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a b s t r a c t 

Ultrasound is a widely used imaging modality, yet it is well-known that scanning can be highly operator- 

dependent and difficult to perform, which limits its wider use in clinical practice. The literature on un- 

derstanding what makes clinical sonography hard to learn and how sonography varies in the field is 

sparse, restricted to small-scale studies on the effectiveness of ultrasound training schemes, the role of 

ultrasound simulation in training, and the effect of introducing scanning guidelines and standards on di- 

agnostic image quality. The Big Data era, and the recent and rapid emergence of machine learning as a 

more mainstream large-scale data analysis technique, presents a fresh opportunity to study sonography in 

the field at scale for the first time. Large-scale analysis of video recordings of full-length routine fetal ul- 

trasound scans offers the potential to characterise differences between the scanning proficiency of experts 

and trainees that would be tedious and time-consuming to do manually due to the vast amounts of data. 

Such research would be informative to better understand operator clinical workflow when conducting 

ultrasound scans to support skills training, optimise scan times, and inform building better user-machine 

interfaces. 

This paper is to our knowledge the first to address sonography data science, which we consider in the 

context of second-trimester fetal sonography screening. Specifically, we present a fully-automatic frame- 

work to analyse operator clinical workflow solely from full-length routine second-trimester fetal ultra- 

sound scan videos. An ultrasound video dataset containing more than 200 hours of scan recordings was 

generated for this study. We developed an original deep learning method to temporally segment the ul- 

trasound video into semantically meaningful segments (the video description). The resulting semantic 

annotation was then used to depict operator clinical workflow (the knowledge representation). Machine 

learning was applied to the knowledge representation to characterise operator skills and assess operator 

variability. 

For video description, our best-performing deep spatio-temporal network shows favourable results in 

cross-validation (accuracy: 91.7%), statistical analysis (correlation: 0.98, p < 0.05) and retrospective man- 

ual validation (accuracy: 76.4%). For knowledge representation of operator clinical workflow, a three-level 

abstraction scheme consisting of a Subject-specific Timeline Model (STM), Summary of Timeline Features 

(STF), and an Operator Graph Model (OGM), was introduced that led to a significant decrease in di- 

mensionality and computational complexity compared to raw video data. The workflow representations 

were learnt to discriminate between operator skills, where a proposed convolutional neural network- 

based model showed most promising performance (cross-validation accuracy: 98.5%, accuracy on unseen 

operators: 76.9%). These were further used to derive operator-specific scanning signatures and operator 

variability in terms of type, order and time distribution of constituent tasks. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 
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. Introduction 

Ultrasonography is one of the most widely used medical imag- 

ng technologies worldwide and the preferred choice for monitor- 

ng pregnancy due to its non-invasiveness, absence of ionising radi- 

tion, high accessibility, high reliability, and low costs. The United 

tates Bureau of Labor Statistics predicted that demand for sonog- 

aphers will increase by 14% between 2018 and 2028 (much faster 

han average) ( Bureau of Labor Statistics, 2019 ), showing that the 

atient throughput is outnumbering the rate of sonographer em- 

loyment and training. Efforts to train new sonographers have seen 

ome success but have not met demand. Ultrasound simulators 

ave emerged as powerful sonography training tools ( Gibbs, 2015 ) 

ut still have limited usage due to high costs and the intrinsic dif- 

erence to real-life scanning. An alternative solution is to re-design 

ltrasound (US) imaging technology to be easier to use by trainees 

nd non-specialists, but this is non-trivial to do. In this paper, we 

o back to first principles and measure what is done in a US clinic

by recording full-length fetal US scan videos), and then automat- 

cally analyse operator clinical workflow for skill characterisation 

nd variability assessment. To our knowledge, this paper is the 

rst to consider Sonography Data Science which aims to inform US 

maging technology design, offer insights into how to use hospi- 

al resources efficiently, assist operator training, increase operator 

fficiency, improve human-computer interfaces with US machines, 

nd determine when and how automated analysis may assist man- 

al scanning. Specifically, this study considers three questions: 

1. Can large-scale US video datasets containing hundreds of 

recorded scan hours be automatically analysed in an accu- 

rate and efficient manner for knowledge representation of 

operator clinical workflow? 

2. Can operator skills be characterised by learning from work- 

flow representations of full-length routine second-trimester 

US scan video recordings? 

3. Do US operators have specific scanning signatures and show 

variability in terms of type, ordering and time distribution 

of tasks? 

We consider these questions in the context of second-trimester 

etal US screening. In many countries, a second-trimester (ges- 

ational age of 18–22 weeks) US scan is offered to pregnant 

omen for a detailed assessment of the fetal anatomy and growth. 

or instance, in the UK, the second-trimester scan guidelines are 

egulated by the National Health Service (NHS) under the Fetal 

nomaly Screening Programme (FASP) ( Kirwan, 2010 ). During a 

ull-length routine second-trimester US scanning session, an op- 

rator (a sonographer or fetal medicine doctor) views defined fe- 

al anatomical structures including the head and brain, the heart, 

he abdomen, the limbs, the spine, and additional anatomy such 

s fetal hands and feet, umbilical cord insertion, and maternal 

tructures such as the uterine arteries. These may be visualised 

n different viewing planes (e.g. axial, coronal, or sagittal) and US 

maging modes (e.g. Two dimensional 2 D B-mode, colour Doppler, 

hree-dimensional 3 D, or four-dimensional 4 D, which is real-time 

 D mode). Hence, the FASP clinical protocol defines a fixed number 

f tasks of varying complexity that need to be conducted, but their 

rder and their duration are not fixed, along with presence of ad- 

itional tasks as preferred by the operator, though there is usually 

 practical constraint on the full scan time. The operator may also 

epeat tasks if they choose, or record tasks that were not satisfac- 

orily recorded earlier. These properties may vary due to changing 

etal position and fetal movement, poor acoustic windows, opera- 

or preferences, and opportunity-grabbing abilities based on oper- 

tor’s skill and experience. Hence, it is interesting to consider if it 

s feasible to comprehensively analyse and quantify operator clini- 

al workflow representing the type, duration, and order of the se- 
2 
uential tasks by retrospectively analysing recorded full-length US 

can videos. Clinical workflow analysis solely from full-length US 

can videos would require semantic (anatomical) labelling of the 

canned events, which, if performed manually would be imprac- 

ical due to the enormous amount of acquired raw video data. It 

s known that data annotation is resource intensive and may re- 

uire medical expertise; hence, we propose automated annotation 

s the solution. Further, working directly with large-scale video 

atasets containing hundreds of recorded hours is challenging due 

o high storage and computational requirements. We address this 

hallenge by formulating a simplified knowledge representation of 

he operator clinical workflow at three levels, for characterising 

kill and assessing variability. 

Contribution In this study, we analyse operator clinical workflow 

uring full-length routine second-trimester fetal US scans solely 

ased on video recordings. To the best of our knowledge, no previ- 

us work has been reported for automatic clinical workflow analy- 

is in obstetric ultrasound. The specific contributions of the paper 

re as follows: 

1. Semi-automatic semantic annotation. We propose a semi- 

automatic semantic video annotation method including 

video clip extraction and annotation into 23 label categories. 

This provides the representative labelled dataset for training 

deep spatio-temporal networks for video description. 

2. Video description. We automate the temporal semantic seg- 

mentation of full-length US scan videos using spatio- 

temporal deep learning. To reduce the requirement for 

large-scale labelled video datasets for supervised learning, 

the proposed deep spatio-temporal network combines spa- 

tial features extracted from pre-trained or fine-tuned lay- 

ers of existing networks previously learnt on large-scale la- 

belled image datasets, and transfer-learns spatio-temporal 

characteristics from a representative labelled video dataset. 

We compare several architectures and deploy the best- 

performing learnt model to classify sequential events in un- 

labelled full-length US scan videos, and temporally regu- 

larise the predicted result. 

3. Knowledge representation of clinical workflow. We describe an 

original method for knowledge representation of operator 

clinical workflow focussing on task type, order, and distri- 

bution, which includes three levels of abstraction in decreas- 

ing order of dimensionality and complexity. We demonstrate 

how a complex raw video dataset requiring several Giga- 

bytes for storage and high computational power (e.g. requir- 

ing GPU) can be represented by operator clinical workflow, 

thereby, reducing the dimensionality by a 10 4 order of mag- 

nitude to hundreds of Kilobytes, and less computations, for 

instance, training deep networks with ca. 150 times fewer 

parameters (e.g. feasible on CPU). 

4. Learning for skill characterisation and variability assessment. 

We demonstrate the use of the proposed abstractions for 

learning distinguishing features for operator skill classifi- 

cation and achieve favourable results in differentiating be- 

tween expert and newly-qualified operators. We obtain the 

most probable scan-path for each operator yielding operator- 

specific scanning signatures, for instance, identifying activi- 

ties when longest and shortest time was spent for each op- 

erator. We also reveal intra- and inter-operator variability 

using the derived knowledge representations. 

. Related technical work 

This section describes the related work on automated clinical 

orkflow analysis, and image and video analysis. 
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1 Project PULSE, funded by the European Research Council (grant ERC-ADG-2015 

694581) https://www.eng.ox.ac.uk/pulse 
.1. Automated clinical workflow analysis 

Automated clinical workflow analysis using data science and 

achine learning has enabled applications such as decision sup- 

ort, context-aware assistance, and skill assessment predominantly 

n the field of surgery, sometimes referred to as the emerging 

iscipline of Surgical Data Science ( Maier-Hein et al., 2017 ). For 

nstance, earlier works in surgical workflow analysis include au- 

omatic generation and visualisation of surgical workflows us- 

ng Hidden Markov Models (HMM) in laparoscopic cholecystec- 

omy ( Blum et al., 2008 ); development of context-aware oper- 

ting rooms by modelling and monitoring the workflow of sur- 

ical interventions using dynamic time warping and HMM, also 

n laparoscopic cholecystectomy ( Padoy et al., 2012 ); and auto- 

atic workflow segmentation using Markov models and SVM for 

n unknown sequence of tasks, for tracked needle interventions 

ollected from ultrasound-guided epidural injections and lumbar 

unctures ( Holden et al., 2014 ). Prediction of the remaining in- 

ervention time using patient-individual and generalised surgical 

rocess models based on a layered model structure of low-level 

urgical tasks in discectomies and brain tumor resections is ex- 

lored ( Franke et al., 2013 ). ( März et al., 2015 ) modelled hetero-

eneous data comprising of patient-individual, factual, and practi- 

al knowledge for surgical decision support in liver surgery. Recent 

iterature explicitly acknowledges the role of artificial intelligence 

nd deep learning for surgical workflow analysis in computer- 

ssisted interventions, using prior knowledge and sensory inputs 

rom the clinical environment ( Vercauteren et al., 2020 ). For in- 

tance, deep learning is explored for surgical workflow recognition 

n laparoscopic videos ( Twinanda et al., 2017 ). Image- and video- 

ased surgical workflow analysis using active learning with Deep 

ayesian Networks is addressed in laparoscopy ( Bodenstedt et al., 

019 ). 

Lately, objective and computer-aided methods for automated 

urgical skill assessment and evaluation have been introduced, for 

xample, under the framework of OCASE ( Vedula et al., 2017 ). 

elated works include the analysis of 3 D movement trajecto- 

ies of trainees and experts during birth using forceps delivery 

raining system ( Sielhorst et al., 2005 ); automatic skill assess- 

ent in robotic surgery using HMM modelling for surgical ges- 

ures ( Varadarajan et al., 2009 ); surgical skill assessment to dif- 

erentiate between novices and experts in laparoscopic training 

ased on statistical features derived from videos capturing instru- 

ent motion ( Uemura et al., 2016 ); description of surgical tool 

otion trajectories for the classification of gestures and skills in 

obotic surgery ( Ahmidi et al., 2017 ); and holistic features for au- 

omated skill assessment using only robot kinematic data ( Zia and 

ssa, 2018 ). Ultrasound operator skill assessment and characterisa- 

ion have not been extensively studied in the clinic using objec- 

ive computer-aided methods. For example, in fetal ultrasound, the 

robe motion of operators has been investigated for automatic skill 

ssessment ( Wang et al., 2020 ). However, most of the above work 

s based on motion tracking (kinematics) or camera-based action 

nalysis in surgical data science. In contrast, in this paper, we anal- 

se operator clinical workflow in fetal ultrasound solely from rou- 

ine scan video recordings, without the requirement of any motion 

racking or camera-based action data. 

.2. Automated image and video analysis 

Ultrasound image analysis deals with the automatic extrac- 

ion of information from ultrasound images and videos. Early 

ork focussed on segmentation ( Noble and Boukerroui, 2006 ), 

racking ( Sanchez-Ortiz et al., 20 0 0 ), detection and classifica- 

ion ( Yaqub et al., 2015; Chen et al., 2015 ). Recent work consid-

rs application-specific tasks within the context of obstetric ultra- 
3 
ound for standard plane detection ( Chen et al., 2017; Baumgart- 

er et al., 2017; Cai et al., 2018; Droste et al., 2019 ), image qual-

ty assessment ( Wu et al., 2017a ), and fetal biometry measurement 

nd safety assessment ( Carneiro et al., 2008; Noble, 2010; Khan 

t al., 2016; Sinclair et al., 2018 ). However, such analysis focuses 

n only the image interpretation task (e.g. detection, classification, 

nd measurement), and does not say anything about operator clin- 

cal workflow during real-time ultrasound scanning. 

Video classification and activity recognition have been exten- 

ively studied in computer vision on public benchmarks (e.g. 

ouTube videos, sports datasets) ( Wu et al., 2017b ). Under surgical 

orkflow analysis, a novel convolutional neural network (CNN) ar- 

hitecture called EndoNet is introduced to perform phase recogni- 

ion and tool presence detection tasks from laparoscopic cholecys- 

ectomy videos ( Twinanda et al., 2017 ). Cataract surgical videos are 

nalysed using multilevel statistical modelling for surgical phase 

r step recognition ( Charriére et al., 2017 ). Another work proposes 

ctive learning via Deep Bayesian Networks to reduce the large- 

cale annotated data requirement of machine learning for laparo- 

copic videos ( Bodenstedt et al., 2019 ). A small number of video 

nalysis studies are explored under ultrasound video analysis. For 

nstance, ( Maraci et al., 2017; Gao et al., 2016 ) focusses on au- 

omated annotation of specific anatomical structures such as the 

eart, the abdomen, and the skull in shorter-length US sweeps 

clips). Cai et al. (2020) uses eye-tracking with biometric video 

equences to navigate and find standard planes. However, these 

rior studies consider a limited number of anatomical structures 

nd portions of the scan where the anatomy has already been 

ound by the operator, ignoring information in rest of the full scan 

here the operator is searching or fine-tuning around a potential 

natomy of interest. Recently, we performed a preliminary compar- 

tive analysis for classifying constituent video clips in full-length 

outine second-trimester US scan videos using spatial and spatio- 

emporal deep neural networks trained from scratch ( 2 D CNN, 3 D 

NN, LSTM and convolutional LSTM) ( Sharma et al., 2019 ), and 

oncluded that the spatio-temporal models, specifically 3 D CNN, 

utperformed the spatial models. In the current paper, we first per- 

orm video description by: 1) exploring more advanced model fu- 

ion configurations combining spatial CNNs, spatio-temporal CNNs, 

nd temporal dependency models i.e. recurrent neural networks 

RNN); 2) using transfer learning approaches such as pre-training 

nd fine-tuning; and 3) temporally regularising the predictions. We 

chieve a significant improvement over the baseline to reliably au- 

omate the temporal semantic segmentation of full-length US scan 

ideos for large-scale clinical workflow analysis. Then, we propose 

 knowledge representation scheme for operator clinical workflow 

nalysis, and perform skill characterisation and variability analysis 

n routine fetal ultrasound. 

. Method overview 

Fig. 1 presents an outline of the whole clinical workflow anal- 

sis pipeline. Video data used in this paper was acquired as part 

f the Perception Ultrasound by Learning Sonographic Experience 

PULSE) study 1 . This study was approved by the UK Research Ethics 

ommittee (Reference 18/WS/0051). For the purposes of this study, 

regnant women with a singleton pregnancy undergoing preg- 

ancy care at the Oxford University Hospitals NHS Foundation 

rust were prospectively enrolled. Written informed consent was 

iven by all participating pregnant women, as well as operators 

ho participated in the study. Data were stored according to ap- 

roved data governance rules. 

https://doi.org/10.13039/501100000781
https://www.eng.ox.ac.uk/pulse
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Fig. 1. Fetal ultrasound clinical workflow analysis pipeline. 

Fig. 2. Data distribution for the individual operators and the two skill groups NQ 

and XP. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 3. Proposed knowledge representation scheme for operator clinical workflow 

analysis. 
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Women who agreed were consented to have their full-length 

outine second-trimester US scan videos recorded. A large-scale 

ataset of 205 hours of US scan video recording from 341 entire fe- 

al ultrasound examinations from the same number of women, un- 

ertaken by five sonographers or fetal medicine doctors, was anal- 

sed. All US scans included in this study were performed using 

 commercial Voluson E8 version BT18 (General Electric Health- 

are, Zipf, Austria) ultrasound machine. The LCD monitor has a 

esolution of 1920 × 1080 pixels and refreshes at a frequency of 

0 Hz. The video signal was recorded from the scanner using a 

ossless compression and sampled at the rate of 30 frames per sec- 

nd ( Chatelain et al., 2018 ). A full-length second-trimester routine 

xamination was on average 36.2 ± 11.6 minutes in length, with 

n average of 65,089 frames per scan video. 

The US scan videos were acquired by five operators S 1 , S 2 , S 3 , S 4 
nd S 5 and separated into two groups based on operator experi- 

nce, namely, data from newly-qualified (NQ) operators and expe- 

ienced (XP) operators. The NQ group consists of operators with 

ess than two years of scanning experience ( S 1 and S 2 ), and XP

roup has operators with more than two years of scanning expe- 

ience ( S 3 , S 4 and S 5 ). The data distribution for the operators is

ummarised in Fig. 2 . 

A subset of the full-length US scan videos (62/341 subjects) was 

anually annotated using automatic clip extraction and visual in- 

pection. The semantically labelled dataset of video clips was used 

o train spatio-temporal deep neural networks, to automatically 

erive a semantic annotation of sequential events in the remain- 

ng unlabelled US scan videos. 
4 
Having obtained a large number of manually and automatically 

abelled full-length US scan videos, the next step was to derive a 

nowledge representation for clinical workflow analysis. The com- 

ined large-scale dataset of manually and automatically labelled 

ull-length US scan videos was used in a three-level knowledge 

epresentation scheme, namely, low-level subject-specific time- 

ine models, mid-level summary of timeline features , and high- 

evel operator graph models . The scheme, summarised in Fig. 3 , 

llustrates the reduction in data dimensionality at each successive 

evel. The low- and mid-level representations are used to learn 

kill differences between newly-qualified and experienced opera- 

ors. The high-level representations are used to analyse operator 

ariability and operator-specific scanning signatures. 

Based on the above pipeline, we have divided the remaining pa- 

er into four modules (sections) for readability, namely, Video De- 

cription ( Section 4 ), Subject-specific Timeline Model ( Section 5 ), 

ummary of Timeline Features ( Section 6 ), and Operator Graph 

odel ( Section 7 ). Each section consists of the data, methods, ex- 

eriments, results and discussion for the corresponding module. 

. Video description 

.1. Semi-automatic semantic annotation 

A method of semi-automatic semantic annotation was devel- 

ped to obtain non-overlapping labelled video clips from full- 

ength US scan videos depicting the individual scanning events 

ased on viewed anatomy. These clips were used for training deep 

patio-temporal networks (see Section 4.2 ). The semi-automatic se- 

antic annotation method is divided into two steps: video clip ex- 

raction and manual annotation . 

In the first step, scanning parameters were automatically ex- 

racted for each video frame in the full-length US scan video us- 

ng optical character recognition ( Kay, 2007 ) on the US machine 

creen. Under these, the ‘freeze’ state for each frame was auto- 

atically detected and recorded as a technical annotation. A video 

lip is defined with respect to a freeze frame. Frames are typically 

rozen when a standard plane according to the UK FASP proto- 

ol ( Kirwan, 2010 ) is found. Specifically, a video clip corresponds 

o approximately 5 seconds in time or 151 frames total. 100 frames 

re selected before a freeze frame and 50 after this frame. The 

ideo clip definition is based on the observation that in each scan- 

ing event , the operator searches an anatomy of interest for a stan- 

ard view, freezes to perform tasks, and then moves to find the 

ext anatomy. The operator performs, for example, the following 

ctivities after freezing: 

• Diagnostic inspections (e.g. Heart, Face, Feet). 
• Biometric measurements (e.g. Head, Femur, Abdomen). 
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Table 1 

Manual labels for semantic annotation method. 

Label name Abbreviation Description 

3 D and 4 D Mode 3Dm Views taken in static or real-time 3 D mode, showing surface rendering of the fetal head and face. 

Abdomen Ab Fetal abdomen (with biometric measurements). 

Arms Ar Fetal arms. 

Background Search Bk The operator quickly froze-unfroze as they did not finalise the frozen frame as standard view during their search. 

Bladder including 

Doppler 

BlD Fetal bladder (including Doppler mode). 

Brain with Skull, 

Head and Neck 

Br Fetal brain (with biometric measurements). 

Face-side Profile Fa Side (sagittal) view of the fetal face. 

Feet Ft Fetal feet. 

Femur Fm Fetal femur (with biometric measurements). 

Full Body Side 

Profile 

Fb Full-body sagittal views of the fetus. May include face, hands, heart, ribs, spine, diaphragm. 

Girl or Boy GoB Views to determine fetal sex. 

Hands Ha Fetal hands. 

Heart including 

Doppler 

HeD Fetal heart (including Doppler mode). 

Kidneys Ki Fetal kidney (including Doppler mode). 

Legs Le Fetal lower legs. 

Maternal Anatomy 

including Doppler 

MaD Maternal uterine artery (including Doppler mode). 

Mixed Mx Clip containing views (frames) of more than one label, representing abrupt scene changes. 

Nose and Lips NL Fetal front (coronal) view of the face showing nose or lips or both. 

Placenta Pl Placenta (with biometric measurements). 

Situs Si Situs 

Spine Sp Fetal spine (may be full spine or part of spine). 

Top Head with 

Eyes and Nose 

Th Top (axial) view of the fetal head showing eye sockets and/or nose. 

Umbilical Cord 

Insertion 

Um Insertion of the umbilical cord. 

Fig. 4. Representative example images for each manual label and corresponding ab- 

breviations. Bk and Mx cannot be illustrated by a single image due to their spatio- 

temporal characteristics. 
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• Measurements related to Doppler or Pulse Doppler (e.g. Heart, 

Maternal uterine artery, Bladder). 
• Getting the optimal surface rendering (e.g. 3 D mode). 

A higher number of frames are used before freezing as oper- 

tors are often refining the view selection (fine-tuning) over this 

ime period. Having frozen the frame, they typically move out of 

he anatomy quite quickly. Using the video clip definition and ex- 

racted ‘freeze’ states, a full-length US scan video was automati- 

ally segmented in time to extract video clips. Additional technical 

nnotations were automatically detected from the screen indicat- 

ng screensaver, anonymisation, missing probe signal, 2 D, 3 D and 

 D modes for each frame. 

After video clip extraction, the extracted video clips were visu- 

lly inspected and manually annotated. Twenty-three labels were 

sed, as identified by a fetal medicine specialist, as provided in 

able 1 . Representative example images are shown in Fig. 4 . Bk 

nd Mx labels cannot be illustrated by a single image due to their 

patio-temporal characteristics. 

Validation of Manual Annotations The semantic manual annota- 

ions have been predominantly done by three annotators; two en- 
5 
ineering researchers and one fetal medicine specialist qualified in 

etal sonography. Before starting the annotation process, the en- 

ineering annotators attended routine second-trimester scanning 

essions with the medical specialist in the hospital to understand 

he scan video contents. The majority of the full-length US scan 

ideos annotated by the three annotators are mutually exclusive. 

n order to evaluate inter-annotator agreement of manual annota- 

ions, two to four full-length US scan videos were annotated by 

ultiple (two or three) annotators, and the overlap between anno- 

ations of each pair of annotators was calculated. A high average 

nter-annotator agreement (78.7%) was found between the engi- 

eering annotators and the medical specialist. Confusion matrices 

ere computed between each pair of annotators, confirming a high 

greement for most labels. For some labels, confusion was higher, 

or example, 1) hands and arms, as these are anatomically close, 2) 

ands and face-side profile as sometimes the hand of the fetus is 

laced close to the face such that both are visible, 3) face-side pro- 

le and full-body side profile as these are visually similar. Overall, 

he validation confirms good agreement between manual annota- 

ions. For the small number of overlapping scan videos annotated 

y multiple annotators, we selected the intersection of the mul- 

iple annotations, while giving the highest precedence to the fe- 

al medicine specialist ( i.e. selecting any additional and uncommon 

nnotations from the specialist). As a mismatch was observed be- 

ween some anatomical categories due to different interpretations 

f class definitions (e.g. similar views, multiple visible structures), 

 possible future direction to address this challenge could be to 

onsider other sensory cues (e.g. eye-tracking data) to determine 

hich labels more accurately represent the video clip, for instance, 

here the operator is actually looking when multiple anatomical 

tructures are visible. 

Clip-level Label Distribution Sixty-two full-length US scan videos 

ere manually labelled for training the deep networks for video 

escription. Only two operators ( S 1 , S 5 ) initially acquired the US 

can videos on which the manual clip-level annotations were 

ade. Incidentally, S 1 is a newly-qualified operator and S 5 is an ex- 
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Fig. 5. Percentage distribution of manually labelled video clip dataset among 23 

anatomical categories. 
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erienced operator. Note that the manually labelled dataset for au- 

omatic video description is generated purely by visual inspection 

nd used as a training dataset for machine learning of the deep 

patio-temporal networks. The real-world dataset was designed to 

nclude representative video clip examples from each anatomical 

ategory; thus, it will not affect the appearance-based automatic 

lassification in unlabelled videos acquired by other operators. 

The percentage distribution of the labelled video clips in the 23 

natomical categories for the manually labelled video clip dataset 

s depicted in Fig. 5 . A high class imbalance can be observed, with

he box depicting the top-12 dominant categories, and other cate- 

ories representing < 15% of the total annotated frames. These in- 

lude key FASP-based anatomies and three additional classes with 

requency more than other FASP-based anatomies in the dataset, 

amely, 3Dm, Bk and MaD . Therefore, due to higher representa- 

ion and relative clinical importance, these 12 classes were se- 

ected for training the deep networks. The full-length US scans 

onsist of anatomical structures which can either be one of the 

rimary categories (mandatory according to the scanning proto- 

ol) or secondary categories (optional). From the class distribution, 

t can be observed that some secondary structures were less fre- 

uent, or scanned by one of the two operators (e.g. Si, Ha, Th ). 

heir imbalanced representation suggests how scanning styles can 

ary among individual operators in terms of the type and the dura- 

ion of the scanned anatomical structures during the full-length US 

can, which emphasizes the importance to analyse operator clinical 

orkflow in routine fetal ultrasound. 

For training the deep learning models, the 62 labelled full- 

ength US scan videos were used to obtain a total of 6,387 event 

ideo clips for the 12 dominant categories. These were subject- 

ise divided into training, validation and test datasets constituting 

7 ( + 1), 8 ( - 1) and 8 ( - 1) full-length US scan videos, respec-

ively, in the initial exploratory stage and the four-fold cross vali- 

ation stage (randomly selected in both stages). To reduce model 

omplexity during deep learning, the 151-frame video clips were 

ubsampled into 12-frame clips by retaining every eighth frame, 

here skip length of 8 frames was decided after an empirical eval- 

ation of multiple skip lengths ( Sharma et al., 2019 ). Each longer 

lip was sampled to obtain five unique shorter clips by initialising 

 random seed frame followed by uniform sampling. This gave on 

verage 28,425 clips for evaluating the deep learning networks per 

raining experiment. 

.2. Network architectures 

We have developed a deep learning network architecture for 

utomatic temporal semantic annotation of the fetal full-length 

outine second-trimester US scan videos. A deep spatio-temporal 

etwork architecture for general video classification ( Diba et al., 
6 
018 ) using a 3 D DenseNet with a pre-trained 2 D convolutional 

eural network (CNN) branch, is used to supervise transfer learn- 

ng between spatial ( 2 D ) and spatio-temporal ( 2 D + t) branches.

imilarly, to overcome the requirement of large-scale labelled 

ideo datasets, and to leverage the capabilities of existing image 

nalysis networks in supervised learning, we utilise transfer learn- 

ng (pre-training and fine-tuning) and model fusion approaches. 

Spatial Networks Convolutional neural networks are selected as 

he spatial ( 2 D ) representation of individual video frames. Em- 

irically, we found that a SonoNet-64 CNN ( Baumgartner et al., 

017 ) consistently outperformed other existing CNN architec- 

ures on US images (spatial data). Therefore, it was selected as 

he base 2 D CNN on which to build the spatio-temporal mod- 

ls ( Sharma et al., 2019 ). We use three configurations of the spa-

ial CNN: SonoNet-64 trained on our spatial data from randomly 

nitialised weights SonoNet-64 (RI) , SonoNet-64 with pre-trained 

eights ( Baumgartner et al., 2017 ) SonoNet-64 (PT) , and SonoNet- 

4 fine-tuned on our spatial data SonoNet-64 (FT) . 

Spatio-temporal Networks To model long-term temporal de- 

endency, recurrent neural networks were investigated. Long- 

hort term memory (LSTM) units have demonstrated effective- 

ess in video classification via recurrent convolutional networks 

RCN) ( Donahue et al., 2015 ). LSTM units ( Hochreiter and Schmid- 

uber, 1997 ) are preferred over vanilla (ungated) RNN units due to 

heir ability to learn long-term dependencies by preventing van- 

shing or exploding gradients with the help of gating mechanisms. 

uch mechanisms control how much information from a previ- 

us hidden state and input should be used to predict next states, 

nd is achieved by the input gate, forget gate, output gate and 

emory cell in LSTM units. In this work, the LSTM-based spatio- 

emporal architecture is called Sono-2Dt-LRCN (RI) following the 

ong-term RCN (LRCN) method ( Donahue et al., 2015 ), with con- 

ecutive video clip frames jointly learnt by spatial feature extrac- 

ors and adaptation layers (based on SonoNet-64 CNN), and tem- 

oral dependency modelled via a recurrent LSTM layer. A single 

STM layer is considered based on previous findings ( Soh, 2016 ) 

hat 1–2 RNN layers are favourable, and more than two layers were 

ound to overfit on large-scale general image data. The weights 

re trained from random initialisation, as the layer architectures 

re different from any pre-trained spatial layers, and hence, cannot 

e used in transfer learning from other models. Recently, convolu- 

ional LSTM units were introduced, extending the LSTM to the spa- 

ial domain ( Xingjian et al., 2015 ), with potential to address image 

nd video analysis problems. Convolutional LSTM units were ear- 

ier studied ( Sharma et al., 2019 ), but are not selected here due 

o their high computational complexity scaling poorly to limited 

abelled data, observed slower convergence during training, and 

egligible performance improvement. To analyse spatio-temporal 

 2 D + t) data with end-to-end convolutional neural networks, 3 D 

NNs were employed ( Tran et al., 2015 ). These utilise 3 D convo- 

utional kernels to learn motion (displacement) patterns between 

djacent video frames. The method to convert available 2 D CNN 

rchitectures to 3 D called temporal inflation was previously used 

n general images ( Carreira and Zisserman, 2017 ). Intuitively, tem- 

oral inflation of the spatial layers of the base 2 D CNN can pro- 

ide a spatio-temporal representation of the video clips. The re- 

ulting 2 D + t spatio-temporal CNN architecture is called Sono-2Dt- 

NN (RI) . The weights are trained from random initialisation, with 

he same reason as the LRCN counterpart. 

Model Fusion The main challenge for training spatio-temporal 

odels is the requirement of a large-scale labelled video dataset. 

owever, the knowledge learnt in spatial architectures can be 

tilised to transfer the learnt knowledge from pre-trained or fine- 

uned 2 D CNNs to a spatio-temporal network, which can be more 

ffective to train with a limited number of labelled samples. Hence, 

usion configurations of fixed spatial feature extractors and train- 
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Table 2 

Fused spatio-temporal model configurations. 

Model Configuration Fusion Components 

Sono-2D(PT)-2Dt-LRCN(RI) Pre-trained SonoNet-64(PT) and randomly initialised Sono-2Dt-LRCN(RI) . 

Sono-2D(FT)-2Dt-LRCN(RI) Fine-tuned SonoNet-64(FT) and randomly initialised Sono-2Dt-LRCN(RI) . 

Sono-2D(PT)-2Dt-CNN(RI) Pre-trained SonoNet-64(PT) and randomly initialised Sono-2Dt-CNN(RI) . 

Sono-2D(FT)-2Dt-CNN(RI) Fine-tuned SonoNet-64(FT) and randomly initialised Sono-2Dt-CNN(RI) . 

Sono-2D(PT)-2Dt-LRCN-CNN(RI) Pre-trained SonoNet-64(PT) , randomly initialised Sono-2Dt-LRCN(RI) and Sono-2Dt-CNN(RI) . 

Sono-2D(FT)-2Dt-LRCN-CNN(RI) Fine-tuned SonoNet-64(FT) , randomly initialised Sono-2Dt-LRCN(RI) and Sono-2Dt-CNN(RI) . 

Fig. 6. Model fusion of spatial feature extractor and spatio-temporal networks. 

Here, one spatio-temporal network is shown but may exceed to more networks, 

as tested in our experiments. 
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Fig. 7. Selected spatio-temporal deep network. (CN: 2 D or 3 D convolution layer, 

MP: 2 D or 3 D max-pooling layer, GAP: 2 D or 3 D global average pooling layer, FC: 

fully connected layer, LSTM: LSTM unit, SM: softmax layer). 
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ble spatio-temporal networks are evaluated in the model fusion 

rchitectures. 

In general, model fusion is performed as follows. A video clip is 

enoted as v c i and a fixed standard plane image (frame) from the 

lip as I i . Let f im 

and f v c be the feature extractors for images and

ideo clips respectively, we consider networks of the form, 

f f us (v c i ) = f usion ( f im 

(I i ) , f v c (v c i )) (1) 

uch that f v c ∈ { f LRCN , f 2 DtCNN } . f f us is the network combining the

patial and spatio-temporal networks. Concatenation is found to 

e the most successful fusion method compared to other methods 

uch as addition ( Huang et al., 2017 ). Hence, in the fusion layer,

ully connected layer outputs of the two or more branches are con- 

atenated, followed by more fully connected layers. 

The fusion method is illustrated in Fig. 6 . Specifically, the 

ase SonoNet-64 CNN pre-trained or fine-tuned models SonoNet- 

 4(PT) or SonoNet-6 4(FT) are used in a merged configuration with 

he spatio-temporal architectures Sono-2Dt-LRCN(RI) and Sono-2Dt- 

NN(RI) to give six fused model configurations as given in Table 2 . 

In all the fusion configurations, weights of the spatial layers are 

xed (pre-trained or fine-tuned) to obtain 2 D features for a fixed 

tandard frame in each video clip whereas the spatio-temporal 

ranch is randomly initialised for training. The spatial branch could 

lso be made trainable. However, this would greatly increase the 

odel complexity, which is not desirable with a fixed computa- 

ional budget ( < 25 M trainable parameters based on computational 

ardware). In the last two fusion architectures involving both the 

patio-temporal LRCN and CNN networks, the number of chan- 

els has been reduced by half in each layer of the spatio-temporal 

ranches compared to highly computationally expensive models if 

ull constituent layers are used. In this way, model fusion architec- 

ures help in combining representations from spatial layers trained 

n large-scale datasets, and the spatio-temporal layers trained on 

he acquired dataset. 

A preliminary analysis of the individual spatial ( 2 D ) and spatio- 

emporal ( 2 D + t) features was previously reported for US video 
7 
lip classification ( Sharma et al., 2019 ). However, the individual 

etwork architectures were randomly initialised without any pre- 

raining or fine-tuning. We extended the analysis here, with an 

blation study of the individual features (spatial: 2 D CNN, spatio- 

emporal: 2 D + t LRCN, and spatio-temporal: 3 D CNN), followed by 

he design and comparison of several model fusion configurations 

tilising transfer learning (pre-training and fine-tuning). This ex- 

loratory analysis comparing the spatial and spatio-temporal deep 

etworks for video description is discussed in detail in the Supple- 

entary Material , where the network architectures are explained 

n Section 1 . The comparison results in Section 2 show that the 

usion CNN architectures outperform the individual networks, and 

he best-performing CNN architecture Sono-2D (FT)-2Dt-LRCN-CNN 

RI) presents a significant improvement over the other model fu- 

ion configurations. 

We selected the deep network Sono-2D (FT)-2Dt-LRCN-CNN (RI) 

or automatic annotation due to most promising classification re- 

ults. The network architecture of Sono-2D (FT)-2Dt-LRCN-CNN (RI) 

s shown in Fig. 7 . In our evaluation, this network consistently out- 

erformed the other spatial and spatio-temporal architectures that 

ere considered. Two reasons for the success of this architecture 

re the combination of a fine-tuned spatial CNN with randomly 

nitialised spatio-temporal layers, and a comparatively less com- 

lex model that scales better to the training data under a fixed 

omputational budget. 

.3. Training and classification 

Focal Loss is used as the loss function in deep network train- 

ng, to address class imbalance of our datasets. The focal loss L f is 

iven by ( Lin et al., 2017 ), 

 f (p k ) = −(1 − p k ) 
γ log (p k ) (2) 

 modulating factor (1 − p k ) 
γ is introduced to the standard cross- 

ntropy loss −log(p k ) , where p k is the softmax probability of class 

 . For a γ > 0 , the relative loss for well-classified or easy examples

s reduced, and harder (misclassified) examples are more focussed 

uring training. It has been shown that focal loss works well for 

raining object detectors in the presence of several background 
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Fig. 8. t-SNE Feature visualisation of the penultimate layer of Sono-2D (FT)-2Dt- 

LRCN-CNN (RI) model for test dataset. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 
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lasses ( Lin et al., 2017 ). After empirical evaluation, the value of 

was set to 2. 

All frames were pre-processed by cropping the relevant image 

rea to 224 × 288 pixels and resizing to 224 × 224 on-the-fly dur- 

ng training. In addition, all frames were normalised to zero-mean 

nd unit-variance. Image augmentation was consistently applied to 

ll frames of a clip, including rotation with angle randomly sam- 

led from [ −30 ◦, 30 ◦] , flipping, random Gaussian noise ( σ= 0.01),

nd shear ( ≤ 0.2). Regularisation was achieved using batch normal- 

sation and dropout ( p d = 0.5). Adaptive Moment Estimation (Adam) 

as used for optimisation, with initial learning rate of 10 −4 and 

ecay 10 −6 . Batch size was varied between 8, 16 or 32 depending 

n GPU memory availability for the particular model. All models 

ere trained for 100 epochs (200 for spatial models) and a check- 

oint was created for the lowest validation error. During the clas- 

ification stage, the checkpoint weight profile was used to classify 

nlabelled video clips in unseen full-length US scan videos. 

The networks were trained for the top-12 occurring classes in 

he manually labelled datasets, due to wide class imbalance (see 

ection 4.1 ). These classes include HeD, Br, 3Dm, Bk, Sp, Ab, MaD, 

L, Pl, Fa, Ki , and Fm . These also represent the most anatomically

elevant classes according to the FASP protocol. As a result, the net- 

orks predict these 12 classes in the unseen full-length US scan 

ideos. The other 11 classes are represented by a cluster called 

Other Anatomical Classes’ with abbreviation Oth . Intuitively, the 

th cluster is not compact as it contains multiple constituent sub- 

lasses with variable appearances that will lead to high confusion 

uring training if used as a single class. Hence, the deep networks 

ere not trained for classifying a clip as Oth cluster in the first in-

tance, but this was addressed by post-processing the classification 

esults of multiple networks. For each video clip, the majority vote 

f N networks ( N = 4 in our case, as we use four cross-validation

odels) is calculated from the softmax probability p i 
k 

for a class k 

nd network i as 

 i = arg max 
k 

(p i k ) (3) 

 = 

{
mode { C i } N i =1 

, if f req ( mode { C i } ) ≥ 2 

Oth, otherwise 
(4) 

here f req () represents the frequency, C i is the classifier result of 

he i th network, and C is the final result after majority voting for a 

ideo clip. Majority voting was applied to capture the uncertainty 

f the individual networks in the ensemble of trained networks, 

here, if majority of the trained networks are uncertain about the 

abel of the video clip, the label is considered as the Oth cluster. 

.4. Post-processing via temporal regularisation 

After automatic classification of the video clips constituting 

he full-length US scan videos, temporal information and posterior 

softmax) classification probability scores of the video clips were 

sed to regularise the classification results and smoothen tempo- 

al over-segmentation for each US scan video in a post-processing 

tage ( Maraci et al., 2017 ). This was performed by constructing a 

onditional random fields (CRF) graphical model ( Lafferty et al., 

001 ), with each video clip in the US scan video as one node of

he graph. 

The joint probability of assignment to the node v c j in the graph 

ith J number of nodes and K number of edges is defined as the 

ormalised product of two non-negative potentials as 

 (v c 1 , v c 2 . v c J ) = 

1 

M 

J ∏ 

j=1 

ψ j (v c j ) 
K ∏ 

k =1 

ψ k (v c k a , v c k b ) (5) 

here unary (node) potential ψ j () is the posterior classification 

robability score, and binary (edge) potential ψ () is the prob- 
k 

8 
bility of a node transitioning from one state to another, where 

v c k a , v c k b ) represents an edge between nodes a and b. The bi-

ary potentials were empirically set by computing a transition ma- 

rix from the training (manually labelled) US scans. The normali- 

ation constant M ensured that distribution sums to one over all 

ossible joint configurations of variables. The most probable label 

ath was obtained in each test (automatically labelled) scan using 

iterbi decoding ( Forney, 1973 ). Hence, this setting smoothed out 

he classification result by considering neighbouring video clips in 

he full-length US scan video. The combined dataset of manually 

abelled and post-processed automatically labelled full-length US 

can videos was used for large-scale clinical workflow analysis, as 

escribed Section 5 onwards. 

.5. Results and discussion 

The comparative evaluation and discussion of the different 

ested networks are reported in Section 2 of the Supplementary 

aterial . Here, we discuss the results of the best-performing video 

escription network Sono-2D (FT)-2Dt-LRCN-CNN (RI) . The spatio- 

emporal network was tested using four-fold cross validation. Due 

o limited availability of the manually labelled video datasets, we 

valuated the trained network on unseen data, where the deep 

etwork trained on 62 labelled videos was used to infer clip-level 

abels for the remaining 279 unlabelled full-length US scan videos 

sing the methods in Section 4.3 and Section 4.4 . The quality of 

he automatic labels was assessed using statistical analysis and ret- 

ospective manual validation. 

Cross Validation Standard multi-class classification evaluation 

etrics are used to evaluate performance the trained deep video 

escription network, namely, Precision ( P ), Recall ( R ), F1-score ( F 1 ),

op-1 accuracy ( A 1 ) and Top-3 accuracy ( A 3 ). Mean and standard

eviations of evaluation metrics were obtained as P = 0 . 88 ± 0 . 10 ,

 = 0 . 88 ± 0 . 09 , F 1 = 0 . 88 ± 0 . 10 , A 1 = 0 . 92 ± 0 . 08 , A 3 = 0 . 98 ±
 . 02 . This result establishes the suitability of the selected model to 

olve the video clip classification problem for clinical fetal US scan 

ideos. The misclassification is highest for the classes Bk, Pl and Ki. 

k includes searching or plane-finding that may contain multiple 

tructures; hence, the class has higher confusion probability with 

he other anatomical categories. Pl and Ki are misclassified due to a 

ower number of labelled instances in the training dataset. In par- 

icular, there is a higher binary confusion between Pl and MaD , and 

i and HeD , due to their similar appearance. 

Feature visualisations from the penultimate layer of this 

odel using t-distributed stochastic neighbor embedding (t- 

NE) ( Maaten and Hinton, 2008 ) are depicted in Fig. 8 . The clusters

ostly show a clear distinction between categories and the ex- 

racted CNN features are representative of the anatomical classes. 

e can observe a small number of outliers which are the misclas- 

ifications discussed earlier. 



H. Sharma, L. Drukker, P. Chatelain et al. Medical Image Analysis 69 (2021) 101973 

Fig. 9. Percentage mean statistical distribution of manually labelled US scans, auto- 

matically labelled US scans before post-processing for temporal regularisation, and 

automatically labelled US scans after post-processing for temporal regularisation. 

Error bars represent 95% confidence interval. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 10. Confusion matrix between manual and automatic labels for 10% randomly 

selected US scans for retrospective manual validation. 
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Statistical Analysis Statistics were computed as mean ± standard 

eviation (duration in minutes) and mean percentage (95% con- 

dence interval) per scan for each of the n = 13 given anatomi- 

al categories. The automatically labelled US scans were validated 

gainst manually labelled data by computing the correlation be- 

ween the anatomical class histograms of manually and automat- 

cally labelled US scans. A high correlation with Pearson’s corre- 

ation coefficient ρ = 0 . 98 , ( p = 2 . 83 × 10 −10 ) was observed. Fig. 9

epicts the percentage statistical distribution of manually labelled 

S scans, automatically labelled US scans before post-processing 

or temporal regularisation, and automatically labelled US scans af- 

er post-processing for temporal regularisation. This was calculated 

s a percentage of the whole scan. 

We observe that there is a one-to-one correspondence between 

ccurrence of most event classes for manual and automatic labels, 

nd for the automatic labels before and after temporal regularisa- 

ion. However, the highest mismatch is in Oth (other cluster), as 

he video clips in Oth cluster have a lower proportion in the au- 

omatically labelled US scans compared to manually labelled ones. 

he main reason for this behaviour is that, the Oth cluster con- 

ists of multiple constituent sub-classes with variable appearances, 

nd the deep networks were not trained to recognise their appear- 

nce as a single class, thus, video clips belonging to Oth cluster 

ere most likely classified as one of the remaining trained classes. 

oreover, there was an overestimation of background search class 

k after temporal regularisation due to a higher number of transi- 

ions in the full-length scans from or to Bk clips. Furthermore, it 

s interesting to see that for both manually and automatically la- 

elled datasets, the highest percentage durations observed are for 

natomies HeD (Heart including Doppler) and Br (Brain), which is 

xpected, as Heart and Brain are important anatomical structures 

or inspection and measurements during the fetal US scan, so the 

perators have spent the longest part of their scan time on these 

natomical tasks. 

Retrospective Manual Validation From the 279 unseen and au- 

omatically labelled US scans, a random 10% (28 US scans) were 

anually annotated. After comparative evaluation of the manual 

nd automatic labels, the total accuracy for all US scans was com- 

uted as 0.76, with an average accuracy per scan as 0.75 ± 0.08. 
9 
he confusion matrix between manual and automatic labels is 

hown in Fig. 10 . The highest confusion is found in Oth cluster 

eing classified as Background Search ( Bk ). This is because Bk can 

nclude multiple anatomies, so the sub-classes in the Oth cluster, 

hich were not recognised by the deep networks based on their 

ppearance, were probably classified as Bk . We believe the solu- 

ion is to use all the sub-classes in Oth cluster separately during 

raining. However, this would require acquisition of a significant 

mount of data. Currently, the data distribution in sub-classes of 

he Oth cluster is inadequate to train the deep networks with all 

he 23 anatomical classes ( Fig. 5 ). Also, high confusion exists be- 

ween Ki and HeD , as well as between Pl and MaD due to their

imilar appearance. 

While we observe a lower accuracy of MaD, Pl, Ki and Oth in the 

utomatically labelled US scans, these labels are included in clini- 

al workflow analysis for two reasons. Firstly, most of these classes 

ave lower number of instances in the manually labelled dataset, 

hich was also the reason for a lower accuracy in the automatic 

abels. Secondly, the lower accuracy is because the clips were de- 

ected as other types of classes (e.g. Ki mostly detected as HeD, 

th as Bk ). But there are negligible false positives for these classes 

hemselves, which means, the clips classified into these classes 

ave mostly correct labels, which makes the analysis of these clips 

seful. Hence, any additionally labelled samples are valuable and 

ould increment the knowledge of the labelled data pool. 

. Subject-specific timeline model 

In this section we begin to form representations of operator 

linical workflow. We start by describing the subject-specific time- 

ine model. 

.1. Method 

At the lowest level of abstraction, we generate a Subject- 

pecific Timeline Model (STM) representing operator clinical 

orkflow for the full-length US scan video of each subject. In this 

ontext, clinical workflow can be defined as the fine-grain repre- 

entation of a subject’s US scan video consisting of distinguished 

uccessive scanning events as a time sequence. Thus, the STM 

f a scan is the ordered set of K scanning events { E 1 , E 2 , ., E K } ,
here each scanning event E ( i ∈ N ) is a video clip represented
i 
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Fig. 11. Examples of (a) a typical STM with corresponding video frames for each 

task (b) STMs for the operator S 4 . (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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y its numerically coded anatomical label L i ∈ [1 , 2 , ., n ] , where n

s the number of unique anatomical tasks (label classes). The STM 

s computed by ignoring all non-anatomical frames (labelled as 

nonymised, screensaver and missing probe signal after automatic 

etection), and considering the top-12 anatomical classes and the 

th cluster ( n = 13 ). The non-anatomical frames are removed as 

hese do not constitute the operator’s visual scanning experience, 

nd usually reflects their time spent on, for example, asking sub- 

ect details (labelled as anonymised), doing other administrative 

obs or conversing with the subject (labelled as missing probe sig- 

al and screensaver), which do not constitute the anatomically rel- 

vant events of the US scan. The process of creating an STM from 

 US scan video involves two additional steps. 

Firstly, all the frames of the US video were not labelled man- 

ally or automatically, as video clip extraction follows a strict 

rotocol of detecting ‘freeze’ frames and partitioning fixed-length 

lips around these frames. Thus, there are gaps of unlabelled 

rames in the video. In general, we know that after freezing, the 

can is focussed on a particular anatomy, and then the operator 

uickly moves out of the anatomy to find the next anatomy. There- 

ore, to handle unlabelled frames, we post-process the STM by 

wo sequential steps, namely, 1) annotating subsequent unlabelled 

freeze’ frames directly after the clip with the clip label, since these 

ould be the same anatomical task; and 2) labelling unlabelled 

rames between two scanning events with the label of the next 

equential scanning event- this is a backward filling extrapolation 

peration. 

Secondly, there are a high number of background search ( Bk ) 

lips in the labelled videos (we observe and discuss reasons for 

his in Section 4.5.0.2 ). To reduce the overestimation of Bk , we 

ssume the following: if a scanning event (or series of scanning 

vents) with the label Bk is encountered between two (series of) 

canning events of the same anatomical task, i.e. , with the same 

umerical code, and has a shorter runlength (total number of suc- 

essive events of the same task) than the neighbouring scanning 

vents, it is replaced by the label of the neighbouring scanning 

vents. This assumption is intuitive, as the minor Bk task located 

n between the same major task on both sides is most likely a part

f the major task. 

An example of a typical STM with corresponding video frames, 

nd the color-coded STMs for operator S 4 are shown in Figs. 11 (a)

nd 11 (b) respectively. An STM is represented similar to a multi- 

olored bar code, where a color corresponds to an anatomical cat- 

gory. For visualisation purposes, in Fig. 11 (b), the total duration of 

S scans is normalised to one, and all STMs are arranged in the 

ncreasing order of scan duration. 

.2. Observation and discussion 

In a standalone way, the STMs provide a shorthand representa- 

ion of each full-length US scan video for each operator. This rep- 

esentation can be utilised for analysing operator clinical workflow 

o classify scanning skills and analyse variabilities. We can make 

isual observations by only looking at the color-coded STMs of 

ach operator, such as patterns of the most prominent tasks, task 

istributions, and task ordering. For example, from Fig. 11 (b), we 

an conclude that the operator prefers to look at the brain ( Br ) and

ose-lips ( NL ) in the beginning of the scan, and mother’s anatomy 

 MaD ) and face-side profile ( Fa ) during the latter part of the scan. 

. Summary of timeline features 

Using the foundations of Section 5 , we now consider how to 

erive a quantitative mid-level representation of assessing clinical 

orkflow. 
10 
.1. Method 

From the literature, we can summarise the three dominant cat- 

gories of methods for knowledge representation of recorded se- 

uential clinical data as time-series models (e.g. Markov models and 

MM) ( Oropesa et al., 2011 ), summary of features models (e.g. fea- 

ure analysis with SVM, LDA, neural networks) ( Horeman et al., 

014 ), and formalised models based on dictionaries (e.g. UML, 

owcharts, petrinets) ( Basu and Blanning, 20 0 0 ). The performance 

f these three categories is compared in ( Vedula et al., 2017 ) for

everal surgical skill assessment studies, and superior performance 

s reported for summary of features models. Intuitively, and based 

n this evidence, in this paper we explore hand-engineered fea- 

ures with classical machine learning for clinical workflow analysis 

f full-length fetal US scan videos. Advantages of deriving features 

nclude a dimensionality reduction to a fixed number of features 

ompared to time-series of varying length, and a simpler approach 

ompared to the formalised models which may involve the use of 

pecialised data management tools. We carefully engineer the fea- 

ures for clinical workflow analysis based on operator skills in rou- 

ine fetal US scans. State-of-the-art surgical workflow features (e.g. 

escribed in ( Vedula et al., 2017 )) were not included due to the 

nherent difference between a fetal US scanning workflow and a 

urgical workflow. Specifically, a fetal US scan consists of arbitrary 

ask types, distributions, and ordering with repetitions, whereas, a 

urgical workflow usually has a defined number and order of tasks 

ithout repetitions. 

Considering the STMs (introduced in Section 5 ) as time-series, 

e also evaluate HMMs and deep learning methods directly on the 

TMs. Furthermore, OGMs (introduced in Section 7 ) can be con- 

idered analogous to a formalised model of the sequential data. 

herefore, we capture the three categories of description methods 
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hrough our knowledge representation scheme consisting of STMs, 

TFs and OGMs, respectively. 

.1.1. Feature engineering 

The mid-level representation of the STMs is achieved by de- 

igning and extracting discriminating Summary of Timeline Fea- 

ures from each STM that relate to operator skill. Discussions with 

pecialists led to hypothesise possible differences between the skill 

roups XP and NQ to be the following. 

1. The XP operators are more familiar with knowing where 

to look next for an interesting anatomy compared to the 

NQ operators. Hence, we expect that the XP group will 

have shorter search duration between anatomies than the NQ 

group. 

2. The XP operators should be quicker to recognise an oppor- 

tunity than the NQ operators. For instance, if they see a cer- 

tain view within an anatomy, then they should get a good 

standard plane. This would lead to smaller task durations and 

less task repetitions of the individual anatomical tasks for the 

XP group compared to the NQ group. 

3. The XP operators are expected to conduct exams in a more 

structured way compared to the NQ operators. In other 

words, the XP group will follow a specific task ordering more 

frequently (e.g. head first, face second, spine third, and so 

on), with less task transitions . 

4. The XP operators are expected to have a faster acceptance 

of their momentary inability to acquire a certain standard 

plane and proceed to the next anatomy more quickly. For in- 

stance, an XP operator would try to find the nose-lips plane 

for a few seconds but is more likely to recognise to aban- 

don the task if the fetal position is unsuitable. In contrast, 

an NQ operator might not appreciate this and continue to 

try to find a good imaging plane for longer. In this case, the 

XP group will have a shorter fine-tuning duration within the 

anatomy. 

We capture the above properties quantitatively from the STMs 

y the following Summary of Timeline Features (STFs). Firstly, the 

otal duration ( point 1. ) of the US scan is an important discrimi-

ating feature, which is computed as the length of the STM, nor- 

alised to the range [0,1] for a specific operator. The normalisa- 

ion is considered important, as otherwise this value can be highly 

ariable depending on different operator preferences and styles. 

ntuitively, the normalised scan duration depends on the oper- 

tor skills and position of the fetus. We have ignored fetal position 

ariations assuming a normal fetal position, hence, the normalised 

can duration can be a good indicator of operator skills. 

The relative anatomical task durations (point 2.) , including 

he total, mean, maximum and minimum duration of each of the 

3 anatomical tasks are computed for each STM, giving a total of 

3 × 4 = 52 features. 

Task ordering (point 3.) , as the extent of how organised the 

TMs are, is calculated computing the Shannon entropy of each 

TM. Since, an STM is a stream of numerically-coded labels, us- 

ng information theory, Shannon entropy ( Shannon, 1948 ) can be 

tilised to determine the diversity and redundancy of each STM. 

ntropies are normalised to the range [0,1] before feature selection 

nd machine learning. 

A feature describing the type of search where the operator per- 

orms quick freeze-unfreeze but doesn’t finalise the view is com- 

uted using the relative duration of Bk task, was already con- 

idered earlier. However, to more effectively capture the search 

urations between anatomical tasks, fine-tuning durations within 

natomical tasks, and durations of activities (e.g. diagnostic inspec- 

ion, biometric measurements) performed after finding the stan- 

ard plane (point 1., point 4.) , we consider the relative non- 
11 
reeze and freeze durations , respectively, for each anatomical task 

n the STM. For this purpose, we create a vector of the same length 

s the number of frames in the scan video, containing the corre- 

ponding freeze states of frames in each of the scanning events 

rom the extracted technical annotations. The relative durations of 

ctivities after finding the standard plane (freeze state = 1), search 

nd fine-tuning (freeze state = 0) for each anatomical task is calcu- 

ated, giving rise to 2 × 13 = 26 additional features. 

We use a directed graph-representation of the STM, where each 

nique anatomical task L i is represented by a node, and transi- 

ions from task L i to task L j by a directed edge i → j. We count

he loops for each node, representing the number of repetitions of 

ach anatomical task (point 2.) , leading to 13 more features. We 

lso count the in-degree and out-degree of each node to deter- 

ine the number of transitions to and from each anatomical task, 

espectively (point 3.) , giving a total of 13 × 2 = 26 more features. 

As a result, we have defined a total of 119 timeline features of 

he STM that describe operator skill. 

.1.2. Feature selection 

To identify the most discriminative features, we perform fea- 

ure ranking and visualisation by using two filter methods, namely, 

eliefF ( Robnik-Šikonja and Kononenko, 2003 ) and Neighbour- 

ood Component Analysis (NCA) ( Yang et al., 2012 ). We select 

lter methods over wrapper or embedded methods ( Liu and Mo- 

oda, 2012 ) for feature selection for the following reasons. Firstly, 

lter methods depend on the general characteristics of data (for 

xample, statistical tests for correlations with the output variable), 

ithout depending on any chosen machine learning algorithm un- 

ike the other two types of methods. Hence, a filter method can 

e used as a pre-processing step with any machine learning algo- 

ithm. Secondly, filter methods are computationally less expensive 

s they do not involve model training. Thirdly, filter methods are 

ot prone to over-fitting compared to the other methods. A recog- 

ised weakness of filter methods is that there is a lower possibility 

o find the optimal subset of features ( Kohavi and John, 1997 ). To

ddress this, we use the common results of two filter methods to 

nsure the selected features are most discriminative for the given 

ataset. 

.1.3. Machine learning 

The hand-engineered features (STFs) are used within traditional 

eature-based machine learning methods, namely, support vector 

achines (SVMs) and random forests using (i) all the STFs and 

ii) the selected STFs, to build a model for skill classification, dis- 

inguishing between the two skill groups. The SVM models are 

rained using radial basis function (RBF) kernels. Random forest 

lassifiers are trained after empirically setting the number of trees 

o 300 with a minimum leaf size to 6. For completeness of the 

nalysis, we also report the results from two basic prediction mod- 

ls, a Hidden Markov Model (HMM) trained directly on the STMs, 

nd a logistic regression model trained on all the STFs. 

To investigate the usefulness of the low-level STM representa- 

ion for operator skill characterisation, we perform deep learning 

irectly on the STMs using convolutional neural networks (CNN) 

ased architectures. For this purpose, we adapt ideas that have 

een used in deep learning for genomics, specifically DNA se- 

uence classification ( Yue and Wang, 2018 ), due to similar ordinal 

haracteristics of DNA sequences to our STMs. Particularly, moti- 

ated by a CNN architecture called Viraminer CNN ( Tampuu et al., 

019 ) that uses a two-branch 1 D CNN, namely, a pattern branch 

ith global max pooling and frequency branch with global aver- 

ge pooling, we propose a three-branch 1 D CNN architecture that 

e call SonoSkillClassifier CNN , designed to learn the STM charac- 

eristics such as task length, scanning pattern, transitions and rep- 

titions. The CNN architecture is defined using the vocabulary for 
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Fig. 12. Histogram plot of STM sequence lengths. 

Fig. 13. The proposed SonoSkillClassifier CNN architecture for skill classification. The 

multi-scale temporal CNN has three branches of different filter lengths, 3 for fine- 

scale, 7 for medium-scale and 10 for coarse-scale representation. (CN: 1D convolu- 

tional layer, GMP: global max pooling layer, FC: fully connected layer, SM: softmax 

layer). 
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Fig. 14. Data augmentation of STMs for deep learning involving a random dynamic 

window selection and warping method ( λ: random sampling factor). Orange box 

represents the dynamic window selected in the STM for re-sampling. 
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NA and text classification ( Nguyen et al., 2016 ), as follows. The 

NN consists of three branches, where the inputs to each branch 

re one-hot encoded STMs, each of size k × n such that the se- 

uence length ( k ) is the maximum possible STM length, and the 

ictionary size n is the number of tasks ( n = 13 anatomical classes

n our case). Each branch consists of a 1 D convolutional layer fol- 

owed by a global max pooling operation. There are 256 convolu- 

ional feature maps in each layer, and convolutional filter lengths 

f the three layers are selected as 3, 7 and 10 where the filter 

engths represent the number of words convolved during each fil- 

er operation (field of view); in our case, these are the sequential 

canning events in the STM. To justify the size selection, in Fig. 12 

e plot the histogram of sequence lengths (or runlengths) of scan- 

ing events in the STM. 

We observe that the sequence lengths are frequently found to 

e in the range [1,10]. Hence, the convolutional filters of lengths 

 (fine-scale) and 7 (medium-scale) will capture anatomical task 

engths and task transitions, and length 10 (coarse-scale) captures 

ask repetitions in the larger seen window. The features from each 

ranch are concatenated, followed by a 100-neuron fully connected 

ayer and a softmax layer. The proposed multi-scale temporal CNN 

rchitecture is shown in Fig. 13 and has only 144,430 trainable 

arameters. In comparison, other existing CNN architectures are 

uch larger, for instance, the Viraminer CNN has 2.42 million pa- 

ameters. Such a 1 D CNN architecture has the advantage of sig- 

ificantly reduced learnable parameters compared to the spatio- 

emporal analysis networks for raw video description, as the num- 

er of parameters of the selected network, even after fixing the 

omputational budget, was ca. 23 million ( Section 4.2 ). 

To train the deep CNN models, the STMs were augmented to 

revent over-fitting. The augmentation strategy involved a ran- 

om dynamic window selection and warping method ( Le Guen- 

ec et al., 2016 ) with a random sampling factor ( λ ∈ [0 . 5 , 1 . 5] ), fol-

owed by one-hot encoding and zero padding. For the one-hot en- 

oding, each sequential scanning event was considered as an in- 
12 
ividual word. Hence, a sequence of words was obtained as a se- 

uence of one-hot encoded vectors, each of length n . Zero-padding 

as performed on shorter sequences to obtain a fixed sequence 

ength k . The data augmentation strategy is illustrated with an ex- 

mple in Fig. 14 . Also, dropout ( p d = 0.5) was used between the

ully connected layers for model regularisation, and binary crossen- 

ropy loss was used during backpropagation. A batch size of 16 was 

sed during training. 

.2. Results and discussion 

.2.1. Feature selection 

Feature selection was performed using ReliefF and NCA algo- 

ithms, where a subset of 20% random STM samples (68/341) was 

sed as the holdout set. 

For the ReliefF algorithm, the number of nearest neighbours for 

his algorithm were empirically fixed as 5. The feature ranks were 

omputed in decreasing order of their importance weights. A fixed 

umber of features (one-third of the total features) with the high- 

st weights were selected. These were the top-40 features, shown 

n Fig. 15 (a). The set of selected features is denoted by F relie f F . The

eature names are abbreviated from Section 6.1.1 , with the prefixes 

Fr’ and ‘Ft’ denoting freezing and fine-tuning respectively, and suf- 

x representing the label L i . 

For the NCA algorithm, the regularisation parameter was em- 

irically fixed as 0.01. Just like ReliefF, the ranks of features were 

omputed in decreasing order of importance weight, and a fixed 

umber of features (one-third of the total features) with the high- 

st weights were selected. These were the top-40 features, shown 

n Fig. 15 (b). The set of selected features is denoted by F NCA . 

We found that 21 features are common in the sets F relie f F and 

 NCA . We consider the combined set F comb = F relie f F ∩ F NCA for fur-

her analysis. It can be observed that freeze and fine-tuning (or 

earching) durations of different anatomical tasks are the most 

mportant discriminating factors for skill classification, along with 

otal duration . It is intuitive that total scan duration and rela- 

ive durations (total, mean, maximum, and minimum) of cer- 

ain anatomical tasks are significant factors to distinguish between 

ewly-qualified and experienced skill groups. Shannon entropy , a 

easure to determine disorder in the STMs, is considered discrim- 

native by both feature selection algorithms. The number of rep- 

titions of some tasks is also discriminatory, along with transi- 

ions to and from the anatomical tasks . Anatomical tasks such as 

ackground search, brain, nose and lips, kidneys, and other cluster 
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Fig. 15. Feature selection using (a) ReliefF algorithm (b) NCA algorithm. The red 

box highlights the top-40 features with the highest importance weights. Remaining 

features are not shown in the figure. (For interpretation of the references to colour 

in this figure, the reader is referred to the web version of this article.) 
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Fig. 16. Average total and individual anatomical task durations for the two groups. 

(For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.), the reader is referred to the web 
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f tasks are given more importance by the feature selection algo- 

ithms. 

Two features worthy of further discussion are the total scan du- 

ation and average task durations for the two groups, NQ and XP. 

ig. 16 shows the plot of the average durations of all the anatomi- 

al tasks, for individual operators and the average operator for each 

roup, namely S a v nq and S a v xp , respectively. 

Firstly, we observe that the NQ group has longer scans (aver- 

ge length = 29.84 ± 8.73 min) compared to the XP group (aver- 

ge length = 22.69 ± 7.54 min). This observation suggests that total 

can duration is a suitable feature to discriminate between the two 
13 
roups. This feature was also selected by both feature selection 

ethods. This is perhaps an intuitive finding, as one might expect 

hat a newly-qualified operator takes longer to search and localise 

he different anatomies due to lower expertise compared to experi- 

nced operators. Secondly, we observe higher average durations of 

ll anatomical tasks for the NQ group compared to the XP group, 

gain for the same reason, which may have led to more repeti- 

ions and transitions, and more time spent in each of the anatom- 

cal tasks. Notably, the duration of background search ( Bk ) is much 

igher for NQ than XP, which suggests that newly-qualified oper- 

tors spend a longer time to search and reach an optimal plane, 

r are not easily satisfied with their acquired views, leading to 

uick freeze-unfreeze actions. In contrast, experienced operators 

re quick to recognise an opportunity to get a good standard plane, 

he ability that leads to a much shorter duration of background 

earch. 

.2.2. Machine learning 

The effectiveness of the STFs with classical machine learn- 

ng methods, and STMs with deep learning methods was evalu- 

ted through five-fold cross validation for skill classification. For 

omparative evaluation with existing methods, we compared the 

onoSkillClassifer CNN with the Viraminer CNN. To demonstrate the 

nhancement using the multi-scale temporal architecture over in- 

ividual scales, we performed an ablation study for each of the 

hree branches of the multi-scale temporal SonoSkillClassifer CNN . 

he results are summarised in Table 3 , and best results are high- 

ighted in boldface, both for classical machine learning and deep 

earning. Reported standard metrics are sensitivity, specificity, ac- 

uracy and F1-score. 

From the results in Table 3 for the two skill groups, we observe 

he following. As expected, the simplest classical models such as 

MM and logistic regression are not observed to be as accurate as 

he SVMs and random forests. For the classical SVM and random 

orests machine learning with the hand-engineered STFs, a small 

verall improvement is seen with the selected features compared 

o all features, showing good feature selection. However, for SVM, 

he NQ scans are classified more accurately using all the features, 

uggesting that some discriminative features may not be captured 

n the reduced set. Random forests are not superior compared to 

VMs but have a balanced classification performance in both oper- 

tor groups. This result suggests that the hand-engineered timeline 

eatures can be applied to the skill classification problem. 

Overall, deep learning outperforms the hand-engineered fea- 

ures and classical machine learning (as is often found to be the 

ase). Among the deep learning methods, the proposed SonoSkill- 

lassifier CNN is superior to the Viraminer CNN. This is because, 

ts architecture was specifically designed for learning operator skill 
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Table 3 

Five-fold cross validation results for skill classification. 

Method Features (or Params) Sensitivity Specificity Accuracy F1 Score 

STFs and Classical Machine Learning 

HMM (STMs) NA 0.59 ± 0.24 0.56 ± 0.20 0.58 ± 0.05 0.57 ± 0.12 

Logistic regression (all features) 119 0.64 ± 0.34 0.44 ± 0.45 0.54 ± 0.09 0.55 ± 0.18 

SVM (all features) 119 0.87 ± 0.06 0.82 ± 0.10 0.85 ± 0.03 0.85 ± 0.02 

SVM (selected features) 21 0.83 ± 0.06 0.90 ± 0.05 0.86 ± 0.04 0.86 ± 0.04 

Random forests (all features) 119 0.80 ± 0.06 0.81 ± 0.07 0.81 ± 0.03 0.81 ± 0.03 

Random forests (selected features) 21 0.83 ± 0.05 0.81 ± 0.09 0.82 ± 0.05 0.82 ± 0.05 

STMs and Deep Learning 

Viraminer CNN ( Tampuu et al., 2019 ) 2,422,789 0.904 ± 0.114 0.850 ± 0.118 0.876 ± 0.114 0.880 ± 0.109 

SonoSkill-Classifier CNN (scale = 3) 36,142 0.987 ± 0.022 0.978 ± 0.024 0.984 ± 0.015 0.983 ± 0.015 

SonoSkill-Classifier CNN (scale = 7) 49,454 0.991 ± 0.013 0.972 ± 0.018 0.981 ± 0.011 0.981 ± 0.011 

SonoSkill-Classifier CNN (scale = 10) 59,438 0.988 ± 0.012 0.972 ± 0.021 0.980 ± 0.010 0.980 ± 0.009 

SonoSkill-Classifier CNN (multi-scale) 144,430 0.998 ± 0.005 0.972 ± 0.019 0.985 ± 0.010 0.985 ± 0.010 

Fig. 17. t-SNE visualisation of the automatically generated test features from a 

trained SonoSkillClassifier CNN. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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g  
ssessment from the STMs with lower number of trainable pa- 

ameters. It has an overall higher performance compared to each 

ingle-scale branch tested in the ablation study, showing an im- 

rovement in the NQ group from all the individual branches, and 

n the XP group from scales 7 and 10 and comparable accuracy for 

cale 3. The ablation study confirms that the multi-scale temporal 

NN model is well-suited to combine different STM characteristics 

uch as task patterns, transitions and repetitions. The t-SNE visual- 

sation of the automatically generated features of test STMs fed to 

ne trained SonoSkillClassifier CNN model, extracted from the fully- 

onnected layer, is depicted in Fig. 17 . From the feature visualisa- 

ion of the auto-encoded CNN features, it can be clearly observed 

hat, the extracted CNN features show distinct clustering between 

he XP and NQ groups. 

To test the robustness of the proposed CNN method with re- 

pect to unseen operators, it is important to perform experiments 

n leave-operator-out settings. However, an issue in doing this is 

hat the highly unbalanced dataset ( Fig. 2 ) can lead to insufficient 

ata for training both skill groups. For instance, leaving out S 1 , S 2 
r S 5 was observed to cause over-fitting in the learnt models be- 

ause of their high contribution to the scan data, hence, removing 

hese scans caused the highest data imbalance (e.g. leaving out S 5 
eads to only 49 scans in XP group). For the remaining two oper- 

tors S 3 and S 4 with lowest data contribution, the leave-operator- 

ut experiment gave the accuracies 70.0% and 76.4% respectively. 

rom this result, it may be argued that with a limited dataset 

f operators and scans per operator, for dominant operators, the 

urrent models may learn operator-specific scanning signatures to 

lassify their unseen STMs more accurately. Nevertheless, an av- 

rage accuracy of 73.2% for the less dominant operators indicates 
14 
hat the proposed CNN can perform operator skill classification. 

urthermore, we test the trained model on an unseen dataset con- 

isting of 13 scan videos undertaken by three expert (XP) opera- 

ors; these operators were not considered in the previous exper- 

ments. We achieve an accuracy of 76.9% on the unseen scans of 

he new operators, which suggests a good generalisability of the 

rained models for the skill classification problem. 

. Operator graph model 

In this section we describe how to derive an operator-specific 

odel of workflow from the STMs. 

.1. Method 

A directed relational graph which we call an Operator Graph 

odel (OGM) is constructed for each operator to model the clinical 

orkflow pattern in a US scan for that operator. A similar idea has 

een used to model event relations and represent related events as 

onnected graphs for extracting workflow for an individual during 

nteraction with an information management system ( Abeta and 

akizaki, 1999 ). 

To derive an OGM representation for an operator, we first clus- 

er the STMs for each operator. However, we first remove the Bk 

lass, as background search is not defined as a unique anatom- 

cal task but occurs in between other pairs of anatomical tasks. 

his means an OGM representation is constructed from n = 12 

natomical task classes. Then, we calculate the anatomical task- 

tart probabilities, anatomical task-occurrence probabilities , and 

ask transition probability matrix for the STMs of each operator 

sing the following heuristic approach. Assuming there are K op- 

rators, we consider the k th operator, where k ∈ { 1 , 2 , ., K} . 
1. Anatomical task-start probability is calculated for each of the 

anatomical tasks by counting the relative occurrence of each 

task at the beginning of the STM. The task-start probabil- 

ity for the i th anatomical task is given as P k (i ) such that∑ n 
i =1 P k (i ) = 1 . 

2. Anatomical task-occurrence probability is calculated for each 

of the anatomical tasks by finding the total relative dura- 

tion of each task from the corresponding STMs. The task- 

occurrence probability for the i th anatomical task is given as 

O k (i ) such that 
∑ n 

i =1 O k (i ) = 1 . 

3. Task transition probability matrix is calculated as the proba- 

bility to transition from anatomical task i to anatomical task 

j for non-identical tasks i 	 = j, and 0 for i = j. The transition

probability matrix T k (i, j) is stochastic, i.e. 
∑ n 

j=1 T k (i, j) = 1 . 

Using the above definitions, an attributed relational directed 

raph is a 4-tuple G = < N, E, A, B > defined for each operator,
k 
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Fig. 18. Example of an OGM with most probable path (red) for operator S 1 . (For 

interpretation of the references to colour in this figure, the reader is referred to the 

web version of this article.) 
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ith N nodes, E edges, node attributes A = { P k , O k } and edge at-

ributes B = { T k } . All nodes in the OGM are reachable. However,

here are no self-loops ( T k (i, i ) = 0 ), as in the high-level represen-

ation, transitions to the same node are not meaningful. 

.1.1. Most probable non-repeating path 

In an ideal scan with no repetitions, each node would be tra- 

ersed exactly once, leading to an acyclic flow of tasks representing 

he most-probable non-repeating path. To obtain the most prob- 

ble non-repeating path for each operator k, we consider all the 

aths in G k as first order Markov chains. Hence, the probability 

 r(x ) of a given path x from edge 1 to edge L is given by, 

 r(x ) = P r (x 1 ) 
L ∏ 

i =2 

P r (x i | x i −1 ) (6)

rom the above definition of the first order Markov chain probabil- 

ty, and our start and transition probabilities, for a given start node 

 we can define the probability of any existing path in the OGM G k 

s, 

 r(path ) = P k (i ) 
∏ 

i, j∈ E 
T k (i, j) (7) 

To calculate the most probable path for a given operator, the 

ost probable start nodes (nodes with maximum task-start proba- 

ility) are given highest preference, because task initialisation can 

e an important prior to determine the remaining task ordering. 

lso, finding all the possible paths of the OGM is a hard prob- 

em. To solve this, we compute and analyse all the possible paths 

manating from the most probable start node for each of the re- 

aining end nodes. The algorithm efficiently finds complete paths 

or each start node-end node pair using recursive programming. 

he overall most probable paths are selected as the ones having 

he highest path probability P r(path ) calculated from Eq. 7 . It is

ound that multiple paths may have the same value of the high- 

st path probability due to repeating transition matrix entries and 

 (commutative) product operation. Thus, to select one of these 

aths as the most probable path, we first find subset of paths with 

ost probable end nodes for each operator and compare these 

aths with the approximate non-repeating paths from each oper- 

tor’s STMs. The approximate non-repeating paths are generated 

rom each STM by assuming that the last instance of an anatomi- 

al task is the actual instance, i.e. , when the task was successfully 

ompleted. Hence, the most probable path for each operator is se- 

ected as the one with the maximum overlap with the approximate 

TM-derived non-repeating paths. 

The Viterbi algorithm ( Forney, 1973 ) is not applicable for find- 

ng the most probable non-repeating paths because it may lead 

o task repetitions from the OGM, which was not desired in our 

ase. Other algorithms for shortest path problem were not applied 

s we want to traverse all the nodes of the graph exactly once, 

hereas these algorithms may not consider all the graph nodes. 

urthermore, if cyclic workflow of events is allowed (with repeti- 

ion of events), the computation of most-probable paths will incur 

 higher computational complexity. 

By way of illustration, an OGM for operator S 1 is shown in 

ig. 18 . The relative durations (task-occurrence probability) of each 

natomical task for the operator are proportional to the node size 

f the OGM. The most probable non-repeating path is highlighted 

n red. 

.1.2. Intra-operator variability 

Intra-operator variability could not be computed from the OGM 

s each graph G k represents all the STMs for a single operator k . 

ence, to find the workflow variability within the scans for a given 

perator, we go back to their STMs and measure the standard devi- 

tions in terms of task type, order, and time-distributions. For task 
15 
ype, the standard deviation in the number of unique tasks are re- 

orted. For task order, standard deviation of the Shannon entropy 

s computed. For task time distributions, the deviation from the 

ean relative durations of anatomical tasks are found. The three 

uantities are reported in the range [0,1] as a normalised devia- 

ion from the respective means. 

.1.3. Inter-operator variability 

Given the OGM representation, we can evaluate the inter- 

perator variability via graph matching of the operator graphs as 

ollows. A graph-mismatch distance d tot ∈ R is obtained for opera- 

or x and y as the sum of the three distances d 1 , d 2 and d 3 given

y, 

 1 (x, y ) = 

1 

N 

N ∑ 

i =1 

| P x (i ) − P y (i ) | (8) 

 2 (x, y ) = 

1 

N 

N ∑ 

i =1 

| O x (i ) − O y (i ) | (9) 

 3 (x, y ) = 

1 

3 

{ 

1 

N xy 

∑ 

i, j∈ E xy 

| T x (i, j) − T y (i, j) | 

+ 

1 

N ox 

∑ 

i, j∈ E ox 

T x (i, j) + 

1 

N oy 

∑ 

i, j∈ E oy 

T y (i, j) 
} 

(10) 

here N xy is the number of common edges E xy of the OGMs of x 

ith edges E x and y with edges E y , N ox and N oy are the number of

dges E ox and E oy only found in the OGM of x and y respectively.

he last two terms in d 3 help in penalising the distance with ex- 

ra edges in either of the OGMs. The distance d tot is a measure 

f the dissimilarity between two given OGMs. The components d 1 
nd d 2 are related to task type and time-distribution, whereas d 3 
s an edge-matching distance representing task transitions for task 

rder. The distance can be calculated for each operator pair, nor- 

alised and assembled in a symmetric variability matrix V where 

ach entry v (i, j) represents the normalised distance in the range 

0,1] for each pair of operators i, j. Average inter-group and intra- 

roup variabilities are computed from V . 

.2. Results and discussion 

.2.1. Most probable non-repeating paths 

The most probable non-repeating paths of all operators are de- 

icted in Fig. 19 , where the size of each node is directly propor-

ional to the task-occurrence probability of each anatomical task. 
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Fig. 19. Examples of most probable non-repeating paths of each operator. (For in- 

terpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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Table 4 

Intra-operator variability for task type, order and 

distribution. 

Operator Type Order Time distribution 

S 1 0.11 0.08 0.05 

S 2 0.21 0.17 0.06 

S 3 0.17 0.12 0.05 

S 4 0.14 0.09 0.05 

S 5 0.16 0.14 0.05 

Table 5 

Variability matrix V showing inter-operator variability. 

Operator S 1 S 2 S 3 S 4 S 5 

S 1 0.00 0.75 0.87 0.96 0.68 

S 2 0.75 0.00 0.87 0.82 0.65 

S 3 0.87 0.87 0.00 1.00 0.62 

S 4 0.96 0.82 1.00 0.00 0.71 

S 5 0.68 0.65 0.62 0.71 0.00 
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We find that majority of the operators prefer to view the brain, 

he heart or the spine as the first anatomical task in the second- 

rimester fetal US scan. As expected, the operators are initially in- 

erested to examine these three organs first, as these are most im- 

ortant to diagnose any abnormalities in fetal growth. These three 

natomical tasks also have the highest task occurrence probabil- 

ties for the same reason. Maternal anatomy, face-side, and 3 D 

ode images are examined towards the latter part of the scan 

y most operators, as the operators wish to see these anatomi- 

al structures at a lower priority ( i.e. at a later time during the 

can). Perhaps, as expected, the anatomical structures closer to 

ach other are scanned in succession. For example, nose-lips and 

ead ( S 1 , S 2 , S 3 and S 5 ), kidney and heart ( S 2 and S 4 ), nose-lips and

pine ( S 2 , S 3 and S 5 ), 3 D mode and face side ( S 5 ), abdomen and

idney ( S 1 ), and kidney and spine ( S 4 ). This is an efficient strategy,

nd specifically observed by operators in the XP group, which sug- 

ests that the experts are more experienced and skilled to follow a 

ystematic and opportunistic scanning approach forming a mental 

hecklist, which may not be the case of NQ operators. 

It should be noted that the number of available scans for each 

perator is an important consideration in finding the accurate 

GM and most probable non-repeating paths, as a higher num- 

er of scans per operator will give a path more closely resembling 

heir actual clinical workflows. Moreover, the resulting task orders 

ay depend on fetal position and movement, which reinstates that 

 high number of scans for each operator will lead to more accu- 

ate depictions of the operator clinical workflows. 

Furthermore, this representation suggests that the operator 

linical workflow depends on not only the skill and experience 

f operators, but also their personal preferences and priorities of 

natomical tasks during the scan. For instance, operator S 1 has 

igher durations of 3Dm compared to other operators, and S 3 has 

 higher interest in viewing Ab , hence spends relatively more time 

n that anatomy. Hence, most probable non-repeating paths de- 

ived from the high-level OGMs can be considered as operator- 

pecific scanning signatures of their clinical workflow. 

.2.2. Intra-operator variability 

Table 4 shows the results of intra-operator variability for each 

perator. It can be observed that, in general, intra-operator vari- 

bilities are low, with an average of 11%. Task types lead to the 

ighest variability among the scans of the same operator, followed 

y order and time-distribution. Among the operators, S 2 shows 

he highest intra-operator variability which may be linked to their 

ess refined skills compared to the XP operators. Interestingly, even 

hough S shows a comparatively lower variability in task type 
1 

16 
nd order, the average intra-operator variability of the NQ group 

s higher than the XP group. 

.2.3. Inter-operator variability 

The results of graph matching of the OGM for each operator are 

hown as the variability matrix V in Table 5 . 

Inter-operator variabilities are lower between the pair of NQ 

perators, which suggests that the clinical workflow characteristics 

re more similar among the newly-qualified operators, with aver- 

ge intra-group variability as 0.75. The next higher value is the av- 

rage intra-group variability of the XP group, i.e. 0.78, which sug- 

ests that the experienced operators have more distinct workflow 

haracteristics (type, order and time distributions) and scanning 

ignatures among themselves than the NQ operators. We observe 

hat, the average inter-group variability between the two groups 

s found to be 0.81, as expected, relatively higher than the intra- 

roup variabilities. The highest variability is found between opera- 

ors S 3 and S 4 (XP operators), and lowest between S 3 and S 5 (also 

P operators). 

. Discussion and conclusion 

This study describes automatic clinical workflow analysis in 

ull-length routine second-trimester fetal ultrasound scan videos, 

ncluding semi-automatic generation of labelled datasets, auto- 

atic temporal semantic annotation by training deep spatio- 

emporal networks in a video description pipeline, and subsequent 

nowledge representation for operator clinical workflow using sim- 

ler models, i.e. low-level subject-specific timeline models (STM), 

id-level summary of timeline features (STF), and high-level oper- 

tor graph models (OGM). At each step, the proposed scheme re- 

uces the required dimensionality and computational load for the 

arge-scale raw US scan video dataset. The video description stage 

nvolving temporal semantic segmentation of US scan videos us- 

ng spatio-temporal deep network architectures, achieved a cross- 

alidation accuracy of 91.7%, correlation of 0.98 (p < 0.05) with 

he manually labelled data, and a retrospective validation accuracy 

f 76.4% on unseen data. The low-level STM provides a shorthand 

epresentation of the operator clinical workflow for each US scan, 

nd makes observations on large-scale datasets easier and insight- 

ul. The mid-level STFs, consisting of hand-crafted features, give a 

ood baseline with classical machine learning with a best cross- 

alidation accuracy of 86.1%, which is improved by deep learning 

ith an accuracy of 98.5% and generalizability of 76.9% on unseen 

perators. The high-level OGMs further simplify the clinical work- 

ow for each operator, and analysis of the most probable paths and 

perator variability shows interesting findings. 



H. Sharma, L. Drukker, P. Chatelain et al. Medical Image Analysis 69 (2021) 101973 

e

e

c

v

m

i

n

m

s

fl

i

i

t

l

t

t

e

p

w

d

r

s

p

t

c

o

c

c

t

o

I

p

2

t

c

m

p

f

a

t

o

t

o

b

i

e

t

h

t

D

c

i

C

I

I

c

t

s

b

i

A

P

p

s

R

S

f

R

A

A  

B

B

B

B

C  

C

C

C

C

C

C  

C  

D  

D  

D  
This study helps us to look at the scan recordings using differ- 

nt lenses, not only at the video level, but three levels of knowl- 

dge representation through which we have demonstrated appli- 

ations such as operator skill characterisation and inter-operator 

ariability assessment. The proposed clinical workflow analysis 

ethods provide a proof-of-concept for larger sonography stud- 

es, that may in turn lead to new methodology and tools to assess 

ewly-qualified operators, compare different scanning protocols in 

ore formal ways, improve human-machine interfaces, identify 

can room limitations and develop efficient context-aware work- 

ow management systems in scan rooms. Despite the complex- 

ty to train skilled operators for routine scanning, and the grow- 

ng popularity of ultrasonography in obstetrics, ultrasound opera- 

or skill assessment is currently subjective and inconsistent, with 

imited computational research addressing automated and objec- 

ive methods. A long-term goal of our operator skill characterisa- 

ion study is to develop objective computer-aided technical skill 

valuation and assessment methods in ultrasonography that can 

rovide actionable feedback to the operators, such as suggesting 

ays to improve scanning, helping with training resources, and re- 

ucing their mental and physical workload in real-time in the scan 

oom. 

Limitations of our study and possible future directions of re- 

earch include the following. Firstly, the results show that the pro- 

osed methods enable operator workflow analysis in routine ul- 

rasound imaging, but these need to be tested on a larger dataset 

ontaining more operators in each skill group and more scans per 

perator to be able to draw stronger conclusions. Moreover, in the 

urrent paper, we have designed our methods to model the entire 

linical workflow for all the anatomical tasks in a full-length rou- 

ine fetal US scan, to determine the effect of their arbitrary types, 

rder, and duration, for analysing operator skills and variability. 

n another work, we have studied how motion data recorded via 

robe tracking can be useful for skill assessment ( Wang et al., 

020 ), where we consider specific ultrasonographic tasks, namely, 

he Heart and the Brain. The results show that operator skill levels 

an be differentiated for these individual tasks. A natural multi- 

odal extension to our analysis would be to combine video and 

robe data, both for the specific ultrasonographic tasks and the 

ull-length US scans. Moreover, the current definitions of the NQ 

nd XP operator groups with a threshold at 2 years could be fur- 

her refined. The choice of 2 years as the threshold follows the rec- 

mmendation from fetal ultrasound specialists. It was also chosen 

o not amplify the imbalance in our datasets which might result if 

ther thresholds are selected. An interesting future direction would 

e to vary this threshold, if more data was available; this would 

nvolve a higher number of skill groups to define operator experi- 

nce. Finally, it would be interesting to study the factors affecting 

he operators’ perceived scanning difficulty based on our findings 

ere, for instance, mental workload of different tasks, fetal posi- 

ion, etc. 
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