
Abstract:  

Artificial intelligence (AI) has given the electrocardiogram (ECG) and clinicians reading them 

super-human diagnostic abilities. Trained without hard-coded rules by finding subclinical 

patterns in huge datasets, AI transforms the ECG, a ubiquitous, non-invasive cardiac test that is 

integrated into practice workflows, into a screening tool and predictor of cardiac and non-cardiac 

diseases, often in asymptomatic individuals. This review describes the mathematical background 

behind supervised AI algorithms, and discusses selected AI-ECG cardiac screening algorithms 

including those for the detection of left ventricular dysfunction, episodic atrial fibrillation from a 

tracing recorded during normal sinus rhythm, and other structural and valvular diseases. The 

ability to learn from big data sets, without the need to understand the biological mechanism, has 

created opportunities for detecting non-cardiac diseases as COVID-19 and challenges with 

regards to data privacy.  Like all medical tests the AI ECG must be carefully vetted and validated 

in real world clinical environments.  Finally, with mobile form factors that allow acquisition of 

medical-grade ECGs from smartphones and wearables, the use of AI may enable massive 

scalability to democratize healthcare.  
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Disclosure:  ZIA and PAF are coinventors of several of the AI algorithms described (including 

screen for low EF, hypertrophic cardiomyopathy, QT tool, atrial fibrillation detection during 

NSR).  These have been licensed to Anumana, AliveCor, and Eko.  Mayo Clinic and ZIA and PAF 

may receive benefit from their commercialization. 

 

One Sentence Summary: The artificial intelligence augmented electrocardiogram is poised to 

transform how cardiovascular diseases are detected -- this article reviews the state of the art 

and practice.  

 

Keywords: Artificial intelligence; Machine learning; Electrocardiograms; Digital health 
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Abstract:  

Artificial intelligence (AI) has given the electrocardiogram (ECG) and clinicians reading them 

super-human diagnostic abilities. Trained without hard-coded rules by finding often subclinical 

patterns in huge datasets, AI transforms the ECG, a ubiquitous, non-invasive cardiac test that is 

integrated into practice workflows, into a screening tool and predictor of cardiac and non-

cardiac diseases, often in asymptomatic individuals. This review describes the mathematical 

background behind supervised AI algorithms, and discusses selected AI-ECG cardiac screening 

algorithms including those for the detection of left ventricular dysfunction, episodic atrial 

fibrillation from a tracing recorded during normal sinus rhythm, and other structural and 

valvular diseases. The ability to learn from big data sets, without the need to understand the 

biological mechanism, has created opportunities for detecting non-cardiac diseases as COVID-

19 and introduced challenges with regards to data privacy.  Like all medical tests the AI ECG 

must be carefully vetted and validated in real world clinical environments.  Finally, with mobile 

form factors that allow acquisition of medical-grade ECGs from smartphones and wearables, 

the use of AI may enable massive scalability to democratize healthcare.  
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Despite the fact that the electrocardiogram has been in use for over 100 years and is a central tool in 

clinical medicine, we are only now beginning to unleash its full potential with the application of artificial 

intelligence.  The electrocardiogram is the cumulative recording at a distance (the body surface) of the 

action potentials of millions of individual cardiomyocytes (Figure 1).  Traditionally, clinicians have been 

trained to identify specific features such as ST-segment elevation for acute myocardial infarction, T-

wave changes to suggest potassium abnormalities, and other gross deviations to identify specific clinical 

entities.  By their very nature, the magnitude of the changes must be substantial in order to significantly 

alter a named ECG feature to result in a clinical diagnosis. With the application of convolutional neural 

networks to an otherwise standard ECG, multiple nonlinear potentially interrelated variations can be 

recognized in an electrocardiogram.  Thus, neural networks have been used to: identify a person’s sex 

with startling precision (AUC 0.97); recognize the presence of left ventricular dysfunction; uncover the 

presence of silent arrhythmia not present at the time of the recording; as well as identify the presence 

of noncardiac conditions such as cirrhosis. 1-3   Many biological phenomena, each of which can leave its 

imprint on cardiomyocytes electrical function in a unique manner, lead to multiple, subtle, nonlinear, 

subclinical ECG changes.  Although electrocardiograms are filtered between 0.05 and 100 Hertz to 

augment capture of cardiac signals, they likely also are influenced directly and indirectly by nerve 

activity, myopotentials, as well as anatomic considerations such as cardiac rotation, size, and 

surrounding body habitus.  With large datasets to train a network as to the multiple and varied 

influences of each of these conditions, powerful diagnostic tools can be developed.  In this review, we 

will offer an overview of machine learning, show specific examples of conditions not previously 

diagnosed with an ECG that are now recognized, and provide an update of the application and practice 

and future directions of the artificial intelligence processed ECG (AI-ECG).   

Broadly speaking, artificial intelligence can be applied in two ways to the ECG.4 In one, currently 

performed human skills, such as determining arrhythmias or acute infarction, are performed in an 
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automated manner making those skills massively scalable.  The second utilization is to extract 

information from an ECG beyond which a human can typically perform.  In this review we will focus on 

the latter.  

 

Machine learning introduction 

The term machine learning was coined more than 70 years ago to describe the ability of 

man-made machines to learn how to perform complex tasks, and to improve task performance 

based on additional experience.  Practically, it refers to replacing algorithms that define the 

relationship between inputs and outputs using man-made rules with statistical tools that 

identify (learn) the most probable relationship between input and output based on repeated 

exposure to exemplar data elements. As with other revolutionary ideas, when first introduced, 

it was ahead of its time, and the data and computing power required to enable this revolution 

did not exist.  Today, with exponentially growing digital datasets and a significant increase in 

the computational power available to train networks, machine learning (ML), sometimes 

referred to as artificial intelligence (AI), performs highly complex tasks. In supervised machine 

learning, the task is defined as an optimization problem, which seeks to find the optimal 

solution using labelled data. By defining a “loss function” or a matrix of how well the machine 

performs a task and minimizing the error and maximizing the success matrix, a complex task is 

transformed into a mathematical problem.  

Most ML models are parametric and define a function between an input space and an 

output space.  In neural networks, designed to mimic human visual cortex, each “neuron” is a 

simple mathematical equation with parameters that are adjusting during network training.  
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When the neurons are connected in many layers, it is referred to as a deep network.  The 

function applies parameters to the input in linear and non-linear ways to derive an estimated 

output (Figure 2). During the learning phase, both the inputs and the outputs are shown to the 

function, and the parameters (sometimes called “weights”) are adjusted in an iterative manner, 

to minimize the difference between the estimated output and the known outputs.  This 

learning or training phase often requires large data sets and robust computing power.  The 

most common way to adjust these weights is by applying a gradient based optimization 

method, which adjusts each parameter weight based on its effect on the error, with the 

network weights iteratively adjusted until an error minimum is found.   

Once the learning phase is complete, the parameters are set, and the function becomes 

a simple deterministic algorithm that can be applied to any unseen input. The computing power 

required to deploy a trained network is modest and can often be performed from a 

smartphone.  A neural network is composed of different nodes (representing neurons) 

connected to each other in a directed way, where each node calculates a function of its input 

based on an embedded changeable parameter (weight) followed by a non-linear function, and 

the inputs flow from one set of neurons (called a layer) to the next. Each layer calculates an 

intermediate function of the inputs (features), and the final layer is responsible to calculate the 

final output. In some architectures, the neurons are connected to each other to enable 

determination of temporal patterns (recurrent neural networks), used when the input is a time 

series; others, such as convolutional neural networks, originally developed for computer vision 

tasks, have also been used for natural language processing, video analysis and time series.  
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As these models are mathematical functions, the inputs are comprised of real numbers 

created by sampling physical signals.  For example, an ECG is converted to a timeseries sampled 

at a consistent sampling frequency in which each sample represents the signal amplitude for a 

given time point.  For a 10 second 12 lead ECG sampled at 500 Hz, the digital representation of 

the input is a matrix with 5000 samples (500Hz * 10 seconds) per lead.  With 12 leads the final 

input will be a set of 60,000 numbers (5000*12).  

For binary models in which the output is “yes/no,” such as the presence of silent AF 

determined from an ECG acquired in sinus rhythm, the input numbers (i.e., the digital ECG) are 

used by the network to calculate the probability of silent AF. The output will be a single 

number, ranging from 0 (no silent AF) to 1 (silent AF present). To dichotomize the output, a 

threshold value determines whether the model output is positive or negative. By adjusting the 

threshold, the test can be made more sensitive, with more samples considered positive and 

fewer missed events, but at the cost of a higher number of false positives; or alternatively, 

more specific, with fewer false positives but more missed events. Since the training of 

supervised machine learning models requires only labelled data (for example ECGs and 

associated ejection fraction values), and no explicit rules, machines learn to solve tasks that 

humans don’t know how to solve, giving the machines (and humans who use them) what 

appear to be super-human abilities. 

 

AI Model Explainability, Robustness and Uncertainty  

Explainability.  Neural networks are often described as "black boxes" since the signal 

features a network selects to generate an output and the network’s intermediate layers 
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typically are not comprehensible to humans. Explainability refers to uncovering the underlying 

rules that a model finds during training,  Explainability may help humans understand what gives 

a model its super-human abilities, enhance user trust of AI tools, uncover novel 

pathophysiologic mechanisms by identifying relationships between input signals and outputs, 

and reveal network vulnerabilities.  One method of understanding a model is by looking at 

specific examples and highlighting the parts of the input that contribute most to the final 

output. In the Grad-CAM method,5 for example, network gradients are used to produce a 

coarse localization of drivers of the output.  While the method was developed for images, it 

works with ECGs as well. In published valvular disease detection algorithms, for example, 6, 7  

the authors use saliency-based methods to highlight the portions of the ECG that contributed to 

the model’s output in selected samples. While this is a first step toward developing explainable 

AI, current methods explain the results for a particular example and do not reveal the general 

rules used by the models.  This remains an open research question.  

 

Uncertainty. Unless a data quality check is performed before using a model, the model 

will generate a result for any given input, including inputs outside of the distribution of data 

used to train the model.  If a model is fed data outside the range of its training domain, 

whether due to deficits in the training set or shifts in the data over time, the model may 

generate results that don’t accurately classify the input.  Other factors may also lead to 

uncertainty.  Methods to measure uncertainty have been described.8-10 To minimize this error, 

models are evaluated for their consistent performance with inputs that are anticipated within 

the input distribution that should not affect the outputs.  
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Robustness.  This refers to the ability of a model to accurately classify inputs that are 

synthetically modified in and adversarial way in order to favor misclassification. For example, in 

Xintian Han et al,11 the authors show that by using almost-invisible perturbations to an ECG, a 

model with very high accuracy for the detection of AF can be fooled into thinking an NSR 

recording is actually AF with high certainty, and vice-versa, even though to the human reviewer 

the ECGs looks unchanged.   

 

Metrics for assessing neural networks 

 
Most neural networks generate an output that is a continuous probability.  To create 

binary outputs a threshold value is selected, with probabilities above the threshold considered 

positive. The selection of the threshold impacts model sensitivity and specificity, with an 

increase in one at the cost of the other. The receiver operating characteristic (ROC) curve 

represents all the sensitivity and specificity pairs for a model, and the area under the curve 

(AUC of the ROC), measures how well the model separates two classes, and is often used too 

represent model function. For example, a model with random outputs will have complete 

overlap of scores for positive and negative input samples, yielding an AUC of 0.5, and a perfect 

model that gives all positive inputs scores above the threshold, and all negative samples scores 

below that threshold (hence perfectly separating the classes) will have an AUC of 1 (Figure 3).  

Once a threshold is selected a confusion matrix can be calculated, indicating the true and false 

positive and negative values, allowing real-world calculation of the sensitivity (also called 

recall), specificity, accuracy, weighted accuracy (important when the classes are imbalanced, 
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due to low prevalence of a disease, for example), positive predictive value (PPV or precision), 

negative predictive value (NPV) and more specialized scores as the F1 accuracy. 

In cases with imbalanced datasets, some measurements will appear optimistic.  For 

example, in detecting a disease with a 1% prevalence, a model that always generates a score of 

0 will be right 99% of the times, yielding an accuracy of 99%, but a sensitivity of 0%.  In less 

extreme cases, an imbalanced dataset might still appear optimistic with some measurements. 12 

With the AUC of the ROC for example, one of the axes of the curve (the FPR) is calculated as 

FP/(FP+TP) and is less sensitive to changes in false positives when the negative class grows 

relative to the positive samples. While with unbalanced data sets it may be an optimistic 

measurement, and a different metric might be more accurate (the area under the recall-

precision curve, that takes prevalence into account as part of the precision, for example), the 

AUC of the ROC is often used to compare models, particularly with regards to medical tests.  In 

this review article, we present the statistics reported in the original work 

(predominantly AUC values). 

 

Using Machine learning and deep learning to accomplish tasks a human cannot 

Left ventricular systolic dysfunction (LVSD), atrial fibrillation (AF), and hypertrophic 

cardiomyopathy (HCM) share three characteristics:  they are frequently under-diagnosed, they 

are associated with significant morbidity, and once detected, effective, evidence-based 

therapies are available.2, 3, 13, 14 Routine screening strategies are not currently recommended 

due to the absence of effective screening tools.15-17 The ECG is a rapid, cost-effective, point-of-

care test that requires no blood and no reagents, that is massively scalable with smartphone 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11 

 

technology to medical and non-medical environments. The AI ECG provides information beyond 

what is visible to the eyes of an experienced clinician with manual ECG interpretation today.  

Specific use cases are detailed below. Many of AI models have been developed in parallel by 

different research groups.  In Table 1 we summarize these and include key model performance 

and characteristic information.  

 

AI to screen for Left Ventricular Systolic Dysfunction 

Several research groups have used ECG-based deep learning networks to detect LVSD.2, 

4, 18-21 We engineered a neural network using 50,000 ECG-echocardiogram pairs for training that 

was able to discriminate low EF (< 35%) from EF > 35% with a high accuracy (AUC 0.93) in a 

testing population not previously seen by the network (Figure 2).2 In the emergency room 

setting, LVSD is identified with similar accuracy (85.9%; AUC 0.89) in patients with symptoms of 

an acute HF exacerbation (i.e. dyspnea on exertion, shortness of breath).18 At the time of this 

writing, the algorithm has received US Food and Drug Administration (FDA) breakthrough 

technology designation and, during the pandemic, emergency use authorization. The algorithm 

and algorithms analogous to ours have been adapted for use with a single lead, and our own 

algorithm has been embedded in an electrode equipped digital stethoscope that identifies 

ventricular dysfunction in 15 seconds (Figure 4).21-23  These algorithms have been tested in 

diverse populations and found to function well across race and ethnicity.15-16,24 

AI algorithms may experience dataset shift errors when applied to previously untested 

environments. These errors occur when the new populations differ from those used to train the 

network in a substantive manner, so that the network has not been exposed to key data 
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characteristics required for accurate output. AI-ECG networks for the detection of LVSD, 

developed by our team and Cho et al., have demonstrated performance stability and 

robustness with regards to sex, age, and BMI in internal and external validation sets,21, 25, 26 

supporting wide applicability.  Prospective application of this AI ECG algorithm in various clinical 

settings is essential to establish the accuracy of LVSD diagnosis in a real-world setting and the 

impact on clinical decision making, and is discussed further below .19 

 

AI ECG to Detect Silent Atrial Fibrillation  

Atrial fibrillation (AF) is often paroxysmal, asymptomatic, and elusive. It is associated 

with stroke, heart failure, and mortality.14, 27 In patients with embolic stroke of uncertain source 

(ESUS), the choice of anti-platelet vs. anticoagulant therapy depends on the absence or present 

of AF.  Holter monitors and 14 to 30 day mobile cardiac outpatient telemetry have a low yield, 

leading to the use of implanted loops recorders, which find AF less in less than 15% of patients 

at one year.27, 28  Clinical risk scores and EMR based machine learning tools have had limited 

power to predict AF.3, 29  

  Since neural networks can detect multiple, subtle, non-linear related patterns in an ECG, 

we hypothesized that they may be able to detect the presence of intermittent AF from a normal 

sinus rhythm (NSR) ECG recorded before or after an AF episode, as patients with AF may have 

subclinical ECG changes associated with fibrosis or transient physiologic changes. To test this 

hypothesis we utilized approximately one million ECGs from patients with no AF (controls) and 

patients with episodic AF (cases).  The network was never shown ECGs with AF, but only NSR 

ECGs from patients with episodic AF and from controls.  After training, the AI ECG network 
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accurately detected paroxysmal AF from an ECG recorded during normal sinus rhythm 

(accuracy of 79.4%; AUC 0.87).3  When an ECG from the patients’ “window of interest” (31 day 

period prior to first ECG showing AF) was evaluated, the accuracy of the AI ECG algorithm 

improved (83.3%; AUC 0.9).3  As noted in a letter to the editor, there were differences in the AF 

vs. no AF populations.30  This algorithm was subsequently tested as a predictor of AF compared 

to the CHARGE-AF (cohorts for aging and research in genomic epidemiology-AF) score.31  The 

incidence of AF predicted by each model--AI EGC AF probability and CARGE-AF score-- was 

assessed in a quartile analysis over time. The cumulative incidence of AF was greatest in the 

highest quartile for each method at 10 years (AI ECG AF 36.1% when AF probability >12.4%; 

CHARGE AF 31.4% when score >14.7).31 Both methods revealed a c-statistic of 0.69 

independently (c-statistic 0.72 when combined) indicating that the AI ECG model can provide a 

simple means for assessing AF risk without clinical data abstraction (i.e. CHARGE-AF).31 

Importantly, individuals with AI-ECG AF model output of >0.5 at baseline had cumulative 

incidence of AF 21.5% at 2 years and 52.2% at 10 years, identifying a high risk subset. 

 This work has subsequently been independently confirmed by others.  Raghunath et 

al.32 used 1.6 M 12 lead ECGs to train a network that could predict new-onset AF in patients 

with no AF history (AUC ROC 0.85, AUC precision-recall curve 0.22). Additionally, multiple 

groups have used deep learning algorithms to detect atrial fibrillation present during recording 

(non-“silent” AF) using lead, single lead, and photoplethysmographic devices.33-35  
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AI to screen for Hypertrophic Cardiomyopathy  

Hypertrophic cardiomyopathy (HCM) can result in symptoms or sudden cardiac death in 

young athletes. Various ECG criteria have been proposed for diagnosis, but none have shown 

consistent diagnostic performance.36-38 Similarly, previous attempts to detect HCM with AI 

application have focused on high-risk patient characteristics,39 specific ECG criteria, or beat-to-

beat morphologic ECG features.40  Noteworthy, up to 10% of HCM patients may exhibit a 

“normal” ECG rendering diagnostic criteria and algorithms useless.36-38   

The AI ECG is a powerful tool for the detection of HCM, with high accuracy found from 

multiple groups.40-42 The Mayo Clinic algorithm maintained its robust accuracy when the testing 

group was narrowed to patients with left ventricular hypertrophy ECG criteria (AUC 0.95) and 

“normal ECG” by manual interpretation (AUC 0.95), as found by others.40, 41 This implies that 

the AI ECG algorithm does not the typical ECG characteristics associated with HCM for 

diagnosis.13, 43 Importantly, the AI ECG effectively differentiates “normal ECG” findings, from 

LVH and benign LVH-like ECG features related to athletic training.  

   Lastly, we identified the potential for cost-effective HCM screening as the negative 

predictive value (NPV) of the model remained high at all probability thresholds (NPV 98-99%).13 

Appropriate deployment of this test could provide reassurance to patients, prevent 

unnecessary, expensive diagnostic workup associated with manual interpretation, and the 

clinical conundrum of the athletic heart vs HCM, resulting in improved utilization of healthcare 

resources.   
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AI for arrhythmia syndromes  

As with other cardiac genetic disorders, arrhythmia syndromes such as long QT 

syndrome (LQTS) and Brugada syndrome exhibit incomplete penetrance: disease expression 

and severity in individuals even from the same family and carrying the same mutation can be 

very different. As diagnosis is based primarily upon the ECG phenotype, the potential for 

human misinterpretation and mismeasurement is significant. 

AI therefore offers the opportunity for more reliable measurement of diagnostic 

markers and then the ability to recognize the diagnosis when expression is incomplete or even 

absent. This may result from the ability of neural networks to classify subtle morphologic ECG 

changes.  The best exemplar is measurement of the QT interval and diagnosis of the long QT 

syndrome. A deep neural network (DNN) was trained on ECGs from 250,767 patients, tested on 

a further 107,920 and then validated on a further 179,513, using the institutional ECG 

repository with the cardiologist over-read QTc as the gold standard. There was strong 

agreement in the test set between the gold standard and the DNN predicted value. 

Furthermore, when tested against a prospective genetic heart disease clinic population 

including LQTS patients, the DNN performed just as robustly. The DNN relied upon a 2 lead ECG 

input and was therefore also tested against an input from a mobile ECG device with excellent 

concordance. For a cut-off of QTc>500ms, a strong diagnostic and risk marker for the likelihood 

of LQTS, the area under the curve (AUC) was 0.97, with sensitivity and specificity of 80.0%, and 

94.4%, respectively, indicating strong utility as a screening method. 

            Even when the QTc is normal, concealed LQTS has been detectable by computerized 

analysis of T wave morphology. A DNN has been applied to the whole ECG from all patients 
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from the genetic heart disease clinic (N=2059) with a diagnosis of LQTS and those who were 

seen and then discharged without a diagnosis. The QTc interval alone identified patients with 

LQTS and a QTc<450ms compared to patients without LQTS with an AUC of 0.741. The AI 

algorithm increased the AUC to 0.863 and also distinguished genetic subtypes of LQTS, offering 

potential as a tool to guide evaluation in the clinic. 

            Other opportunities include the diagnosis of concealed Brugada syndrome which is made 

using sodium channel blocker challenge. AI could potentially avoid the process of drug 

challenge. Furthermore, risk stratification is heavily dependent on and limited by ECG markers 

that are only visually interpretable. AI algorithms may identify markers from the ECG that 

would otherwise go undetected. 

 

AI valvular heart disease 

Early diagnosis of valvular diseases such as aortic stenosis (AS) and mitral regurgitation 

(MR) permits prevention of irreversible damage.  A growing body of data supports early 

treatment, including in asymptomatic patients.44 Current screening methods rely on expert 

examination and auscultation that prompt echocardiography. With the adoption of 

echocardiography in practice, auscultation is in decline,45 resulting in a need for improved 

screening. The AI ECG detects moderate-severe AS, as reported by two independent groups, 

with AUC of 0.87-0.9.6, 7 Using echocardiography as the ground truth, Shelly et al6 found that 

the AI ECG also predicted future development of severe AS, prior to clinical manifestation. 

Kown et al.46 have demonstrated a similar yield in screening for moderate to severe MR (AUC: 

0.88). These algorithms, developed independently using two geographically and racially diverse 
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populations, highlight potential for the AI ECG to detect valvular diseases at earlier stages, even 

when tested using a single ECG lead and in asymptomatic patients. The use of mobile form 

factors to acquire ECGs that can be augmented by artificial intelligence makes the test available 

at point of care and massively scalable; in combination with percutaneous and novel 

treatments for valvular lesions, a significant potential exists to improve patient outcomes in a 

scalable and cost-efficient way. 

 

Validation in Practice  

Artificial intelligence in medicine has been predominantly developed and tested in silico, using 

large aggregates of medical records containing analyzable medical information.  However, in order for AI 

to have a meaningful impact on human health, it must be applied and integrated in medical workflows, 

and used to treat patients.  Differences between the training population and applied population, lack of 

use of AI output by clinicians who may not trust, understand or easily access the information impact real 

world effectiveness of AI.  Several studies have explicitly tested this.  The EAGLE study47 and Yao et. al19 

was a pragmatic clustered trial study that randomized 120 primary care teams including 358 clinicians to 

an intervention group (access to AI screening results, 181 clinicians) or control (usual care, 177 

clinicians), across 48 clinics/hospitals.  A total of 22,641 adult patients who had an ECG performed for 

any indication between August 5, 2019, and March 31, 2020, without prior heart failure were included.  

The primary endpoint was a new diagnosis of an ejection fraction of less than or equal to 50% within 3 

months.  The proportion of patients with a positive result was similar between groups (6.0% versus 

6.0%).  Among patients with a positive screening result, a high percentage of intervention patients 

received echocardiograms (38.1% for control and 49.6% for intervention, P<0.001).  The AI screening 

tool also increase the diagnosis of low EF from 1.6% in the control group to 2.1% in the intervention 
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group, odds ratio 1.32, P=0.007.  This study highlighted a number of important points.  The AI ECG 

integrated into primary care improved the diagnosis of low ejection fraction.  This study found that the 

environment in which the algorithm was used impacted its performance, with a higher yield whose ECGs 

were obtained in outpatient clinics compared to those who were hospitalized.  This may potentially 

reflect a higher probability of undiagnosed low ejection fraction patients in outpatient settings.  Another 

important finding is that the performance of the intervention was highly dependent on clinician 

adoption of the recommendation.  Among patients with a positive screening result, the intervention 

increased the percentage of patients receiving an echocardiogram from 38.1 to 49.6%, indicating that a 

large number of clinicians did not respond to the AI recommendation.  Many of the decisions to forgo 

echocardiography were based on logical clinical reasoning such as a patient undergoing palliative care in 

whom additional diagnostic testing was not needed.  Nonetheless, the study highlighted the impact of 

artificial intelligence both in its capability of identifying undiagnosed disease and the importance of the 

use of clinical judgement, as with any tool.  Importantly, this trial of over 20,000 patients was executed 

rapidly and inexpensively, highlighting the ability to rigorously and effectively assess AI tools developed 

in a pragmatic manner due to the tool’s software foundation, allowing for rapid design development and 

iteration.  

The BEAGLE study (ClinicalTrials.gov Identifier: NCT04208971) is applying a silent atrial 

fibrillation algorithm 3to identify patients previously seen at Mayo Clinic to determine whether 

undetected atrial fibrillation is present.  If found by the application of AI to stored ECGs (acquired at a 

previous visit to the clinic), a separate natural language processing artificial intelligence algorithm 

screens the patient record to determine anticoagulation eligibility based on the CHADS-VASc score and 

bleeding risk.  Those individuals found to have silent atrial fibrillation by the AI ECG screen who would 

benefit from anticoagulation are invited to enroll in a study via an electronic portal message.  Study 

participants are monitored for 30 days using a wearable monitor.  This trial is ongoing, and the results 
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are pending.  However, instances of individuals previously not known to have atrial fibrillation (despite 

many NSR ECGs) have been identified, clinical atrial fibrillation has been subsequently recorded with 

prospective ambulatory monitoring, and following consultation, anticoagulation initiated. This trial seeks 

to demonstrate how the AI-ECG may improve our systematic clinical capabilities, eliminate variability 

resulting from the random chance of capturing a time limited arrhythmia with standard ECG recordings 

and variations in clinical knowledge among practitioners to comprehensively find individuals who may 

benefit from evidence-base stroke prevention therapies. 

 

New Opportunities and Implications 

High school athlete and large-scale screening 

As alluded to above, the AI ECG has the potential to measure and detect ECG markers 

for cardiomyopathy and arrhythmia syndromes, automatically and more effectively than 

humans, including the use of mobile ECG devices. This may have specific utility in the screening 

of young people to exclude risk prior to participation in sports. Objections to employing the ECG 

in the screening algorithm include issues of cost, false positives and negatives and the lack of 

experts to read ECGs to minimize false positives.48 AI may be able to address these concerns 

but requires a large dataset with linkage to outcomes to test the hypothesis.   

 

Concept of AI Disease “previvors” 

The AI ECG identifies left ventricular systolic dysfunction in some individuals with 

normal imaging findings and no manifest disease.  However, those individuals with apparent 

false positive AI ECG findings have a five-fold increased risk of developing ventricular 

dysfunction over the ensuing 5 years. 2  This raises the possibilities that with sufficient data AI 
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tools may predict who will develop a disease, leading to the concept of disease “previvors” – 

individuals who are healthy but have a markedly elevated predisposition to develop a disease 

(Figure 5).  This concept was similarly evident with other AI ECG models.31  This raises issues of 

preventive interventions and their potential risks, patient anxiety, and insurance coverage, data 

privacy and larger societal issues that must be considered as increasingly powerful AI tools are 

developed. 

 

Data Sharing and Privacy 

Data availability is the driving force behind the AI revolution, as deep neural networks and 

other AI models require large and high-quality datasets.49, 50 In some cases, there isn’t a single 

institution with sufficient data to train an accurate AI model, and data from multiple institutions 

is required.  Sharing data among institutions introduces a risk of disclosing including protected 

health information. Sharing identified health information without proper approval is 

unethical,51 risks eroding trust in health care institutions, and violates national and 

international laws, including HIPAA in the US 52 and GDPR in Europe 53 To avoid infringing on 

patient privacy and to comply with regulations, data are often de-identified.  While this reduces 

the risk of reidentification, recent research showed that data that appear de-identified to 

humans often continues to embed patient information, which can be extracted and 

reconstituted. Packhauser et al. have shown that in an open dataset containing supposably de-

identified chest x-ray images, using an AI similarity model, images from the same patient   dluo 

de  oene i eo even when acquired ten years or more from one another (AUC of 0.994). While 

their method required additional medical data to re-identify patients, this is not always the 
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case.   Schwarz et al, were able to reconstruct subject faces using an anonymized MRI dataset 

from the three-dimensional data and to then match the faces to subject photographs, with an 

accuracy of 84%. While these methods require access to multiple data sources, they highlight 

data exposure risks.  Therefore, we envision that data sharing will be replaced with privacy 

preserving methods that reduce the probability of re-identification significantly in the very near 

future.  

The most common technique to allow training of AI models without sharing data is 

federated learning,54 an approach that trains a single model in a de-centralized fashion (Figure 

6).  Rather than sending data to a single location, each site with private data uses a local 

training node that only sees its own data.  The output from each local node – which is no longer 

interpretable – is then sent to a main node that aggregates the knowledge and consolidates it 

to a single model without having access to the original raw data. A second method that allows 

training of a model with privacy in mind is differential privacy (DP).55 Instead of using raw data 

directly, the data are shared with added noise, allowing the data contributor to blend in a sea 

of data contributors.  To prevent noise averaging out with the addition of data from a given 

individual, the amount of information contributed from one person is limited (privacy budget).  

A common use case for DP is smartphone keyboard suggestions.  By adding noise and limiting 

the number of contributions from a single user, smartphones can predict of the next word or 

emoji a user will type, but without disclosing all the user’s previous conversations.56  A third 

privacy preserving method mostly used for inference using a pre-trained model is secure multi 

party computation (SMPC).  In this method, only an encrypted portion of each data sample is 
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shared, each part of the data is analyzed separately, and the results are combined in a secured 

way, allowing data analysis without sending any complete samples.  

 

Conclusion 

 The electrocardiogram is rich in physiologic information that is unique, identifying, and 

encodes many health conditions.  Since ionic currents are frequently affected very early in 

many disease processes, the addition of AI to a standard ECG – a ubiquitous, inexpensive, test 

that requires no body fluids or reagents – transforms it into a powerful diagnostic screening 

tool that may also permit monitoring and assessment of response to therapy.  When coupled to 

smartphones, it enables a massively scalable point of care test.  Like any test, clinicians will 

need to understand when and how to use it in order best care for patients. 
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Figure Legends 

Central Illustration:  The application of artificial intelligence to the standard ECG enables it to 

diagnose conditions not previously identifiable by an ECG, or to do so with a greater 

performance than previously possible.  This includes identification of the current rhythm, 

identification of episodic atrial fibrillation from an ECG acquired during sinus rhythm, the 

presence of ventricular dysfunction (low ejection fraction), the presence of valvular heart 

disease, channelopathies (even when electrocardiographically “concealed,” and the presence of 

hypertrophic cardiomyopathy. 

 

Figure 1.    Microelectrodes in a single myocyte (top left) record an action potential (depicted 

middle panel).  Ionic currents and their propagation are sensitive to cardiac and non-cardiac 

conditions and structural changes.  When the aggregated action potentials are recorded at the 

body surface (top right), the insuring tracing is the electrocardiogram (bottom).   

 

Figure 2.  A convolutional neural network is trained by feeding it labelled data (in this case 

voltage time waveforms), and through repetition it identifies the patterns in the data that are 

associated with the data labels (in this example, heart pump strength, or ejection fraction [EF]).  

The network has two components, convolution layers that extract image components to create 

the AI features, and the fully connected layers that comprise the model, that leads to the 

network output.  While large data sets and robust computing are required to train networks, 

once trained, the computation requirements are substantially reduced, permitting smartphone 

application. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



33 

 

Figure 3.  The receiver operating characteristic curve and model performance.  Left panel:  A 

test with an area under the curve (AUC) of 0.529 (top) results in very poor separation of the 

classes (bottom left).  As the AUC increases (0.803 middle panel, top and 0.998 right panel, top) 

the separation of the classes and utility of the test improves (bottom panels).  This results in 

improved sensitivity and specificity.  See text for additional details.  

Figure 4.  Embedding of an AI ECG into a stethoscope.  Electrodes on the stethoscope acquire 

an ECG during normal auscultation, permitting the identification of ventricular dysfunction with 

15 seconds of skin contact time.  This workflow provides immediate notification to the 

healthcare provider via a smartphone connection. 

 

Figure 5.  AI disease previvor.  Left panel – an apparently normal ECG is identified by AI as being 

associated with a low ejection fraction.  A contemporaneous echocardiogram depicts normal 

ventricular function (EF 50%).  Middle panel – five years later, at age 33, additional ECGs 

changes are now visible to the human eye, and repeat echocardiography shows depressed 

ventricular function (EF 31%).  Right panel – risk of developing EF < 35% with a positive AI ECG 

(red line) vs with a negative AI ECG for low EF (blue line).  Further details in the text. 

 

Figure 6.  Privacy preserving methods.  Details in the text. 

 

Table Legend: 

Table 1. Summary of AI ECG algorithms and their performance and characteristics 
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LVSD/HF Attia et al. 1 

Mayo  
All Mayo Clinic 
Sites 

Retrospective 52870 7.8 Low EF 
confirmed by TTE 

12 Lead ECG (GE-Marquette) No formal 
analysis 

0.93 86.3 85.7 

LVSD/HF Attia et al. 2 
Mayo 

All Mayo Clinic 
Sites 

Prospective 3874 7.0 Low EF 
confirmed by TTE 
or HF prediction 
by NT-proBNP 

12 Lead ECG (GE-Marquette) No formal 
analysis 

0.918 82.5 86.8 

LVSD/HF Adedinsewo et al.3 

Mayo 
All Mayo Clinic 
Sites 

Retrospective  1606 10.2 Low EF 
confirmed by TTE 

12 Lead ECG (GE-Marquette) Age, Sex 0.89 73.8 87.3 

LVSD/HF Noseworthy et al.20 

Mayo 
All Mayo Clinic 
Sites 

Retrospective  52870 7.8 Low EF 
confirmed by TTE 

12 Lead ECG (GE-Marquette) Race  >0.93 in all 
groups tested 

- - 

LVSD/HF Attia et al.21 

Mayo 
Mayo Rochester Prospective 100 7 Low EF 

confirmed by TTE 
AI-enhanced ECG-enabled 
stethoscope (Eko); single lead 

No formal 
analysis  

0.906 - - 

LVSD/HF Attia et al.4 

Mayo/ Multi-
Institution 

Know Your Heart 
Sites  
(Russia)  

Retrospective  4277 0.6 Low EF 
confirmed by TTE 

12 Lead ECG (Cardiax; IMED 
Ltd., Hungary) 

Age, sex 0.82 26.9 97.4 

LVSD/HF Cho et al.5 

Sejong/Korea  
Mediplex/ 
Sejong (Korea) 

Retrospective IV-2908 
EV-4176 

6.8 Low EF 
confirmed by 
echo 

12 Lead ECG (Page Writer 
Cardiograph; Philips, 
Netherlands) 

Age, sex, 
obesity 

IV-0.913 
EV-0.961 

IV-90.5 
EV-91.5 

IV-75.6 
EV-91.1 

LVSD/HF Cho et al.5 

Sejong/Korea 
Mediplex/ 
Sejong (Korea) 

Retrospective  IV-2908 
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6.8 Low EF 
confirmed by 
echo 

Single lead (LI) from 12 Lead 
ECG (Page Writer Cardiograph; 
Philips, Netherlands) 

Performance 
of all single 
leads 

IV-0.874 
EV-0.929 

IV-93.2 
EV-92.1 

IV-63.2 
EV-82.1 

LVSD/HF Kwon et al.17  
Sejong/Korea 

Mediplex/ 
Sejong (Korea) 

Retrospective  IV-3378 
EV-5901 

IV-9.7 
EV-4.2 

Low EF 
confirmed by 
echo 

12 Lead ECG (Page Writer 
Cardiograph; Philips, 
Netherlands) 

No formal 
analysis 

IV-0.843 
EV-0.889 

IV-n/a 
EV-90 

IV-n/a 
EV-60.4 

HCM Ko et al.6  
Mayo 

All Mayo Clinic 
Sites 

Retrospective  13400 4.6 Sex/age matched 12 Lead ECG (GE-Marquette) Age, sex, ECG 
finding 

0.96 87 90 

HCM Rhaman et al.18 

Hopkins 
Queens (CA) 

Hopkins 
Baltimore  

Retrospective  762 29.0 Patients with ICD 
and CM 
diagnosis  

12 Lead ECG (unspecified)  No formal 
analysis 

RF-0.94 
SVM-0.94 

RF-87 
SVM-0.91 

RF-92 
SVF-0.91 

Hyperkalemia Galloway et al.7 

Mayo  
All Mayo Clinic 
Sites 

Retrospective  MN-50099 
AZ-5855 
FL-6011 

MN-2.6 
AZ-4.6 
FL-4.8 

Confirmation by 
serum potassium 

12 Lead ECG (GE-Marquette); 2 
Lead evaluation LI/LII  

No formal 
analysis 

MN-0.883 
AZ-0.853 
FL-0.860 

MN-90.2 
AZ-88.9 
FL-91.3 

MN-54.7 
AZ-55.0 
FL-54.7 

Sex and Age >40 
years 

Attia et al.8 

Mayo 
All Mayo Clinic 
Sites 

 Retrospective 275056 n/a Confirmed 
Age/Sex in 
medical record 

12 Lead ECG (GE-Marquette) Co-morbidity 
impact on ECG 
age  

Sex-0.968 
Age-0.94 

Sex-n/a 
Age-87.8 

Sex-n/a 
Age-86.8 

Afib Attia et al.9 
Mayo 

All Mayo Clinic 
Sites 

Retrospective  36280 8.4 Patients without 
Afib on prior EKG 

12 Lead ECG (GE-Marquette) Analysis with 
‘window of 
interest’ 

0.87 79.0 79.5 

Afib Tison et al.10 

UCSF 
Remote study; 
UCSF 

Prospective 9750 3.4 12 lead EKG 
diagnosis of Afib 

Apple Watch 
photoplethysmography (Apple 
Inc.)  

No formal 
analysis  

0.97 98.0 90.2 
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Afib Hill et al.19 

UK-Multi-institution 
UK Retrospective 2994837 3.2 CHARGE-AF 

score 
Time-varying neural network; 
based on clinic data and risk 
scores 

No formal 
analysis 

0.827 75.0 74.9 

Afib Yong-Yeon et al.22 

Sejong/Korea 
Multiple sites 
(Korea) 

Retrospective  IV-6287 
EV-38018 

IV-13 
EV-6.0 

Patients without 
afib 

12 lead, 6 lead, and single lead 
ECG (unspecified)  

No formal 
analysis 

IV/EV for 12 
,6, single lead 
all >0.95 

All >98% All >99% 

Afib Poh et al.23 
Boston 

Hong Kong Retrospective  1013 2.8 Patients without 
afib 

Photoplethysmographic pulse 
waveform  

No formal 
analysis  

0.997 97.6 96.5 

Afib Ragunath et al Geisinger Clinic, 
PA, USA 

Retrospective 1.6M  Patients without 
afib 

12 lead ECG Age, sex, race 
analyzed 

0.85 69 81 

Long QT (>500 
ms)  

Giudicessi et al.11 

Mayo 
Mayo Clinic 
Rochester 

Both; 
Prospective 
data reported 

686 3.6 QT expert/lab 
overread of 12 
lead ECGs 

6 lead smartphone-enabled 
ECG (AliveCor Kardia Mobile 6L)  

No formal 
analysis 

0.97 80.0 94.4 

Long QT  Bos et al.12 

Mayo 
Mayo Clinic 
Rochester 

Retrospective 2059 47 Patients without 
LQTS 

12 Lead ECG (GE-Marquette) LQTS genotype 
subgroup 
analysis 

0.900 83.7 80.6 

Multiple 
Pathologies  

Tison et al.13 

UCSF 
UCSF Retrospective 36816 (ECGs) HCM-27.4 

PAH-29.8 
Amyloid-28.3 
MVP-21.0 

Individual 
pathologies 
determined by 
standard care 
(i.e. echo, biopsy 
etc) 

12 Lead ECG (GE-Marquette) No formal 
analysis 

HCM-0.91 
PAH-0.94 
Amyloid-0.86 
MVP-0.77 

_ _ 

Mod-Sev AS Cohen-Shelly et al.14  
Mayo 

All Mayo Clinic 
Sites 

Retrospective  102926 3.7 Mod-Sev AS 
confirmed by TTE 

12 Lead ECG (GE-Marquette) Age, sex 0.85 78 74 

Significant AS Kwon et al. 15 

Sejong/Korea 
Mediplex/ 
Sejong (Korea) 

Retrospective IV-6453 
EV-10865 

IV-3.8 
EV-1.7 

Significant AS 
confirmed by  
echo 

12 Lead ECG (Unspecified) No formal 
analysis 

IV-0.884 
EV-0.861 

IV-80.0 
EV-80.0 

IV-81.4 
EV-78.3 

Significant AS Kwon et al. 15 

Sejong/Korea 
Mediplex/ 
Sejong (Korea) 

Retrospective IV-6453 
EV-10865 

IV-3.8 
EV-1.7 

Significant AS 
confirmed by  
echo 

Single lead (L2) from 12 Lead 
ECG (unspecified) 

No formal 
analysis 

IV-0.845 
EV-0.821 

- - 

Mod-Sev MR Kwon et al.16 

Sejong/Korea 
Mediplex/ 
Sejong (Korea) 

Retrospective IV 3174 
EV 10865 

IV-n/a 
EV 3.9 

Mod-Sev MR 
confirmed by  
echo 

12 Lead ECG (Unspecified) No formal 
analysis 

IV 0.816 
EV 0.877 

IV 0.900 
EV 0.901 

IV 0.533 
EV 0.699 

Mod-Sev MR Kwon et al. 16 

Sejong/Korea 
Mediplex/ 
Sejong (Korea) 

Retrospective IV 3174 
EV 10865 

IV-n/a 
EV 3.9 

Mod-Sev MR 
confirmed by 
echo 

Single lead (aVR) from 12 Lead 
ECG (unspecified) 

No formal 
analysis 

IV 0.758 
EV 0.850 

IV 0.900 
EV 0.901 

IV 0.408 
EV 0.560 
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Abbreviations: Afib-atrial fibrillation; AUC-Area Under the Curve; AZ-Arizona; CA-Canada; ECG-electrocardiogram; echo-echocardiography; EV-external 
validation; FL-Florida; HCM-hypertrophic cardiomyopathy; HF-Heart failure; ICD-implantable cardiac defibrillator; IV-internal validation; LVSD-Left Ventricular 
Systolic Dysfunction; LQTS-long QT Syndrome; MN-Minnesota; mod-sev AS-moderate to severe aortic stenosis; mod-sev MR-moderate to severe mitral 
regurgitation; ms-milliseconds; MVP-mitral valve prolapse; NT-proBNP-N-terminus of brain natriuretic paptitde; PAH-pulmonary arterial hypertension; RF-
random forest classifer; SVM-support vector machine classifier; TTE-transthoracic echocardiogram;  
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