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Abstract: Human norovirus (HuNoV) is the leading cause of acute gastroenteritis (AGE) worldwide,
which is highly stable and contagious, with a few virus particles being sufficient to establish infection.
Although the World Health Organization in 2016 stated that it should be an absolute priority to
develop a HuNoV vaccine, unfortunately, there is currently no licensed HuNoV vaccine available.
The major barrier to the development of an effective HuNoV vaccine is the lack of a robust and
reproducible in vitro cultivation system. To develop a HuNoV vaccine, HuNoV immunogen alone or
in combination with other viral immunogens have been designed to assess whether they can simulta-
neously induce protective immune responses against different viruses. Additionally, monovalent
and multivalent vaccines from different HuNoV genotypes, including GI and GII HuNoV virus-like
particles (VLPs), have been assessed in order to induce broad protection. Although there are several
HuNoV vaccine candidates based on VLPs that are being tested in clinical trials, the challenges
to develop effective HuNoV vaccines remain largely unresolved. In this review, we summarize
the advances of the HuNoV cultivation system and HuNoV vaccine research and discuss current
challenges and future perspectives in HuNoV vaccine development.
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1. Introduction

Human norovirus (HuNoV) is the causative agent of one-fifth of acute gastroenteritis
(AGE) worldwide, with increasing frequency of outbreaks [1], which are non-enveloped,
linear, single-stranded, positive-sense RNA viruses belonging to the genus Norovirus
(NoV) of the family Caliciviridae [2]. According to the updated classification, NoVs are
divided into 10 genogroups (GI–GX) that are subdivided into 49 genotypes [3], of which
GI, GII, and GIV cause illness in humans [4]. HuNoV spreads through the fecal–oral
route, which is highly contagious, with as few as 18 virus particles being able to efficiently
establish infection [5,6]. Currently, most gastroenteritis outbreaks are caused by the GII.4
genotype, although the cases caused by other genotypes of GII, such as GII.2 and GII.17,
are rising [7–12].

HuNoV often breaks out in semi-closed communities such as schools, hospitals, cruis-
ers, sanatoriums, and disaster-relief agencies [13–15]. All age groups, especially infants, the
elderly, and immunocompromised patients, are susceptible to HuNoV. Globally, HuNoV
causes an estimated 699 million cases of illness and 219,000 deaths each year, resulting in
>$4 billion in direct medical costs and >$60 billion in indirect medical costs [16–19]. It is
estimated that globally, there is ~18% diarrhea cases associated with HuNoV infection every
year [1]. Although the World Health Organization stated that the development of a HuNoV
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vaccine should be considered an absolute priority in 2016 [20], unfortunately, the develop-
ment of an effective HuNoV vaccine has been proven to be extremely difficult. Until now,
prevention of HuNoV infection largely relies on frequent hand hygiene, limiting contact
with HuNoV-positive people, and disinfecting contaminated environmental surfaces.

2. Advances of In Vivo and In Vitro HuNoV Infection Models

The major barrier to HuNoV vaccine development is the lack of robust and repro-
ducible in vivo and in vitro infection models. With the progressive research on the devel-
opment of HuNoV in vivo and in vitro culture systems, it has been reported that HuNoV
can productively infect B cells [21–23] and human intestinal enteroids [24–26] in vitro.
Regarding animal models, the pigtail macaque is currently the most promising non-human
primate infection model for HuNoV [27]. Nevertheless, although many trials of HuNoV
infection were performed in animal models, such as adult and suckling mice, kittens,
guinea pigs, or rabbits, none were successful [28,29]. To date, only the recombination
activation gene and common gamma chain-deficient (Rag−/−γc−/−) BALB/c mouse was
shown to support GII HuNoV replication, through the intraperitoneal but not oral route of
infection [30]. Zebrafish and pluripotent stem cell-derived organoids were reported as new
models for HuNoV replication [31,32]. These efforts are enabling the development of assays
to determine whether antibodies induced by vaccines can abrogate HuNoV infectivity
in vitro and in vivo, which would speed the progress of candidate vaccines from preclinical
to clinical trials.

3. Advances of HuNoV Vaccine Development

HuNoV contains three open reading frames (ORFs), with ORF2 and ORF3 encoding
the major (VP1) and minor (VP2) capsid proteins, respectively [33]. The expressed VP1 can
self-assemble into virus-like particles (VLPs), which are virtually indistinguishable from
native virus particles [34–36]. The VP1 capsid monomers can be structurally divided into
shell (S) and protruding (P) domains. The S domain forms the structural core, while two P
domains wrap around each other to form the base unit dimer [37]. Isolated P dimers still
retain functional features of virus particles, including ligand-binding and some antigenic
sites [38,39]. A number of HuNoV vaccines have been designed based on VLPs or P
particles due to their structural and functional features [40–51]. Several HuNoV subunit
vaccine candidates based on VLPs and P particles, as shown in Table 1, are in clinical and
preclinical trials, under the efforts of many scientists [52,53].

Table 1. HuNoV vaccine candidates in preclinical and clinical stages.

Type Vaccine Candidates Development Stage Institution

HuNoV VLPs

GI and GII.4 VLPs combined with
RV VP6 [40,44,45,54] Preclinical University of Tampere Medical

School, Finland

GII.4 VLPs combined with EV71
VLPs [50] Preclinical Institute Pasteur of Shanghai, China

Plant-expressed GII.4
VLPs [42,46–48] Preclinical Arizona State University, and Center

for Vaccine Development, USA

Monovalent GI.1 VLPs [55,56] Clinical phase I
Baylor College of Medicine, and

University of Maryland School of
Medicine, USA

Adenovirus vector-based
monovalent GI.1 or GII.4 VLPs, or

Bivalent GI.1 and GII.4 VLPs [57,58]
Clinical phase I Vaxart Incorporation

Bivalent GI.1 and GII.4
VLPs [59–61] Clinical phase II

Baylor College of Medicine, Ghent
University and University Hospital,

and Takeda Incorporation
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Table 1. Cont.

Type Vaccine Candidates Development Stage Institution

HuNoV P Particles GII.4 P particles alone, or combined
with other viruses [39,41,43,49,51] Preclinical

Cincinnati Children’s Hospital Medical
Center, Southern Medical University,

and Virginia Polytechnic Institute and
State University

3.1. HuNoV Vaccines in Preclinical Studies
3.1.1. Vaccines Based on HuNoV VLPs

A number of HuNoV vaccines in pre-clinical trials were designed as multivalent
vaccines in order to protect against not only HuNoV but also other viruses, such as
rotavirus, enterovirus 71, hepatitis E virus, or astrovirus, etc.

Combined with RV

Rotavirus (RV) is another major cause of gastroenteritis in children, typically inducing
high levels of protective antibodies after infection [62]. In order to prevent the acute gas-
troenteritis (AGE) caused by HuNoV and RV, combined vaccines containing HuNoV and
RV immunogens were investigated. The middle capsid VP6 of RV was selected because of
its high conservative feature among group A RVs and its good immunogenicity and adju-
vant effect [63], whereas only HuNoV GII.4 VLPs were initially selected in the combined
vaccine. However, due to the failure of the combined vaccine in inducing neutralizing anti-
bodies against heterologous HuNoV genotypes [40], a trivalent vaccine containing HuNoV
GII.4-1999 and GI.3 VLPs and the oligomeric RV VP6 was developed. In vitro studies
demonstrated that RV VP6 promoted the activation and maturation of antigen-presenting
cells (APCs) and facilitated the uptake of HuNoV VLPs by APCs [45]. In vivo studies
indicated that the trivalent vaccine induced type-specific IgGs and neutralizing antibodies
against the binding of HuNoV VLPs to histo-blood group antigen (HBGA) receptors [54].
In BALB/c mice, monovalent VLPs alone or a bivalent HuNoV vaccine based on GI.1
and GII.4-2006a VLPs were not capable of inducing the production of HuNoV-specific
antibodies, whereas the monovalent or bivalent VLPs combined with RV VP6 induced
significant immune responses with high levels of HuNoV-specific antibodies [44], further
indicating the critical role of VP6 in the combined vaccine.

Combined with EV71

A combination vaccine comprised of HuNoV GII.4 and enterovirus 71 (EV71) VLPs
was designed, and its immunogenicity was compared with those of monovalent GII.4-
and EV71-VLPs in mice [50]. The study showed that the bivalent vaccine elicited durable
antibody responses against both HuNoV GII.4 and EV71, and the antibody titers were
comparable to those induced by the monovalent vaccines, indicating that there was no
immune interference between the two immunogens in the combination vaccine. More
significantly, mouse sera immunized with the bivalent vaccine could efficiently neutralize
EV71 infection and block the binding of GII.4 VLPs to mucin [50].

Plant-Expressing HuNoV VLPs

Most of the HuNoV VLPs described above were produced by recombinant bac-
uloviruses in the insect cell line sf9, while a plant expression system was also used for
HuNoV vaccine development. For instance, a rapid, high-yield production of HuNoV
GII.4 VLPs in leaves of Nicotiana benthamiana was developed [42]. In addition, an oral
GII.4 VLP vaccine was produced in transgenic potatoes: 95% of volunteers who ingested
transgenic potatoes showed significantly higher numbers of specific IgA-secreting cells,
while 20% of subjects developed specific serum IgG, and 30% of subjects developed spe-
cific stool IgA [48]. Subsequently, the plant-based HuNoV VLP vaccine was produced in
tobacco (Nicotiana benthamiana) by using an efficient tobacco mosaic virus (TMV)-derived
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transient expression system. The tobacco-derived HuNoV VLPs induced systemic and mu-
cosal immune responses in mice [47]. Another tobacco (Nicotiana benthamiana)-produced
HuNoV GII.4 VLP induced VLP-specific serum IgG for 56 days in intranasally vaccinated
mice [46]. Together, these studies indicate that plant-based technology may have the
potential to be a tool to produce or safely deliver vaccines.

3.1.2. Vaccines Based on HuNoV P Particles

Apart from VLPs, the P particles derived from HuNoV VP1 were also explored as a
novel vaccine candidate. In one study, a neonatal gnotobiotic pig was used as a model to
evaluate the protective efficacies of HuNoV P particles and VLPs. Compared with VLPs,
the P particles induced significantly higher numbers of activated CD4+ T cells in all tissues,
interferon gamma-producing (IFN-γ+) CD8+ T cells in the duodenum, regulatory T cells
(Tregs) in the blood, and transforming growth factor β-producing (TGF-β+) CD4+ CD25−

FoxP3+ Tregs in the spleen, indicating that P particles elicited stronger immune responses
than did VLPs [43].

HuNoV combined vaccines based on P particles have also been developed in combina-
tion with immunogens derived from other viruses in order to block multiple potential viral
infections. A combined vaccine of influenza virus M2e and HuNoV P particles was shown
to induce protective antibodies against lethal challenge of influenza virus PR8 (H1N1).
In addition, sera from immunized mice were able to block the binding of HuNoV VLPs
and P particles to a HBGA [51]. Similar positive results were demonstrated when the
RV VP8 was combined with HuNoV P particles [41,49]. Like VLPs, the P particles were
immunogenic and showed HBGA-binding ability [39], informing its potential as a HuNoV
vaccine candidate.

Due to the lack of an efficient in vitro culture system, there is currently no report
on inactivated HuNoV vaccine research. We have constructed a HuNoV GII.4 infectious
clone, a modified cell line to consistently produce the virus, and a human intestinal
enteroid system to assess its infectivity. We also investigated the immunogenicity of
inactivated HuNoVs in mice. The results showed that inactivated HuNoVs could induce a
balanced Th1/Th2 response and the production of HuNoV-specific neutralizing antibodies
(Unpublished data), informing the potential of inactivated HuNoV to be used for further
vaccine study.

3.2. HuNoV Vaccines in Clinical Trails

As shown in Table 1, although a large number of HuNoV vaccines were discontinued
in preclinical stages, several HuNoV vaccine candidates have been/are being tested in
different phases of clinical trials.

3.2.1. Monovalent Vaccines

A monovalent HuNoV GI.1 VLP vaccine adjuvanted with monophosphoryl lipid A
(MPL) was tested in clinical trials, showing that it could induce HuNoV-specific serum an-
tibodies in the majority of intranasally vaccinated recipients. Moreover, the risk of HuNoV
infection and AGE development were significantly reduced in vaccinated recipients [55].
Further studies indicated that the vaccine induced immune responses in adults in a dose-
dependent fashion [56]. However, considering the genetic diversity and frequent evolution
of circulating HuNoV, further research was mainly focusing on vaccines combined with
different HuNoV genotypes.

3.2.2. Bivalent Vaccines

Considering the limitation of monovalent HuNoV vaccines, bivalent vaccines con-
taining HuNoV GI and GII VLPs have also been explored. A dry powder formulation of
bivalent HuNoV GI and GII.4 VLPs with an in-situ gelling polysaccharide was prepared
and used to nasally immunize guinea pigs in order to assess the immunogenicity, potential
immune interference, and safety. While the systemic and mucosal immunogenicity against
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each of the VLPs was increased in a dose-dependent manner, a boosting effect of the VLPs
without immune interference after the second dose was also observed [64]. To study the
immune responses and the mechanisms of GI.1 persistence, recombinant VLPs of five GI
strains, including GI.1-1968, GI.1-2001, GI.2-1999, GI.3-1999, and GI.4-2000, were assessed.
Peripheral blood mononuclear cells (PBMCs) from ten volunteers infected by GI.1-1968
were collected. Following stimulation with different VLPs, respectively, secreted IFN-γ
from PBMCs was measured: 60% of the recipients responded to at least one GI VLPs,
with only two volunteers responding to GI.1 VLPs. Importantly, four of five individuals
responded more robustly to other GI VLPs in the cross-reactivity studies [65].

Another preclinical study showed that a bivalent vaccine containing HuNoV GI.1
and GII.4 VLPs was highly immunogenic and induced the production of homologous
and heterologous HuNoV genotype-specific antibodies [66]. The immunogenicity of this
bivalent vaccine adjuvanted with MPL and aluminum hydroxide was further confirmed in
two clinical phase I studies [67,68], respectively. Antibodies against GI.1 and GII.4 rapidly
increased and peaked at ~7 days after the first dosing, with no boost effect being observed
after the second dosing. The HBGA-blocking antibody titer was significantly increased at all
dose levels and in all the evaluated recipients [68]. The above studies revealed that a rapid
immune response after the first dosing may be particularly important to control HuNoV
outbreaks. Subsequently, B cell responses were assessed in participants for the safety and
immunogenicity of the bivalent HuNoV GI.1 and GII.4 VLP vaccine [67]. The vaccine
was intramuscularly vaccinated on days 0 and 28 to healthy adults aged 18–49 years in
order to evaluate whether a single dose of the bivalent vaccine is potent enough to activate
pre-existing B cell memory. The results indicated that a rapid activation of B cells and the
mucosal homing phenotype of VLP-specific Ab-secreting cells (ASCs) were consistent with
those in subjects orally primed by HuNoV. Through monitoring clinical conditions after
challenge, the results showed that the signs and symptoms of HuNoV disease were less
common and severe in vaccinated recipients than those in controls [69].

A clinical phase II trial subsequently evaluated the dosage of each immunogen to reach
the best balance of tolerability and immunogenicity of this bivalent vaccine [59]. Enrolled
subjects were randomly assigned to three groups and intramuscularly vaccinated with
placebo or vaccines containing two different doses of GI.1 VLPs and GII.4 VLPs adjuvanted
with MPL and Al(OH)3. The results showed that both candidate VLP vaccines were well-
tolerated and induced robust immune responses. The formulation containing 15 µg GI.1
VLPs and 50 µg GII.4 VLPs displayed the best balance of tolerability and immunogenicity.
Additionally, the safety and immunogenicity of different formulations of the bivalent
HuNoV VLP vaccine candidate were assessed in healthy 18- to 64-year-olds [60], showing
that all candidate HuNoV formulations were well-tolerated. Overall, the formulation of
15 µg GI.1 VLPs/50 µg GII.4 VLPs elicited the best balance of immunogenicity, with no
clear benefit of MPL, indicating its potential for moving forward in clinical development.

Another clinical phase II trial of this bivalent vaccine was carried out in two age
cohorts (1 to <4 years, and 6 to <12 months). In 6–12-month-old infants and children up
to 4 years old, robust immune responses to the bivalent HuNoV VLP vaccine candidates
were observed. After two doses of immunization with the formulation containing 50 µg
GI.1/150 µg GII.4 VLPs, both age cohorts showed high antibody responses [61]. Whether
such immune responses could confer protection remains unclear. A phase II study re-
garding immunogenicity and safety of the bivalent HuNoV VLP vaccine candidate in
>60-year-olds was completed [70], showing that the elderly displayed no safety concerns
and had similar immune responses to the vaccine candidate as the younger cohorts. Fur-
ther clinical phase II trials regarding efficacy and long-term immunogenicity in adults
are ongoing.

3.2.3. Adenovirus Vector-Based HuNoV VLP Vaccine

A recombinant adenovirus vaccine expressing HuNoV GII.4 VLPs was developed by
the Chinese Center for Disease Control and Prevention. Intranasal administration of recom-
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binant adenovirus-expressed HuNoV GII.4 VLPs stimulates specific cellular, humoral, and
mucosal immune responses in mice [71]. The mice primed with recombinant adenovirus
and boosted with purified HuNoV GII.4 VLPs showed stronger humoral, mucosal, and
interferon-γ responses than those immunized with VLPs prime-recombinant adenovirus
boost or VLPs alone, suggesting that the adenovirus prime-VLPs boost vaccination is a
more effective strategy to induce immune responses against HuNoV, which may be another
promising direction to improve current HuNoV vaccine design [72].

Based on previous studies, a single-site, randomized, double-blind, placebo-controlled
clinical trial of an oral HuNoV vaccine was launched to assess its safety and immuno-
genicity. The tablet vaccine was comprised of a non-replicating adenovirus-based vector
expressing HuNoV GI.1 VLPs and a dsRNA adjuvant [57]. The results indicated that
this oral HuNoV vaccine was well-tolerated and induced substantial immune responses,
including systemic and mucosal antibodies as well as memory IgA/IgG.

Another similar vaccine using adenovirus-expressing HuNoV GII.4 VLPs was pre-
pared, and it tested whether enhanced protection could be induced by the recombinant
adenovirus vaccine. Based on the satisfactory results of the recombinant adenovirus, Vaxart
Incorporation developed an oral NoV GI.1 vaccine tablet combined with an oral NoV GII.4
vaccine tablet. The phase Ib trial was designed to evaluate the safety, immunogenicity, and
immune interference of this oral bivalent norovirus vaccine. As announced previously,
all primary and secondary endpoints for safety and immunogenicity were met in the
phase Ib study. Both the HuNoV GI.1 and GII.4 component of this vaccine induced robust
mucosal immune responses in the majority of subjects without immune interference [58,73].
This oral HuNoV bivalent vaccine developed by Vaxart Incorporation may represent a
promising vaccine candidate, although further clinical trials are still ongoing.

4. Discussion

A number of preclinical and clinical trial studies revealed that HuNoV vaccines were
able to induce good immune responses [39,44,46–48,50,51,54–59,61,64–68,70–72,74–79]. Re-
garding protective immunity, one vaccine efficacy study in gnotobiotic pigs showed that
adjuvanted HuNoV VLPs increased protection rates against viral shedding and diarrhea
after the immunized animals were challenged with the homologous HuNoV genotype [80].
Nevertheless, the current understanding of protective immunity required to confer pro-
tection against HuNoV infection remains inconclusive. The immunity against HuNoV
appears to be complex and is complicated by a number of factors. For instance, due to the
lack of an efficient in vitro HuNoV infection system, many of the HuNoV vaccine trials
studied the efficacy by assessing whether the vaccine-induced serum antibodies blocked
the binding of HuNoV VLPs to HBGAs. This method certainly has limitations, because
HuNoV VLPs with mutations within and around the receptor-binding domain, which had
altered immunogenicity, still retained the ability to bind with HBGAs [81,82]. In addition,
individuals with high titers of HuNoV-specific serum or fecal antibodies appeared to have
a greater probability of infection by HuNoV than those with low titers of pre-existing
antibodies [83–86]. These findings collectively highlighted that it is currently difficult to
determine the precise role of antibodies induced by a vaccine in preventing HuNoV infec-
tion. Furthermore, some individuals were shown to be resistant to infection by a specific
HuNoV genotype, despite the fact that they had functional alpha(1,2) fucosyltransferase,
which is important for the expression of HBGAs, implying that memory immune responses
elicited due to pre-exposure histories or other unknown factors might play a role [87].

The natural immunity against HuNoV is also poorly understood [88]. Although
previous studies in humans showed that the protective immunity against a homologous
HuNoV genotype lasted for 6 months to 2 years [83,89], the dose and the HuNoV genotype
used in the challenge study did not necessarily mimic a typical natural exposure. In a
follow-up modeling study, it was shown that the probable duration of post-exposure
HuNoV immunity might range from 4 to 8 years [90]. This would be a huge challenge for
developing an effective HuNoV vaccine. Another feature of HuNoV immunity is that the
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infection by one genogroup does not necessarily confer protection against the infection
by other genogroups [52,91,92]. NoV GI, GII, and GIV cause illness in humans, which are
subdivided into a number of different genotypes [3,4]. The predominant HuNoV genotype,
GII.4, undergoes a process of evolution, whereby a new variant emerges every 2–4 years.
Novel HuNoV GII.4 variants could alter their immunogenicity and consequently escape
from the pre-existing HuNoV immunity in the human populations [93]. Together, the
above studies indicated that the genetic diversity and frequent evolution of circulating
HuNoVs might limit the durability of protection induced by HuNoV vaccines.

Differences of individuals in immune response to natural norovirus infection suggest
that a robust immune response elicited by immunization in adults may not be equally
efficacious in children. The immune response of immunocompromised patients should
also be considered. Not until all these challenges are overcome it would be difficult to
develop an effective HuNoV vaccine and corresponding immunization schedule to protect
people from HuNoV infection. Therefore, future study is warranted to identify permissive
cell lines for in vitro HuNoV culture, while establishment of challenge animal models is
equally important. Together, such research systems would facilitate the development of an
effective HuNoV vaccine in the future.
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