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arterial hypertension cases from an
international consortium implicates FBLN2,
PDGFD, and rare de novo variants in PAH
Na Zhu1,2†, Emilia M. Swietlik3†, Carrie L. Welch1†, Michael W. Pauciulo4,5†, Jacob J. Hagen1,2, Xueya Zhou1,2,
Yicheng Guo2, Johannes Karten6, Divya Pandya3, Tobias Tilly3, Katie A. Lutz4, Jennifer M. Martin3,7,
Carmen M. Treacy3, Erika B. Rosenzweig1, Usha Krishnan1, Anna W. Coleman4, Claudia Gonzaga-Jauregui8,
Allan Lawrie9, Richard C. Trembath10, Martin R. Wilkins11, Regeneron Genetics Center8, PAH Biobank Enrolling
Centers’ Investigators12, NIHR BioResource for Translational Research - Rare Diseases13, National Cohort Study of
Idiopathic and Heritable PAH14, Nicholas W. Morrell3,7,15,16†, Yufeng Shen2,17†, Stefan Gräf3,18,7†,
William C. Nichols4,5† and Wendy K. Chung1,19,20*†

Abstract

Background: Pulmonary arterial hypertension (PAH) is a lethal vasculopathy characterized by pathogenic
remodeling of pulmonary arterioles leading to increased pulmonary pressures, right ventricular hypertrophy, and
heart failure. PAH can be associated with other diseases (APAH: connective tissue diseases, congenital heart disease,
and others) but often the etiology is idiopathic (IPAH). Mutations in bone morphogenetic protein receptor 2
(BMPR2) are the cause of most heritable cases but the vast majority of other cases are genetically undefined.
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Methods: To identify new risk genes, we utilized an international consortium of 4241 PAH cases with exome or
genome sequencing data from the National Biological Sample and Data Repository for PAH, Columbia University
Irving Medical Center, and the UK NIHR BioResource – Rare Diseases Study. The strength of this combined cohort is
a doubling of the number of IPAH cases compared to either national cohort alone. We identified protein-coding
variants and performed rare variant association analyses in unrelated participants of European ancestry, including
1647 IPAH cases and 18,819 controls. We also analyzed de novo variants in 124 pediatric trios enriched for IPAH
and APAH-CHD.

Results: Seven genes with rare deleterious variants were associated with IPAH with false discovery rate smaller than
0.1: three known genes (BMPR2, GDF2, and TBX4), two recently identified candidate genes (SOX17, KDR), and two
new candidate genes (fibulin 2, FBLN2; platelet-derived growth factor D, PDGFD). The new genes were identified
based solely on rare deleterious missense variants, a variant type that could not be adequately assessed in either
cohort alone. The candidate genes exhibit expression patterns in lung and heart similar to that of known PAH risk
genes, and most variants occur in conserved protein domains. For pediatric PAH, predicted deleterious de novo
variants exhibited a significant burden compared to the background mutation rate (2.45×, p = 2.5e−5). At least
eight novel pediatric candidate genes carrying de novo variants have plausible roles in lung/heart development.

Conclusions: Rare variant analysis of a large international consortium identified two new candidate genes—FBLN2
and PDGFD. The new genes have known functions in vasculogenesis and remodeling. Trio analysis predicted that ~
15% of pediatric IPAH may be explained by de novo variants.

Keywords: Genetics, Pulmonary arterial hypertension, Exome sequencing, Genome sequencing, Case-control
association testing, De novo variant analysis

Background
Pulmonary arterial hypertension (PAH) remains a pro-
gressive, lethal vasculopathy despite recent therapeutic
advances. The disease is characterized by pulmonary
vascular endothelial dysfunction and proliferative re-
modeling giving rise to increased pulmonary artery pres-
sures and pulmonary vascular resistance. These
pathological changes of the lung vasculature strain the
right ventricle of the heart, leading to right ventricular
hypertrophy, right heart failure, and high mortality [1–
3]. Dysregulated vascular, inflammatory, and immune
cells contribute to these pathological processes [3]. PAH
can present at any age, but the ~ 3:1 female to male ratio
in adult-onset disease is not observed in pediatric-onset
disease, in which the disease incidence is similar for
males and females. The estimated prevalence of PAH is
4.8–8.1 cases/million for pediatric-onset [4] and 5.6–25
cases/million for adult-onset disease [5]. Early genetic
linkage and candidate gene studies indicated an auto-
somal dominant mode of inheritance for PAH risk.
However, the known susceptibility variants are incom-
pletely penetrant, many individuals who carry mono-
genic risk variants never develop PAH, and a subset of
patients have deleterious variants in more than one risk
gene. For example, bone morphogenetic protein receptor
type 2 (BMPR2) mutations are observed in 60–80% of
familial (FPAH) cases, but data from population regis-
tries indicate that penetrance of the disease phenotype
ranges from 14 to 42% [6]. These data suggest that

additional genetic, epigenetic, environmental factors, and
gene × environment interactions contribute to disease.
Genetic analyses of larger cohorts using gene panels,

exome sequencing (ES), or genome sequencing (GS)
have further defined the frequency of individuals with
deleterious variants in PAH risk genes and have identi-
fied novel candidate risk genes. BMPR2 mutations are
observed in the majority of FPAH cases across genetic
ancestries [7–11]. BMPR2 carriers have younger mean
age-of-onset and are less responsive to vasodilators com-
pared to non-carriers [7, 12, 13], with an enrichment of
predicted deleterious missense (D-Mis) variants with
younger age-of-onset [7, 14]. However, BMPR2 variants
have been identified in only 10–20% of previously classi-
fied idiopathic PAH (IPAH) and rarely to PAH associ-
ated with other diseases (APAH: autoimmune
connective tissue diseases, congenital heart disease
(CHD), portopulmonary disease and others) or PAH in-
duced by diet and toxins. Variants in two other genes in
the transforming growth factor-beta (TGF-β) superfam-
ily, activin A receptor type II-like 1 (ACVRL1), and
endoglin (ENG) contribute to ~ 0.8% of PAH cases [7],
especially PAH associated with hereditary hemorrhagic
telangiectasia (APAH-HHT). Variants in growth differ-
entiation factor 2 (GDF2), encoding the ligand of
BMPR2/ACVRL1 (BMP9), contribute to ~ 1% of PAH
(mostly IPAH) cases in European-enriched cohorts [7, 8]
and more frequently in Chinese patients (~ 6.7%) [15].
Variants in mothers against decapentaplegic (SMAD)
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genes, encoding downstream mediators of BMP signal-
ing, contribute rarely.
A number of genes outside of the TGF-β signaling

pathway have also been identified as PAH risk genes.
Variants in developmental transcription factors, TBX4
and SOX17, are enriched in pediatric patients [7, 16–18].
Each gene contributes to 7–8% of pediatric IPAH and ~
5% (TBX4) or ~ 3.2% (SOX17) of pediatric APAH-CHD
[19]. Originally described as a determinant of pattern
formation including limb development [20], the associ-
ation of TBX4 with PAH, cardiac defects [21, 22], and a
variety of developmental lung disorders [22, 23] indicate
an expanding role for TBX4 in embryonic development.
Biallelic variants in eukaryotic initiation translation fac-
tor (EIF2AK4) cause pulmonary veno-occlusive disease
(PVOD) and pulmonary capillary hemangiomatosis
(PCH) [24, 25]. Loss of function variants in channelopa-
thy genes potassium two pore domain channel (KCNK3)
[26] and ATP-binding cassette subfamily member 8
(ABCC8) [27], as well as membrane reservoir gene
caveolin-1 (CAV1) [28–30], are causative for PAH. Re-
cent associations of variants in ATPase 13A3 (ATP13A3)
and aquaporin 1 (AQP1) [8], as well as kallikrein 1
(KLK1) and gamma-glutamyl carboxylase (GGCX) [7],
have been reported but require independent confirm-
ation. Finally, a role for de novo variants in pediatric-
onset PAH has been suggested based on a cohort of 34
child-parent trios [17].
Together, these data indicate that rare genetic variants

underlie ~ 75–80% of FPAH [6], at least 10% of adult-
onset idiopathic PAH (IPAH) [7, 8], and up to ~ 36% of
pediatric-onset IPAH [31]. A substantial fraction of non-
familial PAH cases remains genetically undefined. The
low frequency of risk variants for each gene, except
BMPR2, indicates that large numbers of individuals are
required for further validation of rare risk genes and
pathways, and to understand the natural history of each
genetic subtype of PAH. Towards this end, we analyzed
4175 PAH cases from an international consortium with
ES or GS. The National Biological Sample and Data Re-
pository for PAH (aka PAH Biobank) was comprised of
2570 PAH cases (1110 IPAH and 1239 APAH) and the
UK NIHR BioResource – Rare Diseases Study was com-
prised of 1144 cases, almost entirely IPAH. Thus, the in-
creased power of the combined cohort was a 2-fold
increase in the number of IPAH cases, and we focused
our association analyses on this PAH subclass. The co-
hort size precluded testing of the oligogenicity hypoth-
esis suggested by the incomplete penetrance of known
PAH risk genes. Non-inherited de novo mutations could
also contribute to genetically unexplained non-familial
cases but require access to parental sequencing data. We
previously showed that pediatric-onset PAH cases were
enriched with damaging de novo variants. Here, we

expand the analysis to a cohort of 124 pediatric child-
parent trios.

Methods
Patient cohorts and control datasets
A total of 4175 PAH cases from the National Biological
Sample and Data Repository for PAH (PAH Biobank, n
= 2570 exomes) [7], UK NIHR BioResource – Rare Dis-
eases Study (UK NIHR BioResource, n = 1144 genomes)
[8], and the Columbia University Irving Medical Center
(CUIMC, n = 461 exomes) [17, 18, 27] were included in
a combined analysis of rare inherited variants. The sub-
set of 124 affected child-unaffected parents trios (n =
111 CUIMC, n = 8 UK NIHR BioResource, n = 5 PAH
Biobank) were included in an analysis of de novo vari-
ants. An additional 65 BMPR2 mutation-positive cases
from CUIMC without exome sequencing data were pre-
viously reported [17, 18] and included in the overall co-
hort counts (total of 4241 cases). As previously
described, cases were diagnosed by medical record re-
view including right heart catheterization and all were
classified as World Symposium on Pulmonary Hyperten-
sion (WSPH) Group I [32]. Written informed consent
for publication was obtained at enrollment. The studies
were approved by the institutional review boards at
CCHMC, individual PAH Biobank Centers, the East of
England Cambridge South national research ethics com-
mittee (REC, ref. 13/EE0325) or CUIMC.
The control group consisted of unaffected parents

from the Simons Powering Autism Research for Know-
ledge (SPARK) study (exomes) [33] as well as gno-
mADv2.1.1 (gnomAD) individuals (genomes).

ES/GS data analysis
PAH Biobank, CUIMC, and SPARK cohort samples
were all sequenced in collaboration with the Regeneron
Genetics Center as previously described [7, 8, 17, 18,
27]; the UK NIHR BioResource sequence data were also
previously described [8]. For case and SPARK control
data, we used a previously established bioinformatics
procedure [34] to process and analyze exome and gen-
ome sequence data. For the UK NIHR BioResource data,
we extracted reads from GS data by the following pro-
cedure: (1) obtained all reads that were mapped to the
human genome regions that overlapped with the target
regions of xGEN exome capture intervals (Exome Re-
search panel 1.0); (2) the mate pairs of these reads. We
then processed the extracted GS data using the same
pipeline as the ES data. Specifically, we used BWA-
MEM [35] to map and align paired-end reads to the hu-
man reference genome (version GRCh38/hg38, accession
GCA 000001405.15), Picard v1.93 MarkDuplicates to
identify and flag PCR duplicates, and GATK v4.1 [36,
37] HaplotypeCaller in Reference Confidence Model
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mode to generate individual-level gVCF files from the
aligned sequence data. We then performed joint call-
ing of variants from all three datasets using GLnexus
[38]. We used the following inclusion rules to select
variants for downstream analysis: AF < 0.05% in the
cohort, < 0.01% in gnomAD exome_ALL (all ances-
tries); > 90% target region with dp ≥ 10; mappability
= 1; and allele balance ≥ 0.25. We also ran DeepVar-
iants [39, 40], a new tool based on machine learning,
for all cases and SPARK controls. We used the ES
mode for ES data and GS mode for GS data, and
then filtered by “PASS” DeepVariants. Inclusion cri-
teria for variants observed in multiple carriers was ≥
50% of all calls PASS DeepVariants. For gnomAD
data, only variants located in xGen-captured protein-
coding regions were used; filtering was based on
GATK metrics obtained from gnomAD and only
“PASS” variants were included. SNVs with VQSR <−
20 and indels with VQSR <− 5 were excluded. Vari-
ants used for downstream analyses were restricted to
the subset called by both GLnexus and DeepVariants.
De novo variants were defined as a variant present

in the offspring with homozygous reference genotypes
in both parents. We used a series of filters to identify
de novo variants: VQSR tranche ≤ 99.7 for SNVs and
≤ 99.0 for indels; GATK Fisher Strand ≤ 25; quality
by depth ≥ 2. We required the candidate de novo
variants in probands to have ≥ 5 reads supporting the
alternative allele, ≥ 20% alternative allele fraction,
Phred-scaled genotype likelihood ≥ 60 (GQ), and
population AF ≤ 0.01% in ExAC and required both
parents to have ≥ 10 reference reads, < 5% alternative
allele fraction, and GQ ≥ 30.
We used Ensembl Variant Effect Predictor (VEP;

Ensemble 93) [41] to annotate variant function and
ANNOVAR [42] to aggregate variant population fre-
quencies and in silico predictions of deleteriousness.
Rare synonymous variants were further evaluated with
SpliceAI [43] to identify cryptic splice site variants
(score ≥ 0.5). Rare variants were defined as AF ≤
0.01% in gnomAD exome_ALL (all ancestries). A total
of 18,939 protein-coding genes were identified con-
taining ≥ 1 rare variant, excluding mucin and major
histocompatibility complex genes due to low sequence
complexity. Deleterious variants were defined as likely
gene-disrupting (LGD, including premature stop-gain,
frameshift indels, canonical splicing variants, cryptic
splice site variants, and exon deletions) or predicted
damaging missense (D-Mis) based on gene-specific
REVEL score thresholds [18, 44] (see below). All rare
inherited and de novo variants in candidate genes
were manually inspected using Integrative Genome
Viewer (IGV) [45]. Indels were confirmed independ-
ently by Sanger sequencing.

Statistical analysis
To identify novel risk genes for IPAH, we performed a
rare variant association test in unrelated participants of
European ancestry. Genetic ancestry and relatedness of
cases and SPARK controls were checked using Peddy
[46], and only unrelated cases (n = 2789) and controls
(18,819: 11,101 SPARK parents and 7718 gnomAD indi-
viduals) were included in the association test. The gno-
mAD controls were confined to non-Finnish Europeans
(NFE). We performed a gene-based case-control test
comparing the frequency of rare deleterious variants in
PAH cases with unaffected controls. To reduce batch ef-
fects in combined datasets from different sources [47],
we limited the analysis to regions targeted by xGen and
with at least 10× coverage in 90% of samples. We then
tested for similarity of the rare synonymous variant rate
among cases and controls, assuming that most rare syn-
onymous variants do not have discernible effects on dis-
ease risk.
To identify PAH risk genes, we tested the burden of

rare deleterious variants (AF ≤ 0.01%, LGD or D-Mis) in
each protein-coding gene in cases compared to controls
using a variable threshold test [48]. Specifically, we used
REVEL [44] scores to predict the deleteriousness of mis-
sense variants, searched for a gene-specific optimal
REVEL score threshold that maximized the burden of
rare deleterious variants in cases compared to controls,
and then used permutations to calculate statistical sig-
nificance as described previously [7] to control the type I
error rate. We checked for inflation using a quantile-
quantile (Q-Q) plot and calculated the genomic control
factor, lambda, using QQperm (https://cran.r-project.
org/web/packages/QQperm/QQperm.pdf). Lambda
equal to 1 indicates no deviation from the expected dis-
tribution. We performed two association tests, one with
LGD and D-Mis variants combined and the other with
D-Mis variants alone. We defined the threshold for
genome-wide significance by Bonferroni correction for
multiple testing (n = 40,000, 18,939 protein-coding
genes containing rare variants times two tests for each
gene, yielding a threshold p value = 1.25e−6). We used
the Benjamini-Hochberg procedure to estimate false dis-
covery rate (FDR) by p.adjust in R.
To test whether recurrent variants in individual

genes represented independent mutational events or
were due to founder events, we first tested for re-
latedness among samples using KING [49], in
addition to Peddy [46]. None of the cases with recur-
rent variants had any evidence of relatedness. Second,
we assessed shared haplotypes of recurrent variant
carriers using SHAPEIT2 [50] and the HapMap gen-
etic map [51]. Since all of the recurrent variant car-
riers were of European ancestry, we restricted the
HapMap data to the European population.
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To estimate the burden of de novo variants in cases,
we calculated the background mutation rate using a pre-
viously published tri-nucleotide change table [52, 53]
and calculated the rate in protein-coding regions that
are uniquely mappable. We assumed that the number of
de novo variants of various types (e.g., synonymous, mis-
sense, LGD) expected by chance in gene sets or all genes
followed a Poisson distribution [52]. For a given type of
de novo variant in a gene set, we set the observed num-
ber of cases to m1, the expected number to m0, esti-
mated the enrichment rate by (m1/m0), and tested for
significance using an exact Poisson test (poisson.test in
R) with m0 as the expectation.

Protein modeling
Homology structures of conserved protein domains in
FBLN2 and PDGFD were built using EasyModeller 4.0
[54]. Template structures were downloaded from the
protein database (PDB) for endothelial growth factor
(EGF, PDB ID 5UK5) and CUB (PDB ID 3KQ4) do-
mains. The template structure for platelet-derived
growth factor (PDGF)/vascular EGF (VEGF) was down-
loaded directly from PrePPI [55, 56].

Gene expression
Single-cell RNA-seq data of aorta, lung, and heart tissues
were obtained from Tabula Muris, a transcriptome com-
pendium containing RNA-seq data from ~ 100,000 sin-
gle cells from 20 adult-staged mouse organs [57]. We
chose 14 tissue/cell types including endothelial, cardiac
muscle, and stromal cells from the three tissues, restrict-
ing the analysis to tissues/cell types for which there was
RNA-seq data from at least 70 individual cells (Add-
itional file 1, Supplementary Figure 1). Relative gene ex-
pression was based on the fraction of cells with > 0 reads
in each cell type. PCA of cell type-specific gene expres-
sion profiles was performed using a script available
through GitHub [58].

Results
Cohort characteristics
Demographic data and mean hemodynamic parameters
of the combined US/UK cohort are shown in Table 1.
The cohort includes 4241 cases: 54.6% IPAH, 34.8%
APAH, 5.9% FPAH, and 4.6% other PAH. Most of the
APAH and other PAH cases came from the PAH Bio-
bank and have been described previously [7]. The major-
ity of cases were adult-onset (92.6%) with a mean age-
of-diagnosis (by right heart catheterization) of 45.9 ± 20
years (mean ± SD). As expected for adult-onset PAH co-
horts [7, 8, 59], the majority of cases were female
(75.1%). The genetically determined ancestries were
European (74.5%), Hispanic (8.6%), African (8.7%), East
Asian (2.5%), and South Asian (2.8%). Hemodynamic

data were collected at the time of PAH diagnosis. Diag-
nostic criteria for PAH is mean pulmonary arterial pres-
sure (mPAP) > 20–25 mmHg [32]. The mPAP and mean
pulmonary capillary wedge pressure (mPCWP) for the
overall cohort were 51 ± 14mmHg (mean ± SD) and 10
± 4mmHg, respectively, compared to 58 ± 14 mmHg
and 10 ± 4mmHg for FPAH.
A comparison of the clinical characteristics and

hemodynamic data for pediatric- versus adult-onset
PAH cases is shown in Additional file 2 (Supplementary
Table 1). Notably, the female:male ratio among
pediatric-onset cases was significantly lower (1.65:1)
compared to adult-onset cases (4:1, p < 0.0001 by Fish-
er’s exact test), and children had higher mPAP and
mPCWP, decreased cardiac output and increased pul-
monary vascular resistance compared to adults at diag-
nosis (all differences p < 0.0001 by Student’s t test).
Rare deleterious variants in BMPR2 were identified in

7.7% of cases overall (209/2318, 9% of IPAH; 108/191,
56.6% of FPAH; and 13/1475, 0.88% of APAH). The vari-
ants include LGD and D-Mis variants as well as intra-
genic or whole gene deletions as previously described [7,
8, 17, 18]. The percentage of BMPR2 carriers in the US/
UK international cohort is lower than previous reports
[8, 12] due to the enrichment of APAH cases, rarely
caused by BMPR2 variants [7, 18].

Identification of novel risk genes: FBLN2 and PDGFD
To perform a combined analysis of US and UK sequen-
cing data, we reprocessed the UK data using our inhouse
pipeline, including predictions of missense variant dele-
teriousness [7]. Quality control procedures included de-
tection of cryptic relatedness among all PAH
participants. We performed a gene-based case-control
association analysis to identify novel PAH risk genes
using only unrelated cases. To control for population
stratification, we confined the association analysis to in-
dividuals of European ancestry (2789 cases, 18,819 con-
trols) and then screened the whole cohort, including
nonEuropeans, for rare deleterious variants in associated
genes. As a quality control check for the filtering param-
eters employed, we compared the frequencies of rare
synonymous variants, a variant class that is mostly neu-
tral with respect to disease status, in European cases vs
controls. We observed similar frequencies of synonym-
ous variants in cases vs controls (enrichment rate = 1.0,
p value = 0.28) (Additional file 2, Supplementary Table
2). Furthermore, a gene-level burden test revealed no en-
richment of rare synonymous variants in cases (Add-
itional file 1, Supplementary Figure 2). We then
proceeded to test for gene-specific enrichment of rare
deleterious variants (AF < 0.01%, LGD and D-Mis, or D-
Mis only) in cases compared to controls. We note that
to improve power, we empirically determined the
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optimal REVEL score threshold to define deleterious
missense variants in a gene-specific manner using a vari-
able threshold test [7]. To account for potential different
modes of action for different risk genes, we tested the
association twice for each gene: one with LGD and D-
Mis variants and the other with D-Mis variants alone. In
this approach, LGD and D-Mis together is optimized for
complete or partial loss of function; D-Mis alone is opti-
mized for gain of function or dominant negative vari-
ants. We set the total number of tests at twice the
number of protein-coding genes for multiple test adjust-
ment, a conservative approach considering that the data
used in these two tests per gene are not independent.
The Q-Q plot of p values from tests in all genes shows
negligible genomic inflation (Additional file 1, Supple-
mentary Figure 3). Rare deleterious variants in eleven
genes were significantly associated (false discovery rate,
FDR < 0.1) with PAH. Among these, seven are known or
previously reported candidate PAH risk genes: BMPR2,

TBX4, GDF2, ACVRL1, SOX17, AQP1, ATP13A3, and
KDR. Three are new candidate genes: COL6A5 (collagen
type VI alpha 5 chain), JPT2 (Jupiter microtubule-
associated homolog 2), and FBLN2 (fibulin 2).
The increased power inherent to the combined cohort

over the PAH Biobank or UK NIHR BioResource alone
is due to a twofold increase in the number of IPAH
cases, including the number of European cases used for
association analysis. Power analyses indicated that the
study had ample power to detect risk genes with large
effect size and modest variant allele frequency, or large
variant allele frequency and modest effect size, relative
to IPAH risk genes identified in smaller cohorts (Add-
itional file 1, Supplementary Figure 4). To take advan-
tage of the increased number of European IPAH cases in
the combined cohort, we then restricted the analysis to
IPAH. Again, testing for association across all protein-
coding genes for 1647 IPAH cases compared to 18,819
controls was generally consistent with expectation under

Table 1 Demographic data and mean hemodynamic parameters from the US/UK PAH cohort*

All IPAH APAH** FPAH Other***

Total, n (%) 4241 2319 (54.6) 1479 (34.8) 252 (5.9) 191 (4.6)

Sex, n (%)

F 3187 (75.1) 1721 (74.2) 1156 (78.2) 173 (68.6) 137 (71.7)

M 1054 (24.9) 598 (25.8) 323 (21.8) 79 (31.3) 54 (28.3)

F:M ratio 3:1 2.9:1 3.6:1 2.3:1 2.5:1

Age-of-onset, n (%)

Adult (≥ 18 years) 3780 (89.2) 2126 (91.7) 1256 (85.2) 213 (84.5) 185 (96.9)

Child (< 18 years) 457 (10.8) 193 (8.3) 219 (14.8) 39 (15.4) 6 (3.1)

Mean ± SD 45.9 ± 20.0 47.0 ± 19.5 45.2 ± 21.3 36.8 ± 16.8 47.7 ± 15.0

Ancestry, n (%)

EUR 3108 (74.5) 1798 (77.5) 988 (67.0) 166 (86.9) 156 (81.7)

HISP 359 (8.6) 145 (6.3) 186 (12.6) 13 (6.8) 15 (7.9)

AFR 365 (8.7) 166 (7.2) 189 (12.8) 2 (1.0) 8 (4.2)

EAS 104 (2.5) 42 (1.8) 57 (3.9) 1 (0.5) 4 (2.1)

SAS 116 (2.8) 82 (3.5) 28 (1.9) 4 (2.1) 2 (1.0)

Other/unknown 123 (2.9) 85 (3.7) 27 (1.8) 5 (2.6) 6 (3.1)

Hemodynamic parameters, mean ± SD (n)

MPAP, mmHg 51 ± 14 (3594) 53 ± 17 (2045) 48 ± 14 (1235) 58 ± 14 (158) 51 ± 12 (156)

BMPR2+ 59 ± 12 (320) 60 ± 12 (197) 56 ± 16 (11) 58 ± 12 (109) 53 ± 5 (3)

BMPR2− 50 ± 14 (3394) 52 ± 14 (1928) 48 ± 14 (1257) 57 ± 17 (65) 51 ± 13 (144)

MPCWP, mmHg 10 ± 4 (3407) 10 ± 24 (1912) 10 ± 4 (1197) 10 ± 4 (151) 11 ± 4 (147)

BMPR2+ 10 ± 4 () 10 ± 4 () 10 ± 3 () 10 ± 4 () 8 ± 4 ()

BMPR2− 10 ± 4 () 10 ± 4 () 10 ± 4 () 10 ± 4 () 11 ± 4 ()

*US/UK PAH cohort: 2572 PAH Biobank; 1134 UK NIHR BioResource; 534 CUIMC
**APAH: PAH associated with connective tissue diseases, congenital heart disease, HHT, HIV
***Other: diet- and toxin-induced PAH, non-familial pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis and one case of persistent
pulmonary hypertension of the newborn
Abbreviations: AFR, African; EAS, East Asian; EUR, European; HISP, Hispanic; SAS, Southeast Asian; MPAP, mean pulmonary artery pressure; MPCWP, mean pulmonary
capillary wedge pressure
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the null model (Fig. 1). Rare predicted deleterious vari-
ants in seven genes were significantly associated (FDR <
0.1) with IPAH, including three known genes (BMPR2,
GDF2, and TBX4), two recently identified candidate
genes (SOX17 and KDR), and two new candidate genes
(FBLN2, and PDGFD, platelet-derived growth factor D).
More than 95% of samples for both cases and controls
had at least 10× depth of sequence coverage across the
target regions for FBLN2 and PDGFD (Additional file 1,
Supplementary Figure 5), excluding the possibility that
the associations were driven by coverage differences be-
tween cases and controls. We also tested for gene-level
associations restricting the analysis to European APAH
cases (n = 998). The Q-Q plot of p values from all gene
tests is shown in Additional file 1, Supplementary Figure
6. Known PAH gene ACVRL1 showed association with
APAH, consistent with its role in APAH-HHT, but no
genes were significantly associated at FDR < 0.1.
KDR has recently been implicated as a causal gene for

PAH based on a small familial study [60] and our
population-based phenotype-driven (SKAT-O) analysis
of the UK NIHR BioResource cohort with replication in
the PAH Biobank [61]. Both of those analyses were
based on protein-truncating variants. Herein, we provide
additional statistical evidence based on a burden test in-
cluding both LGD and D-Mis variants using our variable
threshold method. Six cases (5 IPAH, 1APAH-CHD)
carry D-Mis variants with empirically determined REVE
L > 0.86; details of the variants are provided in Supple-
mentary Table 3. All of the variants are located in the
conserved tyrosine kinase domain of the encoded pro-
tein (www.uniprot.org). One of the variants, c.3439C>T
is recurrent in three cases. There was no evidence of re-
latedness for these cases, and the relatively short shared
haplotype length and common population frequency

(Additional file 2, Supplementary Table 4) indicate that
the variant occurrences represent independent muta-
tional events rather than being derived from a founder
event. None of these cases have variants in other known
PAH risk genes. The age-of-onset for the six cases is 57
± 20 years (mean ± SD, range 25-75 years) and all are of
European ancestry. Statistically significant association
following Bonferroni correction for multiple testing pro-
vides confirmation of the association of KDR with PAH
using an alternative burden-based statistical method.
The associations of FBLN2 and PGDFD were both

driven by D-Mis variants. We next screened the entire
combined cohort, including participants of non-
European ancestry, for rare deleterious missense variants
in FBLN2 and PDGFD. In total, seven cases carry FBLN2
variants (6 IPAH, 1 APAH) and ten cases carry PDGFD
variants (9 IPAH, 1 PAH associated with diet and toxins)
(Table 2). Most of the carriers are of European ancestry;
one FBLN2 carrier is of East Asian ancestry and one
PDGFD carrier is of African ancestry. One FBLN2
variant ((c.2944G>T; p.(Asp982Tyr)) and two PDGFD
variants ((c.385G>A; p.(Glu129Lys) and c.961 T>A;
p.(Tyr321Asn)) were recurrent in the cohort. Again,
there was no evidence of relatedness among these cases,
and the shared haplotype characteristics (Additional file
2, Supplementary Table 4) indicate that the variants oc-
curred as independent mutational events. Locations of
the predicted damaging missense amino acid residues
are shown in Fig. 2. FBLN2 contains multiple endothelial
growth factor (EGF) domains, and PDGFD contains a
conserved CUB domain and a platelet-derived growth
factor (PDGF)/vascular EGF (VEGF) domain. All of the
FBLN2 and eight out of ten PDGFD D-Mis variants,
occur in conserved protein domains. FBLN2 p.(Gly880-
Val) and p.(Gly889Asp) replace conserved reverse turn

Fig. 1 Gene-based association analysis using 1647 European IPAH cases and 18,819 European controls. a Results of a binomial test confined to
rare, likely gene damaging (LGD) and predicted deleterious missense (D-Mis) variants or D-Mis only variants in 20,000 protein-coding genes. The
control group included 11,101 unaffected SPARK parents and 7718 NFE gnomAD v2.1.1 individuals. Horizontal gray line indicates the Bonferroni-
corrected threshold for significance. b Complete list of top association genes (FDR < 0.1)
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Table 2 Rare predicted deleterious FBLN2 and PDGFD variants* among 4175 PAH cases**

Case ID Sex Agedx PAH
subclass

Ancestry Gene
***

Exon Nucleotide
change

Amino acid
change

Variant
type

MAF (gnomAD
exomes)

CADD
score

Revel

08-018 F 70 IPAH EUR FBLN2 12 c.2639G>T p.(Gly880Val) D-Mis 1.63E−05 27.1 0.94

17-035 F 41 APAH EAS FBLN2 12 c.2666G>A p.(Gly889Asp) D-Mis – 27.6 0.94

12-207 F 44 IPAH EUR FBLN2 13 c.2794T>C p.(Phe923Leu) D-Mis 2.11E−05 29.6 0.92

23-001 M 66 IPAH EUR FBLN2 14 c.2944G>T p.(Asp982Tyr) D-Mis 1.88E−05 34.0 0.95

29-031 F 57 IPAH EUR FBLN2 14 c.2944G>T p.(Asp982Tyr) D-Mis 1.88E−05 34.0 0.95

34-005 M 69 IPAH EUR FBLN2 14 c.2944G>T p.(Asp982Tyr) D-Mis 1.88E−05 34.0 0.95

W000210 F 52 IPAH EUR FBLN2 14 c.2944G>T p.(Asp982Tyr) D-Mis 1.88E−05 34.0 0.95

W000073 F 40 IPAH AFR PDGFD 2 c.166G>A p.(Gly56Ser) D-Mis 1.99E−05 22.9 0.64

JM950 F 2 IPAH EUR PDGFD 2 c.250C>T p.(Arg84Trp) D-Mis 1.59E−05 16.4 0.51

E012465 F 55 IPAH EUR PDGFD 3 c.385G>A p.(Glu129Lys) D-Mis – 25.2 0.262

E014342 F 40 IPAH EUR PDGFD 3 c.385G>A p.(Glu129Lys) D-Mis – 25.2 0.262

E014400 F 43 IPAH EUR PDGFD 3 c.442G>A p.(Asp148Asn) D-Mis 7.97E−06 25.2 0.41

E000844 F 39 IPAH EUR PDGFD 6 c.770T>C p.(Leu257Pro) D-Mis 4.01E−06 31.0 0.62

13-037 M 43 DTOX EUR PDGFD 6 c.883C>T p.(Arg295Cys) D-Mis 4.00E−06 35.0 0.56

23-025 F 41 IPAH EUR PDGFD 6 c.926C>G p.Ser309Cys D-Mis – 28.4 0.22

E000820 F 73 IPAH EUR PDGFD 6 c.961T>A p.(Tyr321Asn) D-Mis 1.21E−05 33.0 0.34

E010173 F 74 IPAH EUR PDGFD 6 c.961T>A p.(Tyr321Asn) D-Mis 1.21E−05 33.0 0.34

*Rare, deleterious variants defined as gnomAD_exome_ALL AF ≤ 1.00E−04 and LGD or missense with variable REVEL cut-off (FBLN2 0.92 and PDGFD 0.22)
** Cases are heterozygous for the indicated variants
***Transcripts: FBLN2 NM_001998.3 and PDGFD NM_033135.4

Fig. 2 Locations of PAH-associated rare variants within FBLN2 and PDGFD protein structures. a Variants and conserved domains within two-
dimensional protein structures. The numbers of variants at each amino acid position is indicated along the y-axes. D-MIS, predicted deleterious
missense; LGD, likely gene-disrupting (stopgain, frameshift, splicing). FBLN2: ANATO, anaphylatoxin-like 2; EGF-ca, calcium-binding endothelial growth
factor-like 1; EGF, non-calcium-binding EGF domain. PDGFD: CUB, complement subcomponent; PDGF/VEGF, platelet-derived growth factor/vascular
endothelial-derived growth factor domain. b FBLN2 residues 858-900: p.(Gly880Val) and p.(Gly889Asp) change the conserved i+2 glycine residues of
type II reverse turns within an EGF domain. Residues 981-1011: recurrent p.(Asp982Tyr) changes a residue within the highly conserved DXXE motif/
calcium-binding site within an EGF domain. c PDGFD residues 43-180: p.(Asp148Asn) predicted to destroy the Ca++ binding site of the CUB domain.
Residues 264-364: p.(Arg295Cys) disrupts a hydrogen bond and p.(Ser309Cys) may create a new disulfide bond in the PDGF/VEGF domain
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residues in an EGF domain which may change the con-
formation of the domain and impact protein function
(Fig. 2b). Recurrent FBLN2 p.(Asp982Tyr) disrupts a
Ca++ binding site [62] in another EGF domain (Fig. 2b),
which may reduce the affinity and frequency of Ca++

binding. PDGFD p.(Asp148Asn) disrupts a Ca++ binding
site within the CUB domain [63] (Fig. 2c) and recurrent
PDFGD p.(Tyr321Asn) is predicted to disrupt a hydro-
gen bond within the PDGF/VEGF domain (Fig. 2c). In
addition, PDGFD p.(Arg295Cys) is located in close prox-
imity to Cys356 and Cys358, potentially introducing new
disulfide bonds within the PDGF/VEGF domain.

Clinical phenotypes of FBLN2 and PDGFD variant carriers
The clinical phenotypes of all FBLN2 and PDGFD vari-
ant carriers are provided in Table 3. FBLN2 variant car-
riers have a similar female:male ratio (2.5:1) compared
to the overall cohort (3.1:1) or IPAH alone (2.9:1). PDGF
D variant carriers are primarily female (9:1) but the dis-
tribution is not significantly different from the overall
IPAH cohort (p = 0.5, Fisher’s exact test). All of the
FBLN2 and PDGFD variant carriers have adult-onset
disease, with the exception of one pediatric PDGFD vari-
ant carrier, with no statistically significant differences in
mean age-of-onset (53 ± 11 and 45 ± 20 years, respect-
ively) compared to that of the overall cohort (46 ± 20
years) or IPAH alone (47 ± 20 years), excluding FBLN2
and PDGFD variant carriers. FBLN2 variant carriers ex-
hibit a trend towards increased mean pulmonary artery
pressure (62 ± 17, mmHg) and significantly increased
mean pulmonary capillary wedge pressure (13 ± 2
mmHg) compared to the overall cohort (51 ± 14, non-
significant and 10 ± 4mmHg, p = 0.015 respectively) or
IPAH alone (53 ± 17, non-significant and 10 ± 24
mmHg, p = 0.01, respectively). PDGFD variant carriers
have similar pulmonary pressures compared to the over-
all cohort or IPAH alone. All of the FBLN2 and PDGFD
variant carriers were diagnosed with WHO PAH class II
or III disease and have no history of lung transplant-
ation. Most of the FBLN2 and PDGFD variant carriers
have comorbidities typical of adult IPAH patients [64,
65], including hypertension, hypothyroidism, other pul-
monary diseases, and metabolic diseases. Five out of
seven FBLN2 carriers have a diagnosis of systemic
hypertension.

Gene expression patterns of PAH candidate risk genes
We hypothesized that PAH risk genes are highly
expressed in certain cell types relevant to the disease eti-
ology and that joint analysis of cell type-specific expres-
sion data with genetic data could inform cell types
associated with disease risk [66]. We obtained single-cell
RNA-seq data of aorta, lung, and heart tissues available
through the Tabula Muris project, a transcriptome

compendium containing RNA-seq data from adult-
staged mouse organs [57]. We chose 14 tissue/cell types
including endothelial, cardiac muscle, and stromal cells
as a proxy for the cell types of the pulmonary artery (un-
available). A list of the tissues, cell types, and the num-
ber of cells sequenced per tissue/cell type is provided in
Additional file 1 (Supplementary Figure 1a). We queried
gene expression for twelve known PAH risk genes
(ACVRL1, BMPR2, CAV1, EIF2AK4, ENG, KCNK3,
KDR, NOTCH1, SMAD4, SMAD9, SOX17, TBX4) and
the two new candidate risk genes (FBLN2, PDGFD). A
heat map with hierarchical clustering of relative gene ex-
pression is shown in Fig. 3a. The majority of known risk
genes (7/12) have relatively high expression in endothe-
lial cells from the three tissues; most others have high
expression in tissue-specific cardiac muscle, stromal
cells, or fibroblasts. PDGFD is located in the same clus-
ter as BMPR2, SOX17, and KDR; these genes are specif-
ically and highly expressed in endothelial cell types.
FBLN2 is highly expressed in both endothelial and fibro-
blast cell types. We then randomly selected a set of 100
genes without reported associations with PAH and per-
formed PCA of cell type-specific expression profiles of
known risk genes and random genes. The second com-
ponent (PC2) largely separates known risk genes and
random genes (Fig. 3b, c). Consistent with hierarchical
clustering, endothelial expression in all three tissues was
positively correlated with PC2 (Additional file 1, Supple-
mentary Figure 1b). Projecting all protein-coding genes
onto PC2, seven of twelve known risk genes are ranked
in top 5% among all genes (Fig. 3d) (binomial test: en-
richment =20, p = 1.6E−05). Two new candidate genes,
FBLN2 and PDGFD, are ranked in the top 1.8% of PC2.

Identification of novel candidate pediatric PAH risk genes
by de novo variant analysis
We next focused on pediatric-onset disease, a sub-
population in which genetic factors likely play a larger
causal role compared to adults. The study was under-
powered to carry out a gene-based case-control associ-
ation analysis due to the relatively small number of
pediatric patients (n = 442); however, 124 pediatric-
onset PAH probands with child-parent trio data were
available for de novo variant analysis. The trio cohort
consisted mostly of IPAH (55.6%, n = 66) and APAH-
CHD (37.9%, n = 45) cases. We performed a burden test
for enrichment of exonic de novo variants among all trio
probands by comparing the number of variants observed
vs expected based on the background mutation rate.
Similar rates of de novo mutations were observed for
synonymous, LGD alone, and total missense variants
(Table 4). However, there was a significant burden of D-
Mis and LGD + D-Mis variants among cases over that
expected by chance (Table 4). Inclusion of all protein-
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coding genes (n = 18,939) in the burden test identified
44 rare variants, including 30 D-Mis and 14 LGD, in
cases. Confining the test to a set of 5756 genes highly
expressed in developing lung (murine E16.5 lung stromal
cells) [67] or heart (murine E14.5 heart) [34] revealed a
2.45-fold enrichment of de novo variants among cases (n
= 19 D-Mis, n = 29 LGD + D-Mis) over that expected
by chance (p = 2.0e−4, p = 2.5e−5, respectively). We es-
timate that 17 of the variants are likely to be implicated
in pediatric PAH based upon the enrichment over

controls or expected by chance. Among the variants,
seven are in known PAH risk genes: four in TBX4, two
in BMPR2, and one in ACVRL1. Excluding these known
risk genes, there are 22 LGD + D-Mis variants in genes
highly expressed in developing heart and lung, still sig-
nificantly more than expected (enrichment rate = 1.86, p
= 0.008, 10 expected risk variants). We tested the burden
of de novo variants among IPAH cases and observed en-
richment of D-Mis and LGD + D-Mis variants similar to
that of the overall trio cohort (Additional file 2,

Table 3 Clinical phenotypes of FBLN2 and PDGFD variant carriers. Sex ratios and mean ± SD diagnostic age and hemodynamic
values have been calculated separately for FBLN2 and PDGFD variant carriers

Case ID Sex Agedx
(years)

PAH
subclass

Ancestry Gene MPAP
(mmHg)

MPCWP
(mmHg)

WHO
functional
class

Lung
tx

Other medical conditions

08-018 F 70 IPAH EUR FBLN2 58 14 III No HTN, kidney congenital anomaly, Paget’s disease

17-035 F 41 APAH
(MCTD)

EAS FBLN2 43 16 III No

12-207* F 44 IPAH EUR FBLN2 NA NA NA No HTN, hypothyroidism

23-001 M 66 IPAH EUR FBLN2 68 10 III No HTN, OLD (smoker)

29-031 F 57 IPAH EUR FBLN2 84 15 NA No HTN, mitral valve disease, hypothyroidism, OA,
COPD

34-005* M 69 IPAH EUR FBLN2 43 14 NA No HTN, CAD

W000210 F 52 IPAH EUR FBLN2 75 11 II No Hyposplenism

Mean ±
SD

2.5:
1

53 ±
11

62 ± 17 13 ± 2

W000073* F 40 IPAH AFR PDGF
D

73 NA III No PFO, bilateral chronic subdural hematoma,
hypothyroidism

JM930 F 2 IPAH EUR PDGF
D

39 NA NA No Bronchopulmonary dysplasia

E012465 F 55 IPAH EUR PDGF
D

52 7 III No Hypothyroidism, IBS, major depression

E014342* F 40 IPAH EUR PDGF
D

57 7 III No Emphysema

E014400 F 43 IPAH EUR PDGF
D

57 4 III No Obesity, T2DM

E000844 F 39 IPAH EUR PDGF
D

51 9 III No GERD, asthma, bicornate uterus

13-037 M 43 DTOX EUR PDGF
D

47 7 II No None

23-025* F 41 IPAH EUR PDGF
D

64 NA III No Hypothyroidism

E000820 F 73 IPAH EUR PDGF
D

48 9 II No Fatty liver, hypothyroidism, ductal carcinoma,
gallstones, superior vena cava and azygos vein
thrombosis related to port-a-cath

E010173 F 74 IPAH EUR PDGF
D

32 9 III No MPVD, PVD, obesity, T2DM, HTN, chronic renal
impairment, hypothyroidism, OA, hypouricemia,
major depression

Mean ±
SD

9:
1**

50 ±
14

53 ± 12 11 ± 10

*Cases with risk variants in additional PAH risk genes: 12-207 (ABCC8 and GGCX), 34-005 (GGCX), W000073 (TBX4), E014342 (BMPR2), 23-025 (ENG)
**NS, Fisher’s exact test
Abbreviations: CAD, coronary artery disease; COPD, chronic obstructive pulmonary disease; GERD, gastrooesophageal reflux disease; HTN, systemic hypertension;
IBS, irritable bowel syndrome; MCTD, mixed connective tissue disease; MPVD, mixed pulmonary valve disease; OA, osteoarthritis; OLD, obstructive lung disease;
PFO, patent foramen ovale; PVD, peripheral vascular disease; T2DM, type 2 diabetes mellitus
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Supplementary Table 5). The study was underpowered
to detect a significant burden of de novo variants among
APAH-CHD cases. The estimated fraction of pediatric
IPAH and the overall pediatric cohort explained by de
novo variants is 15.2% and 14.5%, respectively. A
complete list of all rare, deleterious de novo variants car-
ried by pediatric PAH cases is provided in Additional file
2 (Supplementary Table 6). Similar to other early-onset
severe diseases, including CHD and bronchopulmonary
dysplasia, the genes identified fit a general pattern for

developmental disorders—genes intolerant to loss of
function variants (pLI > 0.5 for 40% of the genes) and
with known functions as transcription factors, RNA-
binding proteins, protein kinases, and chromatin modifi-
cation. Three of the genes are known CHD risk genes
(NOTCH1, PTPN11, and RAF1), and 37% of the genes
are known causal genes for a variety of developmental
syndromes. Case variant PTPN11 p.(Asp61Gly) is a
known causal variant for Noonan syndrome [68], and
RAF1 p.Pro261 is a hotspot for multiple gain-of-function

Fig. 3 Gene expression patterns of PAH risk genes using murine single-cell RNA-seq data. a Heat map showing fraction of cells with > 0 reads in
specific cell types of lung, heart, and aorta for 11 known PAH risk genes and 3 new candidate risk genes (KDR, FBLN2, and PDGFD). L, lung; H,
heart; A, aorta. b PCA analysis of gene expression for PAH risk genes and a set of 100 randomly selected genes, overlaid on a plot of all other
16,744 sequenced genes expressed in both human and mouse cells. c Histogram of PC2 values for PAH risk genes and a set of 100 randomly
selected genes indicates a right shift for PC2 among PAH risk genes. d Relative rank of PC2 values for PAH risk genes among 16,744 sequenced
genes expressed in both human and mouse cells.
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mutations, including p.(Pro261Thr), causing Noonan
syndrome [69].

Clinical phenotypes of pediatric de novo variant carriers
Among the 36 patients who carry LGD or D-Mis de
novo variants (Additional file 2, Supplementary Table 7),
there is a 1.8:1 ratio of females to males, a mean age-of-
onset of 5.4 ± 4.6 years, 50% of the cases (n = 18) have a
diagnosis of IPAH, 33.3% (n = 12) APAH-CHD and an
overlapping but distinct 36.1% of cases have other con-
genital or growth and development anomalies. NOTCH1
variant carrier, JM1357, has a diagnosis of APAH-CHD
with tetralogy of Fallot, and a recent exome sequencing
study of ~ 800 tetralogy of Fallot cases identified
NOTCH1 as the top association signal [70]. PTPN11
variant carrier, JM155, has a diagnosis of APAH-CHD
associated with Noonan syndrome and the c.182A>G
variant is known to be pathogenic in Noonan syndrome.
Variants in PSMD12 cause Stankiewicz-Isidor syndrome,
sometimes associated with congenital heart defects, and
variant carrier 06-095 has a diagnosis of APAH-CHD.
Hemodynamic data for the de novo variant carriers
(Additional file 2, Supplementary Table 7) was similar to
that of all pediatric cases in the cohort (Additional file 2,
Supplementary Table 1).

Discussion
Combined analysis of a large US/UK cohort enriched in
adult-onset IPAH cases enabled identification of five
known and two new IPAH candidate risk genes with
FDR < 0.1: FBLN2 and PDGFD are the new genes. The
association was based on a gene-level case-control ana-
lysis of 1647 unrelated European IPAH cases. The vari-
ants contributing to FBLN2 and PDGFD associations are
D-Mis variants predicted to alter highly conserved pro-
tein conformation, Ca++ binding sites, or intramolecular
binding sites within conserved protein domains, likely

leading to important structural changes in critical do-
mains. The non-founder nature of recurrent FBLN2
p.(Asp982Tyr) (n = 4 cases), and two PDGFD variants
recurrent in two unrelated cases each, adds further sup-
port for pathogenicity of these alleles. In addition, we
confirmed the recent association of KDR with PAH [60,
61] based on an alternative statistical approach. We fur-
ther show that all three of these candidate genes have
high expression in lung and heart endothelial cell types,
similar to other well established risk genes (BMPR2 and
SOX17), further supporting the plausibility of these
genes contributing to PAH risk. De novo variant analysis
of pediatric-onset PAH (124 trios) showed a 2.45× en-
richment of rare deleterious exonic variants, indicating
that de novo variants contribute to ~ 15% of pediatric
cases across PAH subtypes. The de novo variants impli-
cate new candidate risk genes likely unique to pediatric
PAH, but some of the molecular pathways may inform
both pediatric- and adult-onset PAH.
FBLN2 encodes an extracellular matrix protein im-

portant for elastic fiber formation and regulation of cell
motility, proliferation, and angiogenesis. FBLN2 is
expressed in the lung vasculature but most studies have
focused on gene expression in the heart vasculature. In
mice, Fbln2 is expressed in epithelial-mesenchymal
transformation during embryonic heart development
and is upregulated postnatally throughout coronary vas-
culogenesis and angiogenesis when transformed mesen-
chymal cells migrate to the extracellular matrix [71, 72].
Fbln2-/- mice are viable, fertile, and have intact elastic
fiber formation, attributable to compensation by the
more widely expressed Fbln1 gene [73, 74]. However,
Fbln2 expression is required for angiotensin II-induced
TGFβ signaling and cardiac fibrosis [75]. In humans,
FBLN2 variants have been associated with atrioventricu-
lar septal defects [76] and intracranial aneurysm [77],
providing additional support for a role in vascular

Table 4 Burden of de novo variants in pediatric-onset PAH (n = 124 child-parent trios)

Variant type* Observed Expected by chance Enrichment p value Estimated # of risk variants

All genes
(18,939 genes)

SYN 42 38.3 1.1 0.51 N/A

LGD 14 11.8 1.2 0.46 N/A

MIS 93 84.7 1.1 0.36 N/A

D-Mis 30 17.3 1.73 0.005 N/A

LGD + D-Mis 44 28.9 1.52 0.009 15

HLE or HHE**
(5756 genes)

SYN 18 14.01 1.28 0.28 N/A

LGD 10 4.69 2.13 0.03 N/A

MIS 40 31.68 1.26 0.15 N/A

D-Mis 19 7.25 2.62 2.0e−4 12

LGD + D-Mis 29 11.85 2.45 2.5e−5 17

* SYN, synonymous; LGD, likely gene-disrupting; MIS, missense; D-Mis, deleterious missense based on REVEL > 0.5
**HLE, high lung expression (murine E16.5 lung stromal cells); HHE, high heart expression (murine E14.5 heart)
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remodeling. We hypothesize that, in the pulmonary vas-
culature, gain of function variants may lead to increased
TGF-β signaling, increased proliferation and medial
hypertrophy. The FBLN2 protein contains 10 consecu-
tive EGF protein-protein interaction domains, nine of
which are calcium-binding. All seven of the case variants
are missense variants, two of which are predicted to alter
the conformation of an EGF domain, and a recurrent
variant carried by four cases is predicted to disrupt the
Ca++ binding site of another EGF domain. The carriers
of FBLN2 variants have adult-onset disease with mean
age-of-onset similar to the overall cohort or IPAH alone.
Five of seven carriers also have a diagnosis of systemic
hypertension (HTN), and it is possible that gene dam-
aging variants in FBLN2 contribute to the development
of HTN. However, given the frequency of HTN in the
overall US/UK combined cohort (32% for adult-onset
IPAH; similar to that reported in the REVEAL registry
[65]), there may be other age-related genetic and envir-
onmental factors contributing to HTN. Finally, two of
our cohort cases, 08-018 and 29-031, have additional
diagnoses of renal or heart anomalies, and FLBN2 has
been identified as a key regulator of development in
those tissues [78–80].
PDGFD is a member of the PDGF family that func-

tions in recruiting cells of mesenchymal origin during
development or to sites of injury [81]. PDGFD is widely
expressed including arterial endothelial cells, adventitial
pericytes and smooth muscle cells, lung endothelial cells,
and smooth muscle cell progenitors of distal pulmonary
arterioles. Secreted PDGFD specifically binds PDGFRβ, a
widely expressed protein that co-localizes with PDGFD
in vascular smooth muscle cells. Pdgfd knockout mice
are phenotypically normal with the exception of a mod-
est increase in systemic blood pressure [82], However,
cardiac-specific PDGFD transgenic mice, overexpressing
the active core domain of human PDGFD in the heart,
exhibit vascular smooth muscle cell proliferation, vascu-
lar remodeling with wall thickening, severe cardiac fibro-
sis, heart failure, and premature death [83]. While effects
of Pdgfd overexpression on the pulmonary vasculature
have not been investigated, the cardiac vasculature data
are consistent with a gain of function mechanism. Fur-
ther evidence for the role of PDGFD as an effector mol-
ecule in cardiovascular diseases and cancer has been
reviewed [81, 84, 85]. Full-length PDGFD contains two
conserved protein domains, an autoinhibitory CUB do-
main and an enzymatic PDGF/VEGF domain; the pro-
tein undergoes proteolytic cleavage at Arg247 or Arg249
to produce an active growth factor promoting angiogen-
esis and vascular muscularization [86]. All ten of the
case variants are missense variants; four reside in the
CUB domain and five reside in the active processed pro-
tein. Variant p.(Asp148Asn), carried by two patients, is

predicted to disrupt the Ca++ binding site of the CUB
domain; variants p.(Arg295Cys) and p.(Ser309Cys), car-
ried by one and two patients respectively, are predicted
to alter the conformation of the PDGF/VEGF domain.
All but one of the PDGFD variant carriers have adult-
onset disease with mean age-of-onset similar to the
overall cohort or IPAH alone. Four out of ten of the
PDGFD variant carriers have additional diagnoses of
other pulmonary fibrotic and/or vascular fibrotic dis-
eases including bronchopulmonary dysplasia, emphy-
sema, asthma, and one patient (E010173) with both
mixed pulmonary valve disease and peripheral vascular
disease (Table 3). Targeting the PDGF pathway with
small molecule inhibitors of tyrosine kinase is an active
area of investigation and several inhibitors are FDA-
approved [87]. Notably, imatinib reduced cardiac fibro-
blast proliferation and PDGFD expression 15-fold [88];
data regarding effects on pulmonary arterial smooth
muscle cells are warranted. A limitation of tyrosine kin-
ase inhibitors is that they target multiple tyrosine ki-
nases. Sequestering PDGFD with neutralizing antibodies
or DNA/RNA aptamers, or preventing PDGFD-PDGFRβ
interaction via oligonucleotides, may provide more spe-
cific targeting.
To test the plausibility of the new candidate PAH

genes identified by association analysis, we leveraged
publicly available single-cell RNA-seq data. PDGFD, and
recently identified KDR, have very similar expression
patterns as BMPR2 and SOX17, two established PAH
genes. PCA indicated that the PAH risk genes can
largely be separated from non-risk genes based on PC2.
The majority of known PAH risk genes rank in the top
5% of PC2 among 16,744 genes queried, and the new
genes—FBLN2 and PDGFD—rank within the top 1.8%,
providing support for their candidacy as PAH risk genes.
Other risk genes, like KCNK3 and EIF2AK4, exert im-
portant PAH-related functions in cell types other than
endothelial cells, and GDF2 is excreted from liver; thus,
it will be important to consider expression patterns on a
gene-specific basis. In addition, the dataset utilized in
this study was based on adult-staged murine cells and is
not well-suited for developmental genes such as TBX4
and other genes likely to contribute to pediatric-onset
disease. Thus, additional datasets from different time
points are needed.
Rare deleterious variants in established PAH genes are

clearly pathogenic based on segregation analyses, enrich-
ment of rare deleterious variants in PAH cases com-
pared to controls with replication over time, and
demonstrated loss of function or aberrant function
in vitro, in vivo (model organisms), or ex vivo [6]. How-
ever, none of the PAH genes are fully dominant and
many carriers are never diagnosed with PAH. BMPR2
variants exhibit variable penetrance with ~ 14%
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penetrance in male carriers and 42% in females, suggest-
ing sex as an important modifier of penetrance [6].
Other factors influencing penetrance likely include add-
itional genetic factors, epigenetic factors [89], environ-
mental factors, and gene × environment interactions.
Explicit testing of oligogenicity for rare diseases, or
gene-environment interactions, require much larger co-
horts than those currently available for PAH. However,
as more putative risk genes are identified and more PAH
cases are studied [7, 8, 15, 17], formal tests to assess the
contributions of multiple genetic and environmental
risks should be included. In the current study, five of the
seventeen cases identified with rare deleterious variants
in FBLN2 or PDGFD also carry variants in one or two
established or recently reported candidate risk genes.
For example, participant 12-207 carries variants in
FBLN2 as well as ABCC8 and GGCX, and participant
W000073 carries variants in PDGFD and TBX4. We ac-
knowledge the possibility that at least some of the vari-
ants identified to date may not be causal and that the
relative contribution of individual variants requires fur-
ther investigation. How multiple rare variants interact to
affect PAH pathogenesis, penetrance, endophenotypes,
or clinical outcomes will require much larger cohorts
and will be one of the major aims of future large inter-
national consortia.
Our pediatric data indicate that children present with

slightly higher mean pulmonary arterial pressure, de-
creased cardiac output, and increased pulmonary vascu-
lar resistance compared to adults at diagnosis. The early
age-of-onset and increased severity of clinical pheno-
types suggest that there may be differences in the genetic
underpinnings. De novo mutations have emerged as an
important class of genetic factors underlying rare dis-
eases, especially early-onset severe conditions [34, 90],
due to strong negative selection decreasing reproductive
fitness [91]. Pediatric-onset PAH fits this category of dis-
eases based on the high mortality during childhood [92–
96]. Previously, we reported an enrichment of de novo
variants in a cohort of 34 PAH probands with trio data
[17]. We have now expanded this analysis to 124 trios
with pediatric-onset PAH probands and confirmed the
2.45× enrichment of de novo variants in cases compared
to the expected rate. Seven of the variant carriers have
variants in known PAH risk genes (TBX4, BMPR2,
ACVRL1), and three of the APAH-CHD variant carriers
have variants in known CHD or CHD-associated risk
genes (NOTCH1, PTPN11, PSMD12). We previously re-
ported rare inherited LGD or D-Mis variants in CHD
risk genes NOTCH1 (n = 5), PTPN11 (n = 1), and RAF1
(n = 2) carried by APAH-CHD cases [18]. Specific inhib-
ition of the protein encoded by PTPN11 (SHP2) [97],
and induction of mir-204 which negatively targets SHP2
[98], improved right ventricular function in the

monocrotaline rat model of PAH, suggesting a more
general role of PTPN11 in PAH.
At least eight of the other genes with case-derived de

novo variants have plausible roles in lung/vascular devel-
opment but have not been previously implicated in PAH:
AMOT (angiomotin), CSNK2A2 (casein kinase 2 alpha 2),
HNRNPF (heterogeneous nuclear ribonucleoprotein F),
HSPA4 (heat shock protein family A member 4), KDM3B
(lysine demethylase 3B), KEAP1 (kelch-like ECH-
associated protein 1), MECOM (MDS1 and EVI1 complex
locus), and ZMYM2 (zinc finger MIM-type containing 2).
A common single-nucleotide polymorphism in MECOM
has been implicated in systemic blood pressure [99].
KEAP1 encodes the principle negative regulator of tran-
scription factor NF-E2 p45-related factor 2 (NRF2). The
NRF2-KEAP1 partnership provides an evolutionarily con-
served cytoprotective mechanism against oxidative stress.
Under normal conditions, KEAP1 targets NRF2 for
ubiquitin-dependent degradation and represses NRF2-
dependent gene expression. KEAP1 is ubiquitously
expressed and aberrant oxidative stress response in the
pulmonary vasculature is a recognized mechanism under-
lying PAH. Together, our analysis indicates that 15% of
PAH cases are attributable to de novo variants. A larger
pediatric cohort will be necessary to confirm some of
these genes via replication and identify additional new
genes and pathways that will likely be unique to children
and not identifiable through studies of adults with PAH.

Conclusions
We have identified FBLN2 and PDGFD as new candidate
risk genes for adult-onset IPAH, accounting for 0.26%
and 0.35% of 2318 IPAH cases in the US/UK combined
cohort, respectively. We note that five of seven FBLN2
variant carriers also have a diagnosis of systemic hyper-
tension. A few cases carry rare variants in more than
one PAH risk gene, consistent with oligogenic nature of
PAH in some individuals. Analysis of single-cell RNA-
seq data shows that the new candidate genes have simi-
lar expression patterns to well-known PAH risk genes,
providing orthogonal support for the new genes and
providing more mechanistic insight. We estimate that ~
15% of all pediatric cases are attributable to de novo var-
iants and that many of these genes are likely to have im-
portant roles in developmental processes. Larger adult
and pediatric cohorts are needed to better clinically
characterize these rare genetic subtypes of PAH.
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