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Abstract

Background: Although the associations of outdoor air pollution exposure with mortality and hospital admissions
are well established, few previous studies have reported on primary care clinical and prescribing data. We assessed
the associations of short and long-term pollutant exposures with General Practitioner respiratory consultations and
inhaler prescriptions.

Methods: Daily primary care data, for 2009–2013, were obtained from Lambeth DataNet (LDN), an anonymised
dataset containing coded data from all patients (1.2 million) registered at general practices in Lambeth, an inner-
city south London borough. Counts of respiratory consultations and inhaler prescriptions by day and Lower Super
Output Area (LSOA) of residence were constructed. We developed models for predicting daily PM2.5, PM10, NO2 and
O3 per LSOA. We used spatio-temporal mixed effects zero inflated negative binomial models to investigate the
simultaneous short- and long-term effects of exposure to pollutants on the number of events.
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Results: The mean concentrations of NO2, PM10, PM2.5 and O3 over the study period were 50.7, 21.2, 15.6, and
49.9 μg/m3 respectively, with all pollutants except NO2 having much larger temporal rather than spatial variability.
Following short-term exposure increases to PM10, NO2 and PM2.5 the number of consultations and inhaler
prescriptions were found to increase, especially for PM10 exposure in children which was associated with increases
in daily respiratory consultations of 3.4% and inhaler prescriptions of 0.8%, per PM10 interquartile range (IQR)
increase. Associations further increased after adjustment for weekly average exposures, rising to 6.1 and 1.2%,
respectively, for weekly average PM10 exposure. In contrast, a short-term increase in O3 exposure was associated
with decreased number of respiratory consultations. No association was found between long-term exposures to
PM10, PM2.5 and NO2 and number of respiratory consultations. Long-term exposure to NO2 was associated with an
increase (8%) in preventer inhaler prescriptions only.

Conclusions: We found increases in the daily number of GP respiratory consultations and inhaler prescriptions
following short-term increases in exposure to NO2, PM10 and PM2.5. These associations are more pronounced in
children and persist for at least a week. The association with long term exposure to NO2 and preventer inhaler
prescriptions indicates likely increased chronic respiratory morbidity.

Keywords: Air pollutants, Primary care, Respiratory illness, Inhaler prescription, Asthma, COPD

Background
The effects of short and long-term exposures to particu-
late and gaseous air pollution on health have been known
for some time [1, 2]. Most studies deal with serious health
effects such as increased mortality or hospital admissions
associated with both short and long-term exposures [3].
However, a larger proportion of the exposed population
are likely to experience less severe effects such as respira-
tory conditions presenting to primary care.
Few studies have explored adverse health effects of air

pollution from a primary care perspective. In a study of
particulate pollution (PM10) and monthly salbutamol
inhaler prescribing in a population of 450,000 patients
registered at general practices in north east England, [4],
an increase of 10 μg/m3 in ambient PM10 was found to
be associated with a 1% increase in salbutamol prescrib-
ing over a 55-month period. Using health insurance
data, a study in France covering a population of 260,000
residents of Strasbourg found that 10 μg/m3 increases in
PM10, nitrogen dioxide (NO2), and ozone (O3) were as-
sociated with 7.5, 8.4 and 1% increases in salbutamol
sales, respectively, over a 1 year period [5]. In a popula-
tion of just under one million in Brussels, a study of
daily sales of asthma and COPD medication and PM10

and NO2 residential exposure found no overall associ-
ation between PM10 exposure and medication sales but
for NO2 exposure, significant associations were found
for all age groups except the 85 yr olds; the strongest
associations were found in adolescents for whom, a one
interquartile range increase in NO2 exposure was associ-
ated with an 18.7% increase in medication sales, with a
3 week lag, over a 6-year period [6]. None of these stud-
ies included clinical data. Based on a study of primary
care clinical data over 2 years obtained from the General
Practice Research Database between 1992 and 1994,

10th–90th percentile change in PM10 particles was asso-
ciated with a 5.7% increase in upper respiratory tract
conditions in adults aged 15–64 years, a 10.2% increase
in those aged 65 and over but a non-significant 2.0%
increase in those aged 10–14 [7]. Stronger associations
were found in the elderly and in the winter months.
However, this study did not explore prescribing of
inhalers for respiratory conditions.
In order to study associations between air pollution

levels and primary care clinical and prescribing data,
clinical database linkage is required, linking anonymised
clinical and prescribing data with residential air
pollution levels. Additionally, appropriate and validated
air pollution models are needed to provide estimates of
pollution levels at small area level. UK primary care data
offers a unique resource to study these associations.
Within the context of the UK MRC funded Project

STEAM (Comparative evaluation of Spatio-Temporal
Exposure Assessment Methods for estimating the health
effects of air pollution), spatiotemporal modelling of
several pollutants providing daily data estimating
concentrations of pollutants per Lower Super Output
Area (LSOA) has been developed [8–10]. We therefore
aimed to assess the association between short and long-
term pollutant exposures and numbers of primary care
respiratory consultations and inhaler prescribing, taking
advantage of the U.K. universal registration system in a
geographically circumscribed population.

Methods
Study area and primary care data
Primary care data were obtained from Lambeth DataNet
(LDN), an anonymised dataset containing coded data
from all patients registered at general practices in
Lambeth, an inner-city south London borough of 26.8
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km2 [11]. Clinical and prescribing data are available on
all current and past registered patients dating back to
2005, a total of 1.2 million patients. Patients are
excluded from the dataset if they have an ‘informed
dissent’ code in their case-notes, currently accounting
for 3.2% of the registered population. Demographic
information collected includes data on age, gender and
ethnicity. Clinical data includes records of chronic
diseases and all medication prescribed. Residential data
is also available, down to Lower Super Output Area
(LSOA) level, small areas which average 1500 residents
in England [12]. At the time of the study, Lambeth
consisted of 177 LSOAs.
For the present analysis we used aggregated daily

counts, for weekdays only, since primary care data are
only available for weekdays, by age group (0–17; 18–64;
65+ years) for the total number of respiratory consulta-
tions per LSOA of residence with face to face, telephone,
online, administrative consultations and home visits with
GP or nurse. The total number of respiratory consulta-
tions was stratified into three groups focusing on specific
respiratory outcomes for each day over the 5-year period
2009–2013: number of consultations for all asthma
episodes, all Chronic Obstructive Pulmonary Disease
(COPD) exacerbations and upper respiratory tract infec-
tions (URTI) (‘asthma/COPD/URTI consultations’); num-
ber of prescriptions for preventer and reliever inhalers
(‘inhaler consultations’); total number of respiratory consul-
tations coded for one of the included respiratory conditions
&/or issue of a preventer or reliever inhaler (‘all respiratory
consultations’). Inhaler prescriptions, both prescribed
during a face-to-face consultation or as a repeat prescrip-
tion were included, since patients often self-manage their
respiratory condition through use of the repeat prescription
system.
Preventer inhaler prescriptions were defined as those

containing long acting beta-agonists (LABA), long acting
muscarinic antagonists (LAMA) or inhaled corticoste-
roids (ICS). Reliever inhaler prescriptions were defined
as those containing short acting beta-agonists (SABA) or
short acting muscarinic antagonists (SAMA). Read and
EMIS medication codes used in the analysis are available
on request.

Air pollution data
Within the STEAM project, we constructed a database
of ambient particles with aerodynamic diameter < 10 μm
and < 2.5 μm (24-h average PM10 and PM2.5), Nitrogen
Dioxide (NO2, 24-h average) and Ozone (O3, 8-h daily
maximum) concentrations including all measurements
from sites within the M25 orbital motorway during the
years 2009–13. Data were obtained from the London Air
Quality Network [13], Air Quality England [14] and the
Automatic Urban and Rural Network [15]. PM2.5 was

measured in a smaller number of sites and in order to
obtain more data we enhanced the available data based
on a generalised additive model (GAM) combination of
daily PM2.5 predictions from a regression and a random
forest approach based on PM10 and NO2 measurements
and incorporating seasonality trends, meteorological
variables and spatial characteristics. The 10-fold cross-
validation adjusted R2 of the combined model was
98.9%. The final data included information from 130
sites for NO2, 115 for PM10, 62 for O3 and 104 for
PM2.5 [16].
Using these data in STEAM, we developed spatio-

temporal Land Use Regression (LUR), dispersion models
and combinations of these to estimate pollutant concentra-
tions at the postcode centroid level. All postcode centroids
within an LSOA were then averaged to produce estimates
of LSOA level concentrations. Additionally, for PM2.5, we
incorporated satellite measurements and applied three
machine learning algorithms that were combined in a
GAM to produce spatio-temporal concentrations within 1
km× 1 km grids. These models are described in more
detail elsewhere [8–10]. Based on simulation studies [8, 9],
a GAM model combining predicted pollutant concentra-
tions from the developed spatio-temporal LUR and disper-
sion models was found to produce the smallest bias on the
effect estimates. Daily time series predictions for NO2, O3,
PM2.5 and PM10 at LSOA level for Lambeth from this
minimum-bias model were used here for the present
analysis of the health data.

Statistical analysis
We used, alternatively, the following outcome variables
based on daily counts per LSOA over the study period
2009–13 stratified by age group (0–17; 18–64; 65+
years): (1) ‘asthma/COPD/URTI consultations’, (2) ‘in-
haler prescriptions’, (3) ‘all respiratory consultations’.
We investigated the simultaneous short- and long-term

effects of exposure to NO2, O3, PM2.5 and PM10 on the
outcomes [17, 18]. To assess long-term exposure associa-
tions with the outcome, we used the mean pollution
concentration of each LSOA for the whole study period,
2009–13 (spatial component of the variability), whilst for
short-term effects we used the difference between daily
concentrations and the long-term mean for each pollutant
per LSOA (temporal component of the variability). We
applied a mixed effects, zero inflated negative binomial
model, including a random intercept per LSOA, using the
NBZIMM library in R [19]. As covariates we used: a)
covariates with daily variation (short-term): day of week (6
dummy variables), temperature (as a natural spline with 3
degrees of freedom (3df)) time trend, i.e. a variable
numbering sequentially all days in the 2009–2013 period,
(natural spline, 6df per year), relative humidity (natural
spline, 3df) and b) covariates characterizing each LSOA
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(long-term): proportion of elderly residents (% aged ≥65
years), Index of Multiple Deprivation 2015 [20]. The
number of observations was 1304 days per LSOA. We also
considered confounding between pollutants and adjusted
for pollutants likely to cause confounding effects, for
example, for ozone and PM we adjusted for NO2 whilst
for NO2 effect estimates we adjusted for PM2.5.
As a sensitivity analysis, we fitted Poisson models to

investigate the short-term associations between daily
concentrations of pollutants over the entire sample area
and the selected clinical and prescribing data in order to
compare their performance with our spatio-temporal
models.

Results
Daily consultation and prescribing data for the study
area are summarised in Table 1. Over the study period,
the mean number of all respiratory consultations per
LSOA, per day was 522.23. Stratification of consultations
according to diagnostic code shows that many were not
assigned an ‘asthma/COPD/URTI consultation’ code but
nevertheless resulted in a prescription for a preventer
&/or reliever inhaler.
The level and variability of air pollution and meteoro-

logical values for temperature and humidity are sum-
marised in Table 2 displaying daily, ‘temporal’ variability
and ‘spatial variability’. In Table 2, for air pollutants,
concentrations are shown, not deviations from a long-
term mean as used in the models, to illustrate the data
in a clearer way. PM10, PM2.5 and O3 have much higher
temporal than spatial variability and only NO2, which is
largely related to traffic sources, has approximately equal
temporal and spatial variability. Temporal and spatial
correlation coefficients between air pollutants are
summarized in Table 3.
Table 4 shows the % change in the number of ‘all

respiratory consultations’ and ‘asthma/COPD/URTI
consultations’ following short-term (lag 0) and long-
term increase in exposure to each pollutant equal to an
interquartile range (IQR) increase. Following increases
of short-term exposure to PM10, NO2 and PM2.5 the
number of all daily respiratory and asthma/COPD/URTI

consultations’ increase for all age groups and reach
statistical significance with few exceptions; the largest in-
crease in consultations is generally observed for children:
3.04% (95% confidence intervals, 2.41, 3.67) (‘all respira-
tory consultations’) and 3.38% (95%CIs 2.65, 4.11)
(‘asthma/COPD/URTI consultations’) for PM10 per IQR;
also 2.37% (95%CIs 1.47, 3.28) and 1.37% (95%CIs 0.34,
2.40) respectively per IQR for NO2. However, a short-
term increase in O3 exposure is associated with a
significant decrease in the number of consultations. In
contrast, there is no association between long-term ex-
posures to PM10, PM2.5 and NO2 and consultation rates
in adults; in children increased long-term exposure to
NO2 and PM2.5 is associated with lower consultation
rates. Long-term increase in O3 exposure is not associ-
ated with a change in the number of consultations, with
the exception of a 20% increase in the number of all re-
spiratory consultations for the 65+ years age group.
Table 5 shows the % change in the number of inhaler

prescriptions overall and for preventive and reliever
inhalers separately following short-term or long term ex-
posure to each pollutant. The number of prescriptions
for both types of inhalers increase by 2.14% (95%CIs
1.54, 2.75) after short-term increase in NO2 exposure
and by 0.84% (95%CIs 0.42, 1.26) after short-term in-
crease in PM10 exposure. There is no significant associ-
ation with short-term exposure changes to PM2.5 and
O3. An increase in long-term exposure to NO2 is associ-
ated with an increase of 8.11% (95%CIs 1.03, 15.69) in
preventer inhaler prescriptions only, whilst an increase is
also observed for prescriptions of preventer inhalers
following long-term increases in exposure to PM10 and
PM2.5 as well, although not reaching the nominal level
of statistical significance. A change in long-term expos-
ure to O3 is not associated with significant changes in
the number of prescriptions.
Figures 1 and 2 show the % changes in the number of

consultations and prescriptions associated with an IQR
increase in pollutant exposure for lags 0, 1, 2 and the
mean of 7 days (weekly), namely lags 0–6. For NO2

exposure increase, the daily number of all respiratory
consultations increases with 1- and 2-day lags and the

Table 1 Daily respiratory consultation and prescribing data for Lambeth (all LSOAs combined) by age group 2009–13 (aggregated
time series for total of 1304 days)

Age 0–17 years
Mean (SD)

Age 18–64 years
Mean (SD)

Age > 64 years
Mean (SD)

All ages
Mean (SD)

Total respiratory consultationsa 123.33 (48.79) 290.47 (74.05) 108.43 (28.04) 522.23 (137.58)

Consultations for asthma, COPD, URTI 84.09 (40.20) 133.23 (47.14) 34.75 (12.14) 252.07 (90.49)

Prescriptions for preventer inhaler only 5.35 (2.91) 33.38 (9.86) 22.28 (7.31) 61.01 (16.19)

Prescriptions for reliever inhaler only 26.74 (10.15) 74.43 (20.69) 27.27 (8.55) 128.43 (34.32)

Prescriptions for both inhaler types 15.95 (6.34) 71.16 (18.30) 30.45 (9.70) 117.55 (29.90)
aConsultations by any primary care healthcare professional including those where only a preventer or reliever inhaler were issued
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association is greatest with the weekly average lag. The
lag effect is particularly pronounced for 0–17 year olds
where an IQR increase in NO2 concentrations over the
previous week is associated with 6.5% increase in all
respiratory consultations. For PM10 exposure IQR
increases in 0-, 1- and 2-day lags are associated with
increases in all respiratory consultations; the largest in-
crease is associated with weekly average lag especially in
0–17 year olds (6.1%; 95%CI: 5.0 to 7.3%). Similar
patterns are seen with PM2.5 exposure with the strongest
association for weekly average lag values especially in 0–
17 year olds (3.1%; 95%CI: 2.1 to 4.1%). In contrast, IQR
increases in O3 exposure for all lags are consistently as-
sociated with decreases in the number of all respiratory
consultations.
Figures 3 and 4 shows results for short-term exposure

from two pollutant models thus adjusting for possible
confounding effects between pollutants. The effect
estimates adjusting for another pollutant convey the
same general pattern of effects even though in some
instances the estimates lose statistical significance. This
happens for some time lags for PM2.5 and PM10 adjust-
ing for NO2. The ozone effects remain inverse and sta-
tistically significant. The ozone model was also adjusted
alternatively for PM2.5 and the effect patterns were not

changed. Effect estimates for long-term exposures do
not change appreciably.
As a sensitivity analysis, we fitted Poisson time series

models, as they are commonly applied in the investiga-
tion of health effects of short-term exposures [21], to as-
sess the stability of the estimated effects of short-term
exposures to pollutants. In this application, the daily pol-
lutant concentrations were averaged over the Lambeth
area. Although the pattern of the observed associations
is similar, the level of statistical significance is less pro-
nounced indicating that the use of spatially resolved data
in the spatio-temporal models shown above adds some
information to the analysis (data not shown).

Discussion
In our spatio-temporal analysis of primary care data over
a 5-year period (2009–13) we found that same day as
well as previous 1 or 2 day or weekly average increases
in NO2 and PM10 exposure are associated with significant
increases in respiratory consultations, inhaler prescrip-
tions, or both. The association was strongest for one-week
average NO2 and PM10 exposure. A one quartile, one-
week average increase in NO2 or PM10 was associated
with approximate 3 and 4% increases respectively, in
asthma/COPD/URTI consultations, and with 4 and 1.5%
increases in inhaler prescriptions. When stratified by age,
the strongest association was in the younger age group
(0–17 years) in which one quartile, one-week average
increases in NO2 and PM10 were associated with approxi-
mate 7 and 6% increases in consultations for asthma,
COPD or URTI. The positive association with inhaler
prescriptions was not substantially different between
preventer and reliever inhalers.
Associations between PM2.5 exposure and respiratory

consultations followed a similar pattern to those of PM10

exposure but were weaker. A one quartile, one-week aver-
age increase in PM2.5 was associated with an approximate

Table 2 Means, standard deviations (SD) and quartiles of daily pollutant concentrations and meteorological variables for the whole
area of Lambeth, 2009–13 (temporal variability) and for daily pollutant concentrations, per LSOA in Lambeth (177 LSOAs), for 2009–
13 (spatial variability)

Temporal variability Spatial variability

Mean
(SD)

1st
Quartile

2nd
Quartile

3rd
Quartile

IQRa Mean
(SD)

1st
Quartile

2nd
Quartile

3rd
Quartile

IQRa

24 h NO2(μg/m
3) 50.7 (15.4) 39.1 49.7 61.4 22.3 48.4 (16.3) 36.6 45.1 57.6 21.0

24 h PM10(μg/m
3) 21.2 (8.8) 15.2 18.6 24.3 9.1 20.8 (2.6) 19.2 20.3 21.1 1.9

24 h PM2.5(μg/m
3) 15.6 (8.2) 10.3 12.8 17.9 7.6 15.4 (1.2) 14.5 15.0 16.0 1.5

8 h O3 (μg/m
3) 49.9 (18.5) 37.6 50.2 61.9 24.3 50.7 (4.7) 48.8 52.0 54.3 5.5

24 h temperature
(°C)

11.0 (5.7) 7.0 11.3 15.3

24 h relative
humidity (%)

77.2 (10.1) 70.1 77.8 85.1

aIQR interquartile range

Table 3 Temporal (daily average over all LSOAS) and spatial
(overall 2009–13 mean per LSOA) correlation coefficients for the
pollutants

Temporal correlations Spatial correlations

O3 NO2 PM10 PM2.5 O3 NO2 PM10 PM2.5

O3 1 1

NO2 −0.60 1 −0.55 1

PM10 −0.19 0.55 1 −0.83 0.70 1

PM2.5 −0.29 0.61 0.96 1 −0.80 0.58 0.75 1

Ashworth et al. Environmental Health           (2021) 20:54 Page 5 of 13



2% increase in asthma/COPD/URTI consultations and a
4% increase in the younger age group. However, the issu-
ing of inhaler prescriptions was not significantly associated
with PM2.5 exposure.
The pattern of association with ozone exposure was

very different to that of the other air pollutants included
in our study. Interquartile increases in ozone exposure
were generally associated with reductions in respiratory
consultations and inhaler prescriptions. This negative
association persisted across different lag periods and age
groups.
For long-term exposures, we found no statistically

significant consistent associations between exposure to
any pollutant and respiratory consultations, except for
children where an inverse association is found. This
latter result may be due to chance or to a possible re-
sidual effect of the positive association with short-term
exposure. An increase in long-term exposure to NO2 is
associated with an increase (8%) in preventer inhaler

prescriptions, whilst an increase is also observed for
prescriptions of preventer inhalers following long-term
increases in exposure to PM10 and PM2.5, although not
reaching the nominal level of statistical significance. This
finding may also be due to chance, however it is noted
that the use of preventer inhalers indicates a chronic
condition whilst the use of reliever inhalers indicates an
exacerbation and thus it is expected to see an association
of long-term exposure not with indicators of an exacer-
bation but with indices of chronic conditions. One rea-
son for not detecting statistically significant associations
with long-term exposures may be the relatively small
geographical area included in this analysis which limits
the spatial contrast in pollution exposure. The clinical
and prescription data analysed here are not commonly
available for many boroughs. However, our findings indi-
cate that they represent important outcomes for public
health protection and it is important that such data
should become available for larger areas for future work.

Table 4 Change in the number of respiratory consultations (% and 95 Confidence Intervals (CI)) associated with an interquartile
increase in short- (daily, ‘lag 0’) and long- (2009–2013) term NO2, PM10, PM2.5 and O3 concentrations. Results from mixed effects
zero-inflated negative binomial model adjusting for day of the week, temperature, relative humidity, time trend, proportion of
elderly residents and index of multiple deprivation

Air pollutant Outcome variable: change
in consultations

All ages 0–17 years 18–64 years 65 + years

NO2 Short term, % change (95% CI)

Total respiratory consultations 1.16 (0.69, 1.63) 2.37 (1.47, 3.28) 1.16 (0.56, 1.77) 2.16 (1.20, 3.13)

Consultations for asthma, COPD, URTI 0.92 (0.25, 1.59) 1.37 (0.34, 2.40) 0.52 (−0.34, 1.39) 1.90 (0.44, 3.38)

Long term, % change (95% CI)

Total respiratory consultations 2.15 (− 3.76, 8.43) −7.89 (− 14.62, −0.63) 4.85 (− 1.43, 11.52) 7.11 (− 1.83, 16.88)

Consultations for asthma, COPD, URTI 0.83 (− 7.57, 9.99) −8.51 (− 15.96, − 0.40) 5.59 (− 3.34, 15.35) 5.21 (− 9.79, 22.71)

PM10 Short-term % change (95% CI)

Total respiratory consultations 1.01 (0.68, 1.34) 3.04 (2.41, 3.67) 0.79 (0.37, 1.22) 1.06 (0.40, 1.72)

Consultations for asthma, COPD, URTI 1.98 (1.50, 2.46) 3.38 (2.65, 4.11) 1.36 (0.75, 1.98) 1.40 (0.39, 2.41)

Long-term % change (95% CI)

Total respiratory consultations 0.18 (−2.95, 3.42) −1.18 (−5.15, 2.95) 0.79 (− 2.48, 4.17) 0.92 (−3.72, 5.79)

Consultations for asthma, COPD, URTI 0.24 (−4.31, 5.00) −0.91 (−5.35, 3.73) 1.67 (− 3.02, 6.58) − 1.26 (−9.07, 7.23)

PM2.5 Short-term % change (95% CI)

Total respiratory consultations 0.19 (−0.12, 0.51) 1.40 (0.81, 2.00) 0.02 (−0.39, 0.43) 0.35 (−0.28, 0.97)

Consultations for asthma, COPD, URTI 0.78 (0.33, 1.24) 1.61 (0.92, 2.30) 0.36 (−0.22, 0.95) 0.66 (−0.29, 1.62)

Long-term % change (95% CI)

Total respiratory consultations −2.41 (−7.85, 3.35) −8.42 (−14.85, −1.49) 1.21 (−4.65, 7.43) −2.85 (− 10.77, 5.78)

Consultations for asthma, COPD, URTI −3.52 (− 11.27, 4.91) −9.51 (− 16.59, − 1.82) 2.16 (−6.20, 11.25) − 7.38 (− 20.17, 7.45)

O3 Short-term % change (95% CI)

Total respiratory consultations − 2.62 (− 3.26, − 1.98) −5.01 (−6.18, − 3.83) −2.69 (− 3.52, − 1.85) − 3.38 (− 4.65, − 2.10)

Consultations for asthma, COPD, URTI −2.87 (− 3.78, − 1.95) − 4.58 (− 5.93, − 3.20) −2.27 (− 3.46, − 1.06) −1.95 (− 3.92, 0.06)

Long-term % change (95% CI)

Total respiratory consultations 2.18 (− 2.83, 7.44) 5.12 (−1.43, 12.11) − 0.09 (− 5.19, 5.28) 3.76 (− 3.63, 11.71)

Consultations for asthma, COPD, URTI 5.95 (− 16.53,9.58) 5.83 (− 1.52, 13.73) 2.03 (− 5.32, 9.95) 20.21 (5.88, 36.49)
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Fig. 1 (See legend on next page.)
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We applied spatio-temporal models assessing the ef-
fects of short- and long-term exposures concurrently
and thus quantifying their independent effects. In the
most usual types of analysis, the effects of short-term air
pollution exposures are estimated by Poisson models,
whilst the effects of long-term exposures are estimated
by Cox proportional hazard models [17, 22]. Kloog et al.
developed mixed Poisson regression models, as used in
the present analysis [18]. This approach allows the
counts of a health outcome by area to be modelled sim-
ultaneously as a function of both long- and short-term
exposures. These models have been used previously in
studies investigating the effects of air pollution exposure
on mortality [17] and hospital admissions [23]. There is
evidence on both the effects of short and long-term ex-
posures of PM and NO2 on mortality: higher short-term
exposures are associated with an acute increase in the
number of deaths in a population whilst long-term
exposures are associated with shorter life expectancy.
There is also evidence that short-term elevations in air
pollution concentrations result in higher number of

hospital admissions, increased symptoms, absenteeism
etc. [24–27]. Long term exposure to PM2.5 and O3 has
been found to be associated with first hospital admis-
sions for over 65’s with stroke, COPD, pneumonia, myo-
cardial infarction, lung cancer and heart failure [28].
However, it is not entirely clear how long-term expo-
sures affect hospital admission counts or other health
events related to primary care. One plausible way is by
enlarging the pool of sensitive individuals, for example
those with chronic respiratory or cardiac diseases who
then are more sensitive to short-term increases in air
pollution. This would also result in a more pronounced
short-term effect signal.
In our analysis we have used spatiotemporal modelling

for primary health care data. Few previous studies ana-
lysed similar health outcomes. In the study of monthly
data for an area in North-east England [4] a 10 μg/m3

increase in PM10 was associated with a 1% increase in
salbutamol prescriptions. This is comparable to our
finding for reliever inhaler prescriptions for a similar ex-
posure change in 1-day PM10 (we used the IQR which is

Fig. 2 Change in the number of inhaler prescriptions (% and 95 Confidence Interval (CI)) associated with an interquartile increase in same day
(lag 0), previous day (lag 1), previous 2 days (lag2) and previous week average (lag0–6) for NO2, PM10, PM2.5 and O3 concentrations. Inhaler
prescription data is expressed as ‘inhaler consultations’. Note: X axis values represent the lags used in days. Lag 0 estimates for each air pollutant
are the same as short-term values presented in Table 4

(See figure on previous page.)
Fig. 1 Change in the number of respiratory consultations, expressed as ‘total respiratory consultations’ and ‘asthma/COPD/URTI consultations’, (% and
95 Confidence Interval (CI)) associated with an interquartile increase in same day (lag 0), previous day (lag 1), previous 2 days (lag2) and previous week
average (lag0–6) for NO2, PM10, PM2.5 and O3 concentrations, by age group.. Results from mixed effects zero-inflated negative binomial model
adjusting for day of the week, temperature, relative humidity, time trend, proportion of elderly residents and index of multiple deprivation. Note: X axis
values represent the lags used in days. Lag 0 estimates for each air pollutant are the same as short-term values presented in Table 3
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9.1 μg/m3) and for weekly changes in adults. However,
we find a much larger increase for weekly changes in
prescriptions for children, whilst Sofianopoulou et al did
not report analysis by age groups.
Our finding of an inverse relationship between short-

term ozone elevations and the number of consultations
or prescriptions was not expected and we did not find
similar reports in the literature. A possible explanation
may be that ozone is associated with sunny weather and
high temperatures and our analysis focuses on primary
care consultations; it seems plausible that good weather
is associated with fewer respiratory tract infections result-
ing in fewer triggers to asthma or COPD exacerbation.
In our analysis, long-term exposure associations

explored the spatial component of variability. In contrast
to the significance of the effects of short-term exposures
we do not observe significant effects of long-term
exposures on GP consultations nor on overall inhaler
prescriptions (with the exception of the NO2 association
with preventer prescriptions). However, the number of
daily observations used to assess the temporal variation
is 1304 over a 5-year period, whilst the number of spatial
units available for the analysis is smaller (n = 177) thus
providing smaller statistical power to detect effects of
long-term exposure.

All primary care data were obtained from routinely re-
corded consultation and prescribing activity data. Only
data from coded consultations were extracted within
Lambeth DataNet, thus excluding access to narrative
text which may have contained additional reference to
respiratory symptoms. Similarly, although almost all pri-
mary care inhaler prescribing is captured through elec-
tronic prescribing, occasional hand-written prescriptions
may be issued on home visits and out-of-hours inhaler
prescribing may not be transcribed into coded primary
care data. Almost the entire UK population is registered
with a GP (universal healthcare provision) with the
exception of a few extreme socially excluded people such
as the homeless. Missing data is likely to result in under-
estimates of the strength of association with exposure.
Nevertheless, primary health care outcome data concern
a much larger proportion of the population than studies
of secondary care outcomes and may be considered to
be more important in terms of improving the health of
communities. The main limitation of our study is the
relatively restricted area coverage which was due to lack
of available linked primary care health research data
covering defined geographical areas, which leads to de-
creased power for detecting associations between spatial
variability and long-term exposures. Lack of weekend

Fig. 3 a-d Change in the number of ‘all respiratory consultations’ (% and 95 Confidence Interval (CI)) associated with an interquartile increase for
NO2, PM10, PM2.5 and O3 concentrations, with same day and lag phases, adjusted for confounding by other pollutants
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data on respiratory consultations in primary care may
have reduced the exposure variability and led to under-
estimation of the strength of association. Additionally,
the data are anonymised, thus not allowing the identifi-
cation of events belonging to the same individual.
Exposure to air pollution was estimated based on

LSOA of residence although working age adults are
likely to be exposed to air pollutants within several
LSOAs based on travel and place of work. Our study
finding of stronger associations in 0–17 year olds be-
tween air pollution levels and respiratory consultations/
inhaler prescriptions may be the result of increased
vulnerability or confounded by lower daytime travel in
this age group, especially during times of school holi-
days. Aggregated LSOA data is likely to underestimate
the effect of individual level deprivation and may have
resulted in underestimates of spatial confounding.
The present investigation became possible because of

the availability of spatio-temporal models developed in
the STEAM project [8–10]. These models combine a
dispersion and a Land Use Regression model and, for
PM2.5, the addition of satellite data and machine learn-
ing methods. They predict on a daily basis and provide
estimates per LSOA (based on an average of predictions
for all post-code centroids included in an LSOA). It is

evident that even the most dense fixed site monitoring
network cannot provide an adequate spatial resolution
for such a spatiotemporal health analysis. Hybrid models
open the way for more powerful and sophisticated ana-
lyses leading to a better understanding of health effects.
These detailed spatio-temporal models had a stronger

predictive ability at the temporal rather than the spatial
scale. For example, the PM2.5 model has a spatial R2

equal to 0.40 and a temporal R2 of 0.88 [10]. This limits
the interpretation of respiratory health associations with
the spatial component of PM2.5 variability in our ana-
lysis. European air pollutant values are atypical in some
respects. Higher usage of light duty diesel vehicles and
differences in heavy industry in European countries re-
sults in relatively low PM and high NO2 levels compared
to non-European contexts such as Asian and North
America [29, 30]. Future work is needed to improve the
prediction of the spatial variability component and to
develop such models for other geographical areas, as the
consequences of air pollution have to be considered in a
global context.
A further limitation of our study is that we use aggre-

gated data, albeit data aggregated at a very fine spatial
level, and thus we are not able to include information on
individual confounders in the models. We have included

Fig. 4 a-d Change in the number of ‘inhaler consultations’ (% and 95 Confidence Interval (CI)) associated with an interquartile increase for NO2,
PM10, PM2.5 and O3 concentrations, with same day and lag phases, adjusted for confounding by other pollutants
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only LSOA level confounders, specifically age distribu-
tion and deprivation index. It is possible that this level
of adjustment does not fully control for the relevant
confounders.

Conclusion
In conclusion, our study is one of the few to investigate
the associations of short- and long-term exposure to am-
bient PM, NO2 and ozone air pollutants with commonly
occurring primary care respiratory consultations and the
prescribing of respiratory inhalers.
Short term increases in PM and NO2 are associated

with increased asthma, COPD and URTI consultations
for all ages. These associations are most pronounced in
children and with sustained, one-week elevations in air
pollutants. Similar for NO2 but less strong for PM,
associations are also seen with both preventer and re-
liever inhaler prescriptions.
Higher levels of ozone exposure were associated with

lower rates of respiratory consultations and inhaler pre-
scriptions, possibly the result of known associations be-
tween high ozone levels and hot and sunny weather.
There is a need to for more studies investigating air

pollutants exposure over sustained periods with primary
care data covering wider geographical areas and larger
populations.
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