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Title: A new prognostic model for predicting 30-day mortality in acute oncology 

patients. 

 

ABSTRACT: 

Introduction: Acute oncology services (AOS) provide rapid review and expedited pathways 

for referral to specialist care for cancer patients presenting in the emergency setting. Routine 

blood tests may support AOS in providing reliable estimates of prognosis. Thus, we aimed to 

develop a validated prognostic model of 30-day mortality based on routine blood markers, for 

predicting an AOS decision to actively treat or palliate patients.  

Methods and Materials: Using clinical data from 752 AOS admissions between January 

2015 and July 2017, multivariable logistic regression analysis was conducted to develop the 

30-day mortality prognostic model. Internal validation and then internal-external cross-

validation were used to examine overfitting and generalisability of the model’s predictive 

performance. 

Results: Urea, alkaline phosphatase, albumin and neutrophils were the strongest predictors of 

the outcome. The model was able to separate patients into distinct prognostic groups from the 

cross-validation (C Statistic: 0.70; 95% CI: 0.64-0.76). The calibration of observed and 

predicted risks of the model varied by calendar time and therefore admission year was 

included as a predictor in the model to improve the model calibration, with the final model 

using the most recent calendar year (2017) to estimate predicted risk. 

Conclusion: The developed prediction model, based on routinely available clinical variables, 

was able to classify patients into distinct prognostic risk groups, which is clinically useful for 

delivering an evidence based Acute Oncology Service. Collation of data from other AOS 

centres would allow for the development of a more generalisable prognostic model. 
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INTRODUCTION 

A large and increasing proportion (24%) of cancer cases in the UK are diagnosed in an acute 

setting [1, 2]. Following the 2008 National Confidential Inquiry into Patient Outcomes and 

Death, concerns were raised about the quality of care and mortality rate of cancer patients, 

with only 35% of patients receiving 'good' care [1].  In response, the National Chemotherapy 

Advisory Group recommended the formation of an acute oncology service (AOS) in all 

hospitals with an emergency department, providing rapid reviews and expedited pathways for 

referral to specialist care [3]. AOS teams currently rely on clinical experience, imaging and 

multidisciplinary discussion. Insight from routine blood tests may support AOS teams in 

providing faster and more reliable estimates of prognosis, thus accelerating subsequent 

investigations and referrals. 

 

Whilst an association between blood-based markers and prognosis has been established in 

specific cancer types [4, 5] established prognostic factors include age, stage, number of 

metastatic sites, and performance status. However, the use of routine blood tests to predict 

short-term mortality has not yet been considered within the acute oncology context. The aim 

of our study was to develop and validate a prognostic model from blood-based markers that is 

predictive of 30-day mortality in acute cancer patients. 

 

MATERIAL AND METHODS  

Data sources and study population 

The model was derived from all adult referrals to the acute oncology service of a large 

tertiary academic hospital, between 1st January 2015 and 31st July 2017 (N=752). For each 

patient, we extracted information on age, sex, cancer type and dates relating to admission and 

discharge/death. Electronic patient records were used to obtain blood results from the day of 
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admission. If blood test results were not available from the day of admission, the next 

available result within 48 hours was used. Patients were included whether they were referred 

to the AOS based on a suspected new diagnosis or following complications from a previously 

diagnosed cancer. However, re-referrals of the same patient were excluded. 

 

Outcome, candidate predictors, missing data and power calculations 

The primary outcome of interest was patient mortality within 30-days of hospital admission. 

The following blood markers, previously shown to be associated with an increased risk of 

mortality in acute cancer patients were obtained from; urea, creatinine, alanine 

aminotransaminase (ALT), alkaline phosphatase (ALP), gamma-glytamyl transpeptidase 

(GGT), albumin, adjusted calcium, C-reactive protein (CRP), white blood cells (WBC), 

neutrophil–lymphocyte ratio (NLR) and platelet–lymphocyte ratio (PLR) [6].   

A multiple imputation model was implemented to replace missing values, using a chained 

equations approach, containing all remaining 13 candidate predictors as covariates and the 

outcome of interest (30-day post admission mortality). Imputation was conducted separately 

by year of admission. We created 25 imputed datasets and combined the estimates using 

Rubin’s rules [7]. 

On the basis of 141 deaths within 30-days of hospital admission and the minimum of 10 

events-per-variable rule of thumb [8], we had an effective sample to consider a maximum of 

14 candidate predictors. We therefore considered 11 blood markers, along with sex and age 

as candidate predictors, and excluded cancer type due to the number of categories and limited 

sample size. Data pertaining to the reason for referral (i.e. if due to a new suspected case or a 

complication of a previous case) was of poor quality in the dataset and therefore was not 

included as a predictor variable. 

Statistical analysis for model development 
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Stata v14 was used for all analyses. The TRIPOD guidance for development and reporting of 

multivariable prediction models was followed [9]. All data was used for model development, 

to avoid data splitting [10]. Mortality within 30-days of admission was treated as a binary 

outcome measure. For derivation of the prediction model, we used a stepwise approach 

through backwards elimination, beginning with a model that included all predictors, where 

candidate predictors were excluded from the saturated model based on their statistical 

significance (pwald>0.05). Non-linear relationships between outcome and continuous 

predictors were considered by identifying, at each iterative step of the stepwise process, the 

best-fitting fractional polynomial terms [11-13]. The 'risk score' was then formed for 

predicting the log odds of death within 30-days of admission by using the estimated 

regression coefficients multiplied by the corresponding predictors included in the final model 

along with the intercept term. The predicted risk of 30-day mortality was then estimated via 

the equation: predicted risk = 1/(1+erisk score). 

 

Model performance and adjusting for overfitting 

The predictive performance of the final model was assessed in terms of the calibration slope, 

calibration-in-the-large (CIL) and the C statistic. The calibration slope and CIL are an 

assessment of the relationship between the observed and predicted risks for individuals where 

ideal values are 0 and 1 respectively. The C statistic represents the probability that for any 

randomly selected pair of patients of which only one died within 30-days following hospital 

admission, the patient who died had a higher predicted 30-day mortality risk from the derived 

model [14]. A C statistic of 0.5 represents no discriminative ability and 1 represents perfect 

discrimination. The performance of the model was assessed, in terms of these three statistics, 

within each of the 25 multiply imputed datasets and subsequently pooled using Rubin’s rules 

as suggested by Wood et al. [15] We also assessed the overall calibration of the model using 
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the Brier score (which can range between 0 and 0.25; lower indicating better model 

calibration) and graphically by plotting agreement between predicted and observed risks 

across tenths of predicted risk. To adjust for model overfitting during the development stage, 

an estimate of a uniform shrinkage factor was obtained (using the method proposed by Van 

Houwelingen et al. [16]) and multiplied by the original beta coefficients to obtain coefficients 

adjusted for overfitting [9, 16]. At this stage, the intercept of the model was re-estimated 

based on the adjusted coefficients to maintain overall model calibration, producing a final 

model [9]. 

 

Internal–External Cross Validation 

The generalisability of the developed prediction model beyond the dataset used for its 

development is extremely important. The optimal method to examine this would be to apply 

the derived model to an independent external dataset and assess its predictive performance. 

However, due to the limited availability of an appropriate independent dataset, internal–

external cross validation was conducted to further assess the model performance [17, 18].  

This internal−external approach involved cross-validation, omitting data from one of each of 

the three calendar years in turn and re-developing the model, using the same approach as 

outlined above, within the data from the two remaining calendar years. The following steps 

were taken; 1) Using the same model development strategy, a model was developed on data 

from two of the three calendar years and the beta coefficients from the model predicting 30-

day mortality were obtained, 2) The predictive performance of the model from step 1. was 

assessed within the third ‘external validation’ calendar year data in terms of accuracy of 

predicted risk by means of the calibration slope, CIL and the C statistic measures and finally 

3) Steps 1-2 were repeated until ‘external validation’ was assessed for each of the three 

calendar years’ datasets. Overfitting was assessed in each round of the cross-validation, a 
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uniform shrinkage factor was obtained [9, 16] and applied to the beta coefficients from step 1. 

Calibration slope, CIL and C statistic measures derived from this procedure for each of the 

studies were then pooled and estimated via a random effects meta-analysis to assess the 

heterogeneity across studies (using with the τ2 statistic estimated using the Mantel-Haenszel 

method). The pooled estimates of the calibration slope, CIL and C statistic measures provide 

insight into whether there appears to be a time-trend in the performance of the model across 

the three calendar years. Should there be evidence of a time-trend in the performance 

statistics (i.e., the performance of the model varies within each round of cross validation and 

the pooled estimates indicate poor predictive performance), the final model developed in the 

entire dataset will be re-fitted including calendar year as a continuous covariate. The 'risk 

score' (equation for predicting the 30-day risk mortality) will then be based on the 

coefficients of this re-fitted model using the most recent calendar year, 2017, to derive 

predictions. As described above, a uniform shrinkage factor will be used (using the method 

proposed by Van Houwelingen et al. [16]) to adjust the beta coefficients from this re-fitted 

model, providing a final prediction model. 

 

RESULTS 

Study population 

Data on 752 (48% female) adult referrals to our AOS between January 2015 and July 2017 

was analysed. A summary of the key participant characteristics is presented, by sex and 

overall, in Table 1. Blood marker levels were similar amongst both sexes, with the exception 

of creatinine and GGT, for which levels were higher in males compared to females. The type 

of cancer did not markedly differ by sex, with the exception of Brain/CNS and Lung which 

had greater representation amongst males (Table 1). Our derivation data had missing 

information for some blood markers (Table 1), particularly for GGT (58% missing), which 



8 

 

was therefore excluded as a candidate predictor. Table 2 presents the patient characteristics 

by outcome (i.e. 30-day mortality). Those who died within 30-days were on average, 6 years 

older, and had elevated average levels of the majority of blood markers compared to those 

who survived this period (Table 2).  

 

Model development, performance measures, and internal-external cross validation 

Within the study timeframe, there were 141 deaths (18.8%) within 30-days from admission. 

Of the thirteen candidate predictors considered, four were included in the model selected by 

the development process, namely; urea, ALP, albumin and neutrophils. Non-linear terms 

were required for each of these predictors with the exception of albumin (Table 3). Table 4 

shows the apparent predictive performance of the model from the internal validation and the 

performance under the internal–external cross validation process. The model, demonstrated 

good apparent predictive performance for 30-day mortality (C statistic = 0.77; 95% 

confidence interval = 0.73 to 0.81) and was, as expected, perfectly calibrated in the 

development data (apparent slope =1, apparent CIL = 0). The Brier score from the model was 

0.13, indicating good apparent model calibration. This is confirmed by the calibration plot, 

assessing agreement between observed and predicted risk (Figure 1). A uniform shrinkage 

factor of 0.9558 was required to adjust predictor coefficients in the developed model for 

overfitting after which the constant term was re-estimated to ensure overall model calibration 

(Table 4). The internal–external cross validation procedure suggested good generalisability in 

terms of the models discriminative ability (Table 5), but poor in terms of the calibration 

(slope and CIL) where there was evidence of a clear time-trend in the model's calibration 

performance (Table 5, Supplementary Table 1). The developed model was therefore re-fitted 

in the complete dataset to include admission year as a continuous covariate before a uniform 

shrinkage factor was estimated and applied to the model coefficients. The most recent 
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calendar year of 2017 was used to obtain the “risk score” and the corresponding 30-day 

mortality risk prediction equation (Figure 2). 

 

Sensitivity analyses were conducted to assess the predictive performance of the developed 

model within sub-groups of sex (Supplementary Table 2, Supplementary Figure 1) and 

cancer type (Supplementary Table 3). These results demonstrated that the predictive 

performance of the model was largely similar across both sexes and also by cancer type, 

albeit with less precision for cancers with fewer cases in this study. 

 

DISCUSSION 

We found that levels of urea, ALP, albumin and neutrophils on admission can be combined in 

a model to predict 30-day mortality of acute oncology patients (Figure 2) with good 

discriminative ability. Calibration of observed and predicted risks varied by calendar year, 

and thus the development of the “risk score” and the corresponding 30-day mortality risk 

prediction equation included admission year as a predictor. To our knowledge, this is the first 

time a prognostic model has been developed in this way to quantify absolute risk of 30-day 

mortality in a heterogenous acute oncology population presenting in an emergency setting.  

 

Knowing the likelihood of survival may help medical teams expedite further investigations or 

palliative care referrals [3]. Coping with either the complications of cancer or a new 

diagnosis is a trying time for patients, with many often asking for estimates of their mortality 

or whether any treatment can be given. Alongside clinical expertise, histopathological, and 

radiological input, a score to predict 30-day mortality would support clinicians in discussions 

with patients about their prognosis. The developed model could be used to estimate risk of 
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30-day mortality very rapidly, in order to aid these conversations and support the decision-

making process related to intervention or palliation. 

 

This study has a number of strengths. The cohort contained a sufficient number of individuals 

over a three-year period for the testing of 13 candidate predictors of short-term mortality 

adhering to the 10 events-per-variable rule of thumb [8]. Backwards selection is not always 

the preferred method for variable selection due to the likelihood of overfitting; however, the 

assessment of overfitting in this case appears to be minimal. Furthermore, backwards 

selection was used in the selection process to try and account for all correlations between 

candidate predictors in the modelling procedure. The blood markers used in the predictive 

model are readily tested as part of the admissions pathway and will incur no additional costs.  

The data was collected recently and therefore holds continued relevance. The discriminative 

ability of the model is good across each of the calendar years’ with no suggestion of a time 

trend from the cross-validation. Although, the calibration of individual predicted risk from 

the model with observed risks was poor and suggested a clear trend over time in performance. 

However, admission year was included as a predictor in the final risk score equation and the 

most recent year of 2017 used for predictions to account for this trend. To represent the 

breadth of referrals made to AOS teams, the study population includes both new diagnoses, 

as well as referrals due to treatment-related and cancer-related complications. While we were 

unable to ascertain the proportions of the new suspected cases in the study population, as the 

specific referral details was of poor quality (missing or not recorded accurately), this 

information was available from a sub-sample of the study population (N=466), where 69% 

were referred based on a new suspected case. Therefore, generalisability of this model to 

those with complications from a previous cancer diagnosis should be done with caution. A 

lack of sufficient data lead to the exclusion of GGT as a candidate predictor. 
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A further limitation is that the study population only includes patients at a single London 

hospital and thus may not represent the wider population. This sample includes both solid and 

liquid cancers, which behave differently, with haematological malignancies representing just 

6.4% of the sample. While this proportion is lower than the average proportion of 

haematological cases estimated in the UK of 9.1% [19], it is reflective of the existence of a 

dedicated referral pathway for haematological patients within this trust. Studies in a larger 

haematological sample would provide further insight. Amongst male patients the most 

common cancers in male patients were lung, urological and gastric cancers with breast, lung, 

gastric and gynaecological cancers being the most common amongst females. These rankings 

generally are in line with the national statistics for the UK, where prostate, lung and bowel 

cancers as most prevalent in men and breast, lung and bowel cancer most prevalent in 

women, but suggests that the study population is under-representative of bowel cancer [19]. 

The prevalence of CNS malignancies (6.4%) in the sample is proportionally higher than 

expected when comparing to national incidence statistics (3%) [19]. 

 

A previously developed prognostic model assessing patient survival in an oncology setting 

based upon blood markers, the mGPS scoring system, contained just CRP and albumin as 

significant predictors of survival [20]. However, this study used a scoring system approach 

which assigns a value of 0 or 1 to the patient based on whether they had abnormal or normal 

blood marker levels for CRP and albumin; individuals with a total score of 2 are considered 

to be at the highest risk and those with a score of 0 considered to have the lowest risk [20]. 

This approach, whilst providing a simple bed-side method for clinicians to assess survival, is 

generally not recommended as a large amount of information is lost when simply grouping 

individuals based on a cut-off of the mentioned blood markers [9]. When this scoring method 
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was applied to our dataset and compared with the predicted risks from our developed model, 

the median predicted risk of 30-day mortality was 7% amongst those with an mGPS score of 

0, 11% with an mGPS score of 1 and 26% for those with an mGPS score of 2. However, 53% 

of all individuals in our study population were assigned a score of 2 from the mGPS, 

indicating poor discriminative ability of the mGPS scoring approach. 

 

Urea has previously been shown to be an independent predictor of 30-day mortality post-

oesophagectomy [21] and post-colectomy for colon cancer [22]. Underlying theories include 

treatment-related nephrotoxicity [23], and an association between glomerular disease and 

malignancy. Furthermore, a meta-analysis of 242,953 all-cause mortality outcomes concluded 

that ALP and GGT may screen for individuals at high risk of dying from all-causes [24]. 

Raised ALP has been associated with cancer recurrence and overall survival [25].  

 

Serum albumin is well established as a marker of poor outcome in the critically ill and an 

independent prognosticator in cancer [26]. A large prospective study of 21,118 patients 

showed that the 30-day mortality of emergency patients with hypoalbuminaemia was three-

times higher than that of patients with normal levels [27], with serum albumin predicting a 

patient’s ability to tolerate aggressive anticancer therapy [28]. 

 

The mechanism of cancer-related neutrophilia includes extrinsic factors such as infection, 

bone marrow infiltration, and corticosteroids [29], as well as direct causes such as the 

production of hematopoietic colony-stimulating factors and inflammatory cytokines by 

tumours [30]. In our study, indices such as NLR and PLR did not feature in the prognostic 

model of mortality but have previously been associated with survival [6]. 
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We chose to quantify absolute risk of 30-day mortality; however, investigation into 60-day 

and 90-day mortality may be warranted. As more data is collected, a long-term aim would be 

to predict overall survival, as achieved by models developed in renal cell carcinoma and 

laryngeal cancer [31-32]. Futher work is needed to derive cut-offs based on predicted risks 

from this developed model. Due to the lack of an available external dataset and to avoid data 

splitting, the full dataset was used to develop the model which was then validated using an 

internal-external cross-validation method. Collaboration with other AOS teams would 

provide more data to develop a more accurate model and allow for further validation. 

 

CONCLUSION 

A new prediction model has been developed to quantify absolute risk of 30-day mortality in 

acute cancer patients presenting in an emergency setting. It comprises of routine blood 

markers: urea, albumin, ALP and neutrophils, which can be taken at initial presentation. This 

model could serve as the basis for real-time decisions on whether intervention or palliation is 

most appropriate. Collating data from other UK AOS centres would allow for the extension 

of such a modelling approach to develop a more accurate model which may be more 

generalisable to a wider UK setting.  
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Table 1: Descriptive statistics of the key participant characteristics and blood markers, by sex 

and overall 

 

Footnote: CNS = Central Nervous System, HPB = Hepato Pancreatic Biliary. Other group consists of cancers of 

unknown primary, and referrals that resulted in no malignancy being identified 

 

 

 

 

Variable 
Male (N=391) Female (N=361) Overall (N=752) 

N Median (LQ-UQ) N Median (LQ-UQ) N Median (LQ-UQ) 

Death within 30days 67 - 74 - 141 - 

    

Age (yrs) 391 70.0 (59.0-79.0) 361 72.0 (61.4-81.1) 752 71.0 (60.6-80.1) 

Urea (mmoll) 391 7.0 (4.8-10.0) 359 6.0 (4.5-9.0) 750 6.5 (4.6-9.5) 

Creatinine (umol/L) 390 84.0 (68.0-112.0) 361 66.0 (54.0-94.0) 751 76.0 (59.0-107.0) 

ALT (IU/L) 330 24.0 (16.0-49.0) 326 21.0 (13.0-35.0) 656 23.0 (15.0-43.0) 

ALP (IU/L) 361 106.0 (78.0-204.0) 347 104.0 (79.0-163.0) 708 106.0 (78.0-177.0) 

Albumin (g/L) 362 31.0 (26.0-36.0) 349 32.0 (27.0-36.0) 711 32.0 (27.0-36.0) 

Calcium (adjusted) 

(mmol/L) 297 2.5 (2.4-2.6) 293 2.5 (2.4-2.6) 590 2.5 (2.4-2.6) 

CRP (mg/dL) 362 38.1 (8.1-102.5) 334 33.0 (7.1-90.4) 696 35.0 (7.7-96.0) 

WBC (x 109/L) 388 10.4 (7.5-13.2) 359 9.5 (6.8-12.9) 747 10.0 (7.2-13.1) 

Neutrophils (x 109/L)  387 7.3 (5.3-10.8) 359 7.5 (4.7-10.4) 746 7.3 (5.0-10.6) 

NLR 388 6.6 (3.9-12.0) 360 5.6 (3.5-9.6) 748 6.0 (3.7-10.9) 

PLR 387 221.7 (152.9-406.7) 360 230.7 (149.2-362.8) 747 224.6 (152.4-381.4) 

GGT (IU/L) 166 113.5 (36.0-365.0) 148 80.5 (30.0-241.0) 314 92.5 (34.0-319.0) 

       

Cancer Type (N,%)       

Brain/CNS                                                                            33 (8.4)  15 (4.2) 48 (6.4) 

Breast - 53 (14.7) 53 (7.1) 

           Colorectal 26 (6.7) 25 (6.9) 51 (6.8) 

Gynaecological - 35 (9.7) 35 (4.7) 

HPB          28 (7.2) 22 (6.1) 50 (6.7) 

Haematological/Lymphoma 25 (6.4) 28 (7.8) 53 (7.1) 

           Head/Neck 6 (1.5) 5 (1.4) 11 (1.5) 

Lung 92 (23.5) 61 (16.9) 153 (20.4) 

Melanoma 7 (1.8) 4 (1.1) 11 (1.5) 

Oesophago-gastric 47 (12.0) 35 (9.7) 82 (10.9) 

Urological 61 (15.6) 66 (18.3) 127 (16.9) 

Other 66 (16.9) 12 (3.3) 78 (10.4) 
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Table 2: Descriptive statistics of the key participant characteristics and blood markers, by 30-

day mortality 

Variable 
Death within 30-days (N=141) Survived past 30-days (N=611) 

N Median (LQ-UQ) N Median (LQ-UQ) 

Age (yrs) 141 76.0 (66.1-84.0) 611 70.0 (59.9-79.6) 

Urea (mmoll) 140 8.4 (5.8-13.7) 610 6.1 (4.5-8.6) 

Creatinine (umol/L) 141 85.0 (58.0-123.0) 610 74.5 (59.0-101.0) 

ALT (IU/L) 126 30.0 (16.0-74.0) 530 21.0 (14.0-37.0) 

ALP (IU/L) 134 147.0 (96.0-337.0) 574 101.0 (74.0-153.0) 

Albumin (g/L) 134 27.0 (23.0-33.0) 577 32.0 (28.0-37.0) 

Calcium (adjusted) (mmol/L) 112 2.5 (2.4-2.6) 478 2.5 (2.4-2.6) 

CRP (mg/dL) 135 76.0 (27.7-150.0) 561 28.0 (5.8-79.4) 

WBC (x 109/L) 140 11.8 (8.6-15.8) 607 9.5 (7.0-12.6) 

Neutrophils (x 109/L)  140 9.0 (5.3-11.9) 606 7.1 (5.0-10.3) 

NLR 140 7.5 (4.4-13.4) 608 5.9 (3.6-10.5) 

PLR 140 226.3 (148.3-430.4) 607 223.8 (152.9-365.4) 

GGT (IU/L) 73 243.0 (80.0-667.0) 241 75.0 (26.0-239.0) 

     

Cancer Type (N,%)     

Brain/CNS                                                                            3 (2.1) 45 (7.4) 

Breast 8 (5.7) 45 (7.4) 

           Colorectal 10 (7.1) 41 (6.7) 

Gynaecological 7 (5.0) 28 (4.6) 

HPB          10 (7.1) 40 (6.6) 

Haematological/Lymphoma 3 (2.1) 50 (8.2) 

           Head/Neck 2 (1.4) 9 (1.5) 

Lung 44 (31.2) 109 (17.8) 

Melanoma 1 (0.7) 10 (1.6) 

Oesophago-gastric 18 (12.8) 64 (10.5) 

Urological 11 (7.8) 103 (16.9) 

Other 24 (17.0) 67 (11.0) 

 

Footnote: Other group consists of cancers of unknown primary, and referrals that resulted in no malignancy being 

identified 
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Figure 1: Calibration plot assessing agreement between observed and predicted risk 

across tenths of predicted risk before adjusting model for overfitting 
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Figure 2: Final developed risk score from a logistic regression model to predict 30-day mortality 

  

 

 

 

 

Risk Score:  

= -0.051*(Urea /100)-1 – 0.006*(ALP/1000)-2 – 0.068*Albumin + 0.486*(Neutrophils/10)3  

-0.610*((Neutrophils/10)3 * ln(Neutrophils/10)) + 0.135 *Admission Year – 271.457 

 

= -0.051*(Urea /100)-1 – 0.006*(ALP/1000)-2 – 0.068*Albumin + 0.486*(Neutrophils/10)3  

-0.610*((Neutrophils/10)3 * ln(Neutrophils/10)) + 0.135 *(2017) – 271.457 

 

= -0.051*(Urea /100)-1 – 0.006*(ALP/1000)-2 – 0.068*Albumin + 0.486*(Neutrophils/10)3  

-0.610*((Neutrophils/10)3 * ln(Neutrophils/10)) + 1.8731415 

 

Predicted 30-day mortality = (1/1+e− Risk Score) * 100 

Units are: mmol/L for urea, IU/L for ALP, g/L for albumin, 109/L for neutrophils 

 

Example: 

For a patient presenting with: Urea = 4mmol/L, ALP = 80IU/L, Albumin = 30g/L, Neutrophils = 5x109/L 

Risk score = -0.051*(4/100)-1 – 0.006*(80/1000)-2 – 0.068*30 + 0.486*(5/10)3 -0.610*((5/10)3 * ln(5/10)) + 

1.8731415 

= -0.051*(0.04)-1 – 0.006*(0.080)-2 – 2.04 + 0.486*(0.5)3 - 0.610*((0.5)3 * ln(0.5)) + 1.8731415 

= -1.275 - 0.9375 - 2.04 + 0.0608 + 0.0529 + 1.8731415 

= -2.2656585 

Therefore predicted 30-day mortality = (1 / 1 + e -Risk Score) * 100 = 1 / (1 + e 2.2656585) *100 = 9.40% 

 

 

 

 


