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The emergence of viruses with pandemic potential such as the SARS-CoV-2 coronavirus
causing COVID-19 poses a global health challenge. There is remarkable progress in
vaccine technology in response to this threat, but their design often overlooks the innate
arm of immunity. Gamma Delta (gd) T cells are a subset of T cells with unique features that
gives them a key role in the innate immune response to a variety of homeostatic
alterations, from cancer to microbial infections. In the context of viral infection, a
growing body of evidence shows that gd T cells are particularly equipped for early virus
detection, which triggers their subsequent activation, expansion and the fast deployment
of antiviral functions such as direct cytotoxic pathways, secretion of cytokines, recruitment
and activation of other immune cells and mobilization of a trained immunity memory
program. As such, gd T cells represent an attractive target to stimulate for a rapid and
effective resolution of viral infections. Here, we review the known aspects of gd T cells that
make them crucial component of the immune response to viruses, and the ways that their
antiviral potential can be harnessed to prevent or treat viral infection.
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INTRODUCTION

It’s estimated that on average, a human being will be infected with about 10 different viral species
over a lifetime (1), including influenza viruses, coronaviruses, noroviruses and rhinoviruses. Most of
these viral infections result in either no disease or mild symptoms, and viral clearance in a matter of
days or weeks. However, the increasing emergence of new viruses, to which human populations
have no existing immunity, raises the potential for pandemics posing a threat to global human
health that needs to be addressed.

During a viral infection, the successive and functional cooperation of the innate and adaptive
immune systems is crucial in order to control the viral load and lead to a successful resolution of
disease. The early detection and reaction by the immune system to viral infection is fundamental for
the subsequent course of infection. This early response includes the production of cytokines and
cytotoxic factors by first-line innate effector cells including macrophages, neutrophils, natural killer
cells and Gamma Delta (gd) T cells. This early ‘innate’ arm of the immune system also begins to
recruit the adaptive arm to tailor the response and lead to immune memory. gd T cells in particular
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are of the utmost importance as their large numbers in tissues,
their pre-activated phenotype and rapidity of response make
them a central player in the fight against viruses (2). They
represent 1-5% of blood lymphocytes and constitute between
10–100% of T cells in “barrier” sites such as lung, gut and skin (3).
gd T cells migrate to these organs during early development and
persist there as resident cells (4) with non-redundant features of
surveillance compared to the other tissue-resident lymphocytes
(5, 6). In addition, gd T cells acquire a pre-activated phenotype
early in their development that allows the rapid induction of
effector functions upon detecting cellular stress and infection.
Indeed, gd T cells have been shown to be one of the first immune
cells to react to viral entry (7). The importance of gd T cells for an
efficient antiviral response is illustrated by gd T cell-deficient mice
which show severely impaired responses to both primary and
secondary infection (8, 9). These mice also demonstrate
substantial increases in viral titers immediately post-infection as
well as increased mortality compared with control mice. The
precise mechanisms deployed by human gd T cells against viruses
are still incompletely understood, but their ability in early sensing
of infection, quick activation and cytotoxicity against a wide array
of viruses, including cytomegalovirus (CMV), influenza A virus,
hepatitis B (HBV) and C (HCV) virus, human immunodeficiency
virus (HIV) and severe acute respiratory syndrome-related
coronavirus (SARS-CoV), has triggered interest in a better
definition of these under-studied lymphocytes and in ways of
harnessing their potential for therapies (2). This review aims to
provide an insight into gd T cells’ protective functions in human
pathologies and to illustrate the necessity of including innate
immunity in the design of antiviral strategies.
SENSING VIRUSES: gd T-CELLS AS
EARLY RESPONDERS

Despite their active roles in many human infectious diseases, the
pathways used by gd T cells to sense pathogens and initiate rapid
responses remain largely unknown. In this section, we will
explore some of the principal signals that are critical for gd-T
cell-mediated antiviral activity.

Toll-Like Receptors
In addition to their strategic position, gd T cells express a diversity
of receptors for sensing both viral particles directly and infected
cells. Firstly, the presence on gd T cells of both membrane
expressed and intracellular pattern recognition receptors
(PRRs), which bind conserved pathogen-associated molecular
patterns (PAMPs), is a major tool for virus detection. Of
particular importance are Toll-like receptors (TLRs) that
respond independently of any other receptors to stimulation by
virus-derived molecules.

TLRs are expressed on the cell membrane, where they can
directly recognize PAMPs like viral glycoproteins and glycolipids
(TLR2 & 4) (10–12). They are also present on endosomes and
lysosomes where they detect viral single-stranded (TLR7) and
double-stranded (TLR3) RNA (13), as well as CpG nucleotides
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(TLR9) present in the extracellular environment or produced
during intracellular replication of many viruses. All TLRs (but
TLR8) are expressed on gd T cells in peripheral blood of human
donors (14), and they are quickly upregulated during activation
(e.g. by TCR stimulation) (15).

The binding of viral ligands to TLRs leads to the activation of
several transcription factors such as interferon regulatory factor
3, 5, and 7 (IRFs) and nuclear factor-kB (NF-kB) (16). This
activation induces an antiviral program, including production of
interferons, pro-inflammatory cytokines (IL-1, TNF-a) and
other associated molecules. Through positive feedback
processes, interferons are able to enhance many TLRs (17).

Natural Killer Type Receptors
In addition to PRRs, gd T cells also express several other receptors
that mediate their optimal activation during viral infection, by
directly triggering their own signaling effect, and/or modulating
TCR signaling. Among these are NK type receptors (NKRs)
including natural killer group 2-member D (NKG2D), DNAX
Accessory Molecule-1 (DNAM1) and the Natural Cytotoxicity
receptors (NCRs) NKp30, NKp44 and NKp46.

The activating NKG2D molecule is an important stimulatory
receptor expressed on gd T cells which provides a critical role in
stress antigen recognition (18). In humans, the ligands of
NKG2D have been identified as stress‐inducible MHC class I
related molecules A/B (MICA/MICB) and members of the
UL16-binding protein family (ULBPs) (19). These molecules
have been shown to be upregulated in response to stress,
including viral infection. For example, during CMV infection
of fibroblasts, MICA and ULBP1-3 have been shown to be
upregulated (20). MICB is induced in macrophages infected by
influenza A or Sendai virus (21). CD4+ lymphocytes infected by
HIV also display an upregulation in ULBP1-3 (22). Furthermore,
MICA, MICB and ULBP4 have been shown to be upregulated in
response to Epstein-Barr virus (EBV) infection allowing
activation of gd T cells (23, 24). Recognition of these ligands
induces signaling through NKG2D and rapid Ca2+ responses,
triggering protein kinase C (PKC)-dependent co-stimulation of
the TCR (25), but can also signal independently of TCR signaling
(18). Blockade of NKG2D but not TCR resulted in decreased
killing suggesting that recognition is principally mediated by
NKG2D, and activation achieved through TCR (26). Ligand
recognition might actually involve the two receptors, as ULBPs
have been suggested to engage both NKG2D and Vg9Vd2 TCR
(24). Alternatively, the binding of TCR and NKG2D to MICA
has been reported to be mutually exclusive, with a dynamic
influenced by the higher affinity for the latter (27).

DNAM1 or CD226 is another NKR involved in gd T cell
activation. It is expressed at a low level constitutively and is
upregulated following stimulation of the cell (28). The ligands of
this receptor include poliovirus receptor PVR (CD155) and
nectin-2 (CD112), key receptors that play a role in viral entry
and have been shown to be upregulated in response to cellular
stress such as infection by viruses including CMV, HIV, EBV
(29–31). Interaction of DNAM1 with its ligands triggers gd T cell
effector functions, notably cytolytic granule exocytosis and
interferon-gamma (IFN-g) production against tumors (28), but
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more studies are needed to establish if it has similar effects during
a viral infection.

Finally, gd T cells have been shown to express members of the
NCR family, including NKp30, NKp44 and NKp46. These
receptors were originally documented on NK cells and were
shown to coordinate cytotoxic responses against tumor and
infected cells. They play a key role in infection by CMV, as
infected cells express NKp30 ligand B7-H6 (32). NKp44 and
NKp46 bind hemagglutinin (HA) present on influenza (33, 34)
and vaccinia viruses (35) as well as hemagglutinin-neuraminidase
(HN) on Newcastle disease virus (NDV) (36). Numerous other
pathogens such as West Nile and dengue viruses have also been
shown to bind these receptors via unidentified proteins (37).
While not expressed constitutively on gd T cells, studies have
shown that the expression of NCRs can be induced following
activation (38). NCRs are instrumental for gd T cells antiviral
function, as shown for example in the case of HIV suppression via
NKp30-dependent activation of gd T cells (39), or cytotoxicity
inhibition by specific blockade of NKp44 (40). These receptors
have been shown to mediate granzyme B production and
cytotoxicity in a TCR-independent manner (38).

T-Cell Receptor
Gamma delta T cells are also capable of responding to infected
cells via their T-Cell Receptor (TCR). The TCR recognition of gd
T cells is independent of MHC restrictions (41) and has been
shown to bind to a variety of non-processed antigens (42)
including MHC-like molecules (43), HSPs (44) and HSP-
regulated proteins (45), several glycoproteins, lipoproteins and
phosphoantigens (pAg) (46). Many of these antigens are
upregulated in an infectious context, as shown earlier for
MICA and MICB, and gd T cells rely on them for optimal
activation and antiviral function, as exemplified by the
correlation between pAg synthesis of EBV- or influenza A-
infected cells and gd T cells cytotoxicity against them (47, 48).
The role of the gd TCR is illustrated by blocking studies, resulting
in the loss of recognition, for example in CMV-infected cells
(49). Conversely, transferring TCR from a CMV-reactive clone
to a TCR-deficient cell line is sufficient to confer reactivity
against CMV-infected targets (50).

In humans, gd T cells can be classified into two main
populations according to their TCR expression: Vd1 and Vd2
gd T cells (51). Vd1 gd T cells are generally resident lymphocytes,
abundant in mucosal surfaces and epithelia of the digestive,
respiratory and urogenital tracts; in contrast, Vd2 gd T cells are
circulating lymphocytes and constitute the majority of peripheral
blood gd T cells (52). There is some evidence to suggests that the
tissue specificity of gd T cells is shaped by the selective activation
resulting from the interaction between the TCR and a family of
presenting molecules called butyrophilins (BTN) and
butyrophilins-like proteins (BTNL) (53, 54).

Vd1 gd T cells proliferate during some chronic viral
infections, including HCV and HIV (55, 56). They display
antiviral potential with the production of T-helper cell type 1
cytokines (57) and direct cytotoxicity toward infected cells (58).
Similarly, activation and proliferation of Vd2 gd T cells have also
been shown to be increased early during the acute phase of many
Frontiers in Immunology | www.frontiersin.org 3
viral infections. These cells can display potent antiviral responses
and mainly recognize pAg synthesized by infected cells via the
interaction between their TCR and the BTN3A1 (CD277)
presenting molecule (59, 60). This activating signal is capable
of stimulating Vd2 gd T cells independently of the virus type (48).

Activation of gd T cells by the integrated signals from the
PRRs, NKRs and TCRs induce an antiviral state characterized by
proliferation and phenotypic specialization. Indeed, as seen for
example in hepatitis C virus (HCV) patients (2), during infection
by herpes simplex virus (HSV) (61), or following an encounter
with EBV (62, 63), there is a rapid proliferation of gd T cells seen
in the blood where they can expand from approximately 1% of
circulating T cells in steady-state to over 50% following viral
infection. These expanded gd T cells express activation markers
like CD69, CD38 and HLA-DR absent in healthy individuals (64,
65), but also effector molecules such as perforin, granzymes,
granulysin contained in cytolytic granules and FasL or TRAIL.
WHODUNNIT: gd T-CELLS AS VIRUS
KILLERS

The strategic position of gd T cells for immune surveillance, and
their capacity to recognize a unique and wide array of danger
signals allows them to rapidly detect viral infection. This
activation generates a high number of functionally active cells,
ready to deploy their full antiviral potential via multiple routes,
either direct killing of infected cells or indirect inhibition through
production of noncytolytic factors and interactions with other
components of the immune system.

Direct Antiviral Action
gd T cell-mediated direct cytotoxicity is executed by diverse
pathways, including secretion of cytotoxic mediators stored in
granules such as perforin (66), granzymes (67, 68) and
granulysin (69) and expression of members of the death-
inducing TNF family of ligands and receptors, including
tumor-necrosis factor-related apoptosis-inducing ligand
(TRAIL) (70) and FasL.

gd T cells uniformly express abundant perforin, granzymes
and granulysin in their cytoplasmic granules (71–74) and are
able to degranulate after specific recognition of virus-infected
cells (75). Interestingly, the granules’ content varies with cell type
and immunological context, influencing the outcome. For
example, Granzyme M, which is highly expressed by gd T cells,
is regulated differently than Granzyme B and initiates a unique
cell death pathway independent of caspase activation (76, 77). In
addition to the induced apoptosis of infected cells, Granzyme M
also directly inhibits viral replication by cleavage of essential
virus proteins (78). Similarly, gd T cell granules contain
Granzyme H and K which have various antiviral activity
against adenoviruses, Influenza virus, HBV and HCV (68,
79–82).

Despite the central role of the cytolytic granules in immune-
induced apoptosis, several observations of target cell death in the
absence of Ca2+, perforin, or granule exocytosis suggests the
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existence of alternative pathways of cytotoxicity. The FasL-Fas
pathway is such an alternative mechanism of direct killing used
by gd T cells (83). Fas is induced in the membrane of virally
infected cells (84) and binds to FasL expressed on gd T cells. This
leads to caspases activation and apoptosis in a manner not
dissimilar to the one triggered by Granzyme B (85). gd T cells
upregulate FasL as early as 1 hour after stimulation (via NF-kB),
and are capable of keeping a high and sustained expression
during an immune response (86).

Indirect Antiviral Actions
Mounting evidence indicates that gd T cells also exert their
protective function in the elimination of pathogens by
producing cytokines, chemokines, and interacting with other
components of the immune system.

During a viral infection, targeted cells can produce cytokines
like TNF-a, IL-1, IL-6, IL-18 (87) which participate in the
activation of gd T cells both in situ and in the peripheral
blood. During activation, these gd T cells upregulate the
chemokine receptors CXCR3/5, and CCR1/5, allowing
additional recruitment to the site of inflammation, rich in
CCL3/4/5 and CXCL9/10/11 [86–88].

Within a few hours of activation, gd T cells release high
amounts of cytokines, among which is IFN-g, a key antiviral
molecule capable of suppressing viral replication as well as
recruiting and activating complementary immune cells like NK,
macrophage or killer T cells. In vitro, the non-cytolytic antiviral
activity of IFN-g has been demonstrated in infections with
hepatitis viruses (HBV & HCV), herpesviruses, orthopoxviruses,
picornaviruses, retroviruses, influenza and others (88). IFN-g
induces the transcription of several genes called Interferon-
Stimulated Genes (ISGs), which exhibit numerous functions
such as targeting viral entry, RNA expression, protein synthesis,
assembly or release through multiple mechanisms (89–91). For
example, members of the IFN-inducible transmembrane (IFITM)
family have the capacity of limiting viral entry and replication (92,
93). Another noticeable effect of IFN-g is the induction of the OAS
(oligoadenylate synthetase)-RNase L (latent ribonuclease L)
pathway which functions to detect foreign RNA and to cleave
both host and viral RNA (94). At the other end of the viral life
cycle, Viperin (virus inhibitory protein, endoplasmic reticulum-
associated, IFN-inducible) inhibits the virus release by blocking
budding at the plasma membrane (95). Interestingly, Viperin acts
in a similar manner as bisphosphonates, a class of drugs known to
activate gd T cells. Indeed, it inhibits farnesyl diphosphate synthase
(FPPS), altering membrane fluidity by disrupting lipid rafts and
interfering with virus budding as a consequence (96). Thus, one
can hypothesize that administration of bisphosphonates for in vivo
gd T cells activation, as routinely done clinically (Cf. Part 4), will
have a beneficial synergistic antiviral action.

gd T cells produce a high amount of IFN-g upon stimulation
(97–100), commencing as early as 4 hours post-activation (101).
Several studies show the central role of gd T cell-secreted IFN-g
in the antiviral response (102–104). As an additional
immunostimulatory mechanism, the high concentration of
IFNs produced by infected cells and immune cells including gd
T cells themselves in inflamed areas (105) will reinforce
Frontiers in Immunology | www.frontiersin.org 4
activation of the immune cell pool, therefore augmenting the
antiviral response (106).

Due to the evolutionary pressure of the anti-viral effects of
IFN-g, numerous strategies have arisen in viruses to subvert this
protective mechanism. Other complementary and non-
redundant mechanisms, such as TNF-a, which is also produced
by the gd T cell, are required. TCR triggering induces massive
production of TNF-a by gd T cells, as early as 20 minutes after
stimulation (107, 108). The protective effect of TNF-a for
antiviral immunity has been shown in a number of cases, such
as infection by CMV (109), HSV (110) and vaccinia virus (111).
In addition to its effect on infected cells, TNF-a is necessary for
inducing resistance in uninfected cells, and for optimal activation
of gd T cells and their cytokine production. In this regard, TNF-a
can act as a co-stimulatory signal for a sustained response to TCR
triggering (112) which implies a positive feedback loop not
dissimilar to the one observed with IFN-g.

After activation via the TCR, even if the majority of gd T cells
were expressing only IFN-g, the appearance of cells producing
both IFN-g and TNF-a has been noted (113), suggesting that
different subsets with diverging antiviral functions might appear
during activation, depending on the context (114). It is known
that TNF-a and IFN-g have a synergistic effect, providing a
heightened antiviral function to the gd T cells with the capacity to
produce both (115). A diverse range of other cytokines including
GM-CSF, IL-4, IL-5 and IL-8 are produced by gd T cells
following viral infection (116, 117), participating in the
systemic immune response. Similar to other sentinel cells, gd T
cells also secrete chemokines such as CCL2, CCL3, CCL4, CCL5,
and CCL22 to recruit pro-inflammatory effectors, accelerating
the elimination of pathogens and the repair of damaged tissues
(116, 118).

In addition to their direct anti-infection activities and their
recruitment of other immune cells, gd T cells help to establish the
adaptive response by contributing to dendritic cell maturation
(119–121) but also by acting as professional Antigen Presenting
Cells (APC) themselves (122). Indeed, they can efficiently
internalize, process and present pathogen-related antigens
from both free viral particles (123) and infected cells (124) to
other effector immune cells (125). These gd-T APCs express
approximately similar levels of the MHC-II antigen-presenting
molecule HLA-DR and of the costimulatory molecules CD80/
CD86 to conventional APCs such as dendritic cells, allowing an
efficient induction of CD4+ ab-T-cell responses (126).
Moreover, gd-T APCs’ ability for cross-presentation (a process
describing the internalization of exogenous antigens and their
degradation for peptide loading on MHC-I antigen-presenting
molecules) allow them to equal or even exceed dendritic cells’
capacity to induce CD8+ ab-T-cell proliferation and effector
functions (126, 127). In addition to their capacity for antigen
presentation, gd-T APCs change their migratory properties
during activation, including the expression of the chemokine
receptor CCR7, allowing their homing to the draining lymph
nodes where they can activate virus-specific ab-T-cells (128).

Another role for gd T cells in the initiation of adaptive
immunity is their helper function for the B cell-mediated
humoral immunity (129). Besides their role in antibody
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production, gd T cells are also key players in antibody-dependent
cell-mediated cytotoxicity (ADCC) via their expression of
FcgRIII (CD16) (130, 131). Moreover, in the case of CMV
infection, CD16 has been shown to be upregulated in gd T
cells (132) and implicated in viral inhibition via direct
recognition of IgG-opsonized virions and stimulation of IFN-g
production (133). Interestingly, CD56 expression, upregulated
upon stimulation (134) and associated with cytolytic effector
functions in gd T cells (135) might be only a marker of co-
expression with CD16. Thus, the better observed antiviral
activity of CD56+ gd T cells would be essentially due to the
CD16-mediated degranulation pathway (136).

The antiviral capacity of gd T cells has been illustrated by
different studies using a variety of in vitro infected cells. They
highlight the relative importance of each pathway and their
modulation depending on the infectious context. For example,
in a model of influenza virus-infected A549 lung alveolar
epithelial cell line, Li et al. have proven by targeted inhibition
the reliance of gd T cells on the perforin and Granzyme B
pathway, as well as NKG2D, FasL, TRAIL and IFN-g (116,
137). This cytotoxic profile was confirmed in different in vitro
models, including EBV-infected B cell lines (23) and HIV-
infected lymphocytes (58, 138).

In vivo, activated gd T cells have also proven to efficiently clear
human influenza virus in humanized mice models (139). In
humans, a study in 205 renal allograft recipients showed that
CMV infection directly precedes gd T cell expansion, and is the
only clinical parameter associated with this expansion (140).
Importantly, CMV-infected patients who develop delayed gd T
cell expansion have a higher viral load, more symptoms and
longer disease than patients with early expansion, showing
another link between gd T cells and viral infection (141). This
resolution is likely to be dependent on TCR stimulation
triggering the perforin-granzyme B pathway as well as the
production of IFN-g (142, 143). Both ab and gd T cells
respond to viral infection, as in the case of EBV-induced
mononucleosis, but only the latter keeps a high frequency
during the convalescent phase, consistent with their immune
surveillance role (65). In acute hepatitis B, peripheral gd T cells
are activated and exhibit increased cytotoxicity and capacity for
viral clearance (144). There is a negative correlation between
activated gd T cells and clinical markers of hepatitis progression
(145), and in chronically-infected patients there is a marked
reduction in the proportion and cytotoxicity of circulating gd T
cells compared to healthy donors, this decreased antiviral
function correlating with the persistence of HBV (146, 147).
Early HIV infection is also associated with reduced number and
function of gd T cells in the blood and endocervix (148, 149).
This loss is proportional to viremia (150, 151) and might be a
contributing factor in the establishment of viral persistence in
AIDS, notably by reducing the level of IFN-g (152). Interestingly,
this appears to precede the loss of CD4+ ab T cells, the major
target of HIV, suggesting that gd T cell impairment is one of the
very first immune failings during HIV infection (153). Moreover,
HIV‐infected elite controllers have elevated levels of circulating
gd T cells compared with HIV‐negative controls or HIV‐infected
Frontiers in Immunology | www.frontiersin.org 5
individuals on antiretroviral therapy (154), highlighting again a
link between gd T cells and disease outcome. In this latter
category of antiretroviral treated patients, a slow but steady
reconstitution of the gd T cell pool to near-normal levels is
observed (155, 156). Combined treatment with zoledronate (a gd
T cell-stimulating drug) and Interleukin-2 (IL2) in HIV patients
induced activation and expansion of their circulating gd T cells,
and a subsequent heightened immune response characterized by
dendritic cell maturation and CD8+ T cells responses (157)
showing the efficiency of such intervention.

A Case Study of gd T Cell Antiviral
Function: Coronaviruses
To illustrate the points discussed above, the next part of this
review will focus on the case of the SARS-CoV-2 virus,
responsible for the 2020 pandemic, which has generated a
worldwide effort and an unprecedented amount of data for a
better understanding of viral infection and the immune response
to it.

SARS-CoV-2 belongs to the betacoronavirus genus and
causes a highly infectious respiratory disease called COVID-19.
Its closest relative among human coronaviruses is SARS-CoV,
with 79% genetic similarity (158). The pathophysiology of SARS-
CoV-2 infection resembles that of SARS-CoV infection, with
progression in some individuals to acute respiratory distress
syndrome (ARDS) characterized by aggressive inflammatory
responses in the lower airways and responsible for 28% of fatal
COVID-19 cases. As such, severe COVID-19 is not only due to
direct effects of the virus but also in part to a dysregulated
immune response inflicting multi-organ damage, especially in
the cardiac, hepatic and renal systems (159).

This immunopathology is defined by a suppression of the
early pro-inflammatory response. Indeed, SARS-CoV-2 is able to
inhibit several transcription factors pivotal for the antiviral
response such as NF-kB and IRF3/7, resulting in limited IFN
production and signaling, reduced recruitment of immune cells
and viral evasion. This precipitates pathogenesis and mortality in
susceptible individuals (160). Reports on severe COVID-19
patients also showed altered immune composition, with
increased total neutrophils and reduced lymphocyte count in
the peripheral blood (161), and a correlation between
lymphocytopenia, serum IL-6 concentration (a hallmark of
cytokine storm), and disease severity (162, 163). Moreover, as
patients progress toward symptomatic stages, an increasing
proportion of exhausted PD1+ and TIM3+ lymphocytes are
seen, highlighting the failure of the adaptive system to control
infection in these cases (164). COVID-19 is also characterized by
its demographics, with a high susceptibility among older males
(14.8% case fatality ratio after age 80 Vs 2.3% total; men roughly
1.5x more likely to die than women) (165, 166). Indeed, most
children with COVID-19 are asymptomatic and have a normal
lymphocyte count (167). One of the striking differences between
young and elderly immunity is the strong innate responses
observed in the former (168), leading to early control of
infection at the site of entry. Multiple innate immunity
aberrations have been reported in the elderly: desensitization of
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dendritic cells, reduced TLR responses, dysregulated IFN
response, decreased macrophage and neutrophil function,
reduced NK activity, and relevant to this discussion, decreased
gd T cell proliferation and number (169–171). It has also been
observed that there is altered function and phenotype among
circulating gd T cell in the elderly, notably a lower response and a
lack of memory cells (172–174). In women, this phenotypic
change is not observed, and the gd T cell reduction occurs later in
life and is less pronounced than in men (175).

So innate immunity status and particularly gd T cell function
can shape the viral response and be a determinant of disease
progression. Currently, only a few studies are available on the
host innate immune response of COVID‐19 infected patients.
It’s been shown that as the first line of defense, innate immunity
must block the virus in the upper airways in the first 10-12 days
from infection (5-7 from the disease onset) for an efficient
resolution of the infection (176) and that it indeed performs
with great efficiency in the majority of individuals (177). But in
the case of the deleterious inflammation associated with severe
COVID-19, a body of evidence suggest that it is due to a failure to
activate the immune system during a critical early time window,
and to a subsequent primary cytokine release syndrome triggered
as a delayed emergency response to uncontrolled SARS-CoV-2
replication (178, 179). The priority therefore would be to
promote an early and robust immune response for effective
viral clearance and the prevention of symptomatic infection as
well as viral transmission.

During the 2003 coronavirus outbreak, health care workers
that survived SARS-CoV infection had a selective expansion of
the blood Vd2 gd T cells, observed 3 months after the disease
onset (180). No expansion of non-innate ab T cells was detected
at this timepoint. Interestingly, these gd T cells were
able to directly kill SARS-CoV infected target cells in an
IFN-g-dependent way, and their increase was proportional
with anti-SARS-CoV IgG titers, suggesting their protective role
during coronavirus infections.

There is currently a paucity of studies including the gd T cells
in their immune characterization of COVID-19, but the few
studies that investigated this population gives us an interesting
perspective on their role during the fight against SARS-CoV-2:

In accordance with the general lymphocytopenia, the
percentage of gd T cells in the blood of patients hospitalized
for COVID-19 (on average 10 days after the onset of clinical
symptoms) is lower than that of healthy controls (181, 182).
Interestingly, there is a shift in gd T cell phenotype during the 2
weeks of hospital admission, with a transition toward effector
(memory) cells more capable of tissue infiltration, as confirmed
by Odak et al. (183). The blood gd T cell reduction is indeed
associated with their recruitment in the airway tissues (184, 185).
Moreover, gd T cells’ level of stimulation (CD69 positivity) is
increased in the blood compared to healthy controls and is even
higher in the infected tissues than in the blood, showing their
activation at the injury epicenter (186). Lei et al. (187) confirmed
the gd T cell activation in blood, with increasing expression of
CD4 and CD25, and showed no sign of exhaustion as assessed by
PD1 expression. The expansion of a CD16+ gd T cell population
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in COVID-19 has been observed in single-cell transcriptional
profiling of 13 patients. In the study, the presence of this CD16+
gd T cells subset is strongly associated with moderate disease and
almost absent in the severe condition (188). Another team
comparing immune signatures between 63 COVID-19 patients
and 55 Healthy Controls also confirmed the depletion of gd T
cells in the blood and showed that while the number of Vd1 is
not different from controls or between severity groups, the Vd2
depletion is proportional to the disease severity (189). The
authors then suggest that it could be used as a diagnostic or
prognostic marker, a suggestion supported by Carissimo et al.
who showed that a Neutrophil/Vd2 ratio is a better prognostic
marker of COVID-19 severity than the Neutrophil/CD8+
Lymphocytes ratio (190). They also showed that gd T cells are
generally activated, as seen by their upregulation of the activation
marker CD38 and differentiate into central memory cells after
recovery. Expansion of the gd T cell pool has also been noted
concomitantly of the remission phase in a single-cell analysis of
2 severe COVID-19 patients (191).

All the advantages highlighted above, including rapid
activation, MHC independency, ability to traffic to infected
tissues and potent antiviral function makes gd T cells attractive
candidates as therapeutic tools (192) (Figure 1). In the next
section, we will focus on this therapeutic potential.
THE ART OF WAR: gd T CELL-BASED
THERAPEUTIC STRATEGIES

There are 2 major modalities for taking advantage of gd T cell
capabilities in a clinical context: ex vivo activation with a
subsequent adoptive transfer, or direct in vivo activation.

Ex Vivo Stimulation and Adoptive Cell
Therapy
The ex vivo approach relies on gd T cell isolation from Peripheral
Blood Mononuclear Cells (PBMCs), in vitro stimulation with
products such as bisphosphonates, pAg or monoclonal
antibodies (193), and injection of the activated cells into
patients (194). The safety and efficacy of this approach have
long been proven in the treatment of cancers, with dozens of
clinical trials involving isolation, expansion and adoptive transfer
of up to 1x1010 gd T cells (195).

This strategy is also implemented as antiviral therapy against
various infections and has shown promising results. The first
necessity for an optimal cell product is to stimulate gd T cells in a
way that maximizes their antiviral response. This has been
achieved for example in a model of H1N1-infected
macrophage, where gd T cells expanded with isopentenyl
pyrophosphate (IPP), a phosphoantigen, are able to effectively
kill target cells and to inhibit viral replication, notably due to
their high production of IFN-g (116, 196). Similarly, when
expanded with Pamidronate (PAM), a bisphosphonate, gd T
cells can also effectively kill influenza-infected lung alveolar
epithelial cells in vitro thus inhibiting viral replication (137).
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These results have been confirmed in models of HCV as well as
CMV infection (104, 197). Furthermore, Zoledronic Acid (ZA),
another bisphosphonate, has been used ex vivo in PBMCs from
HIV+ individuals and resulted in expansion of gd T cells
displaying cytotoxic capabilities and potent ADCC function,
demonstrating that this protocol is able to reactivate effector
functions in patient’s cells (198). PAM expanded cells from
HIV-infected patients showed similar cytotoxicity against HIV-
infected cells (199), illustrating that various avenues can be chosen
to harness gd T cells’ antiviral functions in a clinical setting.

The second step of this strategy involves the adoptive transfer
of activated gd T cells, which have been shown to be safe and
effective in pre-clinical models of infectious disease. In mice
infected with enterovirus or CMV, the adoptive transfer of gd T
cells was able to provoke a Th1-type response associated with
viral control and better survival (200–202). In humanized mice
infected by the influenza virus, injection of PAM-activated gd T
cells resulted in controlled viral replication and reduced disease
severity and mortality (203).

Thus, gd T cell-based adoptive cell therapies have the
potential to be used as an allogeneic “off-the-shelf” antiviral
product, akin to the strategies used for example with NK cells
(https://clinicaltrials.gov/ct2/show/NCT04365101). Despite this
potential, clinical efficacy has yet to be proven, and the logistical
challenges that come with an ex vivo cell product may hinder the
development of this specific strategy. Hence, directly stimulating
a patient’s gd T cells in vivo could appear more desirable.
Frontiers in Immunology | www.frontiersin.org 7
In Vivo Activation
The in vivo approach involves systemic stimulation and
expansion of gd T cells, usually by administration of
bisphosphonates or pAg. It’s also used routinely for cancer
treatment, with no severe adverse effects and an efficient in vivo
expansion of IFN-g+ Perforin+ effector gd T cells (204, 205)
associated with stable disease or partial remission (206).

The use of humanized mouse models has generated interesting
data in influenza infection. In vivo activation with PAM resulted in
accumulation of gd T cells in lungs and fewer symptoms,
associated with reduced lung inflammation, fewer cell infiltrates
and decreased levels of mediators such as IL-6, TNF-a or IP-10
(203). This finding has been supported by others, who also
describe a 3-fold increase of gd T cells 2 days after treatment,
and lower viral replication and mortality (139). Non-human
primate models provide an alternative to humanized mice in the
interrogation of in vivo gd T cells responses. The pAg HMBPP
((E)-4-Hydroxy-3-Methyl-But-2-enyl Pyrophosphate), in
combination with IL2, has been shown to cause expansion of
circulating IFN-g+ Perforin+ gd T cells in vivo, and accumulation
in the lungs lasting at least 3-4 months, long after circulating levels
had returned to normal (207). In a similar study, gd T cells
accumulated in the lungs were able to protect from pulmonary
lesions caused by Yersinia pestis infection (208). Finally, in a
model of tuberculosis, IFN-g+ Perforin+ gd T cells accumulating
in the lungs attenuated the lesions and stimulated a CD8+ T cell
adaptive immune response (209). These findings are consistent
FIGURE 1 | The multifactorial capacity for the gd T-cell to interact with viruses and virally infected targets. Numerous pathways are crucial in the gd T-cell mediated
antiviral response. gd T-cells are capable of rapidly recognizing virally infected cells. This can occur via the detection of isopentenyl pyrophosphate (IPP) by the T-cell
receptor (TCR), via recognition of stress-induced molecules by NKG2D, or via the recognition of viral molecules and PAMPs by NK-type receptors and TLR,
respectively. gd T-cells have numerous mechanisms to directly combat viral infection. Direct antiviral mechanisms are mediated by cytolytic molecules, such as
perforin and granzyme B, to induce cytolysis and by the expression of death receptors, including FasL and TRAIL, to induce apoptosis. gd T-cells also have several
indirect mechanisms capable of combatting viral infection. Indirect antiviral mechanisms are mediated by cytokines, such as IFNg and TNF, by the expression of
MHC-II allowing them to act as APC to direct the adaptive immune response and via expression of CD16 to trigger antibody-dependent cellular cytotoxicity.
Together these actions make the gd T-cell a crucial component in the immune response to viruses.
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with the paradigm that circulating gd T cells can traffic to the lungs
for homeostatic protection against tissue damage during infection,
suggesting their potential as immunotherapeutics against a variety
of pulmonary pathogens. In humans, administration of ZA with
IL2 has been carried out in HIV‐infected, antiretroviral naïve
patients and was associated with gd T cell expansion, dendritic cell
activation and increased HIV‐specific CD8+ T‐cell responses
(210), suggesting that this strategy can be used to restore
impaired immune response observed in AIDS (211).

The advantage of bisphosphonates such as ZA and PAM is
that they are already clinically approved, inexpensive and
relatively safe drugs (212). Moreover, in the context of viral
infection, they might have an additive clinical benefit, as they’ve
been shown not only to stimulate gd T cells but also inhibit the
protein prenylation pathway and the cholesterol synthesis, both
required for virus assembly (113, 213). Taken together, these
effects strengthen the argument for their use as antiviral agents.

Another known mechanism of in vivo gd T cell activation is
by microbial products like listeria, mycobacteria or salmonella-
derived vaccines (214–216). Indeed, there is accumulating
evidence that innate immunity, including gd T cells, is boosted
by specific vaccination in addition to targeted adaptive immunity
(217). For example, the influenza vaccine is able to induce virus-
specific gd T cell expansion along with CD4+ and CD8+ T cells
stimulation (218), and the differentiation of these gd T cells into
an effector/memory phenotype, with increased perforin
expression (219). Vaccination in a model of Simian
Immunodeficiency Virus (SIV) in macaques has been shown to
block infection early at mucosal sites, and this protection was
associated with expansion of gd T cells and maturation of
dendritic cells (220). In addition to their designed effects,
vaccines have long been shown to protect beyond their target
antigen through induction of innate immune mechanisms
termed non-specific heterologous effects and trained immunity
(221). Thus, certain adjuvants such as TLR agonists (222), as well
as live vaccines like polio (223) or measles (224, 225) induce
long-term cross-protection against various infections through
epigenetic, transcriptional, and functional reprogramming of
innate immune cells such as macrophages, NK cells or gd T
cells (226). This reprogramming results in enhanced activation,
and ultimately protection against secondary infection,
resembling immune memory (227, 228). The most well-studied
inducer of trained immunity is the Bacillus Calmette–Guérin
(BCG) vaccine (229). It is composed of a live attenuated strain of
Mycobacterium bovis originally given to young children to
protect against tuberculosis, but recent studies demonstrated
that its administration more broadly reduced mortalities from
infectious diseases over the neonatal period (230, 231). It has
then been postulated that the relative protection from COVID-
19 reported in children might be attributed to their frequent
vaccinations, and indeed some correlations between BCG
vaccination policies and reduced infection and mortality rates
due to SARS-CoV-2 have been reported (232–235). Indeed, even
after correcting for many socioeconomic and pandemic-related
confounders, data shows that for every 10% increase in the BCG
index (degree of national universal vaccination), there is a 10.4%
reduction in COVID-19 mortality (236). These results are still
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under debate (237) but have initiated numerous studies and
clinical trials investigating the effect of BCG on nonspecific
protection against SARS-CoV-2 infection or its severity (238–
240) (https://clinicaltrials.gov/ct2/show/NCT04369794,
NCT04362124, NCT04379336, NCT04350931, NCT04327206,
NCT04373291, NCT04328441, NCT04348370). This non-
specific protection could be harnessed independently of age, as
a randomized controlled trial in elderly (60–75 years old) who
received BCG vaccinations, showed a reduction of the incidence
of acute upper respiratory tract infection (241). It has also been
proven to protect against a variety of viruses like yellow fever,
influenza, papillomavirus (HPV), Respiratory syncytial virus
(RSV) or HSV (242, 243).

As a key cell type in the innate immune response, it is clear gd
T cells also play a role in contributing to trained immunity. Many
studies have documented expansion of the gd T cell population
following vaccination with BCG, with these cells being one of the
key producers of IFN-y in immunized children (244–246).
Mycobacteria stimulation also induces gd T cell cytotoxicity
toward virus-infected cells (HSV and vaccinia), typical of the
heterologous effect observed in trained immunity (247).
Moreover, gd T cells expanded after viral infection or BCG
stimulation, differentiate into effector memory cells capable of
a faster and more efficient response to a second infection (248–
251). So BCG can be used to expand cytotoxic gd T cells capable
of eventually differentiating in long-lived memory cells allowing
enhanced protection against subsequent infections.

The contribution of gd T cells to the regression of BCG-
treated melanoma patients has already been proven (252), and
highlights the clinical potential suggested above for a similar
setting in treatments of viral infections. Thus, BCG or its
derivatives (253, 254) are attractive candidates for establishing
trained immunity and stimulating early clearance of subsequent
viral infection (255). Integrating innate immunity stimulation in
the design of vaccines would also be a way of harnessing this
under-considered potential (256). Indeed, by the choice of
delivery route (257, 258) or adjuvant (259), one could balance
the immune response to allow for complementary protection in
instances where the adaptive immunity is failing. BCG itself
could be used as an adjuvant or in a prime-boost strategy, as it
has been shown to orient toward an antiviral Th1-type response
and to enhance vaccine efficiency (260).
DISCUSSION

As highlighted here, the varied characteristics of gd T cells
support their role in controlling viral diseases in general and
COVID-19 in particular. Considering the accumulating evidence
on their multiple antiviral functions and their capacity to react
early and to quickly prevent viral spread, we’re advocating for
better inclusion of gd T cells in the therapeutic armamentarium
against viral infections. For example, a cheap and effective way of
harnessing anti-viral innate immunity such as that mediated by
gd T cells would be to vaccinate the population with BCG in cases
where there is no access to a specific vaccine, or as a
supplementary boost to it, and the ongoing clinical trials using
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these strategies will be of tremendous importance for the
optimization of gd T cell-based therapies against viruses.
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