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Abstract 

Purpose: TNR, encoding Tenascin-R, is an extracellular matrix glycoprotein involved in 

neurite outgrowth and neural cell adhesion, proliferation and migration, axonal guidance, 

myelination and synaptic plasticity. Tenascin R is exclusively expressed in the central nervous 

system with highest expression after birth. The protein is crucial in the formation of 

perineuronal nets that ensheath interneurons. However, the role of Tenascin-R in human 

pathology is largely unknown. We aimed to establish TNR as a human disease gene and 

unravel the associated clinical spectrum.  

Methods: By using exome sequencing and an online matchmaking tool to identify patients 

with biallelic variants in TNR. 

Results: We identified thirteen individuals from eight unrelated families with biallelic 

variants in TNR sharing a phenotype consisting of spastic para- or tetraparesis, axial muscular 

hypotonia, developmental delay and transient opisthotonus. Four homozygous loss of function 

and four different missense variants were identified.  

Conclusion: Hereby, we establish TNR as a disease gene for an autosomal recessive non-

progressive neurodevelopmental disorder with spasticity and transient opisthotonus and 

highlight the role of central nervous system extracellular matrix proteins in the pathogenicity 

of spastic disorders.  
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INTRODUCTION 

Next generation sequencing methods have revolutionized the diagnostic opportunities of 

neurogenetic diseases.1,2 While some years ago disease entities were primarily described 

based on specific clinical findings, the rapidly evolving sequencing technologies have added a 

new dimension of entities based on genetic diagnoses. A combination of both has 

characterized syndromes such as hereditary spastic paraparesis3 and dystonia4. However, 

genetic diagnostics in diseases that do not fit into any of the established categories is difficult 

and often requires interdisciplinary approaches and the inclusion into research projects.  

Perineuronal nets constitute a specialized form of the extracellular matrix (ECM) that are 

composed of the proteogylcans aggrecan, neurocan and brevican as well as hyaluronan.5 TNR 

encodes tenascin-R, a member of the tenascin family of ECM glycoproteins, that is crucial for 

the crosslinking of proteoglycan hyaluronan complexes.6 TNR is exclusively expressed in the 

central nervous system with the exception of a transient expression in Schwann cells during 

peripheral nerve development.7,8 Proteolytic cleavage of the amino-terminal region from the 

180kb protein product gives rise to the smaller 160kD isoform.9 Tenascin-R is involved in 

neurite outgrowth, neural cell adhesion, proliferation and migration, fate determination, 

axonal guidance, myelination, synaptic plasticity and modulation of sodium channel 

function.10 Tenascin-R deficient mice are viable and fertile and do not show any obvious 

disease phenotype.11 However, they display increased anxiety and motor coordination 

impairment in specific tests.12 They also present altered synaptic activity with a decrease of 

extracellular space volume and degree of tortuosity and density of perineuronal nets.13 

Electrophysiological studies revealed abnormal formation of perineuronal nets and reduced 

conduction velocity of the optic nerve.11 In addition, mice have abnormal hippocampal 

morphology and reduced coverage of symmetric synapses on pyramidal cells.14 During foetal 

development, Tnr −/− mice display increased numbers of GABAergic interneurons. TNR 
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deficiency has been found to be involved in the regulation of neuronal differentiation at least 

in the mouse dentate gyrus.15,16 The broad variety of findings in the mouse model constitutes 

TNR as an excellent candidate gene for neurogenetic disease. Indeed, two recent reports have 

identified cases with biallelic loss of function (LoF) variants in TNR. The first patient was 

born from consanguineous Lebanese parents and presented with intellectual disability and 

early onset opisthotonic posture (at 4-6 weeks of age); array comparative genomic 

hybridization identified a homozygous deletion containing all protein coding regions of TNR 

as well as parts of the 5’-untranslated region of KIAA0040 allowing authors to suggest TNR’s 

implication in brain development and cognition.17 The second patient was described in a case 

series of 100 adults with leukoencephalopathy. Exome sequencing revealed a homozygous 

LoF variant in TNR (c.1475delG, p.(Arg492Profs*45)) in a Turkish female who developed a 

floppy head and opisthotonic spasms of her neck and back, generalized dystonia and 

spasticity at three months and had mild learning difficulties.18  

Here, we report thirteen patients from eight unrelated families with biallelic variants in TNR 

causing a complex syndrome characterised by mild neurodevelopmental delay, axial muscular 

hypotonia, spasticity, hypokinesia and transient opisthotonus establishing TNR as a disease 

gene for spastic para- or tetraparesis. 

  



9 
 

MATERIALS AND METHODS 

Patients and samples 

All patients or their parents gave written informed consent for the pseudonymised clinical 

data collection, collection and storage of biological samples, experimental analyses and the 

publication of relevant findings and images/videos. The study was performed in agreement 

with the Declaration of Helsinki and approved by the Ethical Committees of the participating 

Centres participating in this study (Munich, Germany; Hamburg, Germany; Paris, France; 

Phoenix, USA; Sao Paulo, Brazil and London, UK). Percentiles for growth parameters were 

estimated for all individuals as previously described.19 The collaboration was established 

using the web based platform GeneMatcher.20  

 

Exome sequencing 

Exome sequencing (ES) and TNR Sanger sequencing was carried out independently at five 

different centres using genomic DNA extracted from leukocytes. Technical details can be 

found in Supplementary Table 1.  

 

3D Modelling 

3D-modelling was performed using the WHAT IF & YASARA Twinset with standard 

parameters21,22 Separate models were created for individual domains using separate PDB-files 

as templates. Fibronectin domain 1 was modelled on PDB-file 3TEU (38% sequence identity, 

105 residues).23 Fibronectin domain 9 (modelling on PDB-file 4U3H, 31% sequence identity, 

100 residues).24 The C-terminal fibrinogen domain was modelled on PDB-file 6QNV (61% 

sequence identity, 231 residues). Additionally, Fibronectin domain 3 was available as PDB-

file 1TDQ.25 Visualization and subsequent analysis was done using the YASARA & WHAT 

IF Twinset.  

 



10 
 

Data availability 

The authors declare that the data supporting the findings of this study are available within the 

article and its supplementary material. Raw sequencing data are available from the 

corresponding authors on request if in line with the provided consent of the families. 

Variants have been submitted to ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/): 

c.3574C>T, p.(Arg1192Trp): Accession ID: VCV000691953 

c.3357C>G, p.(Ser1119Arg): VCV000691956 

c.2742_2743del, p.(Val915fs): VCV000691952 

c.2713C>T, p.(Arg905Ter): VCV000691951 

c.1899del, p.(Glu634Serfs*20): VCV000691954 

c.1594G>A, p.(Asp532Asn): VCV000691957 

c.1189G>A, p.(Ala397Thr): VCV000691958 

c.207C>G, p.(Tyr69Ter): VCV000691955  

https://www.ncbi.nlm.nih.gov/clinvar/
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RESULTS 

Patient characteristics 

Detailed case reports are available in Supplementary Information and are summarized in 

Table 1. An extended version of Table 1 can be found in the Supplementary Information. 

Videos of patients 1, 7, 9 and 10 can be found in the Supplementary Information.   

In brief, 13 patients from eight unrelated families (seven males, six females, current ages 

ranging from 1 to 24 years, pedigrees can be found in Fig 1A) were referred for evaluation of 

developmental delay after uneventful pregnancy, delivery and postnatal adaptation in most 

families (see Supplementary case reports). They originated from consanguineous families 

from Turkey, Morocco, Saudi Arabia, Iraq and Brazil as well as a non-consanguineous family 

from India. No dysmorphic features were noted.  

Detailed assessment of patients’ history revealed that motor developmental milestones were 

delayed in all patients: Unsupported sitting was achieved at a median age of 12±9 months and 

standing without hold at a median age of 35±12 months. Free standing was not achieved at all 

in 4 children. 5 out of 11 (45%) patients showed transient opisthotonic posturing during the 

first year of life. Cognitive development was mildly or moderately impaired in 6 out of 13 

patients (46%) as judged by the caring physician, however, there is no formal 

neuropsychological testing available. 4 out of 11 patients did not have cognitive 

developmental delay and two cases were too young for a reliable evaluation. Most patients 

showed delayed language development (12/13 = 92%). However, language impairment was 

variable, with patient 7 speaking fluently from the age of five years onwards, whereas patient 

6 still had severe expressive language impairment at the age of eight years, yet with 

concomitant dysarthria.  

During the assessment of the current neurological status at the median age of 5 years (range 2-

24 years) patients typically presented with a spastic tonus dysregulation of two or four 
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extremities (10 affected /12 examined = 83 %) with axial hypotonia (8/12 = 67 %). Lower 

limb deep tendon reflexes were normal in two patients and increased in all other examined 

patients (10/12 = 83%), 7 patients (7/12 = 58%) had increased upper limb reflexes. Notably, 

all patients were very friendly (happy demeanor) in their interaction with their environment 

which was not related to lack of stranger anxiety as observed in children with autism and we 

did not observe inappropriate laughter. Dyspraxia was noted as further neurological symptom 

in 7/13 (54%) patients. In addition to spastic para- or tetraparesis, also (oromandibular) 

dystonia (7/13 = 54%), choreoathetosis and parkinsonism could be documented. Cerebellar 

symptoms were not observed in our patients. The three oldest patients (age > 12y) included in 

our study as well as the case reported18 largely caught up the delay in cognitive and motor 

development after infancy, as reported by the responsible clinicians. In addition, none of our 

patients developed neurological system involvement over time not noted before and the 

severity of the neurological symptoms didn’t increase over time. Spasticity did neither 

improve nor deteriorate. This indicates that TNR-associated disease is non-progressive in 

nature.  

 

MRI findings in TNR related disease 

Brain MRI was performed in 11/13 patients, relevant images or whole MRI datasets have 

been evaluated by the same paediatric neuroradiologist.  

Delayed myelination was observed in four cases: Patients 1, 3, 5 and 9 at the age of four 

months, one year seven months, ten months (Fig 1B) and two years eight months (Fig 1D), 

respectively. In patient 3 the delayed myelination of the temporal subcortical white matter 

was persistent at the age of five years (Fig 1C) compared to a brain MRI of a normal five year 

old boy (Fig 1D). In contrast, myelination appeared normal on follow-up at two years in 



13 
 

patient 1, which is in line with the clinical evaluation, where symptoms severity remained 

stable or even showed slight improvements over time. 

In two cases, MRI revealed corpus callosum abnormalities: patient 6 had a thin corpus 

callosum and patient 11 had an agenesis of the posterior part of the corpus callosum 

associated with a splenium agenesis at the age of ten months (Fig 1E). Brain MRI was 

considered to be normal in patients 2, 4, 7, 12 and 13. Cerebellar abnormalities were not 

found in any of our cases. 

Biallelic variants in TNR  

In all index patients, exome sequencing at the local genetic centres did not identify causative 

variants in established disease genes. Filtering for rare (MAF < 0.5% in the respective in-

house databases) protein altering variants identified biallelic variants in TNR (NM_003285.2) 

in index patients from all families. Additional potentially biallelic variants identified in the 

index cases by ES can be found in the Supplementary Information. Segregation by Sanger 

sequencing did support TNR as a candidate gene. A web-based collaboration platform, 

GeneMatcher,20 established the collaboration presented here. Pedigrees and the identified 

variants can be found in Fig 1A.  

A total of four LoF and four missense variants were detected. Patient 1 had a homozygous 

nonsense variant c.2713C>T, p.(Arg905*),  patient 2a homozygous frameshift alteration 

c.2744_2745delTG; p.(Val915Aspfs*64). The LoFs c.1899delT p.(Glu634Serfs*20) and 

c.207C>G; p.(Tyr69*) were identified in patient 6 and patients 9 and 10 (Family F)  

respectively.  

In the four other families, two homozygous and two compound heterozygous missense 

variants were identified: in family C (patients 3-5), the variant c.3574C>T is predicted to 

result in the substitution of a highly conserved C terminal amino acid position of the 
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fibrinogen-like domain with to date unknown function, p.(Arg1192Trp). Of note, the C 

terminal is not affected by the proteolytic cleavage of the 180 kDa TNR protein into the 160 

kDa isoform and therefore the variant should be expressed.9 The same variant was identified 

in the index patient of Family E (patient 7) and confirmed by Sanger sequencing in the elder 

sister (patient 8). In the index patient of Family G (patient 11), the missense variant 

c.3357C>G; p.(Ser1119Arg) was found which is located in the C-terminally Fibronectin type-

III 9 domain which is also not affected by proteolytic cleavage. The variants c.1189G>A and 

c.1594G>A (p.(Asp532Asn) and p.(Ala397Thr)) were identified in patient 13 from Family H 

in a compound heterozygous state as determined be segregation analysis using Sanger 

sequencing. A graphical view of the TNR transcript structure and the protein product as well 

as the location of the eight novel and one previously published variants can be found in Fig 

2A. Variant details including in silico predictions as well as conservation scores can be found 

in Supplementary Table 2. 

All variants detected were not found in a homozygous state in more than 140,000 NGS 

datasets in the genome aggregation database (gnomAD)26 and could not be identified in 

population specific databases, focussing on middle-eastern ethnicities, GME variome database 

(http://igm.ucsd.edu/gme/)27 and Iranome (http://www.iranome.ir/).28 

3D Modelling 

In order to better understand the pathophysiologic mechanism of missense variants we 

performed 3D modelling of the respective variants (Fig 2B-E). The variant p.(Ala397Thr) is 

predicted to affect the local structure whereas the variant p.(Asp532Asn) might affect 

interaction with brevican in the formation of perineuronal nets. The variant p.(Ser1119Arg) is 

located on the surface of the fibronectin 9 domain most likely impairing interactions made on 

the surface of this domain. p.(Arg1192Trp) is located in the fibrinogen domain at the C-

terminus and is predicted to affect the local structure. 

http://www.iranome.ir/
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DISCUSSION 

We report biallelic variants in TNR encoding the ECM protein Tenascin-R in thirteen affected 

individuals from eight families. The phenotype encompasses a complex neurological disorder 

characterised by developmental delay with spastic para- or quadriparesis, axial muscular 

hypotonia, hypokinesia and transient opisthotonus combined with a happy demeanor and 

habitus. Moreover, less frequently observed were language problems. Movement disorders 

(dystonia, parkinsonism) indicate an affection of the extrapyramidal motor system in TNR-

related disease. While the cardinal clinical features did not differ significantly between the 8 

families, the grades of phenotypic severity varied to a greater extend. These differences might 

be explained by the excess of homozygous variants in our consanguineous families (rare 

biallelic variants can be found in the Supplementary Information)  

Brain MRIs revealed cerebral abnormalities in six out of the eleven patients for which MRIs 

were available (65%). This included delayed myelination in four and corpus callosum 

abnormalities in two cases. The cerebellum was normal in all cases. Given that delayed 

myelination and corpus callosum hypoplasia are rather unspecific findings, we could not 

establish a consistently recognizable MRI phenotype. Intrafamilial heterogeneity as assessed 

in Family C and G was considerable with individuals having both normal and pathologic 

MRIs at comparable ages within individual pedigrees.  

The observations, that none of our patients developed novel neurological system involvement 

over time and that the MRI findings improved in follow-up investigations, argue against 

neurodegenerative aspect and indicate a non-progressive nature of the disorder.  

It is difficult to confine TNR associated disease from complicated hereditary spastic 

paraplegia (HSP) which is characterized by progressive lower limb spasticity and weakness in 

combination with additional neurologic features such as cognitive deficits, movement disorder 
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or neuropathy. However, based on the core phenotype, i.e. the spastic affection of both upper 

and lower limbs as well as this non-progressive nature of the symptoms, we regard TNR-

related disease as different from HSP.  

So far, only two homozygous variants, a frameshift variant, c.1475delG, p.(Arg492Profs*45), 

and a homozygous 1q25.1 deletion including TNR have been reported, constituting TNR as a 

candidate gene. Both variants were associated with a neurological phenotype which included 

spastic quadriparesis, intermittent opisthotonic spasms in the first months of life, delayed 

motor milestones, dystonia, axial hypotonia and hyperreflexia, thus resembling the phenotype 

of our study population (Tab. 1).17,18 Heterozygous LoF variants in TNR are rare (40 in > 280 

000 alleles) and homozygous variants absent in the gnomAD database, indicating that biallelic 

pathogenic variants in TNR are likely to cause disease.26  

We identified four different LoF variants (nonsense and frameshift) in four families as well as 

four missense variants c.1189G>A; p.(Ala397Thr), c.1594G>A; p.(Asp532Asn) and 

c.3357C>G; p.(Ser1119Arg) as well as c.3574C>T; p.(Arg1192Trp) which we identified in 

two unrelated families. The latter was found in a family from Iraq and Morocco and is absent 

from control databases. The missense variants are located in the C-terminal fibrinogen like 

domain and the fibronectin type-III 9 domain, a domain with to date unknown function. There 

was no significant clinical difference between individuals with LoF and missense variants that 

would imply a genotype-phenotype correlation indicating a LoF character of the missense 

variants.  

These findings define a novel form of a neurodevelopmental disease presenting with early 

onset non-progressive spasticity and developmental delay.  

Interestingly, the patient reported by Lynch et al. carrying the variant c.1475delG, 

p.(Arg492Profs*45) had a similar phenotype as the individuals identified in our study, but 

was diagnosed with multiple sclerosis (MS) at the age of 19 due to several T2/FLAIR 
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periventricular white matter, brainstem and cerebellum hyperintensities and the presence of 

oligoclonal bands in cerebrospinal fluid. We believe that, since none of the individuals 

reported in the present study had MS-like MRI or CSF findings, the published patient 

potentially was suffering from both TNR-associated neurodevelopmental disease and 

concomitant MS and that the oligoclonal bands were not associated with the variant in TNR.  

TNR is highly expressed in oligodendrocyte precursors with a decreased expression during 

oligodendrocyte differentiation, suggesting a functional role during myelination.29 This might 

explain why 40% of our cases had delayed myelination as abnormal MRI findings. TNR is 

also expressed in type-2 astrocytes and few neuronal cells in the spinal cord, retina, 

cerebellum, and hippocampus, especially in perineuronal nets surrounding inhibitory 

interneurons.30 As tenascins are a crucial integral part of perineuronal nets and involved in the 

maturation and maintenance of neuronal networks,31 a disruption of synaptic plasticity could 

explain the neurodevelopmental phenotype in our patients. The spatiotemporal expression 

pattern with the highest expression of TNR in the developing brain is in line with the 

observed non-progressive fashion of the disease. Even though the behavioural phenotype of 

TNR-deficient mice does not resemble the symptoms observed in our patients, the mouse 

model clearly indicates that loss of TNR results in a neurodevelopmental defect.  

To date, perineuronal nets or central nervous system ECM proteins have not been implicated 

in the pathogenesis of spastic disorders, but its dysfunction or loss has been observed in 

Alzheimer’s disease, fragile X syndrome and schizophrenia.32 In addition, TNR has been 

described as a candidate risk gene for Parkinson’s disease33 and a recent genome wide 

association study has linked the locus encompassing TNR with attention deficit hyperactivity 

disorder.34  
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The identification of novel disease genes often reveals disease associated molecular 

mechanisms. Establishing TNR as a disease gene is the first link of central nervous system 

ECM proteins and perineuronal nets to the pathogenesis of neurodevelopmental disorders.  

In conclusion, TNR deficiency causes an early onset and non-progressive neurodevelopmental 

disorder characterized by axial hypotonia, spasticity, developmental delay, hypokinesia and 

transient opisthotonus.  

Supplementary Material 

Supplementary information is available at the Genetics in Medicine website at 

http://www.nature.com/gim.  
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Tables 

Table 1: Clinical information of individuals identified with biallelic variants in TNR.  
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Family A Family B Family C Family 

D Family E Family F Family G Family H Lynch et al. Dufresne et 
al. 

All / 
median 

(IQR) 

ID Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 
6 Patient 7 Patient 8 Patient 9 Patient 10 Patient 11 Patient 

12 Patient 13    

Age at last examination 2 y 1 y 10 mo 12 y 6 y 4 mo 6 y 4 mo 8 y 13 y 24 y 3 y 2 y 7 y 5 y 5 y 19 y  6.3 (2-12) y 
Gender F M M M F F M F F F M M M F F 8 F / 7 M 
cDNA variant 
(NM_003285.2) c.2713C>T c.2744_274

5del c.3574C>T c.1899
del c.3574C>T c.207C>G c.3357C>G c.1594G>A 

c.1189G>A c. 1475delG arr[GRCh37] 
1q25.1(175
141389_175
535502)x0 

 

Protein effect 
(NP_003276.3) p.(Arg905*) p.(Val915As

pfs*64) p.(Arg1192Trp) 
p.(Glu6
34Serfs

*20) 
p.(Arg1192Trp) p.(Tyr69*) p.(Ser1119Arg) p.(Asp532Asn)

p.(Ala397Thr) 

p. 
(Arg492Prof

s*45) 
 

Pity P P P P P P VUS LP/ LP    

Origin Turkish Arabian Maroccan Maroccan Maroccan Brazilia
n Iraq Iraq Iraq Iraq Brazil Brazil Indian Turkish Lebanese  

Developmental milestones                 

Sitting without support n.a. 20 mo 11 mo 17 mo unk 24 mo 10 mo 6 mo 2 y n.a. 12 mo 10 mo 36 mo unk unk 12 (10-20) 
mo 

Standing without 
assistance  n.a. n.a. 18 mo 30 mo 28 mo 36 mo 19 mo 10 mo n.a. n.a. 24 mo 24 mo n.a. n.a. unk 24 (18-29) 

mo 

Walking without assistance  n.a. n.a. 21 mo 34 mo 31 mo 48 mo 36 mo 12 mo n.a. n.a. 48 mo 36 mo n.a. n.a. 36m 36 (36-36) 
mo 

Speech development                  

Say a few words ("mama") 24 mo 20 mo 28 mo 30 mo 30 30 mo 19 mo 12 mo yes yes 36 mo 36 mo 21 mo unk 4 y 29 (20-32) 
mo 

Speaks 50 words  n.a. n.a. 3.5 y 4 y 4 y unk 5 y 24 mo n.a. n.a. 7 y n.a. 3 y unk unk 4 (3-5) y 
Neurological findings                 

Cognitive developmental 
delay moderate moderate mild no no mild moderate no unk unk moderate moderate no mild moderate 9/13 (69%) 

Interaction  friendly friendly friendly friendly friendly friendly friendly friendly friendly friendly friendly friendly friendly unk unk 13/13 
(100%) 

Axial hypotonia yes yes yes yes yes yes yes yes yes yes no no yes yes yes 13/15 (87%) 

Spasticity lower limb 
diparesis 

spastic 
tetraparesis 

spastic 
tetraparesis 

spastic 
tetraparesis 

spastic 
tetraparesis no spastic 

tetraparesis 
spastic 

paraparesis 
spastic 

tetraparesis 
spastic 

tetraparesis 
spastic 

paraparesis 
spastic 
diplegia 

spastic 
tetraparesis 

Generalised 
spasticity 

spastic 
tetraparesis 13/15 (87%) 

Increased UL/LL tendon 
reflexes -/- +/+ +/+ +/+ +/+ -/- +/++ -/+ +/+ +/+ -/+ -/+ ++/++ unk ++/++  

Dyspraxia NA yes yes no yes yes yes no yes yes no no no yes yes 9/14 (64%) 
Hypokinesia yes yes no no yes no yes no yes yes no no no unk unk 6/13 (46%) 
Dystonia yes no no yes yes no yes no yes yes no no yes Yes unk 8/14 (57%) 
Choreoathetosis no no no no no no no no yes yes no no no unk yes 3/14 (21%) 
Transient opisthotonus yes yes yes yes yes no no no unk unk no no no yes yes 7/13 (54%) 
Dysarthria unk unk no unk yes yes yes no unk unk no no no yes unk 4/9 (44%) 
Dysmorphic features                 

Long eye lashes unk yes no no no no no no unk unk yes yes no unk unk 3/10 (30%) 
Dysmorphic ears unk no no no no no no no unk unk yes yes no unk yes 3/11 (27%) 

Abbreviations: unknown = unk; not assessed = n.a.; years = y;  months = mo; percentile = pc; pathogenic = P; likely pathogenic = LP; variant of uncertain significance = VUS 
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Figure Legends 

Figure 1: Identification of biallelic TNR variants in eight families.  Pedigrees of the 

families (family A – H) in which exome sequencing identified biallelic variants in TNR 

segregating with the disease. Black filled symbols represent affected individuals whereas 

open symbols represent unaffected family members. +/+ indicates that variants were 

identified in homozygosity, +/- are heterozygous carriers, whereas no variants in TNR were 

identified in individuals marked with -/-.  

Figure 2: MRI findings in TNR related neurodevelopmental disease. (A) and (B): Coronal 

T2- weighted cerebral MRI images of Patient 3 at the age of 1 year and 7 months (A) and a 

follow-up at 5 years (B). (A) Temporal subcortical white matter is not yet myelinated at 1 

year 7 months (thin white arrows) (B) MRI revealed a persistent white matter T2 hypersignal 

at 5 years showing that myelination of the temporal region was not achieved (thin white 

arrows). (C) constitutes a healthy control MRI which was done at age 5 years showing 

complete myelination of the temporal region. (D) Axial FLAIR weighted sequence of Patient 

9 at 2 years 8 months, showing a subcortical white matter hypersignal consistent with 

uncompleted myelination. (E) T1 weighted median sagittal MRI section of Patient 11 showing 

a partial posterior corpus callosum agenesis (large white arrow). 

Figure 3: Graphical view of the location of the eight variants identified with respect to 

transcript structure and protein product as well as 3D modelling of missense variants. 

(A) TNR encodes a 21-exon transcript (NM_003285.2). The protein encompasses an N-

terminal epidermal growth factor-like domain depicted in orange, nine fibronectin type-III 

domains displayed as blue boxes and a C-terminal Fibrinogen-like domain coloured in green.  

The arrows and dotted lines mark the positions of the published and novel variants. (B-E) 3D 

modelling of the missense variants. The mutant amino acid is displayed in magenta, α-helices 

are depicted in blue, β-strands in red and loops in cyan. (B) The variant p.(Ala397Thr) is 
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located in fibronectin domain 1, where the mutated alanine is buried in the core. Mutation of 

this small and hydrophobic residue into a slightly larger one with an extra hydrophilic 

sidechain is predicted to affect the local structure. (C) The variant p.(Asp532Asn) occurs on 

the surface of fibronectin domain 3. The sidechains of both amino acids have the same size 

and both are hydrophilic. However, aspartate is negatively charged whereas asparagine is 

neutral. The variant might affect interaction with brevican in the formation of perineuronal 

nets. (D) The variant p.(Ser1119Arg) occurs on the surface of fibronectin domain 9. However, 

whereas serine is small and neutral, arginine is large and positively charged. This could affect 

any interactions made on the surface of this domain. (E) The variant p.(Arg1192Trp) is 

located in the fibrinogen domain at the C-terminus. The arginine at this position is necessary 

for hydrogen bonds that stabilize the structure. Mutation into the large and hydrophobic 

sidechain of tryptophan are predicted to affect the local structure. 
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