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Abstract: Mini-Mental State Examination (MMSE) is used as a diagnostic test for dementia to screen a
patient’s cognitive assessment and disease severity. However, these examinations are often inaccurate
and unreliable either due to human error or due to patients’ physical disability to correctly interpret
the questions as well as motor deficit. Erroneous data may lead to a wrong assessment of a specific
patient. Therefore, other clinical factors (e.g., gender and comorbidities) existing in electronic health
records, can also play a significant role, while reporting her examination results. This work considers
various clinical attributes of dementia patients to accurately determine their cognitive status in
terms of the Mini-Mental State Examination (MMSE) Score. We employ machine learning models
to calibrate MMSE score and classify the correctness of diagnosis among patients, in order to assist
clinicians in a better understanding of the progression of cognitive impairment and subsequent
treatment. For this purpose, we utilize a curated real-world ageing study data. A random forest
prediction model is employed to estimate the Mini-Mental State Examination score, related to the
diagnostic classification of patients.This model uses various clinical attributes to provide accurate
MMSE predictions, succeeding in correcting an important percentage of cases that contain previously
identified miscalculated scores in our dataset. Furthermore, we provide an effective classification
mechanism for automatically identifying patient episodes with inaccurate MMSE values with high
confidence. These tools can be combined to assist clinicians in automatically finding episodes within
patient medical records where the MMSE score is probably miscalculated and estimating what
the correct value should be. This provides valuable support in the decision making process for
diagnosing potential dementia patients.

Keywords: dementia; mini mental score examination; machine learning; classification; regression;
random forest; predictive models

1. Introduction

There are more than 8.7 million people across Europe living with dementia (Mapping-
dementia-friendly-communities-across-europe https://ec.europa.eu/eip/ageing/library/
mapping-dementia-friendly-communities-across-europe_en.html (accessed on 28 July 2021)).
With an ageing population and no effective treatment, this number is set to rise to 152 mil-
lion globally by 2050 (Dementia-number-of-people-affected-to-triple-in-next-30-years https:
//www.who.int/news/item/07-12-2017-dementia-number-of-people-affected-to-triple-in-
next-30-years (accessed on 28 July 2021)), highlighting the huge unmet need for better
managing this condition [1]. The sheer number of people living with the disease and the
direct and indirect costs of providing care and support for them have made dementia
quite challenging.
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The Alzheimer’s disease (AD) and the other neurodegenerative causes of late-life
dementia have become one of the greatest medical challenges of our time. Diagnosis is
quite challenging; it can be difficult to make and in a significant proportion of cases will
be inaccurate. It is common for a diagnosis to be delayed for 2–3 years after symptom
onset [2], and the presence of AD pathology will, on average, prove to be mistaken at
postmortem examination, in as many as 25% of cases [3]. Currently, there are no licensed
treatments that will stop, let alone reverse, the progression of the neurodegenerative
pathologies. In recent years, however, understanding aspects of the biological and clinical
characteristics of dementias has benefited from the ability to interrogate the increasing
quantities of electronic data that exist for this growing patient population.

One example concerns the delineation of the typical pattern of response to one of the
symptomatic treatments (cholinesterase inhibitors) that are licensed for the treatment of
AD, using clinical evaluations recorded in thousands of electronic patient records. These
evaluations included a summary estimate of a patient’s cognitive ability in the form of a
score (out of 30) on a bedside or office-based cognitive test such as the Mini-Mental State
Examination (MMSE) [4] or the Montreal Cognitive Assessment (MoCA) [5].

Given the progressive nature of AD, it can be assumed that the score achieved by
a given patient will remain unchanged for a variable length of time after the diagnosis
has been made, and then gradually worsen. When the latter occurs, the score obtained
at time t will usually be lower than the score at time t − 1. Other than in patients who
enjoy a particularly strong therapeutic effect from cognitively-enhancing drugs such as
acetylcholinesterase inhibitors [6], it is almost never the case that a patient’s score on the
MMSE undergoes a significant increase between two assessments. Moreover, the longer the
interval between assessments, it is negative change rather than stability that is the expected
pattern of change. Perera et al. [7] found that, other than in patients who started with
MMSE scores of 10 or less, the improvement in MMSE score after starting a cholinesterase
inhibitor seldom exceeded 5 points, and that the trajectory returned to progressive decline
after as little as six months of treatment.

While knowledge of these trends may be helpful to individual clinicians when asked
for a prognosis, and to health economists, epidemiologists and policymakers when con-
sidering the burden of the disease on society, their applicability depends crucially on the
accuracy of the recorded MMSE data. Such an assumption would, however, be unsafe
given the tendency for such clinical instruments to be used and scored in different ways
by different clinicians, not to mention for accidentally erroneous values to be entered in
the record. Therefore, a challenge that arises in the interpretation of big data such as
electronic patient records (EPR) is the identification of clinical episodes where the MMSE
score has been incorrectly calculated or inaccurately recorded. Previous work [8] supports
the assumption of a set of baseline rules for better identifying diagnostic inaccuracies,
based on the differences between MMSE scores obtained on consecutive episodes of as-
sessment. A more advanced approach, however, could attempt to identify an inaccurate
MMSE using features associated with an individual episode. A further challenge is to also
investigate whether the MMSE score values can be correctly and effectively predicted using
information from electronic health records.

This paper employs machine learning models to attempt an accurate MMSE score
prediction, based on a set of clinical, molecular (e.g., APOE type), and demographic features
associated with each patient episode. The main aim of this prediction is to determine
whether instances of specious and/or inconsistent documentation of MMSE scores, which
are frequently documented in clinical records, can be identified and corrected. In the setting
of the current experiments, a patient’s MMSE score was defined as erroneous if one of a
number of conditions are met. These conditions, based on a priori assumptions derived
from the clinical experience of one of the authors (PG), were as follows: if the change in
MMSE value between two consecutive episodes of testing either (a) increased by more
than five points during any interval up to a year, (b) increased by three or more points
between the first and second years after diagnosis, or (c) increased by any number of points
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over an interval greater than 2 years, an erroneous MMSE score had been documented.
The solution to the aforementioned problem entails two steps. First, these rules are used
to isolate the assessments at which erroneous MMSE scores are recorded from those in
which the value of the MMSE score is plausible. Secondly, to train and test an MMSE score
prediction model to determine what proportion of miscalculated cases are replaced by a
predicted MMSE value, and what proportion of the scores presumed to be correct are left
unchanged by the prediction model.

We hypothesise that the MMSE test and other clinical factors reported in electronic
health records represent rich sources of information for cognitive assessment and AD
severity. Built on this hypothesis, the predictive capacity of machine learning algorithms
is exploited to forecast the MMSE value of a patient in a clinical episode and to classify
if the patient is misdiagnosed or not. The accuracy of these models is experimentally
assessed, and the observed results provide evidence of the importance that the clinical
conditions have on the AD assessment. Further clinical interventions are required to
validate the assumptions that guided our work. Nevertheless, the analytical validation
based on traditional metrics that measure the accuracy of the predictive models, indicates
that these results are promising and strengthen the premise that a holistic evaluation
of a patient is required for an accurate diagnosis. Although several approaches in the
literature report the use of machine learning on combined datasets that include MMSE test
and other clinical factors [3,9–11], to the best of our knowledge, the predictive problems
stated in this paper have not modelled with machine learning models trained over the
OPTIMA dataset [2,12,13]. Thus, this work not only evidences the role of machine learning,
but represents a novel contribution to the portfolio of accurate tools to support clinicians in
the challenging task of diagnosing dementia patients.

The principal stages of this work are summarised as below:

• Cleaning and curating data from a real-world ageing study, based on certain rules,
to test and validate meaningful predictions.

• A prediction (Regression and Classification) model that provides MMSE score estima-
tions for patient episodes, based on various features of those episodes, and identifies
the most important features for calculating the MMSE value.

• A prediction model that classifies patient episodes with erroneous MMSE scores,
based on other clinical features associated with the episode.

The paper is structured as follows: the current Section 1 introduces the background
and motivation of the work. Section 2 presents recent related work on dementia diagnostic
models and MMSE score predictions, while Section 3 formulates the problem addressed
and analyses the methods employed in this work. Lastly, Section 4 presents the OPTIMA
dataset [2,12,13], cleaning and curation process, the experimental results and their evalua-
tion on our dataset, Section 5 covers discussion about our approach and Section 6 concludes
the current and future work.

2. Literature Review
2.1. Mini-Mental State Examination

The MMSE was first introduced in 1975 [4] as a clinical approach to quantifying the
cognitive status of patients with suspected neuro-degenerative dementias. Its diagnostic
properties have been replicated in a number of studies, both in its original English format
and after adaptations for use in other languages. It has since been adopted as a routine
component of the cognitive assessment of patients with Mild Cognitive Impairment (MCI)
or AD, in the context of both clinical evaluation and research studies. A rival method of
screening for and evaluating patients with dementia is the Clock Drawing Test (CDT) [14].
The CDT provides a simple scoring system for the rapid screening of cognitive impairment
in patients with MCI and Dementia [15].

The MMSE has also become the most popular and widely used screening instrument
in dementia [10], with the cutoff of 26 being defined as distinguishing cognitively nor-
mal people from those with incipient or established dementia. A value of 27 is used in
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subpopulations with high levels of education [16]. The MMSE can also be used to delin-
eate the different stages of AD, with a score of 20 to 24 suggesting mild dementia, 13 to
20 suggesting moderate dementia, and less than 12 indicating severe [17].

The MMSE has good sensitivity and specificity across all age and educational groups [18].
In contrast, the Montreal Cognitive Assessment (MoCA), an alternative brief cognitive
screening tool, which is also scored out of 30, may be more sensitive at discriminating MCI
and Alzheimer’s Disease, but has lower specificity, misclassifying more cognitively normal
elderly controls than the MMSE [5]. MMSE has been also validated in dementia other than
AD—e.g., dementia with Lewy Bodies and Parkinson’s disease dementia [19]—and has
neurophysiological correlates: a recent study [20] found that a combination of the peak
latency of the p300 component of an event-related potential, and the power associated
with the alpha frequency of the electroencephalogram, together with age and years of
education, were able to predict the MMSE score with an accuracy of three points. Arevalo-
Rodriguez et al. [8] studied the role of MMSE as a predictor of which patients diagnosed
with the prodromal syndrome of MCI would go on to develop dementia. Although a one-
off test score is unlikely to have much predictive power to answer this question, monitoring
the rate of change over time may be more informative, suggesting that the role of repeated
MMSE measurements could prove more informative than single baseline scores. A review
by Creavin et al. [21] also attempted to determine the diagnostic accuracy of MMSE at
various cut points for dementia in people aged 65 years and over. The authors concluded
that MMSE contributes to a diagnosis of dementia in low prevalence settings, but should
not be used in isolation to confirm or exclude disease. It was also proposed that it would
be important for future investigators to understand whether administering the MMSE
changes patient-relevant outcomes.

Most of the above work will have been conducted prospectively, using dedicated test
protocols carried out by trained individuals, and therefore not likely to contain inaccuracies.
However, the power and versatility of the MMSE is such that values recorded in electronic
patient records, and therefore available as a component of big data resources, could be
exploited to interrogate a variety of clinical and biological questions from a fresh perspec-
tive. Such values are, however, typically obtained during clinical visits, often under time
pressure, and by individuals with different approaches to testing and scoring, and therefore
may be subject to variability and/or inaccuracy.

In this paper, we report work investigating serial MMSE tests in a cohort of patients
at various stages of dementia, in order to identify instances of misdiagnosis in the form
of MMSE score miscalculations. We use the patients’ histories, along with lifestyle, demo-
graphic and other features [3] to build machine learning classification models to predict
the MMSE scores and correct the ’misdiagnosed’ cases, without significantly affecting the
values recorded in the correct episodes.

2.2. Cognitive Assessment Using Machine Learning

There are a number of current controversies in machine learning (ML) that may be
relevant to the present work. According to Flaxman and Vos [22], developing machine
learning approaches requires a broad range of experience and clinical correlation. ML
techniques remain constrained by issues of fairness, accountability, transparency, privacy,
explainability, and causal inference. Finally, the performance of ML models is mostly
influenced by the dataset’s size and heterogeneity [23].

Based on the Korean Dementia Screening Questionnaire (KDSQ) and the MMSE, a ma-
chine learning algorithm (logistic regression) was used to diagnose cognitive impairment
utilizing 24 variables including education, sex, age, and hypertension [11]. The MMSE-
based model predicted cognitive impairment better than the KDSQ-based model. Aram
So et al. [9] employed neuropsychological and demographic data to predict normal, mild
cognitive impairment (MCI) and dementia using naive Bayes, Bayes network, bagging,
logistic regression, random forest, support vector machine (SVM), and multi-layer percep-
tron (MLP) machine learning classification models. They claimed that it improved existing
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clinical practice by quickly, inexpensively, and reliably detecting dementia at an early stage,
as well as increasing screening accuracy. In this paper, we review machine learning models
that are used to handle classification problems involving cognitive impairment utilising
clinical features.

2.3. Random Forest

The random forest model has received a lot of attention in recent years for its effec-
tiveness on classification and regression issues in a variety of scientific domains (e.g., bioin-
formatics, genetics) [24–26]. This model outperforms other supervised machine learning
models when dealing with overfitting, noisy non-linear, high-dimensional, and multi-
modal data (e.g., SVM, logistic regression, naive Bayes) [27].

Velazquez et al. [28] applied a random forest model to predict early conversion of mild
cognitive impairment (MCI) to Alzheimer’s Disease (AD) based on clinical features. They
also adopted oversampling to resolve class imbalance before training and achieved high
accuracy (93.6%) with a random forest model for the prediction task. Because the random
forest model was able to distinguish between both groups, it outperformed the other
classification model, SVM. In another machine learning classification task, random forest
algorithm was successfully applied on multi-modal neuroimaging data for the prediction
of Alzheimer’s disease instead of using other supervised machine learning algorithms [29].
It demonstrated how well the random forest model performed on high-dimensional, multi-
modal data, and it was able to collect complementary information across modalities. We
tested a variety of classification models, but the random forest model surpassed other
machine learning models empirically.

3. Problem & Approach

In this section, we define the MMSE miscalculation problem and the approaches taken
to address it.

3.1. Problem Statement

The Mini-Mental State Examination (MMSE) is used in clinical research studies to
assess the degree of cognitive impairment [8] that has resulted at a given point in time
from a dementia-causing condition. It is expressed as a score, with a maximum of 30, based
on a patient’s ability to answer questions that make demands on different categories of
cognitive ability, such as orientation in time and place, use of words, attention, calculation,
and both short term and long term memory [30]. The score achieved on the MMSE has
been conventionally used to place a patient in one of four categories of cognitive ability,
namely: cognitively normal, mild dementia, moderate dementia and severe dementia [4].
In a patient with dementia due to the Alzheimer’s disease, the score becomes progressively
lower as the disease progresses [31]. However, the accuracy with which a patient’s MMSE
measurement is either measured, recorded or documented, is compromised. Such inaccu-
racies may occur for multiple reasons, including the patient being without hearing aids or
glasses, a transient motor problem, low motivation, or even an inadequate rapport with
the administering clinician [32]. Miscalculations become evident when a patient’s MMSE
is recorded serially, and an unexpected increase or decrease in the recorded MMSE score.

By searching for instances in which one of the a priori criteria for a miscalculation is
met, MMSE scores may be classified as being either inaccurate (“misdiagnosed = YES”) or
accurate (“misdiagnosed = NO”). This classification indicates whether the patients have
been correctly diagnosed, in the sense of whether the MMSE score has been miscalculated
or erroneously recorded in any of their documented assessments. In our case, the problem
we aim to address is twofold: (a) MMSE Prediction: use those features to predict the
MMSE scores for each patient episode, in order to correct misdiagnosed cases (by replacing
miscalculated scores with more reasonable predicted values). (b) Classification problem:
predict the class (“misdiagnosed = YES”/“misdiagnosed = NO”) of patients using patient
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clinical record features including MMSE features from the OPTIMA dataset [2,12,13].
Machine learning predictive models address these problems.

3.2. Approach and Metrics
3.2.1. Baseline-MMSE Calculation Using Rule-Based Approach

To address the problems defined in Section 3.1 for a set of patient medical records, we
must first determine a baseline for misdiagnosis. In the present study, this was done using
a hand-crafted rule that is based on the experience and observations of the medical expert
(PG) in the course of assessing and treating patients with similar conditions. The hand-
crafted rule is based on the identification of MMSE score changes over time that are likely
to indicate a misdiagnosis. The rule is defined as follows:

A patient is designated as being in the “misdiagnosed = YES” class if the change in two
consecutive MMSE values of the patient’s episodes satisfies one of the following conditions:

1. MMSE-CHANGE > 5 in Episode-Interval ≤ 1 year;
2. MMSE-CHANGE ≥ 3 in Episode-Interval (1, 2) year;
3. MMSE-CHANGE ≥ 0 in Episode-Interval ≥ 2 years.

If none of the above conditions obtains, the patient falls into the “misdiagnosed = NO”
class. Albeit empirically defined, this rule is supported on the clinical experience.

3.2.2. Predictive Models

Our goal is to improve the baseline accuracy of ‘misdiagnosis’, occurring due to
the imprecise nature of the MMSE measurements, by employing machine learning-based
predictive models. In supervised machine learning, a decision tree algorithm is widely used
as a predictive modelling approach due to its explainability. The decision tree algorithm
(such as ID3 [33], C4.5 [34] and CART [35]) is a white box method which learns the decision
rules from data features and predicts the value of the target variable [33]. However, very
complex trees (due to complex decision rules) do not generalize the data well and tend to
overfit. In addition, individual decision trees suffer from high variance [36].

We also perform experiments with other supervised machine learning models such as
SVM, MLP and logistic regression. Nevertheless, we keep our focus on the random forest
model (advantages and applications are mentioned in the literature review Section 2) for
experiments due to unsatisfactory results from other models. Our all predictive models
implement an ensemble learning method implemented by the random forest model, which
utilizes different decision trees over sub-samples of the dataset [37]. The decision of the
algorithm uses the average of results provided by different decision trees. Besides, using
the decision tree algorithm over a sub-sample of a dataset helps random forest to control
over-fitting [36]. In our experiments, we make use of two predictive modelling approaches
to deal with the high imbalance of the classes. We discuss in detail how the first model
utilizes the majority class and the problems associated with the second predictive model
due to class imbalance. The predictive models are described as follows:

• Regression and Classification Model: The regression model attempts to predict the
MMSE value of a patient’s episode, based on various input features, provided in
Listing A1. The regression model is trained using an ensemble learning of random
forest Regressor. Then, the difference between predicted MMSE value and previous
episode MMSE value in the given episode-interval is used to decide the class of
each patient (misdiagnosed = ‘YES’/‘NO’), as mentioned in the hand-crafted rules of
Section 3.2.1.

• Classification Model: The random forest classification model simply attempts to
predict the class (misdiagnosed = ‘YES’/‘NO’) of patients, based on the various input
features, provided in Listing A1. We also deal with the imbalance of the two classes in
the dataset to avoid classification error towards minority class.
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3.3. Evaluation Metrics

Accuracy is a heuristic statistical performance measure [38] for the classification
problems. It is simply a ratio between correctly predicted instances divided by the total
number of instances. However, it does not reflect the actual performance of the model when
there is an uneven class distribution. In addition, it does not give detailed information
regarding the performance of the model to the problem. Therefore, to measure the actual
performance (validity of results and completeness of results) of the predictive models, we
choose all performance measures precision, recall, f1-score, and accuracy. When evaluating
classification models, the precision of a class is the number of true positive predictions,
divided by the total number of records predicted as belonging to this class, representing a
kind of “confidence” for predictions of this class. A recall is the number of true positive
predictions divided by the real number of records of this class, representing the model’s
ability to find all records of the class. The metric of f1-score provides a weighted average
of precision and recall to seek balance between precision and recall. It takes both false
positives and false negatives into the account.

For example, when classifying patients in the “misdiagnosed = YES” class described
in Section 3.2.1, precision is the ratio of correctly predicted “misdiagnosed = YES” class
patients episodes to the total patient’s episodes predicated as “misdiagnosed = YES”.
On the other hand, recall is the ratio between correctly predicted “misdiagnosed = YES”
class patients episodes to all patients episodes labelled as the “misdiagnosed = YES”
class originally. We repeat the same measures for patient’s episodes classified in the
“misdiagnosed = NO” class.

4. Experiments and Results Analysis

In this section, we explain the experimental settings of the predictive models, and we
describe the dataset employed along with the cleaning and pre-processing steps.

4.1. Dataset

The OPTIMA [2,12,13] project, which was active from 1988 until 2008, was a longi-
tudinal cohort study of ageing and dementia, recruiting individuals aged over 70 with
either normal or mildly impaired cognition, and taking annual measurements of physical,
metabolic, imaging, clinical, and cognitive indices until death. Most participants agreed
to allow their brains to be examined post-mortem to confirm the cause of the underlying
dementia (if present) or the absence of pathological change (if no dementia). The aim was
to gain insights into the factors predisposing to dementia, in order to optimise preventive
strategies and guide the development of new treatments. The OPTIMA dataset includes,
for each patient, a medical history, results from physical examinations, neuropsychologi-
cal assessments, blood test results relevant to the major organs, vitamin levels and other
metabolic indices, and brain scans (CT, MRI, and fMRI). The OPTIMA dataset, used in
this study, was received in January 2019. It consists of 1035 distinct patients with 9584
recorded episodes and their features. Moreover, the dataset contains unique patient IDs,
with each ID and episode date allowing unique identification of a each assessment of a
given patient’s condition over time. Each episode is linked to 1593 different features of the
types outlined above. The medical observations at each visit cover the patient’s health and
well-being, the findings of cognitive and physical exams, and any concurrent medical (e.g.,
cardiovascular) conditions. In addition, the patients’ MMSE scores are presented in sequen-
tial episodes to quantify their cognitive assessment in a principled manner. On the basis
of qualitative and quantitative analysis, as well as the importance of attributes (various
related works for selecting features [3]), we selected the most relevant features to train our
predictive models.

Attributes with large numbers of missing values can be filled using relevant attributes
from other episodes. For example, height and weight are used to replace missing BMI
feature values. Some attributes values are life-long and cannot be altered in other patient
episodes, so they are also filled using values for past (or future) episodes. For instance,
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the gender attribute of a patient is more constant throughout life generally, and can therefore
be filled in all cases using a past or future episode record of the patient. Moreover, attribute
values that do not show an unexpected change over a period during a patient’s history can
be also filled using values recorded in other episodes. Previous studies have shown that
demographics, present fitness status, life-style, education-level, social-life and working
conditions play a significant role in cognitive diseases [3]. We therefore include these
attributes in the training of our predictive model, before data cleaning and pre-processing.
Attributes with a notable number of missing values are removed from the attribute list.

4.2. Dataset Cleaning and Preprocessing

As a preliminary step, we eliminate all the patients’ episodes from the dataset whose
MMSE values are outside the standard MMSE examination score range [0, 30]. Second, we
only include patients who have been diagnosed with MCI in one of their first episodes
(this can be determined using the feature “Petersen MCI==1” in each episode). It serves
as a starting point for calculating episode intervals in the patient’s episode classification
using hand-crafted rules. Only 1104 episodes from the patients can be categorised when
all the facts are taken into account. In detail, patients episodes are classified into two
classes by utilizing the predefined hand-crafted rule of Section 3.2.1, “misdiagnosed = YES”
(971 patients) and “misdiagnosed = NO” (133 patients) out of 1104 episodes. Missing
values in the features of the patients are imputed as described in Section 4.1. We transform
ordered categorical features by applying ordinal encoding (e.g., size as Small, Medium,
Large to integer values 0, 1 and 2, respectively), non-ordinal categorical features by utilizing
one-hot encoding (https://scikit-learn.org/stable/modules/preprocessing.html (accessed
on 28 July 2021)) and keep numerical features in their original form. Finally, we perform
model training with the list of selected features provided in the Listing A1.

4.3. Experiments

In this section, we present the experimental settings and evaluate the results of the
predictive models for each problem. Problems (a) and (b) are addressed using the two
supervised machine learning models introduced above: a regression and classification
model, and a simple binary classification model.

4.3.1. Regression and Classification Model

Initially, we train our regression model only using “misdiagnosed = NO” class data
instances to be able to efficiently predict the MMSE score values. To optimise the model
testing process on balanced classes (“misdiagnosed = “NO”/“YES””), we split the “mis-
diagnosed = NO” cases set into 5 folds. Each time, 4 different folds are used for training
and the remaining one is merged with 133 data points of “misdiagnosed = YES” class for
testing. This procedure is repeated five times, considering a different fold of “misdiagnosed
= NO” class with the 133 "misdiagnosed = YES" class cases each time. This dictates that the
regression will be tested using all possible cases of “misdiagnosed = NO” class, in order to
ensure the data is thoroughly examined. After each repetition, predicted MMSE values
of the data points are used to instantiate the baseline rule by experts (Section 3.2.1) and
re-assess their classes (“misdiagnosed = “YES”/“NO””). The performance of the predictive
model is summarized in Tables 1 and 2, in terms of classification results (based on the
original classification of MMSE scores) and confusion matrices, respectively. The average
of all obtained matrices after five training repetitions is used to compute the average
classification report and confusion matrix.

Result Analysis

As explained, the main objective of this model is to produce accurate MMSE score
predictions that can be used to replace previously miscalculated MMSE values in “misdi-
agnosed = YES” cases. However, since the predicted scores must be applied in correctly
diagnosed episodes as well, they should approach the correct MMSE values, in order not

https://scikit-learn.org/stable/modules/preprocessing.html
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to seriously affect the new classification of those cases. Thus, we first train the regression
model, in order to learn the approximate function to predict “misdiagnosed = NO” pa-
tient’s MMSE values, and thus, minimise the regression error for “misdiagnosed = NO”
and maximise for the “misdiagnosed = YES” patients.

Table 1 demonstrates that for originally “misdiagnosed=YES” cases, the resulting
classification has a low recall and significantly high precision in average for all folds.
The low recall score means that the regression model manages to “correct” more than half
of the 133 originally misdiagnosed cases (77.6 Original:YES/Predicted:NO in average) as
shown in Table 2. Thus, an significant percentage of previously misdiagnosed episodes,
now have a more realistic MMSE score provided by our model.

Table 1. Classification report after 5 repetition of model training and testing.

Average Classification Report

Precision Recall f1-Score Support

NO 0.71 0.98 0.82 194.2
YES 0.93 0.42 0.58 133

accuracy 0.75 327.2
macro avg 0.82 0.70 0.70 327.2

weighted avg 0.80 0.75 0.72 327.2

Table 2. Average confusion matrix.

Predicted Class

YES NO

Original Class

YES
Orig:YES Orig:YES
Pred:YES Pred:NO

55.4 77.6

NO
Orig:NO Orig:NO
Pred:YES Pred:NO

4.2 190

On the other hand, only a few originally correct cases out of 133 are now classified
as misdiagnosed, based on the predicted MMSE scores (4.2 Original:NO/Predicted:YES
on average). This is also demonstrated in the high recall of the “misdiagnosed = NO”
cases. This observation means that 98% of the correct diagnosis cases did not turn into
“misdiagnosed = YES” using the predicted MMSE scores. Therefore, the model has managed
to correct a significant number of previously “misdiagnosed = YES”, whilst not seriously
affecting the “misdiagnosed = NO” class.

Important Features

Many attributes may impact the course of the predictive model. However, we illustrate
the most important features in Table 3. As expected, most of these variables are related
to individual aspects of the MMSE examination, and therefore, directly influences the
prediction of MMSE value. We also illustrate other important features in Table 4 that are
not related to the MMSE score questionnaire. These are also important, as they are the
parameters highly contributing to the MMSE score estimation, without being directly part
of the examination.

4.3.2. Classification Model

This predictive model is implemented using a random forest classifier with the default
parameter 5-fold-cross validation. In each iteration (total five iterations), the model is
trained on 4 folds of the data and tested on 1 fold. Finally, we merge all predicted classes
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to return the final result. In this series of experiments, we decided to employ oversam-
pling [39] and undersampling [40] algorithms for solving the imbalance between the two
classes of the dataset, to avoid unwanted side effects on the classification results. Since most
of the classification algorithms are designed around the assumption of an equal number
of instances for each class, imbalance may cause these models to be overwhelmed by the
majority class and ignore the minority class.

Table 3. Important Feature list for identifying misdiagnosed patients.

COGNITIVE EXAM: IDENTIFIES DAY OF WEEK
COGNITIVE EXAM: IDENTIFIES MONTH

COGNITIVE EXAM: IDENTIFIES YEAR
COGNITIVE EXAM: IDENTIFIES COUNTY

COGNITIVE EXAM: COMPREHENDS RADIO
COGNITIVE EXAM: NUMBER OF ANIMALS LISTED

COGNITIVE EXAM: NUMBER OF ANIMALS LISTED: SCORE
COGNITIVE EXAM: REGISTERS OBJECTS 3: PENNY

COGNITIVE EXAM: RECALLS OBJECTS
COGNITIVE EXAM: RECALLS OBJECTS 1: APPLE

COGNITIVE EXAM: WRITES A SENTENCE
COGNITIVE EXAM: PRAXIS PAPER

COGNITIVE EXAM: PRAXIS PAPER: ON LAP

Table 4. Important Feature list for identifying misdiagnosed patients other than MMSE related questions.

ANXIETY/PHOBIC
CAMCOG REMOTE MEMORY SCORE

CERBRO VASCULAR DISEASE PRESENT
CLINICAL BACKGROUND: BODY MASS INDEX

DEPRESSIVE ILLNESS
DIAGNOSTIC CODE

EST OF SEVERITY OF DEPRESSION
EST SEVERITY OF DEMENTIA

PRESENT STATE: MEMORY PROBLEM

Therefore, the evaluation of the model uses different distribution of classes by em-
ploying the following imbalance algorithms:

• Original-dataset: There are no changes in the dataset regarding the imbalance of the
classes.

• Oversampled-dataset: It is oversampled by the minority class (“misdiagnosed = YES”)
data-points using the Synthetic Minority Oversampling Technique (SMOTE) [39].
The idea of the algorithm is to generate new data points for the minority class “misdi-
agnosed = YES” equal to the majority class “misdiagnosed = NO” for better evaluation
of the model. However, this approach fails due to the very low minority class data-
points.

• Undersampled-dataset: The majority class (“misdiagnosed = NO”) data-points are
undersampled using cluster-centroids algorithm [40]. The idea of the algorithm is
to generate several clusters, calculated by the k-means algorithm, with each cluster
containing similar data. Then, the original data in the same groups are replaced by the
cluster centres, thereby reducing the size of the majority class (“misdiagnosed = NO”).
The outcome of this process provides an equal distribution of classes for better evalua-
tion of the model performance.

• Random-Undersampled-dataset: In this setting, the majority class (“misdiagnosed = NO”)
data-points are undersampled using random points generated by a random-sampler
algorithm. The basic idea of the algorithm is to randomly sample data points for the
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majority class “misdiagnosed = NO” to make it equal to the minority class “misdiag-
nosed = YES”. The outcome of this process again provides an equal distribution of
classes for better evaluation of the model performance.

Result Analysis

Table 5 illustrates the performance of all models in terms of precision, recall, f1-score,
and accuracy.The imbalance of the classes in the dataset plays a significant role in deciding
the performance of the predictive models. The model based on the original dataset suffers
due to the high imbalance in “misdiagnosed = YES” and “misdiagnosed = NO” classes.
It is not able to learn for “misdiagnosed = YES” class (133 data points) due to a very less
number of data points compared to the “misdiagnosed = NO” class (971 data points) in
the original dataset. The second (oversampled dataset) model performs better on the
“misdiagnosed = YES” class compare to the model of original-dataset as a result of the
dense cluster of generated data points for this class. The dense cluster is formed due to
the high similarity between generated data points features or less distance between data
points. Both datasets are affected by the imbalanced distribution of the classes. There is
also a significant difference between the performance of predictive models using datasets
(generated by cluster-centroids and random-under-sampler algorithms) in terms of f1-score
as shown in Table 5.

Table 5. Classification report after different sampling of dataset.

Original Dataset

Precision Recall f1-Score Support

NO 0.88 0.99 0.93 971
YES 0.26 0.04 0.07 133

accuracy 0.87 1104
macro avg 0.57 0.51 0.50 1104

weighted avg 0.81 0.87 0.83 1104

Oversampled Dataset (SMOTE)

Precision Recall f1-Score Support

NO 0.93 0.96 0.94 971
YES 0.96 0.93 0.94 971

accuracy 0.94 1942
macro avg 0.94 0.94 0.94 1942

weighted avg 0.94 0.94 0.94 1942

Undersampled Dataset (ClusterCentroids)

Precision Recall f1-Score Support

NO 0.92 0.91 0.91 133
YES 0.91 0.92 0.91 133

accuracy 0.91 266
macro avg 0.91 0.91 0.91 266

weighted avg 0.91 0.91 0.91 266

Undersampled Dataset (RandomUnderSampler)

Precision Recall f1-Score Support

NO 0.70 0.74 0.72 133
YES 0.72 0.68 0.70 133

accuracy 0.71 266
macro avg 0.71 0.71 0.71 266

weighted avg 0.71 0.71 0.71 266
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Clearly, not all models can accurately address the problem of discriminating episodes
for both classes (“misdiagnosed = NO” and “misdiagnosed = YES”). The results show how
the imbalance in the classes makes it difficult to select the right model, in order to identify
“misdiagnosed = NO” patients among misdiagnosed-YES patients. The best models for
the task at hand seem to be the one using the oversampled dataset (SMOTE) and the
cluster-centroids undersampled (average f1 scores of 0.94 and 0.91, respectively), which
can discriminate episodes effectively for both classes. This high f1-score indicates better
precision and recall of the predictive models. Both models have a high number of true
positives, less false positive & false negative for both classes.

Practically, the results above prove that our model, with the assumption that it has
been trained with many cases for both classes, can accurately identify misclassified MMSE
score cases in patient episodes. To do so, the training data for each episode has to include a
rich number of patient-related parameters, including cognitive tests (such as CAMCOG),
demographic, clinical and other variables.

5. Discussion

The experiments presented in this study illustrate the predictive value of demographic
features combined with past measurements of specific aspects of a cognitive examination
(the MMSE) in the effective prediction of a patient’s score on the same instrument. The re-
sulting MMSE predictions can therefore be utilised with the aim to better approach correct
MMSE values, as many miscalculations may have been entered into an electronic database
for various reasons. In this way, assessments of the cognitive state of an individual at each
assessment episode become more reliable methods of distinguishing cognitively normal
people from those with incipient or established dementia, and of estimating the severity of
dementia that is present in the latter.

It is axiomatic that the performance and value of any analytical model will be limited
by the quality of the available data [41]. Outside clinical circles, however, the potential
for inaccuracy in medical reporting is perhaps less well recognised, and in the evaluation
of patients with cognitive disorders—a process that is still largely driven by observation,
experience that is sometimes, but not always, guided by the application of consensus
criteria—disagreements and erroneous diagnoses are particularly rife. This is largely
because the majority of cases of dementia are caused by the gradual accumulation of molec-
ular level damage that has no effect on function, cognition or behaviour until relatively
advanced [42] and was impossible to detect with certainty during life [43,44].

In machine learning models, dataset size and heterogeneity (e.g., diverse populations)
are always important [23]. However, finding an adequate dataset in the healthcare industry
is usually difficult. We need additional data and diverse data to solve generalisation issues
because we train our predictive models on a small and old dataset. Many obstacles may
arise while deploying our machine learning model models in real-world scenarios, such as
differentially dispersed datasets, retraining, re-calibration, and generalizability. Technical
differences, such as various measuring equipment, coding definitions, EHRs systems,
medical personnel, and so on, are also predicted to cause this generalization problem.
As a result, it is always important to record shifts in new cases to assess and improve the
predictive models’ effectiveness. One of the alternatives for this is data-driven testing [45].

Nonetheless, it is possible to envisage scenarios in which the approach described in this
work may be of practical clinical use. One is in research involving electronic health records
in which MMSE scores are recorded as part of the clinical assessment and is of interest to
the researcher, whether as an outcome or a covariate. The researcher is likely to encounter
at least as many (and in practice probably a lot more) erroneously calculated MMSE scores
in such an unstructured dataset. The ability to detect between-group differences in values
or the influence that the values may exert on another comparison, would be enhanced by
having a dataset from which these erroneous values had been replaced by plausible ones.
Another situation in which automatic detection of an anomalous MMSE score could be
useful would be in the context of a clinical decision-support system which had learned
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to detect and alert the clinician to a value of MMSE that was implausibly different from
previously recorded scores. Such a system would contribute to the goal of accuracy in
clinical record keeping, but would also be useful in the context of ensuring data quality
in research settings (such as a pharmaceutical trial) where change in MMSE score was an
outcome of interest.

Finally, the increasing availability of large datasets in the form of both open data
resources (such as DPUK (https://www.dementiasplatform.uk/ (accessed on 28 July 2021))
or the AD & FTD Mutation Database (https://uantwerpen.vib.be/ADMutations (accessed
on 28 July 2021))) and more recently described methods for integrating these different sources
of information [46–48] is set to further improve the analytical and predictive capabilities
of data science in complex domains. These include the interplay of factors that under the
development of common but aetiologically heterogeneous medical conditions, including
dementia [49]. While medical datasets that incorporate sufficient structured information
are currently few and far between, such resources are increasing in number and availability
due to the growing recognition of the potential of data science and data mining and the
increasing number of relevant data portals. Important and potentially powerful examples of
the latter include tools for interrogating and anonymously harvesting clinical information
from aggregated EPRs. An early and influential example of this approach to clinical
data assets without compromising data confidentiality has been the UK’s Clinical Record
Interactive Search (UK-CRIS) facility, which has delivered original insights into aspects of
diagnosis and management of mental health disorders [50]. Because (at least in the UK) the
diagnosis and management of dementia has historically been included within the purview
of mental health professionals, similar insights have been possible in this increasingly
important domain of clinical research [51,52].

6. Conclusions and Future Work

The analyses presented in this study provide preliminary evidence that machine
learning approaches may be helpful in the task of optimising the accuracy of big data
assets which, although potentially highly informative, are also vulnerable to the presence
of inaccuracies. When in vivo diagnostic tools such as molecular ligands [53–55] become
widely available, it will be possible to address and retrospectively to ameliorate diagnostic
inaccuracies in large clinical dementia datasets. This will, in turn, lead to new insights
into disease risks, mechanisms, the discovery of endophenotypes and patient stratification.
Although we did not have access to diagnostic ground truth, the use of MMSE scores as a
proxy variable is presented as evidence for the feasibility of using AI to improve diagnostic
accuracy within large datasets through the implementation of ML algorithms such as RF.

One of the biggest strengths of this study was the availability of a large and com-
prehensive, structured data set containing values of numerous variables obtained from
an ageing population. In contrast, much of the clinical data that are currently available
from EPR are unstructured and require NLP pre-processing to extract a database of similar
numerical values to those used her—a database that will be less comprehensive and likely
to contain missing values. Since MMSE scores are both amenable to accurate extraction
using NLP and widely documented in clinical assessments, replication of the current study
on a larger and more ecologically valid database should be possible.

It will, in addition, be important to substitute data driven methods to create criteria
for accuracy of recorded scores, as the ‘handcrafted’ criteria adopted here, while unlikely
to overestimate the rate of deviation from scoring accuracy may have underestimated it.
The development of methods for deriving accuracy criteria from the characteristics of the
data themselves, and their implementation are among the studies currently in progress in
our consortium, and we expect to report on them in the near future.
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Appendix A

Listing A1. Complete list of selected attributes
[ ’ CLINICAL BACKGROUND: BODY MASS INDEX’ , ’ANXIETY/PHOBIC’ , ’CERBRO−VASCULAR DISEASE PRESENT’ , ’DEPRESSIVE ILLNESS ’ ,

’DIAGNOSTIC CODE’ , ’EST OF SEVERITY OF DEPRESSION’ , ’EST SEVERITY OF DEMENTIA’ , ’PRIMARY PSYCHIATRIC DIAGNOSES’ , ’AGE
LEFT SCHOOL’ , ’MOCA: YEARS OF EDUCATION’ , ’YEARS IN FURTHER EDUCATION’ , ’HISTORY OF STROKE’ , ’MEDICAL ASSESSMENT V
2010 : STROKE’ , ’HACHINSKI ISCHAEMIC : HISTORY OF STROKE’ , ’GENERAL INFORMATION: DIABETES : DURATION’ , ’GENERAL
INFORMATION: DIABETES ’ , ’FEELING DEPRESSED’ , ’DEPRESSED MOOD’ , ’SEVERITY OF DEPRESSION’ , ’MEDICAL ASSESSMENT V 2010 :
DEPRESSION’ , ’MEDICAL ASSESSMENT V 2010 : DEPRESSION TREATED BY DOCTOR’ , ’HACHINSKI ISCHAEMIC : DEPRESSIVE
SYMPTOMATOLOGY’ , ’NPI : DEPRESSION/DYSPHORIA: FREQUENCY’ , ’NPI : DEPRESSION/DYSPHORIA: SEVERITY ’ , ’NPI :
DEPRESSION/DYSPHORIA: DISTRESS ’ , ’SPECT SCAN: DIAGNOSTIC ASSESSMENT’ , ’BIOCHEMISTRY : CHOLESTEROL’ , ’BIOCHEMISTRY : HDL
CHOLESTEROL’ , ’BIOCHEMISTRY : CHOLESTEROL/HDL RATIO’ , ’HISTORY OF HEAD INJURY ’ , ’MEDICAL ASSESSMENT V 2010 : HEAD
INJURY ’ , ’SMOKING: SMOKING’ , ’SMOKING: AVERAGE PER WEEK’ , ’SMOKING: PIPES OR CIGARS’ , ’SMOKING: CIGARETTES ’ , ’SMOKING:
CIGARETTES : NO. PER YEAR’ , ’SMOKING: TWO YEARS AGO’ , ’SMOKING: TEN YEARS AGO’ , ’SMOKING: TWENTY YEARS AGO’ , ’SMOKING:
THIRTY YEARS AGO’ , ’SMOKING: AGE STARTED CIGARETTES ’ , ’SMOKING: TEA PER DAY’ , ’SMOKING: COFFEE PER DAY’ , ’SMOKING:
ALCOHOL IN PAST 12 MONTHS’ , ’SMOKING: COMPARED TO 5 YEARS AGO’ , ’SMOKING: NON−DRINKER ALMOST ALWAYS’ , ’MEDICAL
ASSESSMENT V 2010 : AGE STOPPED TOBACCO’ , ’SHORTENED CAMBRIDGE ADL: FORGET TO PASS ON PHONE MESSAGES’ , ’MEMORY PROBLEM’ ,
’CLINICAL DEMENTIA RATING: MEMORY’ , ’DURATION OF MEMORY PROBLEMS’ , ’ONSET OF MEMORY PROBLEMS’ , ’CHANGE IN MEMORY

PROBLEMS’ , ’GDS: MEMORY PROBLEMS’ , ’CAMCOG REMOTE MEMORY SCORE’ , ’CAMCOG RECENT MEMORY SCORE’ , ’CAMCOG LEARNING MEMORY
SCORE’ , ’MEDICAL ASSESSMENT V 2010 : MEMORY’ , ’SHORTENED CAMBRIDGE ADL: DIFFICULTY WITH MEMORY’ , ’SHORTENED CAMBRIDGE
ADL: POOR DAY−TO−DAY MEMORY’ , ’MEDICAL ASSESSMENT V 2010 : ALCOHOL CONSUPTION’ , ’MEDICAL ASSESSMENT V 2010 : AGE STOPPED
ALCOHOL’ , ’COGNITIVE EXAM 120 −161: COGNITIVE EXAM 120 −161 ’ , ’ IDENTIFIES DAY OF WEEK’ , ’ IDENTIFIES DATE’ , ’ IDENTIFIES
MONTH’ , ’ IDENTIFIES YEAR’ , ’ IDENTIFIES SEASON’ , ’ IDENTIFIES COUNTY’ , ’ IDENTIFIES TOWN’ , ’ IDENTIFIES STREETS/COUNTRY’ ,
’ IDENTIFIES FLOOR’ , ’ IDENTIFIES PRESENT PLACE’ , ’COMPREHENDS NOD’ , ’COMPREHENDS TOUCH’ , ’COMPREHENDS LOOK’ ,
’COMPREHENDS TAP’ , ’COMPREHENDS HOTEL’ , ’COMPREHENDS VILLAGE’ , ’COMPREHENDS RADIO’ , ’ IDENTIFIES OBJECTS ’ , ’ IDENTIFIES
OBJECTS : PENCIL ’ , ’ IDENTIFIES OBJECTS : WATCH’ , ’NAMES PICTURES ’ , ’NAMES PICTURES : SHOE’ , ’NAMES PICTURES : TYPEWRITER’ ,

’NAMES PICTURES : SCALES ’ , ’NAMES PICTURES : SUITCASE ’ , ’NAMES PICTURES : BAROMETER’ , ’NAMES PICTURES : LAMP’ , ’NUMBER OF
ANIMALS LISTED ’ , ’NUMBER OF ANIMALS LISTED : SCORE’ , ’DEFINES HAMMER’ , ’REPETITION ’ , ’RECALLS OBJECTS ’ , ’RECALLS
OBJECTS : SHOE’ , ’RECALLS OBJECTS : TYPEWRITER’ , ’RECALLS OBJECTS : SCALES ’ , ’RECALLS OBJECTS : SUITCASE ’ , ’RECALLS

https://github.com/SDM-TIB/dementia_mmse.git
https://github.com/SDM-TIB/dementia_mmse.git
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OBJECTS : BAROMETER’ , ’RECALLS OBJECTS : LAMP’ , ’RECOGNISES PICTURES : SHOE’ , ’RECOGNISES PICTURES : SCALES ’ , ’RECOGNISES
PICTURES : BAROMETER’ , ’REMEMBERS WW1 DATE’ , ’REMEMBERS WW2 DATE’ , ’REMEMBERS HITLER ’ , ’REMEMBERS STALIN ’ , ’REMEMBERS
MAE WEST’ , ’REMEMBERS LINDBERGH’ , ’KNOWS MONARCH’ , ’KNOWS HEIR TO THRONE’ , ’KNOWS PRIME MINISTER ’ , ’KNOWS RECENT NEWS
ITEM ’ , ’REGISTERS OBJECTS ’ , ’REGISTERS OBJECTS 1 : APPLE’ , ’REGISTERS OBJECTS 3 : PENNY’ , ’REGISTERS OBJECTS : REPEATS’ ,
’COUNTING BACKWARDS’ , ’SPELL BACKWARD’ , ’RECALLS OBJECTS ’ , ’RECALLS OBJECTS 1 : APPLE’ , ’RECALLS OBJECTS 2 : TABLE’ ,
’RECALLS OBJECTS 3 : PENNY’ , ’COGNITIVE EXAM 162 −187: COGNITIVE EXAM 162 −187 ’ , ’READING COMPREHENSION 1 ’ , ’READING

COMPREHENSION 2 ’ , ’DRAWS PENTAGON’ , ’DRAWS SPIRAL ’ , ’DRAWS HOUSE’ , ’CLOCK DRAWING’ , ’CLOCK DRAWING: CIRCLE ’ , ’CLOCK
DRAWING: NUMBERS’ , ’CLOCK DRAWING: TIME ’ , ’WRITES A SENTENCE’ , ’PRAXIS −PAPER’ , ’PRAXIS − PAPER : RIGHT HAND’ , ’PRAXIS −
PAPER : FOLDS’ , ’PRAXIS − PAPER : ON LAP’ , ’PRAXIS − ENVELOPE’ , ’DICTATION’ , ’MIME − WAVE’ , ’MIME − SCISSORS ’ , ’MIME −
BRUSHING TEETH’ , ’ IDENTIFIES COIN’ , ’ADDS UP MONEY’ , ’SUBTRACTS MONEY’ , ’RECALLS ADDRESS’ , ’RECALLS ADDRESS: JOHN’ ,
’RECALLS ADDRESS: BROWN’ , ’RECALLS ADDRESS: D42 ’ , ’RECALLS ADDRESS: WEST’ , ’RECALLS ADDRESS: BEDFORD’ , ’ SIMILARITIES −
FRUIT ’ , ’ SIMILARITIES − CLOTHING’ , ’ SIMILARITIES − FURNITURE’ , ’ SIMILARITIES − LIFE ’ , ’RECOGNISES FAMOUS PEOPLE’ ,
’RECOGNISES OBJECTS ’ , ’RECOGNISES OBJECTS : SPECTACLES’ , ’RECOGNISES OBJECTS : SHOE’ , ’RECOGNISES OBJECTS : PURSE’ ,
’RECOGNISES OBJECTS : CUP’ , ’RECOGNISES OBJECTS : TELEPHONE’ , ’RECOGNISES OBJECTS : PIPE ’ , ’RECOGNISE PERSON’ , ’PATIENT ’ ,
’COGNITIVE EXAM 162 −187: HANDED’ , ’COGNITIVE IMPAIRMENT’ , ’PHYSICAL SYMPTOMS’ , ’PHYSICAL PROBLEMS’ , ’PHYSICAL EXAM
213 −234: PHYSICAL EXAM 213 −234 ’ , ’BLOOD PRESSURE ’ , ’BLOOD PRESSURE : SYSTOLIC ’ , ’BLOOD PRESSURE : DIASTOLIC ’ , ’TENDON
REFLEXES ’ , ’PLANTAR REFLEXES ’ , ’HEMIPARESIS ’ , ’GAIT ’ , ’MOBILITY ’ , ’DEAFNESS’ , ’VISUAL DEFECT’ , ’TREMOR’ , ’MANUAL
DIFFICULTY ’ , ’ABNORMAL EYE MOVEMENTS’ , ’SHORTNESS OF BREATH’ , ’FULL BLOOD COUNT’ , ’ B12 OR FOLATE’ , ’THYROID FUNCTION
TESTS ’ , ’UREA AND ELECTROLYTES’ , ’SKULL XRAY OR SPECT SCAN’ , ’LIVER FUNCTION TESTS ’ , ’CT OR MRI SCAN’ , ’VDRL’ , ’CAUSES
OF DEMENTIA EXCLUDED’ , ’PHYSICAL EXAM 213 −234: SUBJECT ON MEDICATION’ , ’GDS: AVOID SOCIAL GATHERINGS’ , ’APOE’ , ’APOE:
RESULT’ , ’ANXIOUS’ , ’ANXIOUS SITUATIONS ’ , ’ANXIOUS OR FEARFUL’ , ’MEDICAL ASSESSMENT V 2010 : ANXIETY’ , ’NPI : ANXIETY :
FREQUENCY’ , ’NPI : ANXIETY : SEVERITY ’ , ’NPI : ANXIETY : F X S ’ , ’NPI : ANXIETY : DISTRESS ’ , ’GENERAL INFORMATION: ASPIRIN :
DURATION’ , ’GENERAL INFORMATION: ASPIRIN ’ , ’SMOKER’ , ’EDUCATION’ , ’AGE’ , ’GENDER’ , ’APOE’ , DURATION( years ) ’ ]
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