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Chronic liver injury results in immune-driven progressive fibrosis, with risk of cirrhosis
development and impact on morbidity and mortality. Persistent liver cell damage and
death causes immune cell activation and inflammation. Patients with advanced cirrhosis
additionally experience pathological bacterial translocation, exposure to microbial
products and chronic engagement of the immune system. Bacterial infections have a
high incidence in cirrhosis, with spontaneous bacterial peritonitis being the most common,
while the subsequent systemic inflammation, organ failure and immune dysregulation
increase the mortality risk. Tissue-resident and recruited macrophages play a central part
in the development of inflammation and fibrosis progression. In the liver, adipose tissue,
peritoneum and intestines, diverse macrophage populations exhibit great phenotypic and
functional plasticity determined by their ontogeny, epigenetic programming and local
microenvironment. These changes can, at different times, promote or ameliorate disease
states and therefore represent potential targets for macrophage-directed therapies. In this
review, we discuss the evidence for macrophage phenotypic and functional alterations in
tissue compartments during the development and progression of chronic liver failure in
different aetiologies and highlight the potential of macrophage modulation as a therapeutic
strategy for liver disease.
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INTRODUCTION

Liver disease is a global health burden with recent estimates suggesting that 844 million people
worldwide have chronic liver disease (CLD), with a mortality rate of 2 million deaths per year:
approximately, 1 million due to complications of cirrhosis and 1 million due to viral hepatitis and
hepatocellular carcinoma (HCC) (1, 2). Chronic liver injury, most commonly caused by alcohol,
infection or liver fat accumulation associated with features of the metabolic syndrome, triggers the
activation of liver-resident and infiltrating immune cells, resulting in inflammation, progressive
fibrosis, disrupted architecture, vascular changes and aberrant regeneration, which are defining
characteristics of liver cirrhosis (2). Management of patients with cirrhosis is limited to treating the
underlying cause and, where appropriate, liver transplantation. However, the latter is difficult to
access in much of the world where donor organ supply is insufficient to meet demands (2).
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Therefore, developing new effective therapies for CLD patients
would likely have a considerable benefit on morbidity and
mortality. This review focuses on the diverse and dynamic role
of macrophages in CLD and how their modulation might offer
novel therapeutics.
CHRONIC LIVER FAILURE

Cirrhosis
Cirrhosis comprises two consecutive but potentially reversible
stages: compensated (asymptomatic) and decompensated
cirrhosis (3, 4). The term acute decompensation (AD) of
cirrhosis defines the acute development of one or more major
complication(s) in patients (5). These complications include
ascites, hepatic encephalopathy and variceal haemorrhage. The
first AD episode marks the transition from the compensated to
the decompensated stage. During AD, patients are extremely
prone to develop bacterial infections, to the point that bacterial
infections have been considered as the fourth major
complication of the disease (5). Cirrhosis features a gradually
dysfunctional immune response that encompasses systemic
inflammation, which can exacerbate clinical manifestations of
cirrhosis (e.g., hemodynamic derangement and kidney injury)
and, as disease progresses, immunodeficiency and impaired
antimicrobial functions that are associated with high infection
risk (Figure 1). The term cirrhosis-associated immune
dysfunction (CAID) defines the dynamic spectrum of the
immunological perturbations that develop in these patients
[reviewed in (6–8)].

Over the course of compensated or decompensated cirrhosis,
an acute precipitating event, most commonly bacterial infections
and acute alcoholic hepatitis, challenge liver homeostasis and
may lead to a syndrome called acute-on-chronic liver failure
(ACLF) (9, 10). ACLF is defined by acute decompensation of
cirrhosis, hepatic and/or extra-hepatic organ failure with high
short-term (28-day) mortality (3, 4). Inadequate immune
responses to the precipitating event are key to its pathogenesis,
with high grade of systemic/local inflammation and
immunodeficiency, that lead to further organ failure. This is
profound in the setting of ACLF, which resembles the
immunopathology of sepsis, with an initial systemic
inflammatory response (cytokine storm) followed by a
compensatory anti-inflammatory response that can impair
immune defence against infections (3, 4).

Burden of Infections in Cirrhosis
Patients with cirrhosis develop a range of complications, with
infections being one of the most clinically important issues,
associated with high morbidity and mortality. Bacterial
infections have been shown to occur frequently (32-34%) in
patients with advanced cirrhosis; in 30–50%, infection is the
cause of hospital admission, and a further 15–35% develop
nosocomial infections (as compared to 5-7% of general
population) (11). Infections can further trigger hepatic
decompensation and are well-known precipitants for
Frontiers in Immunology | www.frontiersin.org 2
encephalopathy , hepatorenal syndrome (HRS) and
development of ACLF (5). Most recent data derive from the
CANONIC and PREDICT studies, that were observational
prospective investigations in large cohorts of non-selected
patients hospitalised with AD. Among 407 patients with AD-
ACLF, the incidence of infections at hospital admission and
during a 28-day follow-up period was 65% (12). The
corresponding incidence of infections in 1,071 patients with
AD-no-ACLF was 53% (9, 13). Globally, the most common
infections in cirrhotic patients are spontaneous bacterial
peritonitis (SBP) (27%), urinary tract infections (22%),
pneumonia (19%), spontaneous bacteraemia (8%), skin and
soft tissue infections (8%) (14). The majority of infections
identified in cirrhotic patients are caused by Gram-negative
bacteria (e.g., Escherichia coli, Klebsiella Pneumoniae) of
intestinal origin; Gram-positive bacterial infections are less
frequent (e.g. , Staphylococcus aureus) (14, 15). The
epidemiology of infections in cirrhosis continuously change,
with recent studies demonstrating increasing prevalence of
multidrug resistant organisms (29% to 38% increase from 2011
to 2017-2018) (14, 15).
Systemic Inflammation and Immune
Dysfunction in Cirrhosis
Innate immune cells (mainly neutrophils, monocytes and
macrophages) are primed to detect tissue damaging or
infectious insults, and therefore are key orchestrators of
inflammatory responses. During progression of CLD these cells
initiate and drive both liver and systemic inflammation by
recognising/responding to damage-associated molecular
patterns (DAMPs) released from injured/activated liver cells
and/or pathogen-associated molecular patterns (PAMPs) (16).
Fibrosis occurs following chronic liver injury from an insult
(toxic, metabolic, or infectious) which can perpetuate
inflammation. Fibrogenesis is the common pathological
mechanism that causes cirrhosis; it is a complex and dynamic
process that involves an array of activated resident or recruited
inflammatory cells (e.g., platelets, macrophages), hepatic stellate
cells (HSCs), hepatocytes, other extracellular matrix (ECM)
producing cells and extracellular signals [e.g., cytokines,
chemokines, adipokines or reactive oxygen species (ROS)] (17–
19). The activation of HSCs - transdifferentiation of quiescent
cells into proliferative, fibrogenic myofibroblasts - is a well-
established driver of fibrosis [reviewed in (17–19)]. This is a
cardinal process in which quiescent HSCs responding to hepatic
injury downregulate the expression of GFAP, peroxisome
proliferator-activated (PPAR)-g and vitamin A and become
activated HSCs (18). Following stimulation with cytokines and
fibrogenic signals, of which transforming growth factor (TGF)-b
is the most potent, HSCs upregulate a-smooth muscle actin
expression, increase transcription of collagen type I via SMAD-3
amongst other routes, and traffic to sites of injury where they
secrete ECM resulting in fibrous scar formation (20). With
fibrosis progression, cirrhosis may ultimately develop.

Advanced cirrhosis is closely associated with pathological
bacterial translocation (BT), the increased rate of translocation
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of bacteria or bacterial products (e.g. lipopolysaccharide [LPS],
bacterial DNA and peptidoglycans) from the gut to mesenteric
lymph nodes and other tissues (21). SBP is considered to be the
hallmark manifestation of pathological BT and is a multi-faceted
process. This involves small bowel dysmotility, small intestinal
bacterial overgrowth (SIBO), increased intestinal permeability
and dysbiosis. The exact mechanisms of enhanced gut
permeability are not yet fully understood; loosening of the
intestinal epithelial tight junctions and reductions in luminal
antimicrobial peptides, such as secretory component and
mucins, may have a role (21, 22). Dysbiosis sees a decrease in
the quantity of beneficial autochthonous bacteria (e.g.,
Ruminococcacaea and Lachnospiracaea) and an increase in
Frontiers in Immunology | www.frontiersin.org 3
potentially pathogenic taxa (e.g., Enterobacteriaceae and
Bacteroidaceae), termed the cirrhosis dysbiosis ratio (23). Why
such intestinal changes occur in cirrhosis is unclear but alcohol,
portal hypertension and impaired local immune responses have
been implicated (24). Impaired hepatic immune responses and
portosystemic collaterals in advanced cirrhosis provide further
opportunity for translocated products to pass from the intestinal
lumen to the systemic circulation, chronically stimulating innate
immune cells and enhancing systemic inflammation. This increase
in bacterial products may be crucial in the switch from the initially
pro-inflammatory immune response described in early cirrhosis to a
more hyporesponsive, immunodeficient state observed in
decompensated cirrhosis (Figure 1).
FIGURE 1 | Immunological features of chronic liver failure. Over the course of compensated or decompensated cirrhosis, an acute precipitating event such as
alcoholic hepatitis or bacterial infection may challenge liver homeostasis and lead to acute-on-chronic liver failure (ACLF). In compensated cirrhosis, liver-derived
DAMPs, for example from necrotic hepatocytes, may activate the local immune system and initiate systemic inflammation. In decompensated cirrhosis, increasing
alterations in intestinal homeostasis (e.g., bacterial overgrowth, increased permeability) allow the pathological translocation of bacteria, bacterial products (e.g., LPS)
and PAMPs into the liver, thus providing further chronic stimulation of innate immune cells and propagation of local and systemic inflammation. This may be crucial in
the transition from the immunocompetent state (pro-inflammatory immune response) to a more hyporesponsive, immunodeficient state that is observed in advanced
cirrhosis. The latter increases the risk of life-threatening infections and substantially contributes to the high morbidity and mortality observed in these patients. ACLF,
acute-on-chronic liver failure; AD, acute decompensation; DAMP, damage-associated molecular pattern; PAMP, pathogen-associated molecular pattern.
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MONOCYTE DYSFUNCTION IN CHRONIC
LIVER FAILURE

Circulating monocytes, a key component of the mononuclear
phagocyte immune system, play pivotal roles in defence against
infections and contribute to the systemic inflammation in
chronic liver failure. In addition, they augment the local
macrophage pool via their recruitment to inflammatory sites
after a sterile/tissue-damaging or infectious insult to the liver (10,
16, 25). Human monocytes are divided into three major subsets:
classical (CD14+CD16−), intermediate (CD14+CD16+) and non-
classical (CD14dimCD16+). Each of these subsets can be
distinguished from each other by their differential expression
of surface markers and their distinct functions [for an up-to-date
review see (26)]. Classical monocytes are comparable to the
inflammatory Ly6C+/high CCR2high murine subset whilst non-
classical monocytes resemble the patrolling Ly6C-/low

CX3CR1high subset. The former cells rapidly infiltrate tissues in
response to injury, have the capacity to differentiate into
dendritic-like cells, and are primed for phagocytosis and innate
immune sensing. Ly6Clow monocytes crawl along endothelial
cells, coordinating the clearance of apoptotic cells and cellular
debris (27). Similarly, non-classical human monocytes are suited
to adhesion and Fc gamma-mediated phagocytosis. Whilst
intermediate monocytes do not demonstrate such crawling
behaviour, they are a heterogenous population adapted for
antigen presentation, cytokine production and apoptosis
regulation (26, 28–30). Interestingly, a study using deuterium
labelling in humans has suggested that intermediate and non-
classical monocytes emerge sequentially from the pool of
classical monocytes (31).

The number of circulating monocytes increases in relation to the
severity of cirrhosis (from Child-Pugh A to Child-Pugh C and AD)
(32, 33). Of note, an expansion of intermediate monocytes has been
described in the circulation and liver of patients with cirrhosis
progression (32, 34). Dysregulation of circulating monocytes and
their contribution to systemic immune paresis and the
pathophysiology of cirrhosis have been well-documented
[reviewed in (10, 35)]. The most consistent finding with regard to
monocyte phenotype in chronic liver failure is reduced HLA-DR
expression. This reduction, that likely compromises their antigen
presentation capacity and the development of adaptive immunity, is
considered a hallmark of “endotoxin tolerance” , the
immunosuppressed state in which monocytes are refractory to
further LPS stimulation or other microbial stimuli. Monocyte
HLA-DR expression levels diminish progressively in relation to
cirrhosis severity and are associated with adverse clinical outcomes
(33, 34, 36–38). Furthermore, monocyte production of pro-
inflammatory cytokines in response to microbial cues (e.g., LPS) is
key to innate defences against infection as such cytokines can
enhance their antimicrobial functions. Monocyte inflammatory
(e.g., TNF-a, IL-6) cytokine secretion appears to diminish with
advancing chronic liver disease particularly in AD and late stage
ACLF (32–34, 36–39). Similarly, plasma derived from AD, but not
compensated, cirrhosis suppresses LPS-stimulated TNF-a by
healthy monocytes (40).
Frontiers in Immunology | www.frontiersin.org 4
A role for the anti-inflammatory cytokine IL-10 in driving
monocytes towards this “endotoxin tolerant state” has been
proposed but this mechanism may involve a variety of
pathogen-derived signals or cell-secreted cytokines and
proteins (34–37, 41). Recently, the reduced HLA-DR
expression on monocytic cells in advanced stages of cirrhosis
(AD/ACLF) has been attributed to the expansion of monocytic
(CD11b+CD15-CD14+HLA-DR-) myeloid-derived suppressor
cells (M-MDSCs) in the circulation (38). M-MDSCs have great
pathological significance in chronic liver failure as they exert
highly immune-suppressive functions: they decrease T cell
proliferation, produce low TNF-a and IL-6 levels after toll-like
receptor (TLR) stimulation and have reduced bacterial (E. coli)
phagocytosis capacity (38).

The TAM (TYRO3/AXL/MERTK) family of receptors, which
are critical regulators of innate immune responses and promote
clearance of apoptotic cells (termed efferocytosis), are shown to
contribute to systemic immune paresis in liver failure (33, 42,
43). Brenig et al. recently identified a distinct immune-regulatory
population of (CD14+HLA-DR+) AXL-expressing monocytes
that is expanded in parallel with progression of cirrhosis prior
to the AD/ACLF stage and correlates with development of
infection and one-year mortality (33). This subset displayed
attenuated TNF-a and IL-6 secretion following TLR
stimulation, reduced T cell activation but had preserved
bacterial phagocytosis and enhanced efferocytosis capacity (33).
In patients with AD/ACLF, the emergence of a MERTK-
expressing monocyte population is described to decrease innate
immune responses to LPS and to associate with disease severity
and adverse outcomes (34, 42). Proof-of-concept in vitro
inhibition of either AXL or MERTK was shown to enhance
monocyte inflammatory responses in ACLF samples. Therefore,
TAM receptor targeting may be a new therapeutic strategy to
restore monocyte function in cirrhosis. However, this needs
further clinical evaluation (35).
TISSUE MACROPHAGES IN CHRONIC
LIVER FAILURE

A. Liver Macrophages in Steady State
Macrophages are the most abundant hepatic immune cells with
pivotal roles: from maintaining liver homeostasis and immune
tolerance in the face of continuous exposure to harmless gut-
derived antigens from food and commensal microbes or their
products, to rapidly identifying pathogens and orchestrating
immune responses for their elimination (16). In addition, they
are functionally important for clearing cellular debris and
metabolic waste, and regulating iron and cholesterol
homeostasis (16). During steady state, the predominant
macrophage population comprises resident Kupffer cells (KCs)
which are capable of self-renewal and have a specific
transcriptional program defined by their unique niche (44–46).
KCs reside within sinusoidal blood vessels, in continuous contact
with liver sinusoidal endothelial cells (LSECs), while they always
extend a substantial fraction of their cell body into the
April 2021 | Volume 12 | Article 661182
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perisinusoidal space of Disse where they can closely interact with
HSCs and hepatocytes (47). This position of KCs is functionally
important during liver homeostasis and injury. In the setting of
inflammation, following a toxic, metabolic or infectious insult,
the liver macrophage pool can further consist of recruited
monocyte-derived macrophages (MoMFs) (10, 16). In mice,
resident KCs can be identified by their specific (CD11bintF4/
80high) MARCO+CLEC4F+TIM4+ expression profile while
MoMFs are (CD11bhighF4/80int) CX3CR1+ cells (45, 46, 48,
49). An additional population of liver capsular macrophages
(LCMs) has been described to occupy the hepatic capsule. LCMs
are CX3CR1highTIM4- MoMFs, replenished at steady state by
blood monocytes, that exert key immune surveillance and
antimicrobial functions and therefore defend the liver from
infections traversing the peritoneal cavity (50).

In humans, liver single cell RNA sequencing (scRNA-seq)
studies have identified CD68+ CD163+MARCO+TIMD4+

resident KCs, CD68+MARCO- recruited MoMFs and
infiltrating CD14+ monocytes (51–53). Unbiased cross-species
comparison suggests a highly conserved transcriptional signature
among human and mouse KCs (53, 54). The dichotomous
concept of M1/M2 polarisation cannot be reliably applied to
hepatic macrophages, as with most tissue macrophages, since
they simultaneously express M1/M2 markers and exhibit great
plasticity which is dependent on their ontogeny, local and
sys temic environmenta l media tors and epigenet ic
programming. Liver macrophage ontogeny and heterogeneity
is extensively covered elsewhere (16, 44, 55, 56).
B. Liver Macrophages in Injury
and Fibrosis
Tissue damage and hepatocyte injury generate coordinated
wound healing responses that aim to restore healthy hepatic
parenchyma. Release of DAMPs, ROS and changes in hepatocyte
gene expression are triggered, promoting an immune response,
clearance of apoptotic or dead cells, hepatocyte proliferation,
matrix remodelling, and angiogenesis (57). Such changes result
in increased expression of profibrogenic TGF-b, hedgehog
signalling ligands and CXCL10 amongst others (58–61). If the
insult abates, then resolution responses, including macrophage
efferocytosis, restore tissue homeostasis. However, chronic injury
eventually leads to dysregulated tissue repair and development of
liver fibrosis. This is a dynamic process in which tissue damage
and inflammation result in activation of HSCs, their epigenetic
reprogramming and trans-differentiation into activated
myofibroblast-like cells, cytokine and chemokine release, thus
contributing to a profibrogenic microenvironment with
subsequent ECM accumulation (mainly type I collagen) that
limits parenchymal regeneration (19, 62). Early fibrosis can
regress with injury removal and the activity of matrix
d eg r ada t i on and r emode l l i n g by s e v e r a l ma t r i x
metalloproteinases (MMPs), myofibroblast senescence and
HSC apoptosis (63, 64). MMPs are counteracted by tissue
inhibitors of MMPs (TIMPs) and the balance of activity
favouring TIMPs is associated with advancing fibrosis (64, 65).
Frontiers in Immunology | www.frontiersin.org 5
Chronic liver injury eventually leads to progressive liver
fibrosis and the development of cirrhosis with formation of
fibrous septa, structural and vascular changes and regenerative
nodules (58). Macrophage adaption during liver injury can
depend on the nature of the insult (e.g., toxic, metabolic or
infectious). In alcohol-induced liver damage, the number of
hepatic macrophages increases via MoMF recruitment (66).
Both KCs and MoMFs exhibit substantial plasticity with
phenotypic and functional alterations depending on
microenvironmental signals. Alcohol sensitizes KCs to TLR4-
signalling and incites oxidative stress, which promotes an M1-
like phenotype and LPS-induced cytokine production,
particularly TNF-a, IL-6, IL-1b and CCL2 (67). In murine
models of alcohol steatohepatitis, MoMFs are recruited to the
liver in a NOTCH1-mediated mechanism with subsequent M1-
like macrophage activation (68, 69). This process is compounded
by alcohol-induced intestinal gut microbial dysbiosis, reduced
gut epithelial integrity and subsequent heightened translocation
of gut-derived microbial products including LPS (70). Chronic
excess alcohol also results in hepatocyte fat accumulation
(termed steatosis) and increased hepatocyte programmed cell
death via apoptosis, necrosis, pyroptosis and ferroptosis, thus
promoting further inflammation and injury (71). There are
protective mechanisms at play including liver macrophage
autophagy (an anti-inflammatory homeostatic intracellular
pathway directing damaged organelles or cytosolic
macromolecules to lysosomes for degradation), in which IRF-1
degradation, mitophagy (clearance of damaged mitochondria)
and downregulation of inflammasome-dependent and
independent pathways occur (72–74).

The mult i factoria l pathophysiology of alcohol ic
steatohepatitis overlaps significantly with non-alcoholic fatty
liver disease (NAFLD) and its inflammatory and often
progressive subtype non-alcoholic steatohepatitis (NASH).
Macrophage activation occurs in response to endotoxins and
translocated bacteria due to increased intestinal permeability,
factors released from damaged or lipoapoptotic hepatocytes, as
well as alterations in the gut microbiota and nutritional
components (75). Collectively, these lead to a chronic
inflammatory state resulting in disease progression. In obesity-
associated NAFLD, release of free fatty acids from white adipose
tissue promotes hepatocyte triglyceride synthesis and storage,
and lipotoxicity with production of TNF-a, IL-6, IL-1b, IL-17A
and macrophage-recruiting chemokines (e.g., CCL2, CCL5 and
CXCL10). Macrophages in this condition have been studied in
both human and disease models. Increased numbers of CD68+
macrophages are found in biopsies of young patients with more
severe NAFLD (76), while in children with NAFLD numerous
activated macrophages are located in the spaces between
damaged hepatocytes (77). The portal infiltration of CCR2+

macrophages (78) appears to be an early event in human
NAFLD, occurring already at the stage of steatosis before
inflammation or fibrosis develops, but predicting progressive
disease (79). In line with these data, lipogranuloma and
macrophage alignment around steatotic hepatocytes have been
observed (termed hepatic crown-like structures) (80).
April 2021 | Volume 12 | Article 661182
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Similarly, macrophage infiltration has been demonstrated in
murine dietary models [e.g., high-fat diet (HFD), methionine–
choline-deficient (MCD) diet] which have different strengths and
limitations [reviewed in (75, 81)]. Undoubtedly, liver
macrophages play a major role in the pathogenesis of NAFLD/
NASH (75). Experimental evidence for this has come from
studies in which depleting macrophages using genetic (LysM,
myeloid-specific) models and clodronate liposomes protected
mice from steatosis, liver damage and inflammation (82–85).
Moreover, genetic deficiency and pharmacological inhibition of
CCR2 decrease monocyte recruitment into the liver and
ameliorate NASH in mice (78, 86). The level of macrophage
heterogeneity in NASH, however, is greater than we initially
thought. Recent scRNA-seq murine studies have shed more light
into this, consistently demonstrating that resident KCs are lost
during NASH progression and recruited monocytes enter the
liver where they respond to niche-specific and inflammatory cues
to become monocyte-derived KCs (MoKCs) or temporary
MoMFs (49, 87–89). The distinct roles in disease pathology,
functions and interactions of these macrophage subpopulations
require more exploration, as further discussed below. For an
overview of the immunometabolic interplay of hepatic
macrophages and the adipose tissue-fatty liver crosstalk in
NAFLD/NASH see also references (75, 90–92).

In both a mouse model of hepatitis B virus (HBV)-induced
liver inflammation and in patients with viral-related chronic liver
failure, Tan-Garcia et al. describe an intrahepatic infiltration of a
population of pro-inflammatory CD14+HLA-DRhighCD206+

myeloid cells (93). Likewise, Ohtsuki et al. observed an
increase in the CD11b+F4/80+CD206+ intrahepatic
macrophage population (labelled as “M2”) in HCV-infected
transgenic mice, also producing more TNF-a and IL-6
following ex vivo LPS stimulation, when compared with M1
(CD11b+F4/80+CD11c+) (94). Chronic alcohol feeding of wild-
type mice resulted in an increased frequency of CD206+ CD163+

M2 macrophages but also increased expression of M1 genes
(TNF-a, MCP1 and IL-1b) and M2 genes (Arg1, Mrc1 and
IL-10), with increased expression of Kruppel-like factor 4
(KLF4) promoting an M2 phenotype (95). Gut bacterial
translocation appears important in viral chronic liver injury;
interestingly, HBV-infected mice treated with oral antibiotics
showed depleted hepatic CD14+CD206+ populations (93).
Corroborating this, enhanced gut bacterial translocation has
been noted in patients from HBV and HCV infection (96).
This highlights the shared mechanisms in alcohol, NAFLD and
viral-related chronic liver injury, the simplicity of the M1/M2
dichotomy and high degree of macrophage plasticity dependent
on the milieu of inflammatory mediators, chemokines and
gut-derived microbial products.

The role of macrophages in liver fibrosis is complex.
Irrespective of the aetiology, there are common fundamental
molecular mechanisms that lead to fibrosis. Mechanistically,
persistent or repetitive liver injury results in hepatocyte
damage and release of DAMPs which stimulate KC activation.
Additionally, KC activation also occurs with the action of PAMPs
derived from pathological BT across a dysfunctional gut barrier
Frontiers in Immunology | www.frontiersin.org 6
in cirrhosis, ROS, hypoxia-inducible factor-1a (HIF-1a),
increased hepatic concentrations of triglycerides, cholesterol
and succinate, and extracellular vesicles (16). Activated KCs
produce pro-inflammatory cytokines that contribute to injury
(e.g., TNF-a, IL-6 and IL-1b). They also generate, in conjunction
with hepatocytes or HSCs, chemokines (e.g., CCL2, CCL5)
promoting recruitment of pro-inflammatory, pro-fibrogenic
MoMFs (97). Chemokine-driven recruitment may involve
different mechanisms; CCL2 in addition to hepatic PC3-
secreted microprotein (PSMP) promotes hepatic CCR2+
inflammatory monocyte infiltration and induction of HSCs via
their CCR2 receptor (98). In NAFLD, murine and human liver
biopsies demonstrate CCR2+ MoMF accumulation in the portal
tracts; KCs do not express CCR2. The marker has diagnostic
value with an increase in CCR2+ cells observed as fibrosis
advances and CCR2+ MoMF infiltration throughout the
parenchyma in end-stage cirrhosis (78). In vitro, viral hepatitis
C exposed KCs secrete CCL5 that induces CCR5+ HSC
activation through ERK phosphorylation (99). Where there are
defined areas of injury, MoMFs form ring-like structures and
where damage is more widely distributed, they convene in
periportal regions (100, 101). Murine Ly6Chigh monocytes
differentiate into Ly6Clow/+ macrophages that secrete
proinflammatory cytokines and generate ROS. These
inflammatory macrophages activate HSCs, generate TNF-a
and IL-1b, that promotes HSC survival, and IL-6 that leads to
HSC proliferation and production of TIMP1 (102). Other HSC
activation routes occur via paracrine mechanisms involving
JAK2 signalling pathways, NADPH complexes (NOX) and
hepatocyte mitochondria-derived DAMPs (16, 103–106).
Moreover, these MoMFs release profibrotic mediators such
TGF-b, platelet-derived growth factor (PDGF), connective
tissue growth factor (CTGF) and TIMPs, which promote
myofibroblast ECM production (16, 58).

Not all hepatic macrophages in the setting of chronic liver
injury are profibrotic. MoMFs can also exert anti-fibrogenic
functions, depending on their differentiation status and the
disease stage. This has been shown in murine studies were the
deletion of infiltrating MoMFs during fibrogenesis resulted in
reduced HSC activation and ECM deposition whilst deletion of
MoMFs during the regression stage impaired ECM degradation,
thereby exacerbating fibrosis (107, 108). In humans, a distinct
population of TREM2+CD9+ scar-associated macrophages
(SAMs) have been observed to occupy fibrotic niches in livers
of cirrhotic patients. SAMs are derived from recruitment and
differentiation of circulating monocytes, and are expanded early
in the disease course (53, 108). Originating from initially pro-
inflammatory TGF-b and PDGF-producing infiltrating
macrophages, SAMs evolve after a phenotypic switch in the
restoration phase of tissue inflammation and function to resolve
fibrosis, mainly through the expression of MMPs, including
MMP-13, and mediated by macrophage migration inhibitory
factor (MIF) (109, 110). TREM2+CD9+ macrophages have also
been reported in NAFLD/NASH models, however, Trem2 and
Cd9 are not restricted to non-KCs in mice (49, 89, 91, 111). The
multiple mechanisms of fibrosis progression and resolution and
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the co-existence of various macrophage subsets with potentially
distinct functions present several opportunities for drug
therapies to reverse or ameliorate fibrosis in chronic
liver diseases.

C. Adipose Tissue Macrophages
NAFLD is nowadays one of the most common CLD that is
strongly associated with obesity and the metabolic syndrome,
and similar to these conditions, its incidence and prevalence are
worryingly increasing (91, 92). This disease is underpinned by a
pathophysiology that links multiple processes including chronic
low-grade inflammation, lipotoxicity, dysregulated bile acid
metabolism and altered gut microbiome with enhanced BT.
Adipose tissue macrophages (ATMs) are spread throughout
the tissue; although their origin under homeostatic conditions
is not clear, recent murine fate mapping studies have revealed
that resident ATMs can derive from both yolk-sac and bone
marrow (monocyte) progenitors (91, 112). How similar these
two resident ATM subsets are, it remains to be further
investigated. In obese adipose tissue, the size and number of
adipocytes increase, to compensate for excess lipid availability.
However this containment mechanism may fail, and lead to
tissue dysfunction, dyslipidemia and insulin resistance (91, 92).
Dying adipocytes can release various triggers (e.g., toxic
lipids, adipokines) or DAMPs which create a complex local
microenvironment that causes ATM activation. In response,
the number of ATMs is markedly increased, with many of
them surrounding necrotic adipocytes within crown-like
structures, in both mice and humans, an optimal location
enabling them to engulf cell debris (91, 92).

Notably, ATMs have been associated with the severity and
progression of NAFLD (113). In both mice and humans, the
recruitment of macrophages in adipose tissue compartment has
been linked with development of insulin resistance and
steatohepatitis while ablation of ATMs or surgical removal of
adipose tissue in mice normalized insulin sensitivity and partially
reversed liver inflammation (92). ATMs secrete inflammatory
cytokines such as TNF-a, IL-1b, IL-6 and monocyte-
chemoattractant protein-1 (MCP-1) which promote insulin
resistance, lipolysis and hepatic lipid flux and accumulation
(114). Chemokine axes such as CCL2-CCR2 and CCL5-CCR5
drive further recruitment to adipose tissue, and in part provides
the rationale for their dual CCR2-CCR5 antagonism as a
therapeutic approach to resolve inflammation and prevent
fibrosis progression in NAFLD (75). The phenotype of ATMs
does not conform to the dichotomous M1/2 polarisation as once
thought, but instead has a unique blend termed a metabolically
activated type with distinctive transcriptional profiles that can be
influenced by the local adipose tissue microenvironment. Pro-
inflammatory macrophage programming may be primed by LPS
(perhaps more so with pathological BT), IFN-g, HIF-1a and
saturated fatty acids. Independent of LPS, fatty acids may be
taken up via the macrophage scavenger receptor 1 (MSR1) with
subsequent JNK signalling and inflammation (115). On the
contrary, HIF-2a, PPAR-g and unsaturated FAs exert an anti-
inflammatory effect (91, 92, 116). Few groups have recently
examined the nature of ATMs in obese adipose tissue by
Frontiers in Immunology | www.frontiersin.org 7
scRNA-seq (112, 117, 118). It has now become evident that
ATMs display significant heterogeneity, with various subsets
(clusters) identified that may contribute differently to the
disease pathology; their specific functions need to be studied in
the coming years (91).

D. Peritoneal Macrophages
The development of ascites, the pathological accumulation of
fluid within the peritoneal cavity, is a defining feature of
decompensated cirrhosis. Pathogens and bacterial products are
readily absorbed by the peritoneal cavity and invoke an
inflammatory reaction. This can give rise to SBP which occurs
in 10% of hospitalised patients and once established can worsen
prognosis including the development of multi-organ failure and
increased mortality. SBP is defined by an elevated ascites
polymorphonuclear cell count of >250/mm3 with or without
the positive culture of microbes. In cirrhosis, the pathological BT
theory implies a higher exposure to pathogenic material in the
peritoneum even in steady state.

Under normal conditions, peritoneal macrophages (PMs)
comprise 50-90% of the peritoneal leucocytes and are primarily
responsible for clearing debris and pathogens. In both sterile and
pathogen-associated injury, interferon-g primed macrophages
orchestrate the immune response, highly expressing MHC class
II molecules, generating cytokines and chemokines and
exerting strong antimicrobial effector mechanisms (119, 120).
Similar to the dichotomy of KC and MoMF in the liver, murine
PMs can be subdivided into self-renewing resident
macrophages and MoMFs which slowly replace the resident
population and acquire a differentiated phenotype (121).
Resident PMs have a unique profile including high expression
of genes encoding phagocytic receptors (e.g., Vsig4, Timd4, and
Marco) (122).

In humans, two studies from the same group, one evaluating
ascites of patients with cirrhosis and the other abdominal
washouts from women undergoing gynaecological abdominal
surgery, identified that PMs are distributed in three
subpopulations: a) classical-like CD14++CD16-, b) an
intermediate CD14++CD16+, and c) a large granular
CD14highCD16high subset. The latter has no corresponding
blood monocyte subpopulation (123, 124). The expression of
CD14 (LPS related receptor) and CD16 (phagocytic Fcg
receptor) is increased in PMs, compared to circulating
monocytes, suggesting that PMs are primed for pathogen
defence. Moreover, in patients with cirrhosis and ascites, the
CD14highCD16high peritoneal macrophage subset represented
approximately 30% of total CD14+ cells, compared with
approximately 15% in women undergoing gynaecological
surgery, perhaps reflective of the enhanced BT in cirrhosis.

Human PMs were also found to have higher expression of
other phagocytic markers (e.g., CD11c), cytokine receptors (e.g.,
CD116 and CD119), antigen-presentation markers (e.g., HLA-
DR) and co-stimulatory molecules (e.g., CD40 and CD80) when
compared with blood monocytes. The CD14highCD16high

population was felt to represent an M2-polarised human
resident peritoneal macrophage population, as suggested by
high GATA-6 expression (similar to mice) (121, 122),
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enhanced expression of mannose receptor (MR) CD206 and
HLA-DR, and higher frequency of IL-10 positive cells. Despite
this, they seem to have an immunologically-primed status with
increased phosphorylation of ERK1/2, PKB and c-Jun, sensitivity
to LPS, robust oxidative burst activity, increased expression of
cytosolic dsDNA sensor absent in melanoma 2 (AIM2) and
AIM2 ligand-induced mature IL-1b and IL-18 production
suggesting they are readied for antimicrobial defence (124–
127). Immune priming may vary according to cirrhosis
aetiology, with alcohol-related cirrhosis displaying a more pro-
inflammatory profile, compared to viral hepatitis C, with higher
ascitic IL-12 and lower IL-10 levels (128). Genetic
polymorphisms in the TRAF6 gene coding for the adaptor
protein in TLR signalling cascades, confers a less pro-
inflammatory state of PMs in cirrhosis and increased risk of
SBP (129).

Irvine et al. went further to segregate human PMs by
investigating the expression of CCR2 and complement receptor
for immunoglobulin (CRIg) which is encoded by the VSIG4 gene
(130, 131). The investigators found a distinct human peritoneal
macrophage population that was CRIghighCCR2low. Compared
with CRIglow, the CRIghigh macrophages were larger, more
granular, had higher expression of CD14, CD16, HLA-DR,
CD169 and CD163, s imilar to the aforementioned
CD14highCD16high resident subset. CRIghigh macrophages were
characterized by increased gene transcription of efferocytosis
receptors (e.g., MERTK and TIMD4), and showed enhanced
phagocytic and microbicidal functions. Of note, high
proportions of CRIghigh macrophages were associated with
reduced liver disease severity (MELD score) and lower
proportions were observed during clinical events (e.g., SBP,
death) (130).

Stengel and Quickert et al., also identified a distinct subset of
CD206+CCR2- large peritoneal macrophages (LPM) (in
addition to being CD16+, CD163+, CRIg+ and MerTK+) in
patients with cirrhosis which were transcriptionally and
functionally distinct. When activated, this subset of CD206+
LPMs were more likely to produce pro-inflammatory
cytokines, showed resistance to endotoxin tolerance and
cleavage of surface CD206. Concentrations of the CD206
soluble form (sCD206) in the ascitic fluid were elevated in
SBP, compared to non-infected ascites, reflective of PM
activation; high sCD206 ascites levels were predictive of higher
90-day mortality (132). This is in contrast to the historically
perceived anti-inflammatory nature of CD206+ macrophages,
illustrating their plasticity (133).

Considering the entire human peritoneal macrophage
population, the co-expression of M1 and M2 markers points to
a constitutive plasticity, responsive to sterile and pathogenic
stimuli and programmed to subsequently restore tissue
homeostasis (134). The ascitic microenvironment may be
crucial in altering the macrophage phenotype and function to
suit the insult and promote recruitment of circulating myeloid
cells. Hypoxia promotes peritoneal macrophage generation of
VEGF and ADM via enhanced HIF-1a transcription (135, 136).
In the setting of ACLF where cardiorespiratory organ failure
might result in hypoxia, the production of vasodilator mediators
Frontiers in Immunology | www.frontiersin.org 8
in such circumstances serves as a mechanism to further worsen
circulatory dysfunction. In the setting of pathological BT, high
ascites bacterial DNA concentrations, even in the absence of a
clinical diagnosis of SBP, are associated with increased
proinflammatory cytokine production, increased inducible
nitric oxide synthetase (iNOS) expression and subsequent
nitric oxide (NO) overproduction, reduced CD14+ peritoneal
macrophage HLA-DR expression and poor clinical outcomes
(e.g. death and hospital readmission) (137–139).

Infection (SBP), bacteria or bacterial products (e.g., LPS),
result in production of inflammatory cytokines such as TNF-a,
IL-6, calprotectin and macrophage inflammatory protein type 1
beta (MIP-1b), which promote neutrophil and monocyte
recruitment (140, 141). Counter-regulatory mechanisms, to
prevent over-exuberant inflammation, result in generation of
ascitic IL-10, resistin and reduction in peritoneal macrophage
surface expression of CD14, CD16, HLA-DR, CD86 and CD206,
which reverse on antibiotic treatment. Reduction in macrophage
LPS-receptor CD14 in SBP was associated with impaired
phagocytosis (142, 143). Interestingly, Wang et al. using the
thermal and CCl4-induced acute liver injury murine models
and intravital imaging demonstrated that peritoneal cavity
(GATA6+) resident macrophages have the ability to migrate
via non-vascular routes to the injured liver (144). In the damaged
sites, GATA6+ macrophages could be triggered by DAMPs, such
as ATP, to exhibit a more alternatively activated state and
mediate cell debris clearance, thus aiding tissue repair and
revascularisation. Future work will examine if these cells are
present in humans and to what extent they modify other liver
inflammatory diseases.
E. Intestinal, Lymph Node and Splenic
Macrophages
Beyond the liver, peritoneum and adipose tissue, there is little
known regarding compartmental tissue macrophage phenotype
and function during chronic liver failure. In health, intestinal
macrophages represent a small proportion of the lamina propria
immune cells, which are CD33+CD14- and exhibit anergy,
hyporesponsive to LPS (145, 146). In cirrhosis, substantial
evidence points to a failure of the gut barrier, permitting
increased intestinal permeability and BT with increased
circulating loads of bacterial DNA and other microbial
derivatives, and an increased risk of infection (147). One study
identified an activated CD14+TREM1+ intestinal macrophage
phenotype in cirrhosis, with high expression of iNOS even in
early compensated disease and secretion of NO (148). Such
activated macrophages are known to be responsive to
microbial challenge, with pro-inflammatory cytokine output
(e.g. IL-23, TNF-a and IL-6), and may contribute to the
observed intestinal defects (149). Immune defects permitting
BT were also observed in mesenteric lymph nodes from patients
with decompensated cirrhosis, where circulation-derived
subcapsular sinus and medullary cord macrophages
expressed the immune-suppressive marker MERTK, compared
to non-cirrhotic controls (42). In patients with cirrhosis and
portal hypertension, the number and phagocytic activity of
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splenic macrophages in the red pulp and marginal zone is
enhanced, resulting in hypersplenism and cytopenias (150).
Enhanced phagocytosis may be explained by the upregulation
of micro-RNA miR-615-3p and its action on a ligand-dependent
nuclear receptor corepressor (LCoR)-PPARg axis (151). Finally,
there is evidence of spleen-liver organ crosstalk, with
splenectomy reversing the M1-dominant hepatic macrophage
phenotype in fibrotic livers, ameliorating collagen deposition and
regressing fibrosis (152). This is attributed to the disruption of
splenic macrophage promotion of hepatic macrophage CCL2
expression, subsequent circulating monocyte liver recruitment
and adoption of an M1 phenotype causing further injury and
fibrosis (153).
MACROPHAGE-RELATED BIOMARKERS
IN LIVER DISEASE

Macrophages play a significant role in the development and
progression of chronic liver failure. Two scavenger receptors that
are highly, but not exclusively, expressed by blood monocytes
and macrophages are CD163 and CD206, also known as the
haemoglobin-haptoglobin receptor and mannose receptor (MR),
respectively (154, 155). The soluble forms of CD163 (sCD163)
and MR (sMR), that are present in plasma and body fluids, have
been thoroughly investigated as macrophage-related biomarkers
in liver diseases (154, 155). Over recent years, numerous studies
on sCD163 and sMR have detected increased levels in relation to
severity and prognosis in both acute and chronic liver diseases
(154, 155). For instance, this has been demonstrated in NAFLD/
NASH, viral hepatitis (e.g., HBV, HCV), autoimmune hepatitis,
acute liver failure (ALF) and alcohol-related liver disease (132,
156–163). In patients with cirrhosis, sCD163 and sMR
significantly correlate with severity (e.g. MELD and Child-
Pugh scores) as well as the degree of portal hypertension (164–
167); high plasma concentrations of sCD163 associate with
variceal bleeding in cirrhotic patients and predict mortality in
alcoholic hepatitis (165, 168). Bruns and colleagues recently
measured sMR levels in ascites fluid from cirrhotic patients
with SBP and found that its concentrations serve as a marker
of peritoneal macrophage activation, inflammation and predict
90-day survival (132).

Overall, the highest sCD163 and sMR levels are detected in
patients with the most severe forms of liver injury such as ALF,
alcoholic hepatitis and ACLF (154, 155). In ACLF, sCD163 and
sMR are independently associated with disease severity and
prognosis while supplementation of these macrophage
biomarkers to standard clinical scores (e.g., CLIF-C ACLF,
CLIF-C AD) improved their prognostic performance (158).
This accumulating clinical evidence shows robust association
of macrophage-related markers with inflammation in liver
pathologies and emphasizes the role of macrophages and
infiltrating monocytes in liver disease development and
progression. Future work will establish the incorporation of
these biomarkers in current clinical practice scoring tools to
improve prognosis.
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MACROPHAGE-TARGETED
THERAPEUTIC APPROACHES
IN LIVER DISEASE

There is a major unmet need for effective therapies in chronic liver
failure and this is of high clinical relevance considering the
escalating disease prevalence. Macrophages are central to the
pathogenesis of liver diseases as they are involved in the initiation,
progression and regression of tissue injury. Macrophages play a key
role in liver homeostasis and are among the first responders to an
infectious or tissue-damaging insult exerting dual, inflammatory
and anti-inflammatory/restorative, functions in the liver. Therefore,
hepatic macrophages are an attractive target for developing new
therapeutic approaches. Most macrophage-based strategies have
been investigated in animal models while some have been
evaluated in clinical trials [reviewed in (10, 16, 56, 92)].

Macrophage-targeted approaches can be categorized into
those that: (i) inhibit macrophage activation, (ii) inhibit the
recruitment of monocytes and monocyte-derived macrophages,
(iii) reprogram macrophages via anti-inflammatory polarization
mediators and signalling pathways, drug delivery nanosystems,
metabolic rewiring, epigenetic mechanisms or immune
checkpoint blockade (Figure 2). Cell-based therapies using
autologous macrophage infusions have also been tested in
patients with liver cirrhosis (169); the rationale and potential
of utilizing macrophages as agents for cell therapy are reviewed
in (57, 170). Here, we summarize the various approaches that
have been explored for therapeutic targeting of macrophages in
liver diseases.

A. Inhibition of Macrophage Activation
Changes in gut microbiota composition, increased intestinal
permeability and pathological BT into the liver are
characteristics of progressive chronic liver disease (e.g,
cirrhosis) causing an increase in hepatic levels of endotoxin
(e.g., LPS) (8, 35). These gut-derived PAMPs together with
liver-derived DAMPs (e.g., HMGB-1, histones) can potentially
activate macrophages via pattern recognition receptor (PRR)
recognition, triggering inflammatory cascades whose activation
can be modulated by several approaches. Among those PPRs, the
importance of TLR4 is well documented; indeed, TLR4
inhibition (TAK-242 or Serelaxin) has been shown to
ameliorate injury and inflammation in rodent models of liver
fibrosis, cirrhosis and ACLF (171–174). In the same context,
NLRP3 inflammasome inhibition (MCC950) reduces liver
inflammation and fibrosis in experimental NASH (175).
Finally, PAMP-mediated macrophage activation can be
prevented with restoration of normal gut microbiome using
broad-spectrum antibiotics, probiotics and fecal microbiota
transfer [further discussed in (8, 16, 176)].

B. Inhibition of Monocyte/Macrophage
Recruitment
Tissue-infi l trating monocytes and monocyte-derived
macrophages can amplify and perpetuate liver inflammation.
Their recruitment into the liver is driven by the chemoattractant
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properties of several chemokines secreted from activated liver
cells (e.g., KCs, LSECs) which interact with chemokine
receptors expressed on immune cells. The CCL2/CCR2, CCL5/
CCR5 and CCL1/CCR8 are very common chemoattractant axes
in liver diseases (16, 56). Chemokine signalling inhibition
therefore represents an interesting therapeutic strategy to
reduce monocyte recruitment and has proven efficacious in
experimental disease models. This can be achieved using
monoclonal antibodies against chemokines or chemokine
receptors, receptor antagonists, aptamer molecules or
small-molecule inhibitors (16, 56).

Interference with chemokine pathways to restrict the influx of
inflammatory monocytes is one of the most advanced treatments in
NASH-related liver fibrosis. Cenicriviroc (CVC; a dual CCR2/CCR5
inhibitor) efficiently blocks CCL2 mediated monocyte recruitment
and has been shown to exert anti-inflammatory and anti-fibrotic
Frontiers in Immunology | www.frontiersin.org 10
effects in various experimental liver disease models (78, 177, 178).
These results led to human studies evaluating CVC in NASH
patients with fibrosis. Following one year of CVC treatment, a
significant number of NASH patients showed good response to the
treatment and significant improvement in the histological stage of
fibrosis (179). These positive effects were maintained in responders
in the second year of CVC treatment (180) and a phase 3 clinical trial
is assessing its efficacy and safety (NCT03028740). Other molecules
inhibiting cell recruitment include propagermanium (CCR2
inhibitor) (181), mNOX-E36 (RNA-aptamer molecule that inhibits
CCL2) (182), maraviroc (CCL5/RANTES inhibitor) (183) and
small-molecule antagonist against the G protein-coupled receptor
84 (GPR84) (184) which ameliorate disease in experimental NASH.

Recent scRNA-seq studies have described the macrophage
heterogeneity in murine NASH, consistently demonstrating that
resident KCs (ResKCs) are lost during NASH progression and
FIGURE 2 | Macrophage-targeted therapeutic approaches for the treatment of liver disease. Schematic overview of the different macrophage-directed therapeutic
approaches that can be summarized into those that: (i) inhibit the activation of macrophages, (ii) inhibit the recruitment of monocytes and monocyte-derived
macrophages, (iii) reprogram macrophages through anti-inflammatory and polarization mediators, signalling pathways, drug delivery nanosystems, iv) metabolically
rewire or epigenetically regulate macrophages, v) modulate macrophages via immune checkpoint inhibition. ASK-1, apoptosis signal-regulating kinase 1; CCL, C-C
chemokine ligand; CCR, C-C chemokine receptor; DAMP, damage-associated molecular pattern; FXR, farnesoid X receptor; IRE1a, inositol-requiring enzyme 1a;
mAb, monoclonal antibody; PAMP, pathogen-associated molecular pattern; PD-1, Programmed-cell-death-1; PD-L1, Programmed-cell-death-ligand-1; PPAR,
peroxisome proliferator-activated receptor; PRR, pattern recognition receptor; SIRT1/2, sirtuin-1 and sirtuin-2; SLPI, secretory leukocyte protease inhibitor; TLR, toll-
like receptor.
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recruited monocytes enter the liver and become monocyte-derived
KCs (MoKCs) or temporaryMoMFs (49, 87–89). The distinct roles in
disease pathology, functions and relationship between these subsets
remain to be explored. For instance, what triggers ResKC death and
why MoMFs are protected from this? Furthermore, it’s not clear
whether the strategy to reduce monocyte recruitment in NASH via
CCR2/CCL2 inhibition could affect both MoKCs and recruited
MoMFs, or the latter cells only. Of note, NASH-related liver fibrosis
was increased in Ccr2 KO mice (89). Could the timing of CCR2
blockade influence macrophage composition and also alter tissue
remodelling? Differences between murine and human macrophage
subset functions are likely. Further exploration and better
understanding of macrophage heterogeneity in NASH will inform
us how to specifically target these critical immune cell subpopulations.

C. Macrophage Reprogramming
Hepatic macrophages exhibit great functional plasticity. Therefore, a
key therapeutic approach is to induce a switch from an
inflammatory to an anti-inflammatory/restorative type, aimed to
promote resolution of inflammation and accelerate tissue
regeneration. Such macrophage reprogramming can be achieved
using anti-inflammatory mediators including steroids
(e.g., dexamethasone), prostaglandin E2 (PGE2), macrophage
colony-stimulating-factor-1 (CSF1) and secretory leukocyte
protease inhibitor (SLPI) (10, 43, 185). Galectin-3, mainly
expressed in macrophages, is shown to exert inflammatory
functions and profibrogenic effects on hepatic stellate cells (186).
Despite showing promising results in rodent models, the galectin-3
inhibitor belapectin (GR-MD-02) did not alleviate fibrosis in a
phase 2 trial in patients with NASH with cirrhosis and portal
hypertension (187, 188). A study evaluating the efficacy and safety of
another galectin-3 inhibitor, GB1211, in NASH patients is currently
ongoing (NCT03809052). Other targets explored aiming to prevent
macrophage activation and promote M2-like polarization include
inositol-requiring enzyme 1a (IRE1a) (189), farnesoid X receptor
(FXR) (190), apoptosis signal-regulating kinase 1 (ASK-1) (191) and
obeticholic acid which is a strong FXR agonist with promising
results from an early phase clinical trial in NASH (192).

Due to the anatomical location (liver sinusoids) and high
scavenging capacity (e.g., mannose receptor) of KCs, the systemic
administration of different drug delivery nanosystems
(e.g., polymers, liposomes and microbubbles) leads to their
accumulation in the liver (193, 194). This highlights their potential
for developing new hepatic macrophage-targeted therapies. For
instance, the administration of dexamethasone-loaded liposomes
reduced liver inflammation in murine models of acute hepatitis and
CCL4-induced chronic toxic liver injury, and this was associated
with reduced number of hepatic T cells and induction of anM2-like/
restorative macrophage phenotype (195). While such drug carrier
materials target hepatic myeloid cells, liver fibrosis also affects
their targeting efficiency, supporting the need to adapt
nanomedicine-based approaches in chronic liver disease (194, 196).

Another strategy to induce anti-inflammatory macrophage
polarization and consequently also ameliorate disease
progression is by promoting signalling through the PPAR
pathways. PPARs are nuclear transcription factors with
multiple functions in NASH pathology, affecting inflammation,
Frontiers in Immunology | www.frontiersin.org 11
lipid and glucose metabolism (197). Recent work has shown that
in vivo treatment with saroglitazar, a PPARa/PPARg agonist, is
associated with reduced inflammation and regression of fibrosis
in experimental NASH models (198). In a human study,
elafibranor, a PPARa/PPARd agonist, was shown to attenuate
liver inflammation without fibrosis worsening in NASH patients
(199). Furthermore, in vitro treatment with lanifibranor, a
pan-PPAR agonist, reduces the expression of inflammatory
genes in murine macrophages and patient-derived circulating
monocytes with palmitic acid and increases the expression of
lipid metabolism related genes. The anti-inflammatory actions of
lanifibranor can be induced through PPARd agonism as
demonstrated by evaluating the effects of individual PPAR
agonists (200). Moreover, lanifibranor treatment inhibits
hepatic MoMF accumulation, one of the key events preceding
fibrosis (78). Lanifibranor is currently investigated in a phase 2
trial in NASH patients (NCT03008070).

Recently, LC3-associated phagocytosis (LAP), a non-canonical
form of autophagy that shifts monocyte/macrophage phenotype
to an anti-inflammatory type, was reported to be a protective
mechanism against fibrosis and systemic inflammation in
cirrhosis (201). LAP is enhanced in peripheral and hepatic
monocytes from patients with liver fibrosis or those who
progress to cirrhosis. Pharmacological inhibition of LAP in
patient-derived monocytes or LAP genetic disruption in mice
exacerbated inflammation and fibrosis after CCl4-induced liver
injury whereas enhancing LAP reduced inflammation and liver
fibrosis (201). Moreover, activation of LAP is lost in monocytes
from ACLF patients and can be restored by targeting this pathway
(201). This suggests that sustaining LAP may open new
therapeutic perspectives for patients with chronic liver diseases.
D. Macrophage Metabolic Rewiring
and Epigenetic Regulation
An additional approach could be the metabolic rewiring of
hepatic macrophages to modulate their polarization and
regulate their function for liver disease treatment (92).
Pharmacological promotion of autophagy by targeting a key
metabolic regulator, the mammalian target of rapamycin
complex 1 (mTORC1), improved high fat diet-induced
steatohepatitis in mice by altering lipid metabolism,
macrophage polarization, the inflammatory responses and
autophagy (202). Interestingly, mice with macrophage-selective
mTORC1 ablation displayed an M2-like phenotype, reduced liver
inflammation and improved insulin sensitivity (202). Another
study has revealed a crucial role for the NOTCH1 pathway in
inducing M1-like activation of hepatic macrophages by
promoting mitochondrial oxidative phosphorylation and ROS
as well as M1-related gene expression (68). Conditional NOTCH1
deficiency in myeloid cells attenuated hepatic macrophage M1-
like activation and inflammation in murine alcoholic
steatohepatitis and markedly reduced lethality following
endotoxin-mediated fulminant hepatitis (68).

The concept of “innate immune memory” has arisen over recent
years which may open another window of opportunity for new
therapies in chronic liver diseases (203). This idea stems from studies
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demonstrating that epigenetic mechanisms regulate macrophage
function by imprinting them with a “memory response” towards
future stimuli. Therefore, macrophages can mount a qualitatively
different response, either exaggerated (“trained”) or impaired
(“tolerant”), upon exposure to repeated challenge (204, 205). In
the context of acute and excessive inflammation, tolerance can act as
a protective mechanism to dampen the host’s inflammatory
responses to prevent tissue damage. For instance, in response to
LPS or pathogen exposure, monocytes and macrophages modify
their histone acetylation and methylation traits, dictating gene
expression patterns upon subsequent stimulation (206–208). Some
of these mechanisms are implicated in rewiring of
intracellular metabolic activities affecting the balance between
glycolysis and fatty acid oxidation (209, 210). For example,
inhibitors of histone deacetylases sirtuin-1 and sirtuin-2 (SIRT1/2)
have shown the capacity to reverse immune paresis in experimental
murine sepsis (211, 212). Whether such a molecular memory
imprinting of anti-inflammatory monocytes and macrophages
could be achieved in chronic liver failure is worth exploration.

E. Macrophage Regulation via Immune
Checkpoint Blockade
Immune checkpoints constitute a complex array of receptors (e.g.,
PD-1, CTLA-4) and their ligands (e.g., PD-L1/PD-L2, CD80/
C86) expressed on both innate and adaptive immune cells, which
exert key regulatory roles during homeostasis and inflammatory
pathologies, mainly in chronic infection, sepsis and cancer.
Immune checkpoint inhibition has become an emerging
therapeutic strategy in various liver diseases (203, 213). For
instance, we have demonstrated that peripheral CD4+ T cells
from ALF patients have increased CTLA-4 expression and
reduced proliferative response to stimulation that can be
enhanced via CTLA-4 inhibition in vitro (214). Furthermore,
defects in adaptive and humoral immunity can be partially
rescued by in vitro PD-1 blockade in patients with alcohol-
related liver disease and viral hepatitis B infection (215, 216).
Importantly, the therapeutic reversal of immune exhaustion using
immune checkpoint monoclonal antibodies (mAb), alone or in
combination with other drugs, has been shown to be effective and
with good safety profiles in hepatocellular carcinoma (217–219).

Most checkpoint pathways have been first described as
regulators of T cell immunity, but it is now clear that their
effects are not limited to T cells only. For instance, accumulating
evidence has revealed an crucial role for PD-1/PD-L1 signalling
on altering myeloid cell function in sepsis and cancer (220–222).
PD-1 and PD-L1 can be induced on monocytes and
macrophages through TLR ligands (e.g., LPS) and cytokines
(e.g., TNF-a, IL-6 and IL-10). Interestingly, PD-1 and PD-L1
monocyte expression is associated with increased mortality in
septic patients while PD-1/PD-L1 blockade restores innate
responses in experimental sepsis (223–226).

Many features of sepsis resemble those observed in acute (e.g.,
acetaminophen overdose) or chronic (e.g., decompensated
cirrhosis, alcohol-related ACLF) liver failure patients who often
acquire bacterial infections (10, 203, 213). We recently explored
the PD-1/PD-L1 pathway in acetaminophen-induced ALF (227).
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During resolution of murine liver injury, impaired hepatic
bacterial clearance and increased PD-1 and PD-L1 expression
of KCs and lymphocyte subsets were detected. Compared to
wild-type, PD-1 deficient or anti-PD-1 mAb treated mice with
liver injury showed improved KC bacterial clearance, reduced
bacterial load and protection from sepsis (227). We also found
up-regulated PD-1 and PD-L1 expression of peripheral
monocytes and lymphocytes in patients with ALF and
increased plasma soluble PD-L1 levels predicting mortality and
development of sepsis (227). Similarly, another study
demonstrated overexpression of PD-L1 in peripheral
monocytes and liver macrophages in cirrhotic patients who
displayed impaired hepatic bacterial uptake (228).
Interestingly, monocyte PD-L1 was associated with disease
severity and infection risk in cirrhosis while anti-PD-L1 mAb
treatment restored the phagocytic capacity of macrophages and
reduced bacterial dissemination in mice with chronic liver injury
(228). These studies indicate that immune checkpoint blockade
may be an effective and safe strategy for restoration of defective
antibacterial responses in chronic liver failure patients, where
conventional treatment options are currently very limited.
CONCLUSIONS

In conclusion, intensive research over recent years has significantly
improved our knowledge on macrophage diversity and plasticity
in the context of liver diseases. Technical advances in experimental
models and tools, such as single-cell approaches, have enabled us
to dissect the key cellular and molecular functions of tissue
macrophages, uncovering critical pathophysiological changes
involved in different disease states such as liver fibrosis. This
forms the basis for future studies that will further deepen our
understanding of liver disease pathogenesis, thus enabling the
identification of novel immunotherapeutic approaches for patients
across the spectrum of chronic liver disease.
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