP3(1×2×2), [CN3(256, 1×
1× 1), BN ], [CN3(Nc, 1× 1× 1), BN ], GAP3, SM

Model
fusion

Sono-2D (PT)-
2Dt-LRCN (RI),
Sono-2D (FT)-
2Dt-LRCN (RI)

27.19M 12.32M

2 × [CN2(64, 3 × 3), BN ],MP2(2 × 2), 2 × [CN2(128, 3 ×
3), BN ],MP2(2 × 2), 3 × [CN2(256, 3 × 3), BN ],MP2(2 ×
2), 3 × [CN2(512, 3 × 3), BN ],MP2(2 × 2), 3 ×
[CN2(512, 3 × 3), BN ], CN2(256, 1 × 1), BN ], CN2(Nc, 1 ×
1), BN ], GAP2, FC(1024) : A
TD{2 × [CN2(64, 3 × 3), BN ],MP2(2 × 2), 2 × [CN2(128, 3 ×
3), BN ],MP2(2 × 2), 3 × [CN2(256, 3 × 3), BN ],MP2(2 ×
2), 3 × [CN2(512, 3 × 3), BN ],MP2(2 × 2), CN2(256, 1 ×
1), BN ], CN2(Nc, 1×1), BN ], GAP2}, LSTM(256), FC(1024) : B
CC(A,B), FC(512), FC(128), FC(Nc), SM

Sono-2D (PT)-
2Dt-CNN (RI),
Sono-2D (FT)-
2Dt-CNN (RI)

39.05M 24.18M

2 × [CN2(64, 3 × 3), BN ],MP2(2 × 2), 2 × [CN2(128, 3 ×
3), BN ],MP2(2 × 2), 3 × [CN2(256, 3 × 3), BN ],MP2(2 ×
2), 3 × [CN2(512, 3 × 3), BN ],MP2(2 × 2), 3 ×
[CN2(512, 3 × 3), BN ], CN2(256, 1 × 1), BN ], CN2(Nc, 1 ×
1), BN ], GAP2, FC(1024) : A
2× [CN3(64, 3×3×3), BN ],MP3(1×2×2), 2× [CN3(128, 3×3×
3), BN ],MP3(1× 2× 2), 3× [CN3(256, 3× 3× 3), BN ],MP3(1×
2×2), 3× [CN3(512, 3×3×3), BN ],MP3(1×2×2), [CN3(256, 1×
1× 1), BN ], [CN3(Nc, 1× 1× 1), BN ], GAP3, FC(1024) : B
CC(A,B), FC(512), FC(128), FC(Nc), SM

Sono-2D (PT)-
2Dt-LRCN-CNN
(RI), Sono-2D
(FT)-2Dt-LRCN-
CNN (RI)

23.15M 8.28M

2 × [CN2(64, 3 × 3), BN ],MP2(2 × 2), 2 × [CN2(128, 3 ×
3), BN ],MP2(2 × 2), 3 × [CN2(256, 3 × 3), BN ],MP2(2 ×
2), 3 × [CN2(512, 3 × 3), BN ],MP2(2 × 2), 3 ×
[CN2(512, 3 × 3), BN ], CN2(256, 1 × 1), BN ], CN2(Nc, 1 ×
1), BN ], GAP2, FC(256) : A
TD{2 × [CN2(32, 3 × 3), BN ],MP2(2 × 2), 2 × [CN2(64, 3 ×
3), BN ],MP2(2 × 2), 3 × [CN2(128, 3 × 3), BN ],MP2(2 ×
2), 3 × [CN2(256, 3 × 3), BN ],MP2(2 × 2), CN2(128, 1 ×
1), BN ], CN2(Nc, 1× 1), BN ], GAP2}, LSTM(128), FC(256) : B
2× [CN3(32, 3× 3× 3), BN ],MP3(1× 2× 2), 2× [CN3(64, 3× 3×
3), BN ],MP3(1× 2× 2), 3× [CN3(128, 3× 3× 3), BN ],MP3(1×
2×2), 3× [CN3(256, 3×3×3), BN ],MP3(1×2×2), [CN3(128, 1×
1× 1), BN ], [CN3(Nc, 1× 1× 1), BN ], GAP3, FC(256) : C
CC(A,B,C), FC(256), FC(128), FC(Nc), SM

in Sharma et al. (2019). Furthermore, we observe that the performance of individual architectures is lower than the
model fusion configurations that leverage the combined power of the transfer-learnt (pre-trained and fine-tuned) spatial
networks with the spatio-temporal networks.

The spatial architectures provide a baseline, and as is intuitive, the fine-tuned version outperforms the pre-trained
and randomly initialised counterparts. It can be seen that SonoNet-64 (PT) shows comparable quantitative performance
among the spatial models. However, it should be noted that during testing, sample classes were needed to be readjusted
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Table 2: Comparative Analysis of Deep Network Architectures

Type Network Architecture P R F1 A1 A3

Spatial

SonoNet-64 (PT)-9 classes 0.78 0.74 0.72 0.74 0.89
SonoNet-64 (RI) 0.66 0.68 0.65 0.75 0.88
SonoNet-64 (FT) 0.73 0.77 0.74 0.80 0.91

Spatio-
temporal

Sono-2Dt-LRCN (RI) 0.63 0.68 0.61 0.73 0.90
Sono-2Dt-CNN (RI) 0.64 0.69 0.65 0.73 0.87

Model
fusion

Sono-2D (PT)-2Dt-LRCN (RI) 0.69 0.64 0.64 0.72 0.91
Sono-2D (FT)-2Dt-LRCN (RI) 0.66 0.74 0.68 0.76 0.92
Sono-2D (PT)-2Dt-CNN (RI) 0.68 0.64 0.61 0.73 0.87
Sono-2D (FT)-2Dt-CNN (RI) 0.66 0.75 0.68 0.77 0.93

Sono-2D (PT)-2Dt-LRCN-CNN (RI) 0.67 0.73 0.68 0.75 0.93
Sono-2D (FT)-2Dt-LRCN-CNN (RI) 0.95 0.96 0.95 0.96 0.99

(a) (b)

Figure 1: Confusion matrix predicted vs. true label for spatial CNN (left) and spatio-temporal network (right) from
the initial exploratory stage.

to map to the original FASP categories (Baumgartner et al., 2017) due to an absence of one-to-one correspondence,
leading to 9 resultant classes and ignoring the remaining samples, namely, Pl, MaD and 3Dm. Hence, good metrics are
obtained for pre-trained SonoNet-64 (PT) over only a subset of the considered classes and dataset, and does not fully
represent our spatio-temporal semantic segmentation and workflow description problem. Moreover, the remaining
categories are found difficult to classify, which is evident from the anatomy-specific results as described below.

Confusion matrix analysis was used to compare spatial and spatio-temporal models. From the confusion matrices
in Fig. 1 for the best-performing spatial SonoNet-64 (FT) and spatio-temporal Sono-2D (FT)-2Dt-LRCN-CNN (RI)
networks, we find that most event classes, even when under-represented in the dataset, are more accurately described
using 2D + t spatio-temporal information than only 2D spatial information, suggesting the useful contribution of
temporal context for event classification in fetal US scan videos. For the spatial CNN, the result shows higher confusion
for Bk class, which is understandable as this represents a search process which cannot be described only in the spatial
dimension. Classification of Bk, along with Pl, Fa, Ki, NL and MaD increased by introducing the temporal dimension,
revealing higher probe motion changes or fetal movements, and indicating difficulty in localisation of structures like
kidneys, nose-lips, facial profile and Doppler blood flows of the uterine artery.
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