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Summary:

Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens 

or parasites that spread in communities by direct contact with infected individuals or contaminated 

materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ~17% of 

all human deaths and their management and control places an immense burden on healthcare systems 

worldwide. Traditional approaches for the prevention and control of infectious diseases include 

vaccination programs, hygiene measures, and drugs that suppress the pathogen, treat the disease 

symptoms, or attenuate aggressive reactions of the host immune system. The provision of vaccines 

and biologic drugs such as antibodies is hampered by the high cost and limited scalability of 

traditional manufacturing platforms based on microbial and animal cells, particularly in developing 

countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which 

uses plants for protein expression, is a promising strategy to address the drawbacks of current 

manufacturing platforms. In this review article, we consider the potential of molecular farming to 

address healthcare demands for the most prevalent and important epidemic and pandemic diseases, 

focusing on recent outbreaks of high-mortality coronavirus infections and diseases that 

disproportionately affect the developing world.
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Introduction

In the first years of the 21st century, infectious diseases are still responsible for ~17% of all human 

deaths (GBD 2019 Diseases and Injuries Collaborators, 2020). The impact of infectious diseases as a 

proportion of all deaths has been falling decade on decade thanks to improvements in hygiene, 

vaccination and healthcare, but infectious diseases are still a major burden on national health systems. 

An infectious disease is defined as a transmissible disease caused by pathogens (viruses, bacteria or 

fungi) or parasites (both microbial and invertebrate, primarily endoparasites) but usually excludes 

infestations with arthropods such as ticks and lice, which typically act as ectoparasites. 

An epidemic disease is an infectious disease that may or may not be endemic in a population but 

spreads rapidly among communities of certain geographic areas (CDC, 2020b). Epidemics can be 

contained using a combination of natural and technological factors (including therapy and 

vaccination) that prevent spreading to other regions. Currently there are many epidemic diseases: 

cholera in Yemen (WHO, 2019), measles in Burundi (WHO, 2020g), measles and Ebola in the 

Democratic Republic of the Congo (WHO, 2020b,c), Ebola in Uganda (WHO, 2020e), measles in the 

Philippines, Kuala Koh, Samoa, and New Zealand (Ministry of Health NZ, 2020), and dengue in parts 

of Southeast Asia and South America (WHO, 2017a). The difference between an outbreak and an 

epidemic is often one of scale, but each is typified by a rapid increase in cases above the typical 

baseline incidence. The major difference between an endemic and epidemic disease is the unexpected 

nature of the epidemic, and each therefore requires different tactical and strategic approaches for 

control. A pandemic disease is an epidemic that spreads over multiple large regions or worldwide 

(CDC, 2020b) and such diseases are more common today than in previous centuries because of the 

pervasive nature of global travel and trade (Morens et al., 2009). Although the term pandemic is often 

associated with rapidly spreading diseases such as influenza and the current COVID-19 pandemic 

caused by severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2), which are 

transmitted by droplets or aerosols (CDC, 2020a; Morawska and Milton, 2020; WHO, 2020a), it also 

applies to diseases such as HIV/AIDS caused by human immunodeficiency virus, which is transmitted 

more slowly via body fluids (WHO, 2020f).

This review article provides a critical assessment of the use of plant biotechnology as a means to 

tackle epidemic and pandemic diseases, focusing on the use of plants as bioreactors for the production A
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of research reagents and pharmaceutical products including vaccines, antibodies and antivirals. The 

diseases covered by the article are summarized in Table 1, with more details on the incidence, 

prevalence and burden associated with these diseases provided in Supplementary Table 1.

Why plants?

Plant biotechnology has much to offer in the fight against infectious diseases, from the provision of 

emergency testing infrastructure (Webb et al., 2020) to the manufacture of small-molecule drugs, 

recombinant antivirals, subunit vaccines, engineered viruses and virus-like particle (VLP) vaccines, 

therapeutic proteins, antibodies, and diagnostic reagents (Capell et al., 2020; Daniell et al., 2016; 

2019; 2021; McDonald and Holtz, 2020; Rosales-Mendoza, 2020; Tusé et al., 2020). Although plants 

have been used as a platform for the production of pharmaceutical proteins for more than 30 years 

(Fischer and Buyel, 2020; JKC Ma et al., 2003), their potential advantages in terms of scale and speed 

were highlighted by the slow response of traditional manufacturing platforms to epidemics of severe 

acute respiratory syndrome (SARS) in 2002/2003, H1N1/09 influenza in 2009, Middle East 

respiratory syndrome (MERS) in 2012, Ebola in 2014/2015, and Zika in 2016/2017 (Bradley and 

Bryan, 2019; Kobres et al., 2019). Plants are still more often described as “promising” or “emerging” 

platforms rather than genuine alternatives, but their potential for the large-scale production of reagents 

and vaccines has been demonstrated in the context of COVID-19, particularly through the clinical 

testing of VLP-based vaccines (Ward et al., 2021a).

The ability of plants to produce pharmaceutical proteins has been demonstrated in hundreds of proof-

of-principle studies and in a growing number of clinical trials, with a small number of products 

reaching the market as approved biologics or medical devices (Fischer and Buyel, 2020; JKC Ma et 

al., 2003; Ward et al., 2020). Additional proteins have been expressed as diagnostics or research 

reagents, due to the shorter development times and lower regulatory burden (Tschofen et al., 2016). 

This niche discipline, known as molecular farming, was initially promoted by citing three key 

advantages of plants over fermenter-based alternatives such as bacteria, yeast and mammalian cells: 

low cost, greater scalability and intrinsic safety (Mir-Artigues et al., 2019; Nandi et al., 2016). The 

cultivation of plants in greenhouses (or even the field, where permitted) is much less expensive than A
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fermenters and can be realized on a much larger scale. Plants are also intrinsically unable to support 

the replication of human viruses, effectively behaving as self-contained disposable bioreactors. 

However, the early development of plant-based pharmaceuticals was limited by four main 

drawbacks that reduced industrial confidence: low yields, high purification costs, regulatory 

barriers, and plant-specific glycans. The second wave of molecular farming addressed these issues 

by increasing yields, optimizing downstream processing (Buyel et al., 2015; Peyret et al., 2019; 

Zischewski et al., 2015) for enhanced recovery and purification (Box 1), engaging with regulators to 

develop new guidelines (Ma et al., 2015) and devising strategies to remove or modify plant glycans 

where this improved product functions, while also showing in multiple clinical trials that they pose no 

significant risk (Schroberer and Strasser, 2018). Plant-based production systems now have the 

potential to compete with microbial and mammalian cells in fermenters, including the integration of 

pharmaceutical good manufacturing practice (GMP) at least for the downstream processing (DSP) 

steps (Fischer et al., 2012; Ma et al., 2015). Furthermore, the ease of transporting seeds and 

expression constructs, combined with the inexpensive cultivation and increasing availability of 

disposable equipment and portable infrastructure, means that plants can be grown where needed to 

provide a local source of research reagents, and potentially also vaccines or drugs, even in developing 

country settings.

Box 1 – Recovery and purification of biopharmaceutical proteins from plants and plant cell cultures

The large-scale manufacturing of biopharmaceuticals is often more readily achievable using plants rather than 

fermenter-based systems, but this places additional pressure on the downstream processing (DSP) steps (Buyel 

et al., 2017). The latter stages of DSP are more dependent on the product than the production system; hence the 

same platform chromatography steps can be applied to antibodies produced in mammalian cells and plants (Ma 

et al., 2015). However, the early stages of DSP must deal with challenges specific to the recovery and 

purification of biopharmaceuticals from plant tissues, because most molecular farming products are retained 

within the plant cell or in the apoplast, with relatively few products secreted fully into the medium of cell 

suspension/hairy root cultures or into the hydroponic fluid in rhizosecretion platforms (Drake et al., 2009; 

Madeira et al., 2016a,b). Cost-efficient conditioning and pre-processing steps have therefore been developed to 

address plant-specific challenges (product recovery from leaf or seed tissue, which results in a much higher 

burden of particles, fibers and host cell proteins than other systems), including precipitation, flocculation, A
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optimized filter trains, and membrane-based purification (Buyel and Fischer, 2014; Hassan et al., 2008; Menzel 

et al., 2016; Opdensteinen et al., 2019). The DSP steps for whole plants and plant cell cultures have evolved to 

a similar process scale and level of professionalism as established for conventional host systems (Schillberg et 

al., 2019). A framework has also been established to address process design and development, consisting of 

models for process steps (Buyel, 2016), overall layout (Nandi et al., 2016), and costs (Buyel and Fischer, 2012; 

McNulty et al., 2020; Walwyn et al., 2015). Accordingly, manufacturing vaccines and therapeutics in plant-

based systems is now a scalable and economically viable alternative to traditional production systems (Tusé et 

al., 2020).

The renaissance of molecular farming has led to three major platforms (Figure 1): transient 

expression (mostly in Nicotiana benthamiana), transgenic plants (mostly tobacco and cereals, but 

also fruit and vegetable crops, legumes and oilseeds), and plant cell suspension cultures (mostly 

tobacco and rice), which can be extended to include other clonally propagated platforms in 

containment such as algae, moss, duckweed, and plant organ cultures (e.g., hairy roots), which are 

thus covered by the same regulatory guidelines as cell cultures. These platforms have all been used to 

produce pharmaceutical proteins targeting infectious diseases because they have advantages for 

different disease types, which we explore in more detail when we consider the diseases in turn. 

Briefly however, transient expression involves the infiltration of wild-type plants or plant cells with 

bacteria or their infection with viral vectors, leading to a burst of recombinant protein production. 

This allows protein recovery after a few days and the entire platform is therefore extremely rapid 

and scalable. This is ideal for rapid responses in the face of emerging epidemic and pandemic 

diseases, and several companies have already invested in large-scale production facilities using N. 

benthamiana to develop vaccines against seasonal and pandemic influenza (Pillet et al., 2016; 2019; 

Shoji et al., 2011; Ward et al., 2020), Ebola (Hiatt et al., 2015), and most recently COVID-19 (Capell 

et al., 2020; Ward et al., 2021a). The scalability and response time were succinctly demonstrated in a 

DARPA Blue Angel program that produced 10 million doses of influenza vaccine in one month 

(Lomonossoff and D’Aoust, 2016). In the fight against COVID-19, transient expression has been 

successful for the development of diagnostic reagents and the components of assay kits (Capell et al., 

2020) and also for the development of vaccines, with the Canadian government already placing orders A
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for 76 million doses of the Medicago VLP vaccine (Ward et al., 2021a). It takes longer to develop 

products when the proteins are expressed in transgenic plants, but this allows the continuous, large-

scale production of proteins, which is ideal for slowly-spreading or established pandemic diseases, as 

well as widely prevalent endemic diseases discussed in our sister article (He et al., 2021), and where 

there is a large demand for biologics and insufficient capacity in the current supply chain. Tobacco is 

widely used to develop transgenic lines expressing pharmaceutical proteins, but leafy crops have the 

disadvantage of product instability during storage, meaning that immediate extraction and 

downstream purification is necessary unless the biomass can be frozen or dried (Hoelscher et al., 

2018). Freeze-dried leaves can be stored at ambient temperature for up to 3–4 years (Daniell et al., 

2020; Herzog et al., 2017; Park et al., 2020; Su et al., 2015), and seeds have been stored at ambient 

temperatures even longer without loss of protein activity, so both systems obviate the need for an 

expensive cold chain, which is especially valuable in remote areas in developing countries (Sabalza et 

al., 2013; Stoger et al., 2005). Furthermore, the use of any edible tissue for recombinant protein 

expression provides the option for oral delivery with zero (Daniell et al., 2020; Herzog et al., 2017; 

Park et al., 2020; Su et al., 2015; Tacket et al., 1998; 2000) or minimal processing (Nandi et al., 

2005; Zavaleta et al., 2007) or topical application as a crude extract (Ramessar et al., 2008a) which 

eliminates up to 80% of the costs of production, as discussed in greater detail in our sister article (He 

et al., 2021). The ability to use crude extracts also allows further cost savings by producing multiple 

proteins simultaneously within the same plants, as recently shown for two lectins and an HIV-

specific antibody as the basis for a microbicidal cocktail to prevent HIV transmission (Vamvaka et 

al., 2018). Finally, clonal systems such as cell suspension cultures are closest to traditional cell-based 

platforms in terms of GMP manufacturing and were therefore pioneers in the clinical development of 

plant-made pharmaceuticals. The first approved pharmaceutical product (taliglucerase alfa, a 

recombinant version of glucocerebrosidase indicated for Gaucher’s disease) was manufactured in 

carrot cell suspension cultures (Tekoah et al., 2015). Plant cells suffer similar limitations to other 

fermenter systems in terms of scalability (Santos et al., 2016). Therefore, plant cells and similar 

systems with lower scalability are more suited to the production of pharmaceuticals for orphan 

diseases and others with relatively low prevalence, such as specific forms of cancer, although recent 

studies have shown how scalability can be increased by semi-continuous production (Macharoen et A
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al., 2021). Like transgenic plant tissues, plant cell pellets can be administered orally or crude extracts 

can be applied topically to reduce processing costs, so they may yet find use for the production of oral 

vaccines and other non-injected products. The cost implications of the different molecular farming 

platforms have been addressed in multiple techno-economic assessments (Alam et al., 2018; Corbin et 

al., 2020; McNulty et al., 2020; Mir-Artigues et al., 2019; Nandi et al., 2016; Schillberg et al., 2019).

Small-molecule drugs

In addition to the production of pharmaceutical proteins, plants can also be used to manufacture 

small-molecule drugs, including antivirals. Interest in antivirals derived from wild-type plants has 

increased following the discovery that medicinal plant extracts containing polyphenols, terpenes, 

cumarins and alkaloids often show antiviral properties (Daglia, 2012; Denaro et al., 2020). Such 

molecules can inhibit viral entry, endosome and lysosome acidification (required for uncoating) or 

replication (Ben-Shabat et al., 2020; Musarra-Pizzo et al., 2019; Shin et al., 2010). More than one 

third of the 185 antiviral drugs approved in the last 38 years are natural products or their derivatives 

(Newman and Cragg, 2020). Indeed, COVID-19 has renewed interest in antiviral natural products, 

including heterocyclic molecules such as chloroquine, hydroxychloroquine, oseltamivir and 

dexamethasone (Figure 2). Chloroquine (originally isolated from the bark of the cinchona tree, now 

produced synthetically) and its derivative hydroxychloroquine are antimalarial drugs that also inhibit 

the glycosylation of viral proteins (Savarino et al., 2004). However, the efficacy and safety of these 

drugs for the treatment of COVID-19, though widely reported, has not been confirmed (Cortegiani et 

al., 2020). Similarly, artemisinic acid derivatives (also widely used for the treatment of malaria, see 

our sister article in this issue, He et al., 2021) can be produced in plants as artemisinic acid (Fuentes et 

al., 2016; 2018) or artemisinin (Malhotra et al., 2016) and appear to offer potential for the treatment 

of COVID-19 (Gendrot et al., 2020). Oseltamivir is a neuraminidase inhibitor derived from shikimic 

acid (originally extracted from plants, now produced in bacteria) that has been used to treat multiple 

viral diseases including most recently COVID-19 (Chhikara et al., 2020). Dexamethasone, which is 

recommended for critically ill COVID-19 patients in a hospital setting (Lifey, 2020), is also produced 

by chemical synthesis, but the corticosteroid backbone is found in many plant-derived steroids and 

could be used as an alternative source for larger-scale production (Patel and Savjani, 2015).A
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Plant-derived small molecules have also been screened to find new products that inhibit the SARS-

CoV-2 main protease, revealing the antiviral activity of luteolin-7-glucoside, demethoxycurcumin, 

apigenin-7-glucoside, oleuropein, curcumin, catechin, and epicatechin gallate (Khaerunnisa et al., 

2020). Similarly, screening a library of 100 FDA-approved antiviral compounds and 1000 active 

components from Indian medicinal plants showed that anthraquinone rhein, ergosterol withanolide D, 

sterol lactone withaferin A, fluoroquinolone enoxacin, and aloe-emodin can also bind to the protease 

(Kumar et al., 2020).

Molecular farming as a strategy to address rapidly-spreading epidemic and pandemic diseases

Coronavirus respiratory diseases

Coronaviruses are encapsulated single-stranded positive-sense RNA viruses that typically cause mild 

respiratory diseases such as the common cold. However, several novel strains of β coronavirus have 

emerged over the last 20 years that can trigger fatal acute respiratory infections, particularly in people 

with pre-existing health conditions. Major outbreaks occurred in 2002/2003 (severe acute respiratory 

syndrome-associated coronavirus, SARS-CoV), 2012 (Middle East respiratory syndrome-associated 

coronavirus, MERS-CoV) and most recently in 2019 (SARS-CoV-2) (Bradley and Bryan, 2019; 

Kobres et al., 2019; Park, 2020). The latter was classified as a pandemic by the WHO on March 11, 

2020 (WHO Director-General, 2020) and has thus far infected more than 180 million people 

worldwide causing ~3.9 million deaths (Johns Hopkins University of Medicine, 2021) although the 

recent approval of several vaccines is now providing hope that the disease can at last be brought under 

control (Hooker and Palumbo, 2020). The three most lethal β coronaviruses and the properties of the 

associated diseases are compared in Table 2.

Molecular farming played a negligible role in the fight against SARS and MERS because these 

epidemics, while serious, did not reach the pandemic status of COVID-19, and the technology was in 

any case not ready for a large-scale response. Nevertheless, the N-terminal ectodomain of the SARS-

CoV spike (S) protein was expressed in tobacco, lettuce and tomato, and was in some cases proven to 

be immunogenic (Li et al., 2006; 2009; Pogrebnyak et al., 2005). Furthermore, the SARS-CoV 

membrane (M) protein and nucleocapsid (N) protein were produced by transient expression in N. 
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benthamiana, again providing evidence of immunogenicity (Demurtas et al., 2016; Zheng et al., 

2009). The yield of the N protein was 79 mg/kg fresh leaf biomass (Zheng et al., 2009).

The outbreak of COVID-19 resulted in a much more significant reaction from the molecular farming 

community, in part reflecting the rapid spread of the disease and the need for urgent responses, and in 

part reflecting the profound growth of plant-based transient expression as a large-scale vaccine 

manufacturing platform in the 18 years since SARS (Capell et al., 2020; Rosales-Mendoza, 2020). 

From the outset, molecular farming was acknowledged as a potential response platform and attracted 

a substantial amount of investment. This was true especially for the production of research-grade 

reagents and vaccine candidates, but also for the development of therapeutics, including antibodies 

against the virus and the hyperactive immune response linked to the most severe and often fatal 

symptoms of COVID-19. Because research-grade reagents do not need regulatory clearance or 

clinical testing, many current academic and commercial researchers in the molecular farming 

community (including the authors of this article) stepped up following the outbreak of COVID-19 in 

order to use their technology to produce SARS-CoV-2 proteins, antibodies for their detection, and 

PCR control reagents. These products can also double as clinical-grade products (vaccine candidates 

and therapeutics) if produced under GMP conditions.

Perhaps the most important target of molecular farming in the context of COVID-19 is the SARS-

CoV-2 trimeric S-protein, and derivatives such as the 223-residue SB receptor binding domain (RBD). 

The full S-protein is 1255 amino acids in length (~180 kDa), which is cleaved into the receptor-

binding S1 subunit (~110 kDa) and the fusion-promoting S2 subunit (~70 kDa). The S-protein 

contains 22 sites for N-linked glycans (19 of which have been experimentally confirmed), 13 in the S1 

subunit, as well as low levels of O-linked glycosylation (Ramírez Hernández et al., 2021), which 

increase its molecular weight. The RBD has a molecular weight of ~35 kDa. These proteins can be 

developed as research reagents and diagnostics for the detection of serum antibodies, but also as 

vaccine candidates and even therapeutics. The S-protein has been produced in mammalian cells with a 

yield of ~2 mg/ml whereas the much smaller RBD is expressed at higher levels, up to 25 mg/ml 

(Amanat et al., 2020; Zhao et al., 2020). Many groups are now producing variants of this heavily 

glycosylated protein in plant cell suspension cultures or whole plants by transient expression or in 

transgenic lines (Makatsa et al., 2020; authors’ unpublished data). Differences in the glycan profiles A
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of S protein variants produced in plants may affect the immunogenicity of different vaccines, 

contributing to differences in efficacy. 

Another key protein used in COVID-19 research is angiotensin-converting enzyme 2 (ACE2), which 

is the major SARS-CoV-2 receptor found on pulmonary epithelial cells among others (Hoffmann et 

al., 2020; Wrapp et al., 2020). The natural function of ACE2 is the regulation of blood pressure and 

cardiovascular homeostasis, which is achieved via the proteolytic degradation of the pro-

inflammatory and vasoconstrictive peptide angiotensin II (Ang1-8) to Ang1-7 (Anguiano et al., 

2017). Elevated levels of angiotensin II are pathogenic, so a soluble version of ACE2 (sACE2) is 

currently in development as a cardiovascular drug and has completed phase I and II trials (Haschke et 

al., 2013; Khan et al., 2017). The outbreak of SARS-CoV-2 provided impetus for the repurposing of 

this protein, which was shown to inhibit SARS-CoV-2 infection of human cells and organoids in vitro 

and is now undergoing clinical testing (Monteil et al., 2020). Like the SARS-CoV-2 S-protein, human 

ACE2 is heavily glycosylated, with seven N-linked glycosylation sites and a single O-linked 

glycosylation site (Shajahan et al., 2020). One unique aspect of molecular farming is the distinct 

glycan profile of plant cell lines compared to mammalian cells (Schoberer and Strasser, 2018), 

allowing the production of S-protein and ACE2 variants as different glycoforms that may differ in 

terms of stability, immunogenicity and efficacy (Solá and Griebenow, 2010). The absence of ACE2 

glycosylation has been shown to impair the uptake of SARS-CoV-2 by human cells, with a small 

impact on the binding affinity (Yang et al., 2020). However, a full-length oral ACE2 expressed in 

lettuce chloroplasts (thus lacking glycans) accumulates to a 10-fold higher concentration in the lungs 

than in plasma, leading to a reduction in right ventricular hypertrophy, total pulmonary resistance 

index, right ventricle systolic pressure, and pulmonary artery remodeling in hypertensive animals 

(Daniell et al., 2020). For COVID-19 patients, it is important to deliver ACE2 to lung tissues because 

SARS-CoV-2 binds to receptors there and causes significant lung damage. In addition, CTB-ACE2 

with efficient binding to both GM1 and ACE2 can effectively block binding of the S-protein and viral 

entry into human cells, especially via oral epithelial cells that are enriched with both receptors (Xu et 

al., 2020).

Another advantage of molecular farming in the response to COVID-19 is the speed and scalability of 

systems based on transient expression in whole plants, which will help to address the massive demand A
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for research reagents, and could ultimately be used to produce vaccines and therapeutics on a 

sufficient scale for global distribution (Capell et al., 2020; Tusé et al., 2020). This advantage may also 

be critical in the future, if variants of SARS-CoV-2 evolve to render current vaccine products less 

effective. Industrial-scale production will be required for SARS-CoV-2 proteins used as vaccine 

antigens, for sACE2 as a therapeutic, and for broadly neutralizing antibodies that may eventually take 

the place of convalescent serum which is currently being used to treat critically ill patients (Wang et 

al., 2020). Similarly, testing the population for immunity will require billions of serology tests 

worldwide. Periodic retesting may also become necessary as SARS-CoV-2 is already showing signs 

of becoming an endemic disease, and pathogenic coronaviruses may elicit less than 3 years of 

immunity in some individuals (Long et al., 2020; Payne et al., 2016). The scalability of production is 

therefore a key consideration. Currently, recombinant SARS-CoV-2 S1 antigen prices fall within the 

range US$4–25/µg and at least 300 ng of purified antigen is needed for serological tests based on the 

enzyme-linked immunosorbent assay (ELISA). One billion tests would therefore cost US$1.2 billion 

for the antigen alone unless economies of scale can be harnessed. Commercial-scale production 

facilities based on transient expression are currently operated by iBio in Bryan, Texas, USA (Holtz et 

al., 2015), Medicago in Quebec, Canada, and Raleigh-Durham, North Carolina, USA (Lomonossoff 

and D’Aoust, 2016), and Kentucky Bioprocessing in Owensboro, Kentucky, USA (Pogue et al., 

2010). All of these facilities are currently being used to produce COVID-19 reagents and vaccine 

candidates for clinical testing, including subunit vaccines and VLPs (Capell et al., 2020). Medicago 

has recently published the successful results of phase I trials (Ward et al., 2021a) and is currently 

conducting phase III trials, with 76 million doses alredy ordered by the Canadian government. 

Researchers at UC Davis are testing variations of the SARS-CoV-2 S-protein and ACE2-Fc fusion 

proteins in mammalian cells and plant expression systems to compare titer and structures, allowing 

the immunological analysis of the recombinant glycoproteins combined with molecular dynamics 

simulations to predict product stability and relative binding affinity (Bernardi et al., 2020). 

Monoclonal antibodies against SARS-CoV-2 proteins have also been produced by transient 

expression in N. benthamiana (Rattanapisit et al., 2020) and the US company Novici Biotech 

(Vacaville, California, USA) has not only produced one such antibody (CR3022) by transient 

expression but has also donated batches to BEI Resources (Manassas, Virginia, USA) for distribution A
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at shipping cost only. Transient expression has also been used to produce the antiviral lectin 

griffithsin (Fuqua et al., 2015; Hahn et al., 2015), which was shown to act synergistically against 

SARS-CoV-2 (Cai et al., 2020). Whereas transient expression allows rapid production, ultimate 

scalability requires transgenic plants because stable lines can be scaled indefinitely for the long-term 

production of proteins in greenhouses or (in some jurisdictions) even in the open field. Other groups, 

including the authors of this article, are using transgenic systems to produce antiviral lectins in 

transgenic plants, including rice (Vamvaka et al., 2016a,b; 2018) and soybean seeds (O’Keefe et al., 

2015).

The potential of ACE2/Ang1-7 to rebalance the severely disrupted renin-angiotensin axis suggests a 

potential benefit in more severely ill patients with acute respiratory distress syndrome, with or without 

COVID-19, where low ACE2 and Ang(1-7) have been linked to poor prognosis. The NHLBI 

SMARTT program has already facilitated toxicology, pharmacokinetic and regulatory studies for 

ACE2/Ang1-7 expressed in chloroplasts (Figure 3). Briefly, oral dose range finding studies of CTB-

ACE2/CTB-Ang(1-7) in healthy male and female Sprague Dawley rats revealed no significant 

toxicity, and the few mild clinical/laboratory abnormalities were confined to the high-dose group 

(Daniell et al., 2020). CTB-ACE2/Ang1-7 in pharmacokinetic studies was also delivered in a dose-

dependent manner. Clinical studies of CTB-ACE2/Ang1-7 are now underway to determine the safety, 

tolerability and pharmacodynamics of oral ACE2/Ang1-7 in healthy volunteers (phase 1a) and 

patients with COVID-19 (phase 1b). furthermore, a 2-week treatment (phase 2) is being evaluated for 

the ability to improve clinical outcomes in patients admitted to a non-ICU hospital setting and in 

patients with COVID-19 who are triaged to home quarantine, evaluating the median time to release 

from quarantine using established criteria.

Seasonal and pandemic influenza

Influenza is a contagious viral infection transmitted by sneezing and coughing. It is caused mainly by 

influenza viruses A and B, which induce symptoms of fever, myalgia, headache, malaise, and the 

typical signs of upper respiratory infections (coughing, sore throat, congestion). Symptoms typically 

last 5–10 days but longer in children, the elderly and the immunocompromised. Influenza is recorded 

in 5–10% of adults and 20–30% of children every year, with both seasonal and epidemic/pandemic A
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patterns. Seasonal influenza occurs in temperate regions but there is no clear seasonal pattern 

elsewhere (Moghadami, 2017).

Influenza virus undergoes antigenic drift caused by point mutations but also antigenic shift caused by 

the recombination of the segmented genome when multiple strains infect the same individual. This 

leads to rapid changes in the genetic makeup of strains circulating in the human population and new 

vaccines must therefore be prepared every year (WHO, 2020h). The influenza antigens included in the 

vaccines are selected based on global surveillance, and decisions are made at least 6 months before 

the next season to allow time for vaccine manufacturing and approval. Recommendations are 

proposed by WHO and regional medical regulators for trivalent or quadrivalent formulations 

including A/H1N1 and A/H3N2 strains, as well as one or two B strains thought most likely to become 

prevalent in the next season. The viruses are then adapted for propagation in eggs and are produced 

separately. The long gap between the selection of antigens and the availability of vaccines means that 

inaccurate predictions can limit the efficacy of the next seasonal vaccine due to the emergence of an 

unanticipated strain, as occurred between 2010 and 2014 when the effectiveness of the US vaccine 

dropped from 60% to 19%. Similarly, pandemic strains of influenza emerge occasionally due to 

zoonotic transmission, as most recently seen in the 2009 swine flu pandemic. The seasonal vaccine 

offered no immunity against this strain, leading to the emergency manufacture of a new vaccine that 

included the H1N1/09 antigen.

Plants are promising as a platform for the manufacture of influenza vaccines due to their scalability 

and the rapid production facilitated by transient expression. Whereas 6 months or more is needed to 

prepare sufficient quantities of egg-derived vaccine to meet global demand, the same can be achieved 

in plants within a few weeks (Shoji et al., 2012), as proven in the abovementioned DARPA Blue 

Angel program that produced 10 million doses in one month (Lomonossoff and D’Aoust, 2016). For 

this reason, although some influenza antigens have been produced in transgenic plants (Ceballo et al., 

2017; Firsov et al., 2015; Lee et al., 2015), most have been transiently expressed in N. benthamiana 

(Hodgins et al., 2017; 2019a,b; Landry et al., 2014; Shoji et al., 2009a,b; 2103; 2015; 

Supplementary Table 1) including all vaccine candidates intended for commercial development. 

Several products indicated for seasonal and pandemic influenza have already reached late-stage 

clinical development, including vaccines against novel influenza strains as well as quadrivalent A
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vaccines against seasonal variants (Chichester et al., 2012; Cummings et al., 2014). The candidates 

have all been based on the hemagglutinin protein (HA), primarily from H1N1 or H5N1 strains of 

Influenza A virus. Various formats have been tested, including monomeric and trimeric HA subunits, 

but the most popular approach is the presentation of HA on the surface of VLPs. Typical VLPs 

require a viral coat protein component to form the core of the particle, and influenza vaccines based 

on tobacco mosaic virus have been developed using this principle by Fraunhofer CMB/iBio (Shoji et 

al., 2011; 2012). These systems can achieve high product yields: for example, vaccines against strains 

H3N2, H5N1 and H1N1 have been produced at yields of 50–200 mg/kg fresh leaf biomass (Shoji et 

al., 2008; 2011). However, HA can assemble in planta and bud from the membrane to form 

independent enveloped VLPs even in the absence of viral coat protein components (D’Aoust et al., 

2008) and the particles were found to be immunogenic and protective in mouse challenge studies 

(D’Aoust et al., 2010). This unexpected discovery provided the foundation for the development of 

multiple vaccine candidates based on carrier-free VLPs by Medicago, including a proof-of-concept 

vaccine against a newly emerged H7N9 strain (Pillet et al., 2015) and a quadrivalent vaccine with HA 

derived from strains A/California/07/2009 H1N1 (A/H1N1 Cal), A/Victoria/361/11 H3N2 (A/H3N2 

Vic), B/Brisbane/60/08 (B/Bris, Victoria lineage) and B/Wisconsin/1/10 (B/Wis, Yamagata lineage), 

which has reached phase III clinical development (Pillet et al., 2016; 2019; Ward et al., 2020). The 

two phase III trials involved a total of 22,930 subjects (Ward et al., 2020). The first study of 10,160 

adults during the 2017/2018 northern hemisphere influenza season was a placebo-controlled 

randomized trial that revealed an absolute vaccine efficacy of 35.1%, which was lower than the 

primary endpoint of the study (70% efficacy) but better than the performance of the standard 

quadrivalent vaccine in the same year, particularly when comparing the response against the H3N2 

strain. The second study of 12,794 adults aged 65 or more during the 2018/2019 northern hemisphere 

influenza season was a direct comparison of the plant-derived and egg-derived vaccines, showing the 

former had an 8.8% higher efficacy despite the lower antibody response. A third phase III trial was 

recently completed successfully using VLPs based on strains A/California/07/2009 H1N1, A/Hong 

Kong/4801/2014 H3N2, B/Brisbane/60/08 and B/Phuket/3073/2013 (recommended for the 2016–

2017 Northern Hemisphere season) in 1200 healthy adults aged 18–49 years to test lot-to-lot 

consistency and to confirm safety and immunogenicity (Ward et al., 2021b).  Overall, the influenza A
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VLPs have been shown to interact with macrophages similarly to the native virus, which may explain 

their superior efficacy compared to killed vaccines adapted in eggs (Makarkov et al., 2017; 2019). At 

the cellular level, the VLPs were shown to present trimeric HA that interacted directly with dendritic 

cells in humans and mice, promoting the release of pro-inflammatory cytokines and the activation of 

antigen-specific T-cell responses (Won et al., 2018).

The strong immunogenicity of HA-based VLPs has led to a wealth of clinical data concerning the 

specific immune response to these vaccine candidates and has, as a by-product, helped to address one 

of the early contentious aspects of molecular farming – the impact of plant glycans. The clinical 

testing of the H5N1 influenza vaccine is pertinent because the phase I/II trials specifically measured 

the human antibody response to N-linked glycans present on the VLP surface. In the phase I trial, 

seven of 48 subjects (14.6%) already produced such antibodies (Landry et al., 2010) and in the 

extended phase I/II trial of the same product, the frequency of seropositive subjects before vaccination 

was 19.2% (Ward et al., 2014). A total of 280 of 349 subjects received either one or two 

intramuscular doses of vaccine, including 40 subjects with pre-existing plant allergies. Subjects were 

monitored for 6 months after vaccination and 34% developed transient IgG responses to glycans. 

Some subjects developed IgE responses but not to the glycoepitope containing xylose and fucose, 

which is specific to plants, and there was no evidence of allergy or hypersensitivity (Landry et al., 

2010; Ward et al., 2014). Similar results were reported in phase I/II trials of the quadrivalent 

influenza vaccine. Only two of 30 subjects tested positive for IgE against the glycoepitope during the 

study, and one subject with pre-existing IgE actually lost the IgE response following vaccination, 

most probably reflecting background exposure to environmental plant carbohydrates. Approximately 

24,000 people have now received one or two doses of the plant-derived VLP vaccine without the 

induction or worsening of clinical allergies, the development of pathological IgE responses, or the 

long-term elicitation of glycan-specific IgG. The development of influenza vaccines produced by 

transient expression is therefore one of the key niches of molecular farming that show unambiguous 

advantages over all other current manufacturing platforms, and this is reflected by the keen interest 

and investment in the platform by the US and Canadian governments.
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Ebola hemorrhagic fever

Ebola hemorrhagic fever in humans is caused by four of the six known species of Ebolavirus, with 

Zaire ebolavirus causing the most severe symptoms and the greatest number of fatalities. The first 

known outbreak was in 1976 in Sudan, although the cause was not known until several months later 

when a second outbreak occurred in Zaire (now the Democratic Republic of the Congo). The virus 

spreads through contact with body fluids, and is thought to transfer from fruit bats to primates 

(including humans) as well as some domestic animals. There have been six major outbreaks in the last 

decade, some of which are current, and the fatality rate for infected individuals is ~50% on average, 

with a maximum of ~90% (WHO, 2020d). Work on vaccine development was intermittent until the 

recent outbreaks brought the disease to global attention, particularly the threat of wider spreading due 

to international travel, but it has been challenging to complete vaccine trials due to the disease tailing 

off before programs can be mounted, leaving a shortage of recruits (Chappell and Watterson, 2017). 

Three vaccines have progressed to efficacy trials after successful phase I safety evaluation, two of 

which were based on adenovirus vectors expressing the Zaire ebolavirus glycoprotein 1 (ChAd3-

ZEBOV and Ad26-EBOV/MVA-EBOV) and one based on recombinant vesicular stomatitis virus 

(rVSV-EBOV). The adenovirus vaccines are efficacious in non-human primates, although Ad26-

EBOV/MVA-EBOV requires a modified vaccinia Ankara booster dose. The rVSV-EBOV vaccine 

was also shown to be effective in humans in a delayed deployment efficacy trial conducted in Guinea 

at the tail end of the 2014/2015 outbreak (Chappell and Watterson, 2017) and was administered to 

more than 300,000 enrollees in the subsequent 2018 outbreak in the Democratic Republic of the 

Congo, resulting in 80% of vaccine recipients resisting the disease and the remainder showing only 

mild symptoms (Maxmen, 2020).

Given the success of the rVSV-EBOV vaccine and the restriction of vesicular stomatitis virus to 

mammalian cells, molecular farming has not been used to independently develop any Ebola vaccine 

candidates. A chimeric protein containing two epitopes from the Zaire ebolavirus glycoprotein 1 

fused to the nontoxic B component of the enterotoxigenic Escherichia coli (ETEC) heat-labile toxin 

(LTB) was expressed in tobacco (14.7 µg/kg fresh leaf biomass) and was immunogenic in BALB/c 

mice, producing IgA and IgG responses following oral immunization (Rios-Huerta et al., 2017), but 

this was not developed any further perhaps because the yields were too low for an economically A
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viable process. However, plants have been used to produce monoclonal antibodies against the virus 

which can help with the treatment of patients who have already contracted the disease (Olinger et al., 

2012; Zeitlin et al., 2011). Single monoclonal antibodies as well as cocktails of two or three different 

types have been produced in N. benthamiana and transplastomic lettuce leaves, achieving the 

neutralization of Ebola virus in pre-clinical tests (Fulton et al., 2015; Lai et al., 2012; Lin et al., 2018; 

Phoolcharoen et al., 2011). The light and heavy chains of monoclonal antibody 6D8 were produced 

with yields of up to 0.5 g/kg by transient expression (Phoolcharoen et al., 2011). A cocktail of three 

monoclonal antibodies known as ZMapp (c13C6, c2G4 and c4G7) was also transiently expressed in 

tobacco leaves (0.5 g/kg) and, for each antibody, the full-size tetrameric IgG complex containing two 

heavy and two light chains retained its virus-binding activity (Qiu et al., 2014). It is important to note 

that the three antibodies were expressed separately and the purified products were subsequently mixed 

– the simultaneous expression of multiple antibodies in the same plant is likely to result in hybrid 

immunoglobulin assembly. In another study, three anti-Ebola virus mouse/human chimeric 

monoclonal antibodies (c13C6, h-13F6, and c6D8) produced in tobacco completely protected two 

infected animals in pre-clinical tests (Olinger et al., 2012). ZMapp was subsequently approved under 

the animal efficacy rule, which allows temporary use in humans based on animal data if clinical 

studies would be impossible or unethical. This was deemed to be the case in the 2014–2016 Ebola 

outbreak in West Africa, in which seven patients were treated with ~9 g of the cocktail and five 

survived (Qiu et al., 2014). Conventional clinical development continued in parallel, but as in 

previous vaccine studies it was not possible to collect sufficient data to achieve statistical significance 

because the number of patients declined as the epidemic wound down (PREVAIL II Writing Group et 

al., 2016). In 2020, the FDA approved Inmazeb for the treatment of Zaire ebolavirus infection in 

adults and children, a combination of three monoclonal antibodies (atoltivimab, maftivimab and 

odesivimab) produced in CHO cells (Markham, 2021). The lectin CV-N has also shown animal 

efficacy against Ebola virus (Barrientos et al., 2003).

Zika fever

The mosquito-transmitted Zika virus was discovered in East Africa in 1947 and sporadic individual 

infections in humans were reported from 1954, but the first epidemic did not occur until 2007, when 

185 cases were recorded in the Yap Islands of Micronesia (Gubler et al., 2017). A series of outbreaks A
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in 2013–2014 affected ~9000 people across Oceania, followed by a major epidemic in 2015–2016 in 

Brazil, spreading to the rest of the Americas and affecting up to 35,000 people, garnering international 

attention and a WHO classification as a Public Health Emergency of International Concern. Although 

direct fatalities from the disease are unknown, mother-to-child transmission during pregnancy can 

cause microcephaly and other brain malformations in the fetus (Rasmussen et al., 2016). Several 

countries that have experienced Zika outbreaks have also reported increases in the prevalence of 

Guillain-Barré syndrome, which causes muscle weakness and in some cases breathing difficulties and 

cardiovascular complications. The properties of Zika fever, Ebola fever and non-seasonal influenza as 

epidemic diseases are compared in Table 3.

A number of Zika virus vaccine candidates are currently under development, many based on 

previously approved platforms and designs against dengue and other infectious diseases (Tripp and 

Ross, 2016). For example, the Zika envelope protein (ZE3) is a safe and efficacious vaccine 

candidate, producing VLPs that elicit robust anti-ZE3 antibody titers and neutralize the virus 

efficiently without an adjuvant (Diamos et al., 2020b). The transient expression of ZE3 in N. 

benthamiana achieved yields of up to 160 mg/kg fresh leaf biomass, suggesting this could be an 

effective response strategy to further outbreaks (Yang et al., 2018). As discussed for Ebola, transient 

expression has also been used to produce single monoclonal antibodies and cocktails of two or three 

different types against Zika virus. The yield was up to 1.5 g/kg fresh leaf biomass, and the purified 

antibodies retained their ability to recognize the Zika virus envelope protein and neutralize the 

virus (Diamos et al., 2020a).

Molecular farming as a strategy to address established pandemic diseases

HIV/AIDS

HIV is a retrovirus that is transmitted through sexual intercourse or contact with infected blood. The 

virus targets cells of the immune system (CD4+ T cells, macrophages and dendritic cells) and 

therefore leads to an acquired immunodeficiency syndrome (AIDS) that renders the patient 

susceptible to opportunistic infections, which are generally the direct cause of death (Bowen et al., 

2016; Buchacz et al., 2016). Although there is no vaccine or cure, HIV loads can be controlled by 

antiretroviral drugs, particularly highly active antiretroviral therapy (HAART) involving multiple A
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drugs with different targets. Accordingly, the population living with HIV is steadily increasing and 

was nearly 38 million in 2018, with eastern and southern Africa the worst affected regions (UNAIDS, 

2020).

HIV is a global disease but its effects are disproportionately felt in poorer regions without access to 

drugs or preventatives, so molecular farming in transgenic plants is a particularly suitable approach 

given the potential for large-scale inexpensive production and the use of crops that can be grown 

locally in developing countries. Several HIV proteins have been expressed in plants as potential 

vaccine candidates, including the gp140 envelope protein in N. benthamiana at 21.5 mg/kg fresh leaf 

biomass, which was well tolerated and immunogenic in rabbits (Margolin et al., 2019; 2020). HIV 

coat protein genes have also been transiently expressed in N. glutinosa and N. benthamiana, with 

yields of 814.2 and 462.6 µg/kg fresh leaf biomass, respectively (Ataie Kachoie et al., 2018). The p24 

capsid protein (and a fusion of p24 with the negative regulatory protein Nef) was expressed in 

transplastomic tobacco and tomato plants to levels of up to 40% of total protein, and proved to be 

immunogenic following subcutaneous and oral administration in experimental animals (Gonzalez-

Rabade et al., 2011; McCabe et al., 2008; Zhou et al., 2008). HIV-specific antibodies have been 

expressed in transgenic rice (Vamvaka et al., 2016c), tobacco (Niemer et al., 2014) and maize 

(Sabalza et al., 2012) and have shown promising neutralizing activity in vitro, suggesting they could 

be used as microbicidal formulations (Ramessar et al., 2008b). An HIV polyepitope has also been 

expressed in lettuce (Govea-Alonso et al., 2013). Antiviral lectins such as cyanovirin-N and 

griffithsin transiently expressed in N. benthamiana (Habibi et al., 2018) or stably expressed in 

soybean (O’Keefe et al., 2015), rice (Vamvaka et al., 2016a,b) and transplastomic tobacco (Elghabi et 

al., 2011; Hoelscher et al., 2018) have also proven effective. The benefits of the soybean system are 

expanded in Box 2.

Vamvaka et al. (2018) expressed the HIV-neutralizing monoclonal antibody 2G12 and two lectins 

(cyanovirin-N and griffithsin) in the same transgenic rice line, providing an inexpensive and scalable 

strategy for the provision of microbicidal cocktails. The high mutation rate of HIV means that single 

components are ineffective due to the evolution of escape mutants, but combinations of three or more 

components targeting different viral epitopes can help to prevent viral spreading. The rice system is 

advantageous because typical molecular farming products must be purified to homogeneity, and this A
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would abolish the advantage of the triple transgenic lines. However, the generally regarded as safe 

(GRAS) status of rice and other cereals means that microbicides could be prepared from crude 

extracts (essentially ground seeds) allowing the development of effective microbicide cocktails that 

can be stored and transported as dry seed without a cold chain and then prepared as a microbicide in a 

local facility (Vamvaka et al., 2018). As a model for this approach, transgenic rice expressing 

recombinant proteins is already grown in the field in locations where there are no rice crops or 

compatible wild species, such as the Ventria facilities in the USA and US Virgin Islands (APHIS, 

2018), and other companies grow seed-based crops in containment for the same purposes (Fischer and 

Buyel, 2020). Transgenic tobacco plants expressing 2G12 were developed during the EU-funded 

Pharma-Planta project, which resulted in a successful phase I clinical trial (Ma et al., 2015). In this 

case, the production platform and regulatory aspects were adjusted during the study as the regulations 

concerning GMP requirements changed during the project, resulting in the accreditation of a GMP 

facility and the successful production of clinical-grade plant-derived 2G12 for intravaginal testing in 

healthy female subjects (Ma et al., 2015; Sack et al., 2015). As stated above, griffithsin has also been 

produced by transient expression (Fuqua et al., 2015; Hahn et al., 2015) and the economic benefits of 

this approach have been discussed (Alam et al., 2018).

Box 2 – The production of lectins in soybean seeds

Cyanovirin-N is a lectin isolated from the cyanobacterium Nostoc ellipsosporum, and it has been shown to 

inactivate SIV and HIV by establishing multiple weak interactions with the surface envelope glycoprotein 

(gp120) thus blocking membrane fusion (Boyd et al., 1997; Tsai et al., 2003). In the context of molecular 

farming, it is important to note that bacterial systems are uneconomical for the production of this protein 

because high yields of functional protein are difficult to achieve given the dependence on multiple disulfide 

bonds (Lofti et al., 2018.). Transgenic plants offer a scalable alternative (O’Keefe et al., 2015). Soybean seeds 

are particularly attractive due to their endogenous protein content of ~40% compared to 8–10% for cereals 

(Stoger et al., 2005; Vianna et al., 2011b). In soybean seeds, the protein storage vacuoles (PSVs) are involved 

in the accumulation of ~70% of all seed proteins (Shimada et al., 2018; Tan et al., 2019) making them ideal for 

the accumulation of recombinant proteins (Cunha et al., 2011a,b; 2013; 2014a,b; 2019; 2020; Jolliffe et al., 

2005; Rech et al., 2014; Tan et al., 2019; Vianna et al., 2011a,b; Wakasa and Takaiwa, 2013). Multiple 

recombinant proteins have therefore been expressed in soybean PSVs, including proinsulin (Cunha et al., A
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2010), human growth hormone (Cunha et al., 2011a), coagulation factor IX (Cunha et al., 2011b; 2014b), 

cyanovirin-N (O’Keefe et al., 2015), antibodies (Vianna et al., 2011a,b), and tumor antigens (Rech et al., 

2014). The proteins remained stable and active after 7 years of seed storage at room temperature (Cunha et al., 

2011a,b; Rech et al., 2014; O’Keefe et al., 2015; Vianna et al., 2011a). Cyanovirin-N was expressed in 

soybean using the β-conglycinin promoter to restrict expression to the seeds and a signal peptide to target the 

PSVs, resulting in the detection of the protein specifically in the seeds 4 weeks after pollination, with peak 

expression after 8 weeks (O’Keefe et al., 2015). The final concentration of pure cyanovirin-N in the seeds was 

3% of total soluble protein (350 g/kg dry seed biomass) and no recombinant protein was detected in the seed 

oil.

Human papillomavirus

HPV is a sexually-transmitted virus that is harmless in ~90% of cases but in a minority of infected 

persons causes warts that increase the risk of cancer of the anus, vulva, vagina, penis and oropharynx 

(IARC, 2020). More than 200 HPV genotypes have been grouped according to the viral genome 

structure and tropism to human epithelial tissues (Garbuglia, 2014). Twelve high-risk types (HPV16, 

18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 59) are classified as carcinogenic to humans, leading to 

570,000 cases of cervical cancer and 311,000 deaths in 2018 (IARC, 2020). HPV is combatted by a 

combination of preventative vaccination and screening (Arbyn et al., 2020). Several vaccines have 

been developed, mostly targeting oncoproteins E6 and E7 (Chabeda et al., 2018; Hung et al., 2008; 

Ma et al., 2010; Moniz et al., 2003) by aiming to deliver the E6 and E7 antigens in to APCs in order 

to activate CD8+ cytotoxic T cells or CD4+ helper T cells (Yang et al., 2016). Bivalent and 

quadrivalent HPV vaccines containing HPV16 and HPV18 antigens protect naïve individuals with 

high efficacy, and are therefore administered preferentially to school-age girls (Arbyn et al., 2020).

The current VLP-based HPV vaccines – Cervarix (GlaxoSmithKline) and Gardasil (Merck) – are 

highly effective but expensive to produce because they are manufactured in insect and yeast cells, 

respectively (Wang and Roden, 2013). They also require a cold chain and must be delivered by 

intramuscular injection (Ma et al., 2013). Several plant-based systems have therefore been explored, 

including transient expression in N. benthamiana, and transgenic tobacco, potato, Arabidopsis and 

tomato plants. The primary targets have been the L1 and L2 capsid proteins (Buck et al., 2013) and A
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the E6 and E7 oncoproteins (De La Rosa et al., 2009; Franconi et al., 2002; Massa et al., 2007; 

Morgenfeld et al., 2009). The L1 and L2 proteins were produced as VLPs in transgenic tobacco and 

potato (Biemelt et al., 2003; Varsani et al., 2003). Codon optimization of the HPV sequence and the 

introduction of a tobacco mosaic virus translational enhancer increased the L1 yields to 20 mg/kg 

fresh potato tuber, and all the VLPs were immunogenic in mice (Biemelt et al., 2003) and rabbits 

(Varsani et al., 2003) in the presence of adjuvants (Biemelt et al., 2003; Varsani et al., 2003; 

Warzecha et al., 2003). Transient expression in N. benthamiana (Liu et al., 2005) as well as 

expression in transgenic Arabidopsis (Kohl et al., 2007) and transplastomic tomato (De La Rosa et 

al., 2009) did not improve efficacy or yields. However, a codon-optimized HPV-16 L1 protein was 

produced by transient expression in N. benthamiana with a yield of 550 mg/kg fresh leaf biomass 

(Regnard et al., 2010), and in tobacco plastids with yields of 887 mg/kg (Maclean et al., 2007) and 3 

g/kg fresh leaf biomass, the latter equivalent to 24% total soluble protein (Fernández-San Millán et 

al., 2008). In other transplastomic plants, the yield was ~1.5% of the total soluble protein (Lenzi et 

al., 2008; Waheed et al., 2011). The L2 protein has only been expressed as an L1-L2 fusion and the 

yields were no higher than reported above for L1 (Čeřovská et al., 2008; 2012; Chabeda et al., 2019; 

Lamprecht et al., 2016; Matić et al., 2012). The E7 protein was produced by transient expression in N. 

benthamiana using potato virus X vectors, with yields of 3–4 g/kg fresh leaf biomass (Franconi et al., 

2002). E7 was also expressed as a fusion to the PVX coat protein, increasing the stability and 

immunogenicity of the product compared to native E7 by allowing the assembly of multivalent 

structures (Morgenfeld et al., 2009). E7 was also expressed as a fusion to the bacterial enzyme 

lichenase, improving its stability and facilitating purification, leading to yields of ~100 mg/kg fresh 

leaf biomass (Buyel et al., 2012).

Hepatitis

Viral hepatitis is an inflammation of the liver caused by one of five related viruses named hepatitis 

viruses A–E (Jefferies et al., 2018). Transmission depends on the type of virus, but it is mainly 

through sexual contact (HBV), contaminated blood (HCV), or contaminated food and water caused by 

inadequate sanitation (HAV and HEV). Almost one third of the global population has been infected 

by either HBV or HCV (WHO, 2012) and 1.34 million people died as a result in 2015 (WHO, 2017b). 

The highest prevalence of hepatitis is in sub-Saharan Africa for HAV and HBV (Jefferies et al., A
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2018), the Eastern Mediterranean Region and Europe for HCV (WHO, 2017b), whereas HEV is more 

common in Asia and the rest of Africa (Razavi, 2020). HDV only infects individuals already infected 

with HBV because it requires HBV for replication (Razavi, 2020). Effective vaccines are available 

against HAV and HBV, but not HCV or HDV (Duncan et al., 2020; Ogholikhan and Schwarz, 2016) 

and the current HEV vaccine is only licensed for use in China (Zhang et al., 2015) but has not been 

approved by the FDA (Ogholikhan and Schwarz, 2016). Lectins have also shown activity against 

HCV, including griffithsin administered by subcutaneous injection (Muelman et al., 2011; Takebe et 

al., 2013). 

The HBV surface antigen (HBsAg) was the first vaccine produced in tobacco, and was antigenically 

and physically similar to the HBsAg spherical particles derived from human serum and recombinant 

yeast (Mason et al., 1992). Several further subunit vaccines have since been expressed in plants, 

including the core antigens of HCV (HCcAg) and HBV (HBcAg) as well as antibodies against 

HBsAg (Hernández-Velázquez et al., 2015; Huang et al., 2006; Mohammadzaeh et al., 2015). 

Tobacco has been used as the expression host in most studies (López et al., 2008; Nemchinov et al., 

2000; Rukavtsova et al., 2007; Zhou et al., 2006) but also fruits and vegetables such as tomato (Lou et 

al., 2007; Y Ma et al., 2003), banana (Elkholy et al., 2009), lettuce (Clarke et al., 2017; Dobrica et 

al., 2018; Kapusta et al., 1999), carrot (Imani et al., 2002) and potato (Thanavala et al., 2005), and 

cereals such as rice (Qian et al., 2008). Two studies have led directly to human clinical trials 

involving oral vaccines in edible vegetable tissues. Three human volunteers were fed with transgenic 

lettuce leaves expressing HBsAg (first 200 g, then another 150 g within 2 months). The yield of 

HBsAg in the lettuce leaves was 1–5 µg/kg fresh tissue. Two weeks after the second dose, HBsAg-

specific antibody levels > 10 IU/L were detected in sera from two of three volunteers, which is the 

accepted minimum protective level against HBV (Kapusta et al., 1999). In the second study, 33 

human volunteers previously immunized with the licensed HBV vaccine (with current antibody titers 

≤115 IU/L) were fed with transgenic potato tubers containing HBsAg at a concentration of 8.5 ± 2.1 

mg/kg fresh biomass. The volunteers ingested 100–110 g of raw tuber in two doses (days 0 and 28) or 

three doses (days 0, 14 and 28), causing the antibody titers to increase up to 56-fold after three doses 

in 10 of 16 volunteers and up to 33-fold after two doses in 9 of 17 volunteers (Thanavala et al., 2005). 

Several pre-clinical studies have demonstrated immune responses in mice against plant-derived A
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antigens of HAV (Chung et al., 2011; 2014), HBV (Dobrica et al., 2018; Huang et al., 2006), HCV 

(Nemchinov et al., 2000) and HEV (Zhou et al., 2006).

Interestingly, as well as its role as a vaccine candidate, HBcAg is also regarded as a model protein for 

the testing of molecular farming strategies to increase yields. It has therefore been produced by 

transient expression (Mechtcheriakova et al., 2006) and has also been directed to accumulate in the 

plastids (Zhou et al., 2006), vacuole (Hayden et al., 2012) and endoplasmic reticulum (Chung et al., 

2014; Mohammadzadeh et al., 2015) of transgenic plants. In the latter case, low proteolytic activity 

and the presence of chaperones to promote folding resulted in higher levels of accumulation 

(Tremblay et al., 2010). However, the highest reported accumulation of HBcAg was in transgenic 

tobacco when the construct was driven by the cauliflower mosaic virus 35S promoter (CaMV35S) and 

nos terminator, without a signal peptide, resulting in a yield of 110–250 g/kg fresh biomass (Pyrski et 

al., 2017). The HBcAg protein from this experiment induced an immune response in mice, with a 2–5 

times more effective response at a dose of 2 × 10 µg rather than 2 × 1 µg (Pyrski et al., 2017). As 

discussed elsewhere in this article, the high stability of the HBV core antigen has been exploited by 

using it as a fusion partner for less stable antigens, allowing the development of chimeric VLPs 

displaying proteins from other viruses (Peyret et al., 2015).

The future of molecular farming for epidemic and pandemic diseases

Scientific advances drive the potential contributions of the international plant science community in 

the fight against infectious diseases, but this alone is insufficient to guarantee success. As with 

product development, technology platform development and implementation are highly reliant on 

acceptability, accessibility, engagement and capacity, particularly if the involvement of low-to-

middle-income countries (LMICs) is envisaged (Ma et al., 2013). In the case of epidemic or pandemic 

diseases, the involvement of LMIC partners would be a key component of any sustainable long-term 

action. One example is the long-term collaboration between Bharathiar University (Coimbatore, 

India) and St. George’s University (London, UK), which has been supported by the government-

funded UK-India Education and Research Initiative since 2007. Through a series of relatively small 

awards, these two universities established a collaboration targeting two important infectious diseases A
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(Chikungunya and dengue), promoting exchange visits by project leaders and graduate students and 

four 2-day workshops on molecular farming with sponsorships for graduate scientists from across 

India to attend. From an Indian national perspective, through the UKIERI-funded workshops, more 

than 300 graduate scientists were introduced to molecular farming and were able to engage regularly 

with national experts from research organizations, industry and government regulators, to plan the 

development path for plant molecular farming in India. The key outputs thus far have been knowledge 

dissemination and human capacity building across India, which must now be followed up with further 

investment into plant-based manufacturing (Murad et al., 2020).

On a broader scale, molecular farming must overcome the barriers of industry inertia and regulatory 

nonalignment that currently prevent its widespread commercial uptake and coordinated international 

large-scale deployment for vaccine and biologics manufacturing. Molecular farming is a disruptive 

technology that subverts industry norms, in which biopharmaceutical production is an entirely 

cleanroom-based process with all biological materials, equipment and reagents, and thus the entire 

upstream and downstream process, meeting the requirements of GMP. In contrast, the upstream 

portion of molecular farming often utilizes whole plants grown in indoor facilities under controlled 

conditions using quality-controlled raw materials and reagents or, depending on the product, under 

good agricultural and collection practices (GACP) rather than GMP. The downstream process, 

beginning after the plant homogenization/extraction step and extending through the production of 

final drug product would need to meet GMP requirements. The regulation of plant-made 

pharmaceuticals in the United States and Europe, as well as considerations during public health 

emergencies, has been recently reviewed by Tusé et al. (2020), illustrating the need to streamline and 

unify regulatory procedures globally. These elements must be addressed before molecular farming 

can become a mainstream technology platform and the world can benefit from its capacity for rapid, 

large-scale and lower cost production (Nandi et al., 2016), which appears to offer the only realistic 

approach for global coordinated high-volume vaccine and biologics manufacturing when faced with 

an emerging disease such as COVID-19. The emergency regulations adopted by the FDA and EMA to 

facilitate COVID-19 drug development could also help to facilitate this transition by providing a 

framework in which effective solutions are prioritized over the rigorous enforcement of regulations 

designed to govern non-emergency drug development (Tusé et al., 2020). If these barriers can be A
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overcome, molecular farming offers hope to billions of people around the world suffering from 

endemic, epidemic and pandemic diseases.
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Figure legends

Figure 1. The three major molecular farming platforms are transient expression, transgenic plant cell 

suspension cultures and transgenic plants (Huebbers and Buyel, 2021), the latter either grown in 

containment or in the open field (bold text, thick arrows). The relative advantages and disadvantages 

of the three platforms are shown in terms of speed (the faster the better), scalability (the larger the 

better, generally inversely related to costs), and containment (the more contained the lesser the 

regulatory burden) with separate indicators for transgenic plants grown indoors and outdoors. Four 

additional minor or emerging platforms are also shown (regular text, thin arrows). Plant cell 

suspension cultures are usually transgenic cell lines, but transient expression is also possible (Sukenik 

et al., 2018) and has been realized in the form of plant-cell packs for the high-throughput and highly 

automated testing of expression constructs with immediately scalable expression (Rademacher et al., 

2019; Gengenbach et al., 2020). Transgenic organ cultures such as hairy roots can be regarded as an 

extension of the cell suspension culture concept because the organ cultures are likewise grown in 

containment in bioreactors (Wongsamuth and Doran, 1997; Doran, 2013). Variants on the theme of 

transgenic plants include transplastomic plants, where the transgene is inserted into the plastid 

genome rather than the nuclear genome (Bains et al., 2017; Berecz et al., 2017; Bock, 2015; Zhang et 

al., 2017), and rhizosecretion, in which proteins are secreted by the roots of plants into the hydroponic 

medium, so that aggressive extraction methods are unnecessary (Drake et al., 2009; Madeira et al., 

2016a,b). The figure includes images from Biorender (https://biorender.com/).

Figure 2. Chemical structures of (A) chloroquine, (B) hydroxychloroquine, (C) oseltamivir, (D) 

dexamethasone, and (E) artemisinin.

Figure 3: Delivery of ACE2/Ang1-7 expressed in chloroplasts for the treatment of COVID-19. (a) 

Orally-delivered ACE2 and its product Ang 1-7 attenuate pulmonary hypertension (PH), reduce RV 

systolic pressure, RV hypertrophy, fibrosis and pulmonary vessel wall thickness in a rat model, which 

are the symptoms observed in COVID-19 patients. (b) SARS-CoV-2 binds to the ACE2 receptor in 

order to enter cells. ACE2 converts Ang I and Ang II to Ang 1-9/Ang 1-7 in the renin angiotensin A
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system pathway. Oral delivery of plant-derived ACE2 has the potential to block SARS-CoV-2 entry 

into human cells by competing for the same receptor and also increases the concentration of beneficial 

Ang 1-7. This figure is modified after Daniel et al. (2021). Abbreviations: ACE = angiotensin-

converting enzyme, Ang = angiotensin, AT1R = angiotensin receptor type I, AT2R = angiotensin 

receptor type II, LV = left ventricle, MasR = Mas receptor, RV = right ventricle.
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Tables

Table 1. Classification of epidemic and pandemic diseases based on their epidemiology, showing the 

number of people affected in a specific time and place. The fatality rate was calculated by dividing the 

number of deaths by the total number of identified cases in the specific time and place. References are 

listed in Supplementary Table 1. Viral strains are underlined.

Classification Disease Number of people affected Fatality rate

Ebola 34,559 (Africa, 1976 – June 2020) 44.1%
Epidemic

Zika 200,000 (the Americas, 2016) Brazil, 2016: 8.3% 

SARS 8098 (worldwide, November 2002 – July 2003) 9.6%

MERS 2516 (worldwide, April 2012 – January 2020) 34.3%

COVID-19 More than 180,000,000 (worldwide, January 2020 

– July 2021)

2.1%

H5N1 and H7N9 

influenza

H5N1: 862 (worldwide, 2003–2020)

H7N9: 1565 (worldwide, 2017 – August 2020)

H5N1: 53%

H7N9: 39%

Hepatitis HAV: 1.4 million/year (worldwide estimate)

HBV: 257 million (worldwide estimate, 2020)

HCV: 71 million (worldwide, 2015)

HDV: 5% of patients with HBV (worldwide 

estimate)

HEV: 20 million/year (worldwide estimate)

HAV: 0.3–0.6%

HBV: 0.35%

HCV: 0.56%

HBV + HDV: 1%

HEV: 0.22% (2015)

HIV/AIDS 38 million (worldwide, up to 2019) 1.8%

HPV 528,000 (worldwide estimate, 2012) 20.4%

Pandemic

Seasonal influenza 450,000 (worldwide, January–May 2020) 0.11%

Abbreviations: COVID-19 = coronavirus disease 2019, H5N1/H7N9 = influenza strains (hemagglutinin/neuraminidase), 

HAV/HBV/HCV/HDV/HEV = hepatitis A/B/C/D/E virus, HIV/AIDS = human immunodeficiency virus/acquired immunodeficiency 

syndrome, HPV = human papillomavirus, MERS = Middle East respiratory syndrome, SARS = severe acute respiratory syndrome.
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Table 2. Properties of the three most lethal β coronavirus infections (modified from Park and Wi, 

2020). R0 is the basic reproduction number, the expected number of cases directly generated by one 

case in a population where all individuals are susceptible to the disease.

SARS-CoV MERS-CoV SARS-CoV-2 (COVID-19)

Period 2002–2003 2012– (ongoing) 2019– (ongoing)

Natural host Bats Bats Bats

Intermediate host Civet cats among others Dromedary camels Unknown

Transmission method Respiratory droplets, 

direct contact

Respiratory droplets, direct 

contact

Respiratory droplets, direct 

contact

R0 2–5 <1 2–3 

Incubation period 4.6 days 5.2 days 5.1 days

Case fatality rate 9.6% 34.4% 2.1%

Most common symptoms High fever (> 38°C) 

headache, an overall 

feeling of discomfort, and 

body aches

Fever, chills, generalized 

myalgia, cough, shortness of 

breath, nausea, vomiting and 

diarrhea

Cough, shortness of breath or 

difficulty breathing, fever, 

chills, muscle pain, sore throat, 

new loss of taste or smell
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Table 3. Differences between H5N1, Ebola and Zika (modified from Park and Wi, 2020). R0 is the 

basic reproduction number, the expected number of cases directly generated by one case in a 

population where all individuals are susceptible to the disease.

H5N1 Ebola Zika

Period 1997-present 1976-present 1947-present

Natural host Birds African fruit bats, gorillas, 

chimpanzees, and other 

mammals

Monkeys

Intermediate host Unknown Unknown Female mosquitoes, primarily 

Aedes aegypti and Aedes 

albopictus

Transmission method From infected birds to human; 

rare human-to-human spread

Close contact with the 

blood, secretions, organs or 

other bodily fluids of 

infected animals and 

humans

Primarily through the bites of 

infected female mosquitoes, 

but also via body fluids

R0 0.05–2.68 1.5–1.9 3.8 

Incubation period 2–9 days 3–21 days 3–14 days

Case fatality rate (average) 60% 50% 8.3%

Most common symptoms An influenza-like illness of 

fever, cough, and shortness of 

breath; severe respiratory 

disorders leading to death

Fever, fatigue, muscle pain, 

headache, sore throat; 

internal and external 

bleeding

Fever, chills, generalized 

myalgia, cough, shortness of 

breath, nausea, vomiting and 

diarrhea; also associated with 

Guillain-Barré syndrome.
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