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1 | METABOLOMICSASATOOLTO
UNDERSTAND DRUG ADDICTION

Drug addiction is a chronic relapsing brain disorder characterised by
compulsive drug seeking, loss of control over drug intake and the
emergence of physical and emotional withdrawal symptoms when
the drug is absent (Koob & Kreek, 2007; Koob & Le Moal, 2001; Wee
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Despite the progress in characterising the pharmacological profile of drugs of abuse,
their precise biochemical impact remains unclear. The metabolome reflects the multi-
faceted biochemical processes occurring within a biological system. This includes
those encoded in the genome but also those arising from environmental/exogenous
exposures and interactions between the two. Using metabolomics, the biochemical
derangements associated with substance abuse can be determined as the individual
transitions from recreational drug to chronic use (dependence). By understanding the
biomolecular perturbations along this time course and how they vary across individ-
uals, metabolomics can elucidate biochemical mechanisms of the addiction cycle
(dependence/withdrawal/relapse) and predict prognosis (recovery/relapse). In this
review, we summarise human and animal metabolomic studies in the field of opioid
and psychostimulant addiction. We highlight the importance of metabolomics as a
powerful approach for biomarker discovery and its potential to guide personalised
pharmacotherapeutic strategies for addiction targeted towards the individual's

metabolome.
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& Koob, 2010). It is thought to arise, at least partly, as a result of the
long-term compensatory mechanisms that occur in response to
the increase in striatal dopaminergic transmission along the mes-
olimbic pathway elicited by drug use. However, a detailed and refined
understanding of the biochemical processes underlying addiction and
the nature of the profound interpersonal variability in drug responses

and progression of the disorder is still unclear.

Abbreviations: 5-HIAA, 5-hydroxyindoleacetic acid; DOPAC, 3,4-dihydroxyphenylacetic acid; GIn-Glu-GABA, glutamine-glutamate-GABA; SIRT1, Sirtuin 1; TCA, tricarboxylic acid; Trx-1,

thioredoxin-1.
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The observation that addicted individuals present a range of met-
abolic abnormalities led to the notion of drug addiction as a ‘metabolic
disease’ (Dole & Nyswander, 1967). Thus, a global investigation of the
biochemical perturbations characteristic of the disease may be suc-
cessful in providing mechanistic insights into disease states and pro-
gression. Metabolomics uses high-resolution analytical chemistry
techniques to simultaneously measure a large number of low MW
molecules in a biological sample. This results in large datasets where
the variables (i.e. metabolites) largely outnumber the observations
(i.e. mice or human participants). As such, appropriate dimensionality
reduction techniques are necessary to analyse the entire metabolic
profile in relation to an outcome of interest (Worley & Powers, 2013).
Multivariate models can be constructed to predict class membership
(e.g.,disease state) or a continuous response variable (e.g. behavioural
data) from linear combinations of the original variables (Saccenti
et al., 2014). The predictive ability and significance of the model can
then be assessed through cross-validation and permutation testing,
respectively. While acknowledging the interrelation of metabolites,
multivariate methods allow for assessing the ‘weight’ or contribution
of each metabolite to the overall predictive model (Saccenti
et al., 2014), aiding the identification of potential biomarkers. This
unique biochemical fingerprint, referred to as the metabolome,
reflects the metabolic processes occurring in the biological system at
the time of analysis and its overall metabolic status (Kosmides
et al., 2013). In addition, the metabolome contains exogenous mole-
cules entering the system (e.g. dietary factors and xenobiotics) and
products resulting from their breakdown. Drug addiction is a unique

disorder in that it arises from the combination of genetic risk factors

and exposure to an exogenous substance (i.e. drug of abuse). By cap-
turing the ‘metabolic phenotype’ originating from both endogenous
processes and the interaction with exogenous molecules (Figure 1),
metabolomics provides a unique technique to investigate the bio-
chemical basis of addiction.

Metabolomic approaches are also a powerful tool for biomarker
discovery. As the fourth most costly mental disorder in the European
Union (Gustavsson et al., 2011), addiction is a major public health
issue with serious socio-economic implications and efforts continue
to be made to improve the diagnosis and management of this
disorder. The diagnosis of drug addiction is based solely on identify-
ing characteristic symptoms and behaviours in accordance with the
Diagnostic and Statistical Manual of Mental Disorders Fifth Edition
(American Psychiatric Association, 2000). No reliable diagnostic test
currently exists for primordially predicting drug addiction vulnerability
and for identifying individuals at risk of relapse or at risk of co-mor-
bidity. When pharmacological options for managing addiction
symptomology are available (e.g. methadone/buprenorphine for
opioid withdrawal and naloxone for craving), efficacy is often limited
and responses are highly variable. It also remains impossible to
predict the efficacy and potential side effects of pharmacotherapy on
an individual basis. These challenges demonstrate the need for
quantitative biomarkers to predict an individual's addiction risk,
disease progression, relapse vulnerability and response to interven-
tional strategies. Pharmacometabolomics is a branch of metabolomics
whereby an individual's baseline metabolic phenotype is used to pre-
dict their handling and response to a pharmacological intervention
(Kaddurah-Daouk & Weinshilboum, 2014). As our understanding in
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FIGURE 1 Each level of the ‘omics’
cascade gives a different level of insight
into the phenotype. The interaction of
each component (genome, transcriptome,

N/

PHENOTYPE

(disease) -

proteome and metabolome) with the
environment (nutrition, stress and drugs)
influences the resulting phenotype and
can contribute to disease. The size of the
green arrows indicates the influence of
the environment increases on each level
of the omics cascade and is highly
reflected by the metabolome. Although
each omics technique can reveal
important diagnostic and prognostic
biomarkers of disease, the ability of
metabolomics to capture both
endogenous (i.e. genetic) and exogenous
(i.e. environmental and drug-related)
influences on the observed disease
phenotype, its chemical diversity and
dynamic nature, suggests that metabolic
biomarkers may better represent the
resulting phenotype of drug abuse
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this area grows, a personalised approach to care delivery and clinical
decision making in the management of substance abuse disorders
may become possible.

This review summarises the findings of published studies in
humans and rodent models investigating the biomolecular perturba-
tions elicited by opioids and psychostimulants on the brain (target
organ) and peripheral tissues/biofluids with translational value
(e.g., blood, urine and hair). As our understanding in this area grows, a
personalised approach to care delivery and clinical decision making in

the management of substance abuse disorders may become possible.

2 | METABOLICPHENOTYPING OF
OPIOID ADDICTION

Opioids, such as morphine and heroin, are highly addictive sub-
stances. Their rewarding effects are mediated by their ability to
induce dopamine transmission in the nucleus accumbens by relieving
the inhibition of GABAergic interneurons on mesolimbic dopamine-
releasing neurons in the ventral tegmental area (Spanagel &
Weiss, 1999). The following section provides an overview of animal
and human studies investigating the metabolic changes associated
with the distinct stages of opioid (morphine and heroin) addiction.
Although the analysis of brain samples can help unravel biochemical
pathways affected by repeated opioid administration (Deng
et al, 2012; Gao et al, 2007; Hu et al., 2012; Li et al., 2017) or
involved in the reinforcing effects of the drugs (Meng et al., 2012),
sequential sampling of plasma and urine samples allows for the identi-
fication of biomarkers of the different addiction states (i.e. euphoria,
tolerance, abstinence and withdrawal, Liu et al., 2015; Zaitsu
et al., 2014) and predictors of treatment outcome (i.e. response and
relapse, Ning et al., 2018; Zheng et al., 2013). Human studies have
also been conducted to understand the perturbations in the hair
metabolome driven by heroin (Xie et al., 2016) and to investigate the
metabolic changes induced by withdrawal from opioids (Mannelli

et al., 2009). These studies are summarised in Table 1.

21 | Metabolic signature of morphine addiction

1H-NMR spectroscopy-based studies of the metabolic abnormalities
induced by repeated morphine administration on brain samples were
conducted in rhesus monkeys (Deng et al., 2012) and rodents (Gao
et al, 2007; Hu et al, 2012). Significant disturbances in the
(GIn-Glu-GABA)  axis,

markers of oxidative stress and involved in neurotransmission, were a

glutamine-glutamate-GABA which are
common finding. The specific changes reported varied depending on
the species and the brain region considered and are reviewed in
Table 2. Some discrepancies regarding the direction of change of
these metabolites may also be underpinned by differences in experi-
mental design (e.g. dose and length of drug administration; see
Table 1). Disturbances in the equilibrium state between GABA, Glu
and GIn, with a general increase of GABA and decrease in Glu, were
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consistent with microdialysis studies showing increased GABA and
decreased Glu within the medial prefrontal cortex (Ramshini
et al., 2019), nucleus accumbens (Sun, Yang, et al., 2011) and hippo-
campus (Kang et al., 2006) in response to morphine. Such changes
were ascribed to alterations in tricarboxylic acid (TCA) cycle activity
and enhanced conversion of Glu into GABA by GAD. A decrease in
GABA degradation has also been suggested (Gao et al., 2007). The
shift in the GIn-Glu-GABA equilibrium state observed in these stud-
ies may also be the result of neuroadaptations caused by the effect of
morphine on GABAergic neurotransmission, which is known to medi-
ate the rewarding properties of opioids. This is supported by evidence
suggesting that GABA and activation of the GABAergic system atten-
uates the reinforcing effects of drugs of abuse via its modulatory
effect on the mesolimbic dopaminergic pathway (Tsuji et al., 1996;
Westerink et al., 1996) and that its disruption is involved in the devel-
opment of tolerance and dependence to opioids (Hu et al., 2012;
Sepulveda et al., 2004). These metabolic changes were not evident
until Day 10 of morphine administration, suggesting that long-term
adaptive mechanisms underlie these alterations (Gao et al., 2007). The
membrane constituent phosphocholine and the phosphoinositol
precursor myo-inositol were dysregulated in response to morphine
exposure, indicating an effect of morphine on membrane integrity.
Myo-inositol is also an osmolyte highly expressed in glial cells.
Changes in the abundance of myo-inositol and the neuronal marker N-
acetylaspartate (NAA) may reflect glial hypertrophy and altered neuro-
nal morphology and activity. Glial cells are emerging as an important
player in addiction pathophysiology due to their role in supporting
neurotransmission and brain energy metabolism (Miguel-
Hidalgo, 2009). Morphine has been shown to affect neuronal matura-
tion in vitro by modulating astrocytic proliferation (Stiene-Martin
et al.,, 1991). Irrespective of species and brain regions considered, an
increase in lactic acid was observed in all studies (Deng et al., 2012;
Hu et al., 2012). Lactic acid is the end product of anaerobic cellular
metabolism and is produced when energy demand exceeds the rate of
oxidative metabolism. Elevated lactic acid indicates tissue damage and
impaired pyruvate oxidation (Veech, 1991). Given that lactate can
only be completely oxidised in mitochondria, increased lactic acid
observed in these studies is likely to be an indication of mitochondrial
dysfunction, energy metabolism impairment, oxidative stress and/or
up-regulation of the enzyme LDH. Consistently, metabolites related
to oxidative stress such as the antioxidants glutathione, taurine and
creatine also showed a large deviation from controls following
repeated morphine administration. Feng et al. (2013) suggested hippo-
campal mitochondrial damage and decreased mitochondrial DNA copy
number as a hallmark of addiction. Using cultured rat
pheochromocytoma cells and mouse neurons treated with morphine,
the authors showed that oxidative stress caused by morphine admin-
istration led to mitochondrial damage and autophagy. Given the
involvement of mitochondria in synaptic remodelling, mitochondrial
dysfunction is likely to have downstream effects on synaptic plasticity
and neurotransmission, with an inevitable downstream impact on the
addiction cycle (Figure 2). In support of this hypothesis, the up-

regulation of ROS in the hippocampus, as a result of morphine
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Brain region-specific changes in metabolite concentrations following chronic morphine treatment versus control animals

Neurotransmitters Glutamine
Glutamate
GABA
Succinic acid semialdehyde
Oxidative stress metabolites GSH
NAA
Phosphocholine
Myo-inositol
Taurine
Energy metabolism Lactic acid

Creatine

Hi FCx NAc Striatum
O 205 N2 0 0
N2 2 N2\ ™ 0
M YA ™ 0
N 4N 0 -
N2 N2

O\ N N 0
N2\Z qr qn
N2 205 2 2054 v v
N2 2 N2 4 0
™ N 0 0
v ™M ™ NZ

Note: Studies conducted in rhesus monkeys and rats (see protocol in Table 1). ‘]* indicates increase, ‘|’ indicates decrease, ‘[ ]’ indicates rhesus monkeys
(Deng et al., 2012), ‘[ indicates rats (Hu et al., 2012), ‘(7" indicates rats (Gao et al., 2007) and ‘*’ indicates disagreement between Hu et al. (2012) and

Gao et al. (2007).

Abbreviations: FCx, frontal cortex; Hi, hippocampus; NAA, N-acetylaspartate; NAc, nucleus accumbens.

administration, was shown to elicit increased inhibitory and decreased
excitatory synapses, whereas the antioxidant compound platelet-
derived growth factor (PDGF) reverses the synaptic effects of mor-
phine (Cai et al., 2016). Similarly, the antioxidative compound
thioredoxin-1 (Trx-1) inhibits morphine-induced conditioned-place
preference in transgenic mice by modulating GABAg and dopamine
D, receptor expression (Li et al., 2018), clearly suggesting a key role
for oxidative stress in modulating, at least partly, the reinforcing
effects of morphine.

The central (Meng et al, 2012) and peripheral (Zaitsu
et al, 2014) biochemical mechanisms underlying the context-
dependent learning associated with the rewarding effects of drugs of
abuse were investigated in rodents undergoing morphine-induced
conditioned-place  preference in  two independent gas
chromatography-mass spectrometry studies. A total of 21 metabolites
were observed to significantly differ in the central metabolic profiles
of morphine-treated and control mice (Meng et al., 2012). Of these,
the elevation of myo-inositol and its derivative myo-inositol phos-
phate supports the disrupting action of morphine on membrane
integrity and astrocytic morphology and proliferation. The increase in
nicotinamide, a product of nicotinamide adenine dinucleotide (NAD)
metabolism that is also involved in reward memory consolidation,
suggests a role of this metabolite in drug-associated learning. The
nucleotide uracil and the amino acids proline and valine were also
up-regulated. Although indicative of protein breakdown, both proline
and valine contribute to Glu and GIn metabolism, further supporting
a dysregulation in the GIn-Glu-GABA axis (Meng et al., 2012). The
effect of morphine on the plasma and urinary metabolomes was
investigated by Zaitsu et al. (2014) in a conditioned-place preference
paradigm. Twelve urinary metabolites and four plasma metabolites

were strongly predictive of high conditioned-place preference scores

(Zaitsu et al., 2014), highlighting the exciting potential for met-
abolomics to elucidate novel predictive biomarkers for addiction
severity. Morphine-conditioned-place preference rats exhibited an
increase in N-propylamine but a decrease in 3-hydroxybutyric acid
(3-HB), L-tryptophan and cysteine in the plasma compared with con-
trol rats and an increase in 2-oxoglutarate, fumaric acid, malic acid,
L-threonine and a decrease in glutamic acid, isoleucine, L-valine, L-
aspartic acid, oxamic acid, 2-aminoethanol, indoxyl sulfate and in the
urine. Given that L-tryptophan is elevated in the brain following mor-
phine administration (Messing et al., 1978), a decrease in its circula-
tory levels suggests that morphine administration results in the
uptake of L-tryptophan from the systemic circulation into the brain.
Importantly, the increase in TCA intermediates such as
2-oxoglutarate, fumaric acid and malic acid, and the reduction in glu-
tamic acid and 3-hydroxybutyric acid supports the up-regulation of
the TCA cycle and the inhibition of B-oxidation of fatty acids and
ketone body metabolism for energy production. Similarly, a separate
gas chromatography-mass spectrometry-based metabolomic study
investigating the metabolic changes in the plasma of rats chronically
exposed to an escalating dose of morphine (Liu et al., 2015) reported
alterations in TCA cycle intermediates, such as oxalic acid and the
malonic acid derivative aminomalonate, alterations in the GIn-Glu-
GABA axis, as demonstrated by decreased GIn and increased f-p-
glucose, and in membrane components, such as cholesterol, linoleic
acid and stearic acid. In line with Zaitsu et al. (2014), a disruption in
the metabolism of amino acids and related compounds was also
observed by Liu et al. (2015), with decreases in alanine, proline,
glycine, serine and threonine. As alanine and glycine are by-products
of GABA degradation by the enzyme GABA transaminase, their
reduction may be indicative of decreased GABA breakdown. Con-

versely, proline is associated with both the TCA cycle and the
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TCA intermediates NAD AMP
Myo-inositol 3-HB and glycerol lipids ADP GMP
NAA
Hyperactivity
OPIOID or - I 1 neuronal activity —3» 1energy need/ Activation of mitochondrial 1 locomotion
PSYCHOSTIMULANT consumption > respiratory chain 1 stereotypy behaviour
— e e e e e = m— =
SHORT-TERM EFFECTS LONG-TERM EFFECTS
ENERGY 3» MITOCHONDRIAL 3»  OXIDATIVE LaCfafe
DEPLETION DYSFUNCTION STRESS
/—'Ii Glutathlone
DNA damage and N- agre(y\cys(eme
I lipid peroxidation e
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FIGURE 2 Diagram of metabolic alterations caused by drugs of abuse. Metabolites that are altered in response to drug exposure provide

information on the underlying cascade of events leading to addiction. As most of the changes leading to an established addiction state are likely
to involve adaptive mechanisms, it is important to investigate and discriminate between the short-term effects of acute drug exposure and the
long-term, compensatory changes resulting from chronic drug administration (i.e. dependence) on the metabolome. A general mechanism of
action of both opioids and psychostimulants seems to involve a short-term increase in energy demand, which leads to long-term energy
depletion, mitochondrial dysfunction and oxidative stress. These long-term effects contribute to a cascade of events that feed the cycle of
metabolic and pathophysiological derangements characterising addiction, as shown with the backwards arrows. 3-HB, 3-hydroxybutyric acid; GIn,
glutamine; Glu, glutamate; NAA, N-acetylaspartate; TCA, tricarboxylic acid

pentose phosphate pathway and is involved in arginine and Glu
metabolism. Once again, these biochemical disruptions point towards
dysfunctional energy metabolism.

Several studies have assessed the biochemical effects of common
pharmacological interventions used to assist opioid-dependent
individuals overcome their dependence. The drug naloxone is an
antagonist at the p-opioid receptor used to suppress craving in
opioid-dependent individuals undergoing abstinence. The effect of
naloxone on the plasma metabolic profile of morphine-treated rats
was evaluated by Liu et al. (2015). Rats receiving naloxone after being
treated with morphine for 5 days had higher circulating amounts of
lactic acid, oxalic acid, aminomalonate, 2-oxoglutarate, $-pb-glucose,
linoleic acid, cholesterol and palmitic acid and reduced alanine, valine,
proline, glycine, serine, threonine, pyroglutamic acid, hydroxyproline,
erythronic acid, GIn, arabinose, rhamnose, isoleucine, succinate,
4-hydroxybutanoic acid and leucine compared with rats receiving nal-
oxone after saline (Liu et al., 2015). Lower threonine, glycine and ser-
ine and higher glucose and oxalic acid were noted in all states
(including ‘euphoria’, 30 min after morphine), implying that distur-
bances in amino acids (and potentially neurotransmission) and oxida-
tive stress were not recoverable by naloxone and may reflect ‘lifetime
exposure’ to morphine. This demonstrates the potential of met-
abolomics to elucidate the biochemical processes underlying each

stage of the disorder progression.

NMR-based metabolic profiling was used to study various brain
regions from morphine-treated rhesus monkeys and rats undergoing
detoxification with the long-acting opioid methadone or the «,
2012).

Upon detoxification, the majority of morphine-induced metabolic vari-

adrenoceptor agonist clonidine (Deng et al., 2012; Hu et al,,

ation was normalised to baseline (Deng et al., 2012; Hu et al.,, 2012),
although several metabolites remained altered in specific brain regions
(Table 3). Although clonidine was generally more effective than meth-
adone in reversing the biochemical effects of morphine in both spe-
cies (Deng et al., 2012; Hu et al., 2012), rats showed a more profound
reduction in withdrawal symptoms in response to methadone com-
pared with clonidine (Deng et al., 2012). Advanced correlation analysis
is warranted to investigate causality between the behavioural effect
of pharmacotherapeutic interventions and their effectiveness in
restoring predose biochemical profiles.

The effect of 6 days of methadone-aided detoxification on the
plasma metabolome was investigated in a human study (Mannelli
et al., 2009). An liquid chromatography electrochemical array platform
was used to measure purine, monoaminergic and redox metabolites in
14 opioid-dependent individuals undergoing methadone detoxifica-
tion and 10 nondrug users. Opioid-dependent participants were given
methadone orally at 9:00-10:00 AM daily, and blood samples were
collected on Days 2 and 3 at 10:00-11:00 AM. The ratio of glutathi-
one (GSH)/oxidised GSH and the antioxidants a-tocopherol and
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TABLE 3 Effectiveness of clonidine and methadone detoxification treatment on metabolite deviations caused by morphine treatment
Withdrawal intervention with clonidine or methadone
Rhesus monkey Rats
Hi FCx Hi FCx NAc Striatum
Glutamine v - v
Glutamate Methadone v v v
GABA v -
GSH — v — -
NAA - v v — v v
Phosphocholine v v v — — v
Myo-inositol v v v —
Taurine 4 Methadone v — 4
Lactic acid v
Creatine 4 v 4 4 4
Succinic acid semialdehyde - v v/ —

Note: Studies conducted in rhesus monkeys (Deng et al., 2012) and rats (Hu et al., 2012) (see protocol in Table 1). ‘v indicates both clonidine and
methadone treatment restored, ‘<’ indicates neither clonidine nor methadone restored metabolite, ‘clonidine’ indicates only clonidine restored,
‘methadone’ indicates only methadone restored and an em dash means there were no results reported.

Abbreviations: FCx, frontal cortex; Hi, hippocampus; NAA, N-acetylaspartate; NAc, nucleus accumbens.

y-tocopherol was significantly higher in opioid-dependent partici-
pants, indicating significantly higher oxidative capacity provided for
by methadone therapy. Changes in a-tocopherol antioxidant activity
are consistent with previous studies evaluating antioxidant serum
levels in heroin users undergoing methadone detoxification (Diaz-
Flores Estévez et al., 2004; Rodriguez-Delgado et al., 2002). This may
indicate a protective effect of methadone in reducing physical opioid
withdrawal symptoms by a mechanism involving ROS removal. The
increase in plasma guanine and xanthosine reported in the methadone
group may represent alterations in energy production through the
conversion of guanine and xanthosine into their corresponding nucle-
otides via salvage pathways. The combination of high guanine and
low guanosine in the plasma has been shown to be associated with
brain toxic insult and increased dopamine turnover (Ciccarelli
et al., 1999; Loeffler et al., 1998), whereas guanine-based purines also
participate in GABAergic and glutamatergic transmission (Majumder
et al., 2007; Schmidt et al., 2007). Significant differences in purine
metabolites were found between control and drug-dependent sub-
jects undergoing methadone detoxification (Mannelli et al., 2009), but
further investigation is required to assess if any of these metabolites
can serve as biological markers of addiction or of response to
methadone treatment. No significant differences in phenylalanine,
tryptophan and tyrosine metabolites and monoamines (dopamine,
5-hydroxytryptamine (5-HT; serotonin) and noradrenaline) were
found between the groups. However, N-methyl-5-HT was present in
greater amounts in the plasma of opioid-dependent patients. Interest-
ingly, N-methyl-5-HT and its derivative bufotenine have also been
shown to be elevated in other psychiatric disorders and have
been associated with hallucinogenic effects (Takeda et al., 1995),

further supporting a common metabolic dysregulation in a range of

psychiatric conditions. However, the authors reported that N-methyl-
5-HT, but none of the other metabolites, was higher in the eight of
the 14 drug-dependent participants also tested positive for both
cocaine and cannabis (Mannelli et al., 2009). These results should be
viewed as preliminary because of the presence of confounding biolog-
ical differences between opioid-dependent patients and nondrug
users, and in future studies, caution should be taken to control for
smoking pattern, age, ethnic background, lifestyle and the diet.
Although beyond the scope of this review, the potential of met-
abolomics to evaluate the interindividual pharmacokinetic properties
(thus the ideal, tailored dose) of methadone has been demonstrated
and can have implications in the personalised treatment of addiction
(Dinis-Oliveira, 2016).

2.2 | Metabolic signature of heroin addiction

Zheng et al. (2013) monitored serum and urinary metabolic changes
in response to a 10-day escalating dose of heroin administration in
rats, followed by 4 days of abstinence (‘withdrawal’) and 4 days of
readministration of the opioid (‘relapse’). Initial heroin administration
caused abnormalities in pathways associated with energy metabo-
lism. The concomitant reduction in serum free fatty acids (palmitic
acid, linoleic acid, oleic acid, nonesterified cholesterol,
docosahexaenoic acid and octadecanoic acid) and increase in the
TCA cycle intermediate citrate in both serum and urine suggest a
depletion of fatty acids for energy production and the up-regulation
of the TCA cycle as a source of energy. Changes in the concentra-
tions of aspartate, hydroxyproline, tryptophan, leucine, valine, phe-

nylalanine, threonine and thymine imply that amino acid metabolism
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was also perturbed. Elevations in aspartate, the 5-HT metabolite
5-hydroxyindoleacetic acid (5-HIAA) and 5-HT indicate changes in
neurotransmission. An effect of heroin administration on membrane
integrity is indicated by increased myo-inositol-1-phosphate and
myo-inositol. An increase in circulating myo-inositol was detectable
early (by Day 5), whereas the increase in aspartate occurred later
(between Days 5 and 10), indicating time-dependent changes in the
effect of heroin on membrane integrity. These results indicate that
membrane disruption precedes (and may be responsible for) changes
in amino acid metabolism. After 4 days of abstinence, the urinary and
serum metabolomes were comparable with those of controls indicat-
ing a rapid return to homeostasis. However, variation was observed
in their recovery. Although none of the urinary metabolic abnormali-
ties elicited by drug exposure persisted at withdrawal, serum myo-
inositol-1-phosphate and threonate remained increased and
decreased, respectively. This suggests that membrane damage and
long-term abnormalities in synaptic density are a long-term conse-
quence of heroin exposure persisting well into withdrawal (Figure 2).
Similar observations to the chronic heroin group were noted in the
relapse group, showing deviations from the control group and over-
lap with the animals that had 10 days of heroin exposure. This indi-
cates that the metabolic state of relapse is comparable with that of
long-term heroin exposure (Zheng et al., 2013).

Ning et al. (2018) also compared the serum metabolic profile of
rats undergoing heroin self-administration reexposure after a period
of abstinence (used to model relapse) to drug-naive rats. Consistent
with previous observations, disruptions were seen in pathways related
to energy homeostasis (TCA intermediates and keto bodies), phospho-
lipid cycling (cell membrane components: choline, phosphocholine
and glycerol phosphocholine) and neurotransmission (amino acids and
related molecules: choline, phenylalanine and GIn). However, in con-
trast to the previous study by Zheng et al. (2013), Ning et al. (2018)
observed an inhibition of the TCA cycle, demonstrated by an increase
in glucose and decrease in pyruvate and fumarate (and a decrease in
lactate). In addition, the ketone bodies 3-hydroxybutyric acid and
acetoacetate were increased with heroin indicating a shift from oxida-
tive phosphorylation to ketogenesis as an alternative source of
energy. These differences may result from the variation in the
sampling time points between the studies reflecting the short- and
long-term adaptive mechanisms in energy metabolism to heroin
administration.

A similar mouse study showed equivalent results in brain samples
analysed by ultraperformance liquid chromatography time-of-flight
mass spectrometry (Li et al., 2017). Chronic heroin administration dis-
turbed central energy metabolism, demonstrated by an elevation of
citrate and nucleotide monophosphates. Increases in the excitatory
neurotransmitter Glu, the catecholamines dopamine and adrenaline,
and the neuromodulators histamine and melatonin also point towards
abnormalities in neurotransmission elicited by chronic heroin use. The
elevation of histamine may also link chronic heroin use with
the reported activation of mast cells and other components of the
immune system in addicted individuals (Galli et al., 1993). A 2-day

withdrawal from heroin was sufficient for catecholamines to return to

baseline levels, suggestive of an autonomic readjustment during absti-
nence. In contrast, histidine was observed to decrease upon with-
drawal, whereas phenylalanine, tryptophan and N-acetyl-5-HT
increased, pointing to adaptive mechanisms involving the 5-HT
system.

These findings are supported by the results of a human study that
investigated the hair metabolome of heroin abusers (Xie et al., 2016).
The heroin group showed increased concentrations of sorbitol and
cortisol and decreased concentrations of arachidonic acid, GSH,
linoleic acid and myristic acid (Xie et al., 2016). The impact of heroin
on the HPA axis via opioid signalling may underlie the variation noted
in cortisol. A decrease in the free fatty acids, arachidonic acid, linoleic
acid and myristic acid is consistent with increased energy production,

as seen in the mice exposed to heroin (Zheng et al., 2013).

3 | METABOLIC PHENOTYPING OF
PSYCHOSTIMULANT ADDICTION

Psychostimulants increase striatal dopamine concentrations by
increasing dopamine levels in the nucleus accumbens. Cocaine inhibits
the reuptake of dopamine in mesolimbic dopaminergic neurons
projecting from the ventral tegmental area to the nucleus accumbens
by blocking dopamine transporters located presynaptically, whereas
amphetamine and methamphetamine facilitate presynaptic dopamine
release. Psychostimulants also stimulate the release of other mono-
amines such as 5-HT and noradrenaline (Kim et al., 2019). Rodent
metabolomic studies using brain tissue have explored the abnormali-
ties in central metabolic processes driven by acute (Kaplan
et al., 2013; Li et al., 2012; Olesti et al., 2019) and repeated psy-
chostimulant administration (Adkins et al., 2013; Bu et al., 2013; Kong
etal., 2018; Li et al., 2014, 2012; Lin et al., 2019; McClay et al., 2013).
Biofluids including urine, blood and hair samples have also been
studied to understand the metabolic consequences of exposure (Choi
et al., 2017; Goodwin et al., 2014; Olesti et al., 2019; Sanchez-Lépez
et al., 2017; Yao et al., 2013), abstinence (Kim et al., 2019; Shima
et al, 2011; Zhang, Chiu, et al., 2016; Zheng et al., 2014) and the
establishment of drug reinforcement (Zaitsu et al, 2014). Human
studies investigating the impact of psychostimulants on hair (Kim
et al.,, 2020) and serum/plasma metabolome (Costa et al., 2019; Lin
et al, 2019) and the effect of abstinence from cocaine (Patkar
et al., 2009) will also be reviewed. These studies are summarised in
Table 1.

3.1 | Metabolic signature of cocaine addiction

The central metabolic signature of rats undergoing both acute and
repeated cocaine administration was investigated using NMR
spectroscopy-based metabolomics (Li et al, 2012). Seven-day
cocaine- conditioned-place preference increased Glu and GABA in
the nucleus accumbens and enhanced GAD activity, implying altered

neurotransmission along the GIn-Glu-GABA axis. The reported


https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=8844
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4551
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4522
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4791
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1204
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=224
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3310
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5451
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2868
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2391
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2806

CASPANI ET AL.

ability of cocaine to elicit GIn production by glial cells may explain
these observations (S& Santos et al., 2011). These alterations were
evident after repeated administration but not after a single dose.
Such changes are consistent with what observed with morphine (Gao
et al, 2007) indicating a common adaptive, long-term response to
chronic drug exposure (Figure 2). Indeed, adaptive functional changes
are known to occur at glutamatergic synapses in the nucleus
accumbens in response to repeated cocaine administration (Maze
et al, 2010). As these changes mirror behavioural sensitisation
(Russo et al., 2009; Thomas & Malenka, 2003; Ungless et al., 2001),
they represent a key molecular component of the addictive proper-
ties of cocaine. Lactate, which is produced via anaerobic metabolism
and can be metabolised through the TCA cycle, was decreased after
a single dose but increased after chronic administration, indicating a
long-term compensatory change in energy metabolism in response to
cocaine exposure. An NMR-based study by Kong et al. (2018)
suggested that disturbances in energy metabolism may be explained
by epigenetic mechanisms. Cocaine-conditioned mice exhibited sig-
nificantly higher concentrations of nicotinamide mononucleotide and
nicotinamide adenine dinucleotide in ventral tegmental area and
nucleus accumbens. Nicotinamide mononucleotide and nicotinamide
adenine dinucleotide are produced from nicotinamide by the enzyme
nicotinamide phosphoribosyltransferase (NAMPT) and play a role in
energy metabolism. Nicotinamide phosphoribosyltransferas was
shown to be up-regulated in cocaine-conditioned mice via an epige-
netic mechanism involving nicotinamide adenine dinucleotide-
dependent histone deacetylase sirtuin 1 (SIRT1), thus pointing
towards a role for SIRT1 in epigenetic regulation of genes, such as
nicotinamide phosphoribosyltransferase, that control energy metabo-
lism (Kong et al., 2018). Altered creatine levels may also be indicative
of a shift in normal energy metabolism (Li et al., 2012). The observed
dysregulation of creatine (increased in nucleus accumbens and
decreased in striatum) and taurine (increased in both areas) has been
proposed to reflect oxidative damage. Although an increase in taurine
and decrease in its metabolic precursor cysteine could indicate the
induction of a brain protective mechanism following cocaine adminis-
tration, a single dose of cocaine induced a reduction in taurine in
nucleus accumbens, suggesting a short-term depletion of its antioxi-
dant capacity before the long-term adaptive increase. The concentra-
tions of N-acetylaspartate, a marker of neuronal density synthesised
in mitochondria, were increased in nucleus accumbens and striatum
after both acute and chronic cocaine administration, pointing to an
immediate effect of the drug on mitochondrial dysfunction. Finally,
membrane damage is indicated by alterations in myo-inositol, glycine
and choline concentration, which were affected by a single dose of
cocaine (Li et al., 2012).

A quantitative evaluation of the global neurobiochemical profile
of cocaine-treated rats was achieved by ion mobility mass spectrome-
try (Kaplan et al., 2013). Acute cocaine administration significantly
reduced thalamic and striatal glucose, with the greatest decrease seen
in the thalami. In the frontal cortex, cocaine exposure increased glu-
cose content, indicating region-specific shifts in glucose metabolism

following cocaine treatment. The availability of 5-HT, noradrenaline,
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glucose, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and
5-HIAA in the thalamus, striatum and prefrontal cortex was also
altered as a result of cocaine exposure (Kaplan et al., 2013), indicating
abnormalities in neurotransmission induced by the drug. This is con-
sistent with the reported ability of psychostimulants to promote the
release of other monoamines such as 5-HT and dopamine (Kim
et al.,, 2019), which is thought to be part of the underlying mechanism
of cocaine reward (Sora et al., 2001).

Abnormalities in neurotransmitter metabolism were also reported
in brain and blood samples of rats administered with a single dose of
cocaine (Olesti et al., 2019) and in the serum of rats undergoing a
cocaine self-administration protocol (Goodwin et al., 2014). Using
a targeted liquid chromatography-mass spectrometry approach, sig-
nificant elevations were noted in acetylcholine (ACh) in the prefrontal
cortex; valine, leucine, GABA, Glu, choline, ACh, carnitine,
acetylcarnitine, creatine, creatinine and adenosine in the hippocam-
pus; and choline and adenosine in the striatum. In the cerebellum, Glu,
choline, , carnitine and creatinine were increased. In plasma, choline
and creatine were increased, whereas creatinine was decreased. Some
of these alterations are likely to reflect pharmacological effects of
cocaine on the muscle and the brain. For example, cocaine-induced
rhabdomyolysis (muscle injury) can lead to altered creatine and creati-
nine metabolism, with downstream consequences on the brain high-
energy phosphate system (Lyoo et al., 2003), whereas the reported
inhibition of ChAT by cocaine (Wilson et al., 1994) could explain the
increase in hippocampal ACh. A separate study also reported an
increase in  (3-methoxy-4-hydroxyphenyl)ethylene glycol and
kynurenic acid, metabolites of noradrenaline and tryptophan, respec-
tively. Both metabolites were previously implicated in cocaine addic-
tion (McDougle et al., 1994; Rockhold et al., 1991) and may be related
to disturbances in catecholamine (i.e. noradrenaline and dopamine)
and 5-HT metabolism. Significant alterations in amino acid metabolism
were also reported by an liquid chromatography-mass spectrometry
metabolomics study (Sanchez-Lépez et al., 2017), where mice were
infused daily for 21 days with cocaine, either alone or administered
with ethanol. Cocaine alone elevated plasma methionine and
decreased argininosuccinic acid and N-e-acetyl-L-lysine, whereas
coinfusion of cocaine and alcohol resulted in elevated carnosine,
spermidine and 5-HT and decreased methionine, argininosuccinic acid
and N-e-acetyl-L-lysine (Sanchez-Lépez et al., 2017). The derange-
ments in methionine and argininosuccinic acid suggest an overall
increase in ROS and nitric oxide production, two factors that contrib-
ute to liver injury in cocaine-dependent individuals (Aoki et al., 1997).
In contrast, N-e-acetyl-L-lysine could provide acetylated lysine resi-
dues for the epigenetic changes underlying cocaine-based
reinforcement.

Biochemical modulations in plasma and urine were assessed in
rats undergoing cocaine- conditioned-place preference (Zaitsu
et al.,, 2014). Although significant metabolic changes were found in
plasma of cocaine-treated rats (higher L-threonine and n-propylamine;
lower cysteine and spermidine), no metabolic variation was identified
in urine following treatment relative to controls. In a separate rat

study by Yao et al. (2013), clear differences were observed in the
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urine between cocaine and a control group. Several factors may
account for these differences, including differences in animal strain,
cocaine dose, length and means of drug administration as well as in
chromatographic techniques (liquid chromatography-mass spectrom-
etry n Yao et al., 2013, vs. gas chromatography-mass spectrometry in
Zaitsu et al., 2014). Additionally, there is ample evidence that cocaine
metabolism differs profoundly between mice and rats, possibly
explaining the more marked behavioural and hepatotoxic phenotype
in response to cocaine in mice relative to rats (Thompson et al., 1979).

The persistence of biochemical modulations following acute with-
drawal from cocaine was studied in the nucleus accumbens of rats
2, 24 and 48 h following a single exposure (Li et al., 2012). The meta-
bolic profiles of the treated animals were distinct from the control
group at all time points, indicating that biomolecular alterations persist
in the nucleus accumbens up to 48 h after exposure, with only a sub-
set of metabolites returning towards baseline concentrations. A single
exposure was not sufficient to cause changes in GABA. However, tau-
rine was significantly decreased and N-acetylaspartate was increased
as soon as 2 h after a single dose, suggesting that oxidative stress and
membrane disruption occur early during the addiction cycle. Interest-
ingly, lactate and phosphocholine remained elevated 48 h after dos-
ing. The involvement of lactate in synaptic plasticity hints at a direct
role in consolidating drug-related memories (Hillard, 2005; Wang
et al., 2019). Astrocyte-neuron lactate transport in the basolateral
amygdala is critical for the reconsolidation of cocaine memory, and
strategies reducing lactate concentrations (by blocking glycogenolysis
in astrocytes) in the basolateral amygdala of mice undergoing a
conditioned-place preference paradigm have been shown to prevent
the establishment of cocaine-induced conditioned-place preference
and to decrease cocaine self-administration (Zhang, Xue, et al., 2016).
Importantly, although GABA was not dysregulated after a single
cocaine exposure nor after repeated administration, it was signifi-
cantly altered in mice exposed to cocaine- conditioned-place prefer-
ence, highlighting that contextual conditioning of a drug is able to
induce metabolite changes in the brain, which are independent of the
effect of the drug administration per se. Therefore, the inclusion of a
group of animals treated with the drug but not undergoing
conditioned-place preference should be considered when investigat-
ing cocaine- conditioned-place preference effects on the metabolome.
In a separate study, the metabolic perturbations in energy supply (cre-
atine, creatinine and adenosine), oxidative stress (GSH and
spermidine), neurotransmission (pyroglutamic acid, GIn, Glu
and GABA), mitochondrial function (carnosine) and membrane integ-
rity (choline) induced by cocaine self-administration were still evident
after 1-day abstinence in prefrontal cortex, striatum and nucleus
accumbens but normalised at Week 3 in all brain areas except the stri-
atum (Zhang, Chiu, et al., 2016). The finding that cocaine use leads to
long-term metabolic abnormalities in the striatum may explain the
presence of drug craving long after withdrawal from the drug (Volkow
et al., 2006).

Understanding the metabolic changes occurring upon drug with-
drawal is important to shine light on the biochemical mechanisms

underlying recovery from addiction. A human study involving

18 cocaine-dependent individuals investigated the effect of 2 weeks
of abstinence on their plasma metabolic profile (Patkar et al., 2009).
This study found significant alterations in purine and tryptophan
metabolism, as reported in opioid-dependent individuals upon detoxi-
fication (Mannelli et al., 2009), but no changes in oxidative stress-
related metabolites. It is generally believed that oxidative stress might
be applicable for acute rather than more prolonged intoxication, which
may explain these findings. Plasma metabolic profiles from cocaine-
dependent individuals were correlated with their addiction severity
index (ASI) drug scores. Specifically, N-methyl-5-HT accounted for
62% of variance in severity of drug abuse based on addiction severity
index drug score,and combined with xanthine it accounted for 73%.
These findings implicate plasma N-methyl-5-HT and xanthine as good
candidate biomarkers for assessing and predicting addiction severity.
In accordance with Mannelli et al. (2009), no significant changes in
5-HT metabolism were observed, indicating that the biosynthesis of
5-HT from tryptophan was unaffected by cocaine. Instead, the
increase in N-methyl-5-HT suggests a dysregulation of the enzyme
that metabolises 5-HT to N-methyl-5-HT following chronic cocaine
exposure. This hypothesis requires further investigation and future
studies with larger sample sizes and more appropriate controls are

warranted.

32 |
addiction

Metabolic signature of methamphetamine

The animal studies investigating the metabolic effects of metham-
phetamines have reported contradicting findings. Similar to what was
observed for cocaine, several studies reported disrupted energy
metabolism as a consequence of chronic methamphetamines intake
(Kim et al., 2019; Shima et al., 2011; Zheng et al., 2014). A significant
depletion of TCA cycle intermediates (Shima et al., 2011; Zheng
et al., 2014) and branched-chain amino acids (Kim et al., 2019; Zheng -
et al., 2014) was observed in the blood and urine of rats repeatedly
exposed to methamphetamines. On the other hand, no change in TCA
intermediates was detected in plasma and urine after
methamphetamine- conditioned-place preference training (Zaitsu
et al,, 2014). As glycolysis is down-regulated upon drug deprivation
(Muneer et al., 2011), it can be speculated that the metabolic effect of
methamphetamine on the TCA cycle is due to acute withdrawal and
cannot be elicited by a chronic conditioned-place preference para-
digm. Collectively, these results suggest that different drug adminis-
tration protocols have distinct effects on plasma and urine metabolic
signatures, possibly as a result of adaptive mechanisms to repeated
drug use and/or to the presence or absence of contextual learning
(i.e. conditioned-place preference). A common finding to these studies
was altered lipid metabolism. Reduced plasma lauric acid and
increased urinary stearic acid were induced by methamphetamine-
conditioned-place preference (Zaitsu et al., 2014). In the absence of
contextual learning, methamphetamine elicited changes in the
B-oxidation of free fatty acids and the formation of 3-hydroxybutyric
acid, indicative of altered lipid turnover, as well as changes in
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glycerophospholipids and sphingolipids, suggestive of membrane
breakdown, in both urine and blood, although the direction of change
is unclear (Shima et al., 2011; Zheng et al., 2014). Changes to lipid
metabolism may represent a compensatory mechanism to meet the
increased energy demand induced by methamphetamine exposure.
Methamphetamine was seen to elicit different effects on some lipids
compared with heroin. For example, serum myo-inositol and myo-ino-
sitol-1-phosphate was increased in response to heroin (Zheng
et al, 2013) but reduced in response to methamphetamine
(Zheng et al., 2014). Further evidence of altered energy metabolism in
response to methamphetamine comes from a study performed on
Drosophila melanogaster (Sun, Li, et al, 2011). Flies fed on a
methamphetamine-supplemented diet had lower circulating trehalose,
the major blood sugar in the Drosophila, indicating higher metabolic
rates and/or increased glycolysis. Interestingly, trehalose supplemen-
tation increased the flies' lifespan, indicating that methamphetamine
toxicity is linked to a depletion of energy cofactors and that
replenishing these cofactors may attenuate the negative effects of the
drug (Sun, Li, et al., 2011).

The change in the concentrations of neuroactive compounds in
the blood of methamphetamine-treated animals additionally suggests
altered excitability at the CNS level following methamphetamine
intake. Zheng et al. (2014) observed increased aspartate and Glu but
lower alanine and glycine in the serum of rats chronically exposed to
methamphetamine. Kim et al. (2019) reported a reduction in plasma
phenylalanine, tyrosine and tryptophan biosynthesis pathways with
methamphetamines, indicative of a potential downstream effect on
catecholaminergic and monoaminergic neurotransmission. In support
of this hypothesis, increases in tryptophan and tyrosine and decreases
in 5-HT were reported in the whole brain of mice treated with a single
methamphetamine dose (McClay et al., 2013). This study investigated
the different mechanisms underlying acute and chronic methamphet-
amine exposure. Although acute methamphetamine treatment elicited
alterations in energy related metabolites (e.g. reduced fructose,
increased lactate, malate, 2-hydroxyglutarate, succinate and fuma-
rate), chronic methamphetamine-administered mice had higher
amounts of the sugars fructose and sorbitol, the antioxidants
putrescine and ergothioneine, and the membrane component pho-
sphocholine compared with the control animals (Adkins et al., 2013;
McClay et al., 2013). These results suggest that acute administration
is characterised by disrupted energy metabolism and alterations in
neurotransmitters and fatty acid metabolism, whereas the chronic
effects of methamphetamine are further associated with oxidative
stress and membrane damage.

Bu et al. (2013) and Lin et al. (2019) also demonstrated impaired
energy metabolism, along with changes in neurotransmitter and oxi-
dative stress metabolites in the brain of chronically
methamphetamine-treated rats. These metabolites were predomi-
nantly related to GABA, monoamine and oxidative stress metabolites,
as well as TCA cycle intermediates and indicators of neuronal mem-
brane disruption. Bu et al. (2013) reported decreases in dopamine,
GIn and Glu in the hippocampus, nucleus accumbens and prefrontal
consistent  with models  of  chronic

cortex, previous
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methamphetamine administration (Moszczynska et al., 2004; Thomas
et al., 2008). The decrease of Gln and Glu mirrored the decrease of
GABA and 2-oxoglutarate, which is partly due to decreased TCA
cycle activity and, possibly, increased Glu uptake. Succinic acid
semialdehyde levels increased, consistent with its role as an interme-
diate of GABA catabolism. A decrease in Glu and GIn was also
observed in the nucleus accumbens and dorsal hippocampus by Lin
et al. (2019), although these metabolites, along with the amino acid
and excitatory neurotransmitter aspartate, were down-regulated in
the ventral hippocampus. Together, these findings suggest that the
disturbance to GIn-Glu-GABA axis in the brain may be involved in
the behavioural sensitisation to methamphetamine. Together with a
general increase in nucleotides like ADP, GMP and AMP in nucleus
accumbens and dorsal hippocampus (but a decrease in the ventral
hippocampus), these findings point towards an alteration in energy
homeostasis in a brain region-dependent manner. A reduction in the
antioxidant GSH was reported in both studies (Bu et al., 2013; Lin
et al., 2019). Moreover, a reduction in N-acetylaspartate and an
increase of phosphocholine were observed in brain regions of chroni-
cally treated rats, indicating that oxidative damage was present
alongside neuronal and mitochondrial dysfunction (Bu et al., 2013).
The increase in homocysteine, an amino acid and precursor of methi-
onine, could be regarded as an indicator of apoptosis and neuronal
hypersensitivity to excitation as well as DNA damage (Kruman
et al., 2000). Moreover, the increase in homocysteine may be caused
by the inhibition of methionine synthesis by methamphetamine
(Chandra et al., 2006), leading to changes in DNA methylation.
Increased myo-inositol and phosphocholine are consistent with mem-
brane disruption (Bu et al., 2013) and may reflect cell death due to
the severely neurotoxic properties of methamphetamine (Zheng
et al., 2014). Phospholipids were generally down-regulated in nucleus
accumbens and dorsal hippocampus but up-regulated in the ventral
hippocampus (Lin et al., 2019), suggesting region-specific effects of
methamphetamine treatment. Finally, Bu et al. (2013) found no sig-
nificant correlation between metabolic disruptions and locomotor
sensitisation behaviour. Given that locomotor sensitisation is linked
to increased craving and vulnerability to relapse (Robinson &
Berridge, 1993; Vanderschuren & Pierce, 2020), this finding suggests
that these metabolites may have poor predictive potential. Future
studies are needed to determine whether a conditioned-place prefer-
ence design and the resulting contextual learning are needed in order
to find a significant correlation with locomotor sensitisation.

Mass spectrometric analysis of the metabolic effects of repeated
methamphetamine self-administration in rat urine and hair revealed
abnormalities in the metabolism of mineralocorticoid, fatty acid
amides and mitochondrial fatty acid oxidation (Choi et al., 2017). In
the urine, ion features corresponding to potential urine markers of
methamphetamine addiction were detected but only putatively
assigned. In the hair, a decrease in deoxycorticosterone suggests
altered central production of neurosteroids (Mellon & Griffin, 2002),
whereas an increase in carnitine and acylcarnitines is indicative of ele-
vated metabolic capacity by mitochondrial oxidation of fatty acids.

The reduction observed in the fatty acid amides oleamide and
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stearamide, known to interact with endocannabinoid, glutamatergic
and GABAergic signalling, may indicate a modulation of central neuro-
transmission. The authors concluded that methamphetamine evoked
more dramatic metabolic changes in the hair than in the urine. This
may reflect the greater stability of hair and longer accrual of biochemi-
cal information related to drug-induced metabolic perturbations com-
pared with urine samples. As such, hair metabolomics should be
considered as a non-invasive way to profile the addiction status of an
individual.

A study conducted on the hair metabolome of methamphetamine
users revealed additional abnormalities in the abundance of amino
acids and lipids (Kim et al., 2020). The amino acids arginine and methi-
onine, both known ROS scavengers (Liang et al., 2018; Luo &
Levine, 2009), were down-regulated in the hair of drug abusers, which
may indicate higher susceptibility to oxidative stress. Lower phospha-
tidylcholines, but higher lysophosphatidylcholines and sphingomyelin,
suggested a dramatic dysregulation of lipid biosynthesis/metabolism
pathways, which is consistent with what was reported from animal
models of methamphetamine exposure (Kim et al., 2019; Lin
et al, 2019) as well as human studies on cocaine and
methamphetamine abusers (Ross et al., 2002). These observations
point to the possibility that chronic drug use activates phospholipase
A2, the
lysophosphatidylcholine. The elevation of acylcarnitines is consistent

enzyme that cleaves phosphatidylcholine into
with findings from animal studies (Kim et al, 2019) and suggests
abnormal B-oxidation of fatty acids and mitochondrial dysfunction. A
reduction in carnitines (both free and acetylated forms) and lower
long-chain fatty acids was also reported in the fasting serum meta-
bolic profile of crack-cocaine users (Costa et al., 2019). The circulating
levels of lactate, histidine and tyrosine were also elevated in the crack
group. Thus, increased energy needs induced by crack abuse may
result in disrupt the mitochondria (indicated by carnitine/fatty acid
metabolism), resulting in a shift to alternative energy sources (eleva-
tion of lactate) and the altered biosynthesis of neurotransmitters (his-
tamine and catecholamines from histidine and tyrosine respectively)
(Figure 2). In the serum, metabolites that were dysregulated in
methamphetamine-addicted individuals included TCA intermediates,
amino acids and other biomolecules (Lin et al., 2019). An increase in
excitatory amino acids (GIn, asparagine and Glu) and a decrease
in inhibitory amino acids (glycine and alanine) point to an increase in
brain activity induced by the drug. ACh was also elevated (whereas
choline was reduced) in the plasma of methamphetamine users, col-
lected at fasting (Lin et al., 2019). Similar findings associated with
altered energy metabolism, steroid biosynthesis, amino acid and fatty
acid metabolism were reported in response to other types of
psychostimulants, such as MDMA, amphetamine and mephedrone in
human plasma (Nielsen et al., 2016; Steuer et al., 2020), suggesting a
common mechanism of action.

Despite the lack of human studies investigating the metabolic
consequences of abstinence from methamphetamines, three of the
rodent studies presented above examined the effects of withdrawal
on the metabolic phenotype. Shima et al. (2011) reported that the
methamphetamine-induced plasma and urinary alterations (mainly

associated with altered TCA intermediates, amino acids and fatty
acids) persisted 24 h after the last drug administration but were not
evident at 96 h. In a separate study, 2 days of detoxification was
generally sufficient to restore the serum and urinary metabolic pro-
file of methamphetamine-treated rats to pretreatment levels (Zheng
et al., 2014). In the serum, several amino acids including GIn, Glu
and aspartate (involved in neurotransmission and energy metabolism)
were completely restored, whereas fatty acids like arachidonic acid,
decanedioic acid, stearic acid and glycerol-3-phosphate (involved in
membrane stability and energy metabolism) were only partially
recovered. Isoleucine, palmitic acid, creatinine, citrate and
2-oxoglutarate did not return to pretreatment values. In urine, only
lactate was persistently altered after withdrawal (Zheng et al., 2014).
Similarly, Kim et al. (2019) reported that 12- or 24-h abstinence
resulted in the reversal of the metabolic abnormalities in glyce-
rophospholipids, sphingolipids and most amino acids elicited by
methamphetamine self-administration. However, the concentrations
of aspartate, Glu and glycine remained significantly lower than con-
trols 12 and 24 h after the last methamphetamine administration.
Acetylcarnitines and biogenic amines were further altered during
of the

metabolome to methamphetamine exposure spans at least 24 h fol-

abstinence, suggesting that the dynamic response
lowing the last administration. Moreover, 5-HT exhibited a short-
term increase (immediately after self-administration) but a long-term
decrease after methamphetamine exposure (12 and 24 h after the
last exposure). Similarly, pathway analysis demonstrated a decrease
in the phenylalanine, tyrosine and tryptophan biosynthesis and in
the valine, leucine and isoleucine biosynthesis pathways immediately
after self-administration but an increase after 12 and 24 h relative
to controls. These results highlight the importance of investigating
the time profile of metabolic responses to drugs of abuse, which
may provide biomarkers relevant for discriminating addiction states.
Moreover, the time when the metabolic change occurs may inform
on whether the change is the result of a short-term molecular
mechanism or of a longer term compensatory mechanism
(e.g. transcriptional/epigenetics). Exploring these molecular mecha-
nisms may help to guide the development of interventional strate-

gies for clinical practice.

4 | FUTURE PERSPECTIVES

In recent years, findings from metabolomic studies have provided a
metabolic perspective to the addiction cycle that complements our
neurophysiological and neuropharmacological knowledge (Figure 2).
These studies have shown that opioid and psychostimulant addic-
tion results in largely overlapping metabolic derangements. The
increase in energy demand observed in such studies as a short-term
consequence of drug exposure reflects the pharmacological profile
of those drugs on the brain and other organs. As the individual
transitions towards a state of dependence, metabolomic studies
reveal biochemical changes indicative of mitochondrial dysfunction

(e.g. N-acetylaspartate), cell death and oxidative stress (e.g. lactate,
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choline and taurine), and energy depletion. Such alterations are
reflective of known adaptations induced by long-term administra-
tion of drugs of abuse on the brain and other organs. Energy
depletion, for instance, may be reflective of the presence of a
homeostatic compensatory mechanism, which opposes the chronic
pharmacological effect of the drug. In relation to the brain, this
includes (i) the broadly characterised suppression of the mesolimbic
reward pathway (decline of basal dopamine levels and D, receptor
levels in the striatum), which is thought to underline some of the
emotional withdrawal symptoms and craving induction commonly
experienced in dependence, and (i) the hypofunctioning of the
frontal cortex, which is associated with impaired decision making
and loss of top-down control over drug administration, rendering
the behaviour ‘automatic’. Impairment of interrelated cellular pro-
cesses of mitochondria metabolism, oxidative stress and apoptosis
assessed by membrane potential and respiratory chain activity, by
elevation of indictors of oxidative stress (e.g. SOD and GSH) and
by TUNEL staining has consistently been reported in the brain,
heart and liver, following long-term administration of substances of
abuse, although diversity exists in relation to the severity of those
effects. Nonetheless, these changes have been associated with
addictive behaviour pathology, neurotoxicity, cardio-toxicity and
cognitive decline among other pathological consequences of
long-term drug abuse. Alterations in neurotransmitters and their
precursors balance (e.g. dopamine, 5-HT and GIn-Glu-GABA axis)
following chronic drug use identified from metabolomic studies are
consistent with neurochemical adaptations reported in the brain via
other experimental approaches. These are reflective of compensa-
tory homeostatic neuroadaptations, which underline the behavioural
manifestations of addiction (e.g. tolerance, physical and emotional
withdrawal symptoms and relapse).

With the emergence of metabolomics, biomarker research has
shifted from the hypothesis-driven study of single molecules to the
simultaneous measurement of thousands of compounds with no a
priori knowledge. This hypothesis-generating approach facilitates the
identification of biochemical pathways involved in pathological pro-
cesses and the discovery of new pharmacological targets. Under-
standing the biochemical changes occurring at each stage of the
addiction cycle can facilitate the identification of diagnostic and prog-
nostic biomarker panels to provide objective measures of addiction
and rehabilitation. Despite the success of metabolomics in clinical
research, its translation to clinical practice has been undermined by
issues of reproducibility and cost. Clinical metabolomics relies on the
comparison of the metabolic profile of a single individual with
‘healthy’ reference ranges. Thus, the existence of standardised proto-
cols of sample collection, preparation, data analysis and metabolite
identification, along with the selection of an appropriate control pop-
ulation and validated quality control pipelines, needs to be in place
before metabolomics can be routinely applied in the clinic. Targeted
analysis of a small panel of diagnostic/prognostic markers measured
in easily accessible samples, such as urine, blood or hair, could be
routinely run to objectively monitor an individual's progress. By

leveraging individual differences in the metabolome, metabolomics
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provides an objective measure that can inform personalised
approaches to addiction to maximise the chances of recovery. Well-
characterised longitudinal studies where the metabolic profile of an
individual is measured at baseline, before the initiation of pharmaco-
logical detoxification therapies, will allow to identify early predictive
markers and personalised treatment strategies tailored to the
metabolome of the individual patient. The prediction of addiction
outcomes based on neuroimaging data has already been successful
(Reske & Paulus, 2008). The use of metabolic markers quantified
from non-invasive samples (e.g. urine and hair) could offer a more
feasible and cost-effective method to bring precision medicine to
clinical practice.

5 | CONCLUSION

In recent years, the misuse of prescription opioids in the United States
has led to what is currently known as the ‘opioid epidemic’, a public
health crisis costing $26 billion to the US healthcare system and
16,000 deaths in 2013 alone (Florence et al, 2016). Identifying
markers of addiction can help identify those at risk and lower the rate
of fatalities. Drug abuse affects 35 million people worldwide (United
Nations, 2020), and with a relapse rate of 40-60% (National Institute
on Drug Abuse [NIDA], 2020), achieving personalised and effective
treatment options is a pressing issue. Metabolomic techniques per-
formed on accessible samples offer great promise to facilitate the
implementation of precision medicine interventions to achieve faster
diagnosis and better treatment efficacy based upon an individual's

metabolic phenotype.

51 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to
corresponding entries in the [IUPHAR/BPS Guide to PHARMACOL-
OGY http://www.guidetopharmacology.org, and are permanently
archived in the Concise Guide to PHARMACOLOGY 2019/20
(Alexander et al., 2019).
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