Integrated genomics point to immune vulnerabilities in pleural mesothelioma

SUPPLEMENTARY DATA

Anca Nastase^{1¶}, Amit Mandal^{1¶}, Shir Kiong Lu¹, Hima Anbunathan¹, Deborah Morris-Rosendahl^{1,2}, Yu Zhi Zhang^{1,3}, Xiao-Ming Sun⁴, Spyridon Gennatas¹, Robert C Rintoul^{5,6}, Matthew Edwards², Alex Bowman³, Tatyana Chernova⁴, Tim Benepal⁷, Eric Lim⁸, Anthony Newman Taylor¹, Andrew G Nicholson^{1,3}, Sanjay Popat^{9,10}, Anne E Willis⁴, Marion MacFarlane⁴, Mark Lathrop¹¹, Anne M Bowcock¹, Miriam F Moffatt^{1,*}, William OCM Cookson^{1,*}

Affiliations

1 National Centre for Mesothelioma Research, Imperial College London, UK

2 Clinical Genetics and Genomics, Royal Brompton and Harefield NHS Foundation Trust, London, UK

3 Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust, London, UK

4 Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK

5 Department of Thoracic Oncology, Papworth Hospital, Cambridge, UK

6 Department of Oncology, University of Cambridge, Cambridge, UK

7 Department of Oncology, St George's Healthcare NHS Foundation Trust, London, UK

8 Department of Thoracic Surgery, Royal Brompton and Harefield Foundation Trust, London, UK

9 Department of Medicine, Royal Marsden Hospital, London, UK

10 The Institute of Cancer Research, London, UK

11 Department of Human Genetics, McGill Génome Centre, Québec, Canada

¶ Contributed equally to this study *Contributed equally to this study

*Corresponding authors: Professor William OCM Cookson: National Heart and Lung Institute, Dovehouse Street, London SW36LY, w.cookson@imperial.ac.uk +447788628503; Professor Miriam F Moffatt: m.moffatt@imperial.ac.uk

Contents

Supplementary Materials and Methods
Supplementary_Table 1. Targeted capture next-generation sequencing gene panel4
Supplementary_Table 2. Patient demographics5
Supplementary_Table 3. Significant copy number deletions and amplifications
Supplementary_Table 4. Genes differentially regulated in histological subtypes7
Supplementary_Table 5. Correlation of SUFU and immune function genes and replication
Supplementary_Table 6. Genes differentially up-regulated in BAP1 mutated tumours
Supplementary_Figure 1. Analytical structure
Supplementary_Figure 2. Oncoplot from targeted sequencing panel
Supplementary_Figure 3. Mutation characteristics12
Supplementary_Figure 4. WES and RNA sequencing correlations for <i>RASSF7</i> , <i>RB1</i> and <i>SUFU</i> in primary and replication datasets
Supplementary_Figure 5. Oncoplot for WGS of mesothelioma primary cells
Supplementary_Figure 6. Effect of mutations in DNA damage repair related genes
Supplementary_Figure 7. Response of mesothelioma primary cells to tested drugs16
Supplementary_Figure 8. Original, uncropped and unprocessed blot images

Supplementary Materials and Methods

Visualisation of copy number results in UCSC Genome Browser

To visualise the copy number result through UCSC Genome Browser, patient-level copy number segments (Supplementary File 2_Table5B) with 'seg.mean' values ≥ 0.3 or, ≤ -0.3 were selected. These segments were then converted to a file format that allows display of continuous value data as GenomeBrowser tracks: bedGraph format, using 'bedtools genomecov' (v.2.27). The output bedGraph file was then uploaded on UCSC GenomeBrowser (GRCh37/hg19 version). The visualisation is in the form of histograms with auto-scaling dependent on the genomic region selected for visualisation in the browser, and hence the number of CN segments contained within those genomic boundaries.

Strategy for filtering germline variants

Variants (whether from somatic calling or from unpaired tumour samples) were annotated using Ensembl Variant Effect Predictor (ver.92; GRCh37) with additional annotation resource of population level frequencies from gnomAD genomes and exomes (rel.2.0.1) and the ExAC (Exome Aggregation Consortium) non-TCGA (rel.0.3.1) resources. Variants present in the population databases with frequencies $\geq 10^{-3}$ were filtered out. Further filtering was done based on gene annotation to select only High or Moderate impact (i.e. protein-sequence altering) variants, or if the variant was predicted to be splice-altering (as per dbscSNV: database of splicing-consensus region SNVs). Further prioritisation of SNV candidates was done based on predicted deleteriousness in at least two of three algorithms: SIFT (ver.5.2.2), Polyphen (ver.2.2.2), and MutationTaster (online tool).

From our in-house studies on tumour samples with paired germline available, the above battery of filtering steps remove $\sim 90\%$ of germline variants. Thus, we are positive that we have been able to remove most of the germline variants in case of the unpaired tumour samples in our cohort.

Characterisation of the primary cells used for drug testing

Meso-27T, Meso-33T and Meso-70T used for drug testing were obtained from the MRC Toxicology Unit, University of Cambridge, UK. These primary cells were established as described in Chernova, T. *et al.* (ref 12). All preliminary analysis testing for tumour cell purity, morphology monitoring, cell lines authentication by STR DNA profiling and matching to the original tissue was performed prior to our study and detailed in Chernova, T. *et al.* (ref 12). Briefly, the authors have used differential trypsinisation with 0.05 and 0.1% trypsin to remove fibroblasts and select mesothelial cells, obtaining a mesothelioma primary cells purity of 97-100%. In our study, we have limited the number of passages to retain the initial characteristics of the primary cells.

Western blot

Cells were lysed with RIPA buffer in the presence of freshly added protease inhibitor and PhoSTOP (Roche). Cell lysate were centrifuged at 14000 rpm for 15 min, loaded on gel and transferred, after separated on SDS-PAGE gel, to nitrocellulose membranes. Membranes were blocked in PBS with 5% skim milk and 0.1% Tween-20, probed with antibodies to RB (Cell Signalling Technology, 9309), BAP1 (Santa Cruz, sc28383), Merlin (AbCam, ab88957), PTCH2 (Cell Signalling Technology, 2464), SUFU (Cell Signalling Technology, 2522), p16 (AbCam, ab108349) and beta-actin (AbCam, ab6276). Secondary antibodies used: goat-anti-mouse (ThermoScientific, 31320), AP conjugate and goat-anti-rabbit (ThermoScientific, 656122) AP conjugate.

Supplementary_Table 1. Targeted capture next-generation sequencing gene panel

ANKLE1	CDKN2A	FOXD1	MAML3	NF2	SETD1B	TJP2	ZNF880
APC	CFAP45	HERC1	MLH1	NRAS	SETD2	TJP3	
ASSI	CREBBP	HERC2	MMP17	PIK3CA	SETD6	TP53	
ATXN2	DDX3X	ICA1	MSH2	PRDM12	SETDB1	TRAF7	
BAP1	DDX51	INADL	MSH3	PRKRA	SF3B1	ULK2	
BRCA2	EGFR	LATSI	MSH5	PTEN	SLC2A3	VEZF1	
BRD4	EP400	LATS2	MSH6	RB1	SYNE1	WDR89	
CD163	FBXW7	MACF1	NCOR2	RYR2	TET1	ZNF77	

			Group			
	Whole Exome Sequencing (n=50)	SNP genotyping (n=118)	Targeted Capture Sequencing (n=119)	RNA sequencing (n=35)	IHC (n=28)	All (n=121)
Gender (n, %)			· · · ·			
Μ	39 (78.0)	103 (87.3)	103 (86.6)	25 (75.8)	23 (82.1)	105 (86.8)
F	11 (22.0)	15 (12.7)	16 (13.4)	8 (24.2)	5 (17.9)	16 (13.2)
M:F	3.5:1	6.9:1	6.4:1	3.13:1	4.6:1	6.6:1
Age						
Average \pm SD	69.7 ± 8.2	72.1 ± 8.5	72.1 ± 8.5	70.06 ± 8.3	67.6 ± 8.1	72.1 ± 8.4
median [range]	69.7 [52-90]	73.0 [51-90]	72.6 [51-90]	69.0 [55-90]	67 [52-82]	73 [51-90]
Histology (n, %)						
Epithelioid	34 (68.0)	89 (75.4)	88 (74.0)	26 (74.3)	19 (67.9)	90 (74.4)
Biphasic	14 (28.0)	23 (19.5)	25 (21.0)	6 (17.1)	9 (32.1)	25 (20.6)
Sarcomatoid	2 (4.0)	6 (5.1)	6 (5.0)	3 (8.6)	0 (0.0)	6 (5.0)
Overall survival						
Data available	92.0%	91.5%	92.4%	85.7%	100.0%	
All (months, [rate at 12 months])	9.93 [42.63%]	9.93 [42.24%]	9.93 [42.39%]	10.43 [43.75%]	12.8 [59.74%]	9.93 [42.0%]
Epithelioid	10.43 [45.16%]	11.6 [48.75%]	11.6 [48.75%]	12.27 [52.17%]	12.96 [68.42]	11.6 [48.15%]
Biphasic	10.86 [42.73%]	7.4 [29.54%]	7.4 [31.41%]	7.07 [33.33%]	10.87 [38.1%]	7.4 [31.41%]
Sarcomatoid	1.5 [0.0%]	3.66 [0.0%]	3.66 [0.0%]	1.5 [0.0%]	NA	3.67 [0.0%]
Asbestos exposure	(n, %)					
Yes	32 (64.0)	63 (68.5)	63 (67.7)	20 (57.1)	21 (75.0)	83 (68.6)
No	16 (32.0)	27 (29.3)	28 (30.1)	11 (31.4)	6 (21.4)	36 (29.8)
Unknown	2 (4.0)	2 (2.2)	2 (2.2)	4 (11.4)	1 (3.6)	2 (1.6)

Supplementary_Table 3. Significant copy number deletions and amplifications

DELETION	S				
cytoband	q value	residual q	wide peak boundaries	Kb	Principal Genes
9p21.3	2.4E-112	2.4E-112	chr9:21927328-22031004	104	CDKN2A, CDKN2B, C9orf53
3p21.1	7.3E-10	7.3E-10	chr3:52433746-52449046	15	BAP1
10q23.31	8.6E-05	1.6E-04	chr10:91440057-91589280	149	KIF20B, FLJ37201
16p13.3	1.6E-04	1.4E-03	chr16:5128784-7773249	2644	RBFOX1, FAM86A
4q13.3	2.2E-03	3.2E-03	chr4:70932306-71062425	130	CSN1S2AP, C4orf40, CSN1S2BP
6q14.2	5.8E-03	5.5E-03	chr6:84563880-84759646	196	CYB5R4
11p15.5	1.6E-02	1.6E-02	chr11:906709-1083236	177	AP2A2, MUC6
10q24.32	2.5E-03	2.7E-02	chr10:104245589-104485300	240	ARL3, SUFU, TRIM8
1p22.1	7.5E-03	3.9E-02	chr1:93620394-93787866	167	CCDC18
13q14.2	4.2E-02	4.2E-02	chr13:48835311-49063155	228	RB1, LPAR6
11q23.2	4.7E-02	4.9E-02	chr11:113236976-113280927	44	ANKK1
14q22.3	4.8E-02	4.9E-02	chr14:56023823-56271005	247	KTN1, RPL13AP3, LINC00520, KTN1-AS1
AMPLIFIC	ATIONS				
cytoband	q value	residual q	wide peak boundaries	Kb	Principal Genes
11p15.5	6.4E-48	6.4E-48	chr11:552679-587371	35	RASSF7, PHRF1, LRRC56, LOC143666, C11orf35, MIR210, MIR210HG
19q13.43	6.1E-45	6.1E-45	chr19:56572845-56674547	102	ZNF444, NLRP5, ZNF787
5q35.2	3.8E-39	1.2E-37	chr5:176025071-176043332	18	GPRIN1, CDHR2
5q35.3	1.8E-10	8.3E-08	chr5:179214819-179249072	34	LTC4S, SQSTM1, MGAT4B, MIR1229
2p24.1	9.1E-06	9.1E-06	chr2:21210344-21227220	17	APOB
19p13.11	9.1E-06	9.1E-06	chr19:17339697-17370189	30	NR2F6, OCEL1, USHBP1
7p22.3	1.2E-04	1.2E-04	chr7:2552807-2579466	27	LFNG, BRAT1, MIR4648
16p13.3	1.2E-04	1.2E-04	chr16:772127-786320	14	NARFL, FAM173A, HAGHL, CCDC78
2q36.3	1.6E-04	1.6E-04	chr2:227646960-227686906	40	IRS1
16q22.1	2.7E-04	2.7E-04	chr16:67220742-67229485	9	E2F4, EXOC3L1
6p22.1	6.9E-04	6.9E-04	chr6:29311440-29325601	14	OR5V1
5q13.2	1.5E-06	4.7E-03	chr5:70806522-70855825	49	BDP1
11q21	1.8E-02	1.8E-02	chr11:95569326-95603081	34	MTMR2
6q23.3	2.2E-02	2.2E-02	chr6:136582550-136648626	66	BCLAF1
19p13.3	2.2E-02	2.2E-02	chr19:1457003-1482901	26	APC2, PCSK4, C19orf25
16q24.2	4.6E-02	4.6E-02	chr16:88498491-89347394	849	APRT, CBFA2T3, CDH15, CYBA, GALNS, MVD, PIEZO1, IL17C, ANKRD11, TRAPPC2L, CDT1, ZNF469, RNF166, ZC3H18, SLC22A31, ZFPM1, MGC23284, ZNF778, ACSF3, LINC00304, SNA13,

6

CTU2, PABPN1L, LOC400558, MIR4722

Log2 Fold Change	Average Expression	Adjusted P Value	Chr	Name	Description
5.23	-2.62	2.10E-04	7	NFE4	Nuclear factor in erythrogenesis
4.72	-0.21	1.90E-04	3	RP4-555D20.2	IncRNA
4.65	-1.60	9.13E-04	17	IGF2BP1	Novel interacting partner of p38 MAPK. RNA-binding protein, involved in tumour progression
4.50	-0.31	9.13E-04	5	GDNF	Glial cell derived neurotrophic factor
3.66	1.57	9.92E-04	18	CCBE1	High levels contribute to aggressiveness and poor prognosis of Colon Cancer
3.57	3.41	7.26E-04	12	WNT5B	Activator of WNT signalling
3.45	-2.82	9.13E-04	15	CTD-2033D15.2	IncRNA
3.33	-3.95	9.91E-04	3	RP4-555D20.4	IncRNA
2.89	-3.88	7.18E-04	Х	RP11-320G24.1	IncRNA
2.66	1.29	7.26E-04	17	HS3ST3A1	Tumour regulator and prognostic marker in breast cancer.
2.27	5.55	2.10E-04	1	NAVI	Potentiates migration of breast cancer cells
2.25	3.73	7.26E-04	2	CHN1	Actin dynamics in cell migration
2.15	3.41	7.26E-04	15	GPR176	Orphan G-protein-coupled receptor that sets the pace of circadian behaviour
1.95	6.25	2.58E-04	4	SEPT11	Septin 11
1.73	5.81	9.57E-04	6	TRAM2	Putative metastatic factor for oral cancer
1.50	3.88	9.57E-04	2	SERTAD2	Promotes oncogenesis in nude mice and is frequently overexpressed in multiple human tumours.

Genes differentially upregulated in sarcomatoid and mixed histology compared to epithelioid. *P* values are adjusted for multiple comparisons (false discovery rate <0.05).

Supplementary_Table 5. Correlation of SUFU and immune function genes and replication

NCMR n=35	S	UFU	P	TCH2	P	ГСН1	CR1		KLRD1		PD-L1	
PTCH2	-0.38	2.5E-02										
PTCH1	-0.37	3.1E-02	0.75	1.7E-07								
CR1	0.50	2.2E-03	-0.59	1.8E-04	-0.41	1.4E-02						
KLRD1	0.37	2.9E-02	-0.60	1.4E-04	-0.52	1.3E-03	0.56	5.1E-04				
PD-L1	0.10	5.8E-01	-0.39	2.2E-02	-0.44	8.1E-03	0.35	4.1E-02	0.37	2.8E-02		
VISTA	0.61	1.1E-04	-0.52	1.3E-03	-0.41	1.3E-02	0.43	1.0E-02	0.68	7.5E-06	0.09	6.1E-01
TGCA-Meso 1	n=86											
PTCH2	-0.08	4.6E-01										
PTCH1	0.09	3.9E-01	0.77	2.2E-16								
CR1	-0.04	7.1E-01	-0.09	4.1E-01	-0.11	3.4E-01						
KLRD1	-0.04	7.0E-01	-0.36	6.2E-04	-0.33	1.9E-03	0.41	7.9E-05				
PD-L1	-0.26	1.7E-02	-0.22	4.0E-02	-0.30	5.5E-03	0.35	8.1E-04	0.40	1.7E-04		
VISTA	0.25	2.1E-02	-0.47	5.9E-06	-0.25	2.2E-02	-0.06	5.9E-01	0.37	4.8E-04	-0.09	4.0E-01
Bueno et al. n	=211											
PTCH2	-0.22	1.4E-03										
PTCH1	-0.16	1.8E-02	0.71	2.2E-16								
CR1	0.30	9.6E-06	-0.20	2.9E-03	-0.23	7.9E-04						
KLRD1	0.26	1.1E-04	-0.37	3.1E-08	-0.35	2.4E-07	0.49	7.1E-14				
PD-L1	-0.08	2.3E-01	-0.16	1.7E-02	-0.31	6.0E-06	0.42	2.8E-10	0.38	1.2E-08		
VISTA	0.27	5.6E-05	-0.36	6.0E-08	-0.27	8.3E-05	0.06	3.9E-01	0.36	6.8E-08	-0.06	3.5E-01
Combined stud	dies											
PTCH2	-0.21	9.96E-05										
PTCH1	-0.14	1.20E-02	0.73	<2.2E-16								
CR1	0.16	3.53E-03	-0.17	2.23E-03	-0.15	6.87E-03						
KLRD1	0.14	9.81E-03	-0.33	6.71E-10	-0.28	3.33E-07	0.55	<2.2E-16				
PD-L1	-0.09	8.96E-02	-0.18	7.87E-04	-0.28	3.31E-07	0.42	1.78E-15	0.42	1.33E-15		
VISTA	0.33	6.93E-10	-0.42	2.00E-15	-0.32	3.81E-09	-0.06	2.66E-01	0.22	5.59E-05	-0.11	5.50E-02

Pearson correlations between abundances of Hedgehog pathway transcripts *SUFU*, *PTCH1*, *PTCH2* and transcripts related to immune checkpoints. The official gene names for PD-L1 and VISTA are *CD274* and *VSIR*, respectively. Results are shown for the present study, two previous investigations and for all studies combined. Two sided-*P* values are shown in italics throughout.

Supplementary_Table 6. Genes differentially up-regulated in *BAP1* mutated tumours

Log2 Fold Change	Average Expression	Adjusted P Value	Chr	Name	Description
6.09	4.33	1.88E-02	20	NNAT	Marker of poor outcome in many cancers
3.60	1.47	7.77E-03	16	NECAB2	Neuronal calcium-binding protein that binds to adenosine A(2A) and metabotropic glutamate type 5 receptors
3.20	3.51	4.77E-02	22	TAFA5	Postulated to function as brain-specific chemokine or neurokine
2.70	2.43	1.88E-02	21	PDE9A	Phosphodiesterase 9A
2.36	1.68	4.77E-02	10	RET	Tyrosine kinase receptor leading to oncogenic signalling that is targetable with anti-RET multikinase inhibitors
1.85	4.08	4.77E-02	19	HSD17B14	Hydroxysteroid 17-beta dehydrogenase 14

Supplementary_Figure 1. Analytical structure

a) Summary of samples used in each analysis; b) Venn diagram showing overlapping of samples used in WES, SNP genotyping and targeted capture sequencing (please refer to Supplementary File 2- Table1 for further details); c) Sankey diagram on histological subtype and patients` gender; d) Kaplan-Meier survival curves on histological subtypes

Supplementary_Figure 2. Oncoplot from targeted sequencing panel

Oncoplot summarizing results from the targeted capture gene panel sequencing. Genes are arranged at the bottom from the most frequently mutated to the least. Three panels shown on the left-hand side represent histologic subtype (epithelioid, biphasic and sarcomatoid) age and gender. The bar plot on the top, shows the number of patients found to harbour mutation in the respective gene.

Supplementary_Figure 3. Mutation characteristics

a) Summary of mutation spectrum observed for genes from targeted capture sequencing panel; b-d) Distribution of mutations in *BAP1*, *NF2*, and *TP53*; e) Mutational signature in 21 paired mesothelioma samples analysed by WES; f) Mean percentage contribution for COSMIC signatures in the WES: red bars indicate signatures associated with DNA damage; g) Mutational signature in 19 patient-derived PM cell lines from WGS; h) Mean percentage for COSMIC signatures in each cell line; i) Tumour mutation burden (TMB) derived from targeted capture sequencing of 57-gene panel and hence abbreviated as 'Surrogate TMB', in 77 paired samples. Briefly, all somatic SNVs or, InDels observed per sample, across the gene-panel are summed to derive surrogate TMB.

Copy-number profiles from SNP array (NCMR, n=30) (panels a, c and e) or WES (Bueno *et al.*, n=98) (b, d and f). were correlated with gene expression from RNA-sequencing. Homozygous vs. heterozygous deletions of *RB1* and *SUFU* loci could be predicted from SNP array data, but we could not discriminate homozygous vs. heterozygous amplification of *RASSF7*. In the Bueno *et al.* WES data only presence or absence of CNAs could be determined. Kruskal-Wallis tests were applied to compare expression differences between three classes, and two classes were compared by Mann-Whitney tests. In each case the Bueno *et al.* results confirm the presence of correlations between CNA status and transcript abundance.

Supplementary Figure 5. Oncoplot for WGS of mesothelioma primary cells

Oncoplot showing alterations in mesothelioma in whole-genome sequenced primary cell lines (19 mesothelioma and one mesothelial primary cell).

Supplementary_Figure 6. Effect of mutations in DNA damage repair related genes

chr2:48030691_CT->C ENST00000234420.5:p.Phe1104LeufsX11 *MSH6* somatic loss-of-function chr13:32954022_CA->C ENST00000544455.1:p.Thr3033LeufsX29 BRCA2 germline loss-of-function

a and b) IGV (Integrated Genome Viewer) snapshots of matching genomic positions in patient tumour and the paired germline whole-exome sequencing (WES) BAM files. Upper panel shows coverage for the variant locus in the germline and the lower panel shows coverage for the same in the paired tumour sample. a) is from a patient with somatic MSH6 loss and b) is from a patient with germline BRCA2 loss. c) Somatic mutational load in tumours undergoing WES: BRCA2 and MHS6 mutations are at the extreme of the load spectrum

Supplementary_Figure 7. Response of mesothelioma primary cells to tested drugs.

a) Schematic representation showing mutations and copy-number alterations status in the analysed mesothelioma primary cells and (commercially available) cell lines; b) Characterisation by Western blot of endogenous levels of RB, BAP1, Merlin (NF2), PTCH2, SUFU and p16 (CDKN2A) in primary cells and cell lines (original, unprocessed and uncropped blots are shown in Supplementary Figure 8); c-h) Sensitivity dose curves for patient-derived PM primary cells and cell lines against eight compounds. Standard errors of the mean are shown as bars. Dashed line mark indicates 50% inhibition by the drug

Supplementary_Figure 8. Original, uncropped and unprocessed blot images

Western blot for a) p16 (upper image) and for beta-actin (bottom image). Same full-length blot was probed first for p16, then stripped (with Restore Stripping Buffer, Thermo Scientific) and probed for beta-actin; b) PTCH2 (upper image) and beta-actin (bottom image). Two PTCH2 antibodies were tested. Same full-length blot was probed first for PTCH2 (first antibody, failed), then stripped (with Restore Stripping Buffer, Thermo Scientific) and probed for beta-actin. Different blot sizes are due to blot (upper image) being cut to the desired size before second stripping and probing with the second PTCH2 antibody (shown in the image); c) Merlin (upper image) and beta-actin (bottom image). The full-length blot was first cut to the desired sizes before being probed with specified antibodies; d) RB (upper image) and beta-actin (bottom image). The full-length blot was first cut to the desired sizes before being probed with specified antibodies; e) BAP1 (beta-actin blot not included); f) SUFU (beta-actin blot not included).

Samples indicated as Sample 1-5 in panel c and d or Sample 1 in panel e and f are neither included in this article nor in Supplementary Figure 7b. Marker used – Novex Sharp pre-stained protein standard (Thermo Fischer Scientific).

In Supplementary Figure 7b, a representative image of beta-action is shown.