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HIGHLIGHTS   

EEG/ERP measures are consistently abnormal in major VCI patients. 

Main EEG abnormalities affect delta, theta, and alpha rhythms. 

Main ERP abnormalities include delayed “oddball” N200/P300 peaks. 

Those EEG measures are not diagnostic but promising as predictors and endpoints.   
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ABSTRACT  

 Vascular contribution to cognitive impairment (VCI) and dementia is related to etiologies that 

may affect the neurophysiological mechanisms regulating brain arousal and generating 

electroencephalographic (EEG) activity. A multidisciplinary expert panel reviewed the clinical 

literature and reached consensus about the EEG measures consistently found as abnormal in VCI 

patients with dementia. As compared to cognitively unimpaired individuals, those VCI patients 

showed (1) smaller amplitude of resting state alpha (8-12 Hz) rhythms dominant in posterior regions; 

(2) widespread increases in amplitude of delta (< 4 Hz) and theta (4-8 Hz) rhythms; and (3) delayed 

N200/P300 peak latencies in averaged event-related potentials, especially during the detection of 

auditory rare target stimuli requiring participants’ responses in “oddball” paradigms. The expert panel 

formulated the following recommendations: (1) the above EEG measures are not specific for VCI and 

should not be used for its diagnosis; (2) they may be considered as “neural synchronization” 

biomarkers to enlighten the relationships between features of the VCI-related cerebrovascular lesions 

and abnormalities in neurophysiological brain mechanisms; and (3) they may be tested in future 

clinical trials as prognostic biomarkers and endpoints of interventions aimed at normalizing 

background brain excitability and vigilance in wakefulness. 
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BACKGROUND 

Dementia or major neurocognitive disorder (NCD) is characterized by significant decline in 

two or more cognitive domains with the loss of independence in activities of daily living (American 

Psychiatric Association, APA, 2013; McKhann et al., 2011) The epidemiological and economic 

burden of dementia is enormous and research into its early diagnosis and treatment is required to 

mitigate this burden.  

Cerebrovascular disease (CVD) is the second most common cause of major NCD after 

Alzheimer’s disease dementia (ADD) in Western populations (Fratiglioni et al., 2000; Kalaria et al., 

2008), and the first in some Asian countries (Rizzi et al., 2014). After Hachinski et al.’s (1975) 

definition of vascular causes of dementia, many criteria were proposed in later years for vascular 

contribution to cognitive impairment and dementia (VCI) by neurological institutes, including those 

from the Alzheimer’s Disease Diagnostic and Treatment Centers (ADDTC; Chui et al., 1992), the 

National Institute of Neurological Disorders and Stroke –Association Internationale pour la 

Recherche et l’Enseignement en Neurosciences (NINDS-AIREN; Roman et al., 1993), the Diagnostic 

and Statistical Manual of Mental Disorders, 4th and 5th editions (DSM-IV, 1994, and DSM-V, 2013), 

the Vascular Behavioral and Cognitive Disorders (VASCOG; Sachdev et al., 2014), the American 

Heart Association/American Stroke Association (Gorelick et al., 2011), and Vascular Impairment of 

Cognition Classification Consensus Study (VICCCS-2; Skrobot et al., 2018). In this regulatory 

context, the term “Vascular Dementia (VaD)” has been commonly used to refer to a severe cognitive 

impairment due to CVD, but the American Heart Association and the American Stroke Association 

have published a statement stressing the concept that VCI is a preferable term, collectively including 

patients with mild cognitive impairment (MCI) of probable vascular etiology (VaMCI) and VaD 

(Gorelick et al., 2011). In this line, “mild VCI” denotes VaMCI patients while “major VCI” denotes 

VaD patients (Sachdev et al., 2019). Figure 1 illustrates the classification of the diverse types of VCI 

conditions according to the VICCCS-2 Workgroup (modified from Skrobot et al., 2018). 

Please insert Figure 1 around here 

 

The VICCCS guidelines have proposed that neuroimaging techniques such as magnetic 

resonance imaging (MRI) may be a “gold-standard” examination for the diagnosis of VCI due to its 

relatively high sensitivity and specificity (Skrobot et al., 2018). Probable mild VCI or probable major 

VCI may represent the recommended diagnostic terms if only those neuroimaging markers are 

available (Skrobot et al., 2018). More specifically, the following MRI biomarkers, evaluated by semi-

quantitative scales, may demonstrate clinically relevant parenchymal alterations thought to arise from 
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small vessel pathology in VCI patients (Hachinski et al., 2006; Iadecola et al., 2019; Wardlaw et al. 

2013). T1-weighted volumetric sequences may be used to measure brain atrophy including estimates 

of general atrophy, ventricular size, and medial temporal lobe atrophy (especially useful in the 

differential diagnosis with neurodegenerative dementing disorders), while T2-weighted sequences 

may map white matter hyperintensities (WMH) as well as infarctions and hemorrhages classified for 

number, dimension, and topography. In research contexts, susceptibility weighted imaging (SWI) and 

diffusion-weighted imaging (DWI) may contribute to map hemorrhages as well. 

In research contexts, new MRI techniques may enrich clinical diagnosis by providing 

quantitative volumetric readouts for WMH and infarcts (Iadecola et al., 2019; Skrobot et al., 2018). 

Furthermore, diffusion tensor imaging MRI, or DTI, which quantifies the diffusion of water 

molecules across brain tissue, may provide informative quantitative biomarkers of increased 

extracellular water content and altered WM fiber structure (Duering et al., 2018). On the flipside, 

functional MRI may represent related abnormalities in brain neural transmission brain structural 

networks (Du and Xu, 2019).  Notwithstanding, neurophysiological, and neurobiological 

interpretation of specific MRI findings requires careful correlation with clinical and 

neuropsychological data since imaging alone cannot inform whether clinical symptoms are due to 

MRI abnormalities. More details about the use of MRI markers and their clinical value in VCI patients 

are available in Wardlaw et al. (2013) and Wollenweber et al. (2019), highlighting that a tight 

temporal, qualitative and quantitative correlation between MRI abnormalities and clinical features 

should be demonstrated before a diagnosis of VCI can be made.  

Although the above neuroimaging techniques can adequately reveal morphologic brain 

vascular lesions, they cannot stand for pathologic sequelae at the neural metabolic level to probe 

neurodegeneration of synaptic contacts and neural loss. To this purpose, F-18 Fluorodeoxyglucose 

positron emission tomography (FDG-PET) in the resting state condition can complement MRI 

markers, detecting hypometabolism of cortical gray matter regions as a reflection of that 

neurodegeneration (Heiss, 2018; Heiss and Zimmermann-Meinzingen, 2012).  

In research contexts, additional PET tracers (e.g., Pittsburgh Compound-B) can map brain 

amyloidosis as a support in the differential diagnosis of VCI and ADD, the latter being expected to 

be associated with more significant accumulation of amyloid in the brain (Heiss, 2018).  

 

Electroencephalographic (EEG) measures 

While the above neuroimaging techniques can directly map relevant neuropathological 

substrates underlying VCI, their use may be limited due to relatively high costs and invasiveness, 

especially for longitudinal recordings and studies to be developed in lower- and middle-income 
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countries. Of note, VCI is related to etiologies that may affect the neurophysiological mechanisms 

regulating brain arousal and generating electroencephalographic (EEG) activity. Therefore, EEG 

techniques may be of interest for the heuristic and clinical research carried out in VCI patients, as 

they are non-invasive, repeatable without significant learning effects, globally available, and cost-

effective. Scalp-recorded EEG recordings allow the investigation of neurophysiological mechanisms 

underlying cortical neural ionic current flows and related voltages with low-moderate spatial scale 

(i.e., some centimeters) but better time resolution (i.e., < 1 ms) as compared to imaging techniques 

to investigate dynamic features of brain activity, namely oscillatory behavior, and millisecond-based 

time evolution (Pfurtscheller and Lopes da Silva, 1999).  

Several methods allow human EEG activity to be recorded and visualized in wakefulness. In 

the frequency domain, measures of EEG rhythms potentially unveil mechanisms of neural 

synchronization and desynchronization of the activity in cortical pyramidal neurons regulating brain 

arousal, vigilance, and many cognitive functions in humans. In clinical neurophysiology research, the 

most popular experimental condition of the study of EEG rhythms is the resting state condition 

(Babiloni et al., 2020a; Schomer and Lopes da Silva, 2018). In clinical contexts, eyes-closed resting 

state EEG (rsEEG) rhythms are typically recorded from 19-25 scalp electrodes placed according to 

the International 10-20 system (Babiloni et al., 2020a; Bocker et al., 1994). Quiet wakefulness is 

achieved asking participants to let their mind wander freely, without any oriented mental operations 

such as focused attention, memory recall, planning, etc. The explored brain function investigated in 

this state is the maintenance of quiet vigilance. This is consistent with the working hypothesis that 

brain disorders may affect ascending neural systems that underpin specific functions (Babiloni et al., 

2020a).  

The most popular method for the analysis of rsEEG rhythms has traditionally been the spectral 

analysis of artifact-free EEG waveforms based on the Fast Fourier Transform (FFT; Babiloni et al., 

2020a). It allows the separation of rhythms at different frequencies that are difficult to see with the 

naked eyes as several rhythms occur simultaneously. Parameters that can be extracted through this 

procedure at a given scalp electrode include the peak frequency, the absolute power density of a 

specific rhythm, the relative power or ratio between two of them, reactivity to eyes opening (Babiloni 

et al., 2020a), and some synoptic index of the total spectrum such as the mean frequency (Arnaldi et 

al., 2017). Spatial analysis of rsEEG rhythms for clinical neurophysiology investigations may be 

performed by the study of its scalp topography or estimation of cortical sources (Babiloni et al., 

2020a, 2020b).  

In the eyes-closed resting state condition, dominant posterior alpha rhythms are the most 

prominent oscillations (about 8-12 Hz), which reduce in amplitude or disappear in the transition from 
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eyes closed to eyes opening in association with the activation of visual-spatial cortical systems 

(Babiloni et al., 2020a; Schomer and Lopes da Silva, 2017). In fact, simultaneous EEG-fMRI and 

near infrared spectroscopy (NIRS) studies have confirmed an alpha rhythm related “deactivation” of 

visual cortex – accompanied by an activation of the thalamus (Moosmann et al., 2003).  

Low-frequency alpha rhythms (about 8-10 Hz) show high amplitude in relation to low levels 

of general brain arousal, attention, and readiness in quiet vigilance (Babiloni et al., 2013; Klimesch, 

1996; Klimesch et al., 2006). In the same line, posterior high-frequency alpha (about 10-12 Hz) and 

low-frequency beta (about 12-20 Hz) rhythms show high amplitude in association with low levels of 

perceptual, sensorimotor, and memory processes in the condition of quiet vigilance (Becker et al. 

2008,2011; Freyer et al., 2013; Haegens et al., 2014; Klimesch, 1996; Klimesch et al., 2006; 

Pfurtscheller and Lopes da Silva, 1999; Reinacher et al., 2009) and deactivation of underlying cortical 

regions in fMRI (Ritter et al. 2009). This amplitude decreases during physiological and pathological 

aging (Babiloni et al., 2017).  

During sensorimotor and cognitive events, parallel changes in rsEEG rhythms occur. During 

sensorimotor events, Rolandic alpha and beta (mu) rhythms reduce in amplitude (i.e., desynchronize) 

and are replaced by faster cortical oscillations around gamma (40 Hz) rhythms (Pfurtscheller and 

Lopes da Silva, 1989). Furthermore, sensorimotor parietal alpha rhythms reduce in amplitude as well 

(Babiloni et al., 1999). During cognitive events, posterior alpha rhythms are replaced by faster cortical 

oscillations, namely high-frequency beta (20-30 Hz) and gamma (30-70 Hz) rhythms, mainly 

prompted by (i) forebrain cholinergic direct inputs to hippocampus and cerebral cortex and (ii) 

thalamocortical projections (Steriade, 2003). Oscillations in low-frequency bands such as delta (1-4 

Hz) and theta (4-7 Hz) rhythms typically show small amplitudes in the resting state condition and 

exhibit complex patterns of changes during sensorimotor and cognitive events (Srinivasan et al., 

2006). In this framework, brain neurophysiological dysfunctions may be associated with (i) small 

changes in amplitude of those EEG rhythms during sensorimotor and cognitive events and (ii) no 

sharp EEG power peak in the alpha frequency range and ample widespread delta and theta rhythms 

in the resting state condition (Babiloni et al., 2020a, 2020b; Musaeus et al., 2018).  

Event-related changes in amplitude of EEG rhythms can be expressed as percent changes 

using the event-related desynchronization/synchronization method (ERD/ERS; Pfurtscheller and 

Lopes da Silva, 1999). Specifically, these changes are expressed as percentage decrease (ERD) or 

increase (ERS) in the power density of EEG rhythms at a certain frequency band during sensorimotor 

or cognitive events when compared to a pre-event baseline period (Pfurtscheller, 1992). ERD and 

ERS at alpha and beta frequencies typically reflect event-related and non-phase-locked cortical 

activation and inhibition in large cortical regions, respectively (Pfurtscheller and Lopes da Silva, 



9 
 

1999). In contrast, gamma ERS typically reflects event-specific activation in circumscribed cortical 

regions (Matsunaga et al., 2008; Pfurtscheller and Lopes da Silva, 1999). Overall, ERD/ERS 

measures at a given electrode may roughly reflect the desynchronization/synchronization of 

oscillatory activities of large local cortical neural populations generating the EEG activity recorded 

at that electrode (Pfurtscheller and Lopes da Silva, 1999).  

Another popular approach in the frequency domain investigates the relationship between the 

phase of the EEG activity recorded at one electrode and the phase of the EEG activity recorded at 

another electrode, namely the “phase-synchronization” of EEG activities at an electrode pair 

(Babiloni et al., 2020a). With significant limitations in the spatial accuracy and resolution due to head 

volume conduction effects, such a statistical relationship may reflect the interrelatedness of EEG 

activities generated by relatively distant cortical sources (Babiloni et al., 2016; Ritter et al., 2008; 

Freyer et al., 2009)1. Noteworthy, it is important to distinguish the concept of “synchronization” used 

in the analysis of ERS at a given electrode, reflecting a local increase in amplitude/power of EEG 

rhythms, with the concept of “phase-synchronization” analyzed at a given electrode pair, reflecting 

an interdependence between two EEG signals related to brain networking.  

An important development in the quantitative analysis of EEG signal is the estimation of its 

cortical source activity and functional connectivity using mathematical and biophysical models of the 

head volume conductor, active cortical neural populations, as well as propagation of neural ionic 

currents and related changes of electric fields in the scalp comportment (Srinivasan et al., 2006). 

Those methods are used to solve the (non)linear inverse problem of EEG based on assumptions, so 

no unique solution is available for that problem (Srinivasan et al., 2006). Despite the confounding 

influence of inflated solutions due to head volume conductor effects, these measures may provide 

insights about cortical neural networks underpinning the regulation of vigilance and active 

information processing during sensorimotor events and cognitive tasks (Babiloni et al., 2020a). 

General topological features of these models of cortical neural networks can be estimated 

using graph theory indices (Bullmore and Sporns, 2009; Rubinov and Sporns, 2010), which use as 

an input measures of interrelatedness of EEG activity at scalp electrode pairs or EEG source 

connectivity. Some graph theory indices are termed “information circulation”, “network robustness 

 
1 In the present article, we report relevant findings of several studies in VCI patients using techniques for the computation of 

“interrelatedness of scalp EEG signals and EEG source connectivity” measures. Those studies used several linear and nonlinear 

measures for this purpose such as spectral coherence, synchronization likelihood, (directed) phase lag index, phase-synchronization, 

Granger causality, and directed transfer function as the most used. These measures aim to compute either the statistical interrelatedness 

of EEG time series at electrode pairs/arrays of electrodes or functional connectivity between estimated cortical sources of EEG activity. 

They are based on mathematical and physical assumptions about the reciprocal correlations or causal relationships between those EEG 

time series or underlying cortical generators. In the present article, we also reported relevant findings of some studies in VCI patients 

using measures of “complexity” of EEG time series based on field theories referring to chaos, entropy, random fractal, and auto-mutual 

information. Due to the clinical nature of this article, few notions were reported to characterize those measures here. More information 

about them can be found in the original papers cited. A recent overview about applications of those measures in Clinical 

Neurophysiology can be found in the position paper by Babiloni and others (2020a). 
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and adaptation to pathological disturbances”, “modularity and functional specialization of 

subnetworks”, and “small-worldness”, with the latter defined as a balance between intense local 

connectivity and effective “hubs” for remote connectivity (Bullmore and Sporns, 2009). This 

approach may be relevant for characterizing neurocognitive disorders as brain disconnection 

syndromes, but the heterogeneity of the methodological approaches makes the comparison of the 

previous clinical EEG studies difficult and motivates the establishment of future consensus initiatives 

to standardize the methodology (van Diessen et al., 2015, 2016).  

In the time domain, measures of EEG activity include the analysis of sensory-evoked or event-

related potentials (EPs/ERPs). EPs/ERPs reflect the summed activity of postsynaptic potentials 

generated by neural populations that fire in synchrony in response to sensory stimulation or cognitive-

motor events. Technically, artifact-free short periods of EEG of a few hundreds of milliseconds 

related to single events (i.e., EEG epochs) are averaged after the alignment to the event onset, to 

produce EPs/ERPs phase-locked to those events (indeed, the nonphase-locked components of on-

going EEG activity cancel each other during the averaging procedure). Of note, EPs/ERPs show a 

sequence of peaks of positive (P) and negative (N) voltage maxima that are typically expressed as a 

function of their post-stimulus latency, amplitude, and topographic scalp voltage distribution.  

In clinical neurophysiology research, one of the most extensively used ERP paradigm is 

represented by the “oddball” paradigm. In a 2-simulus “oddball” paradigm (Hillyard and Kutas, 1983; 

Polich, 2007; Squires et al., 1975), participants receive a train of many “frequent” (80-70% of 

probability) and “rare” (20-30%) stimuli intermingled with each other. The task is to ignore the 

frequent stimuli and react (e.g., counting them or pressing a button) to the rare ones as “targets”. 

Artifact-free EEG epochs are averaged separately for “frequent” and “rare” stimuli. Compared to the 

ERPs for “frequent” stimuli, those for “rare” stimuli show a prominent posterior positive component 

peaking at about 300-400 ms post-stimulus, the so-called “posterior P300” or “P3b” related to 

cognitive processes including conscious attention allocation, working memory update, and context 

closure (Donchin, 1987; Polich, 2007; Rushby et al., 2005). This ERP component may mainly origin 

from a brain network spanning cortical frontal and temporal-parietal areas and subcortical basal 

ganglia and hippocampal regions (Rektor et al., 2004; Huang et al., 2015). Furthermore, it has been 

extensively used to explore abnormalities in cognitive brain systems in patients with cognitive deficits 

(Duncan et al., 2009; Hedges et al., 2016; Polich and Corey-Bloom, 2005).  

In a 3-stimulus “oddball” paradigm (Polich, 2007), a third class of sensory stimuli “rare but 

to be ignored” is delivered among those mentioned above. Each of the “rare but to be ignored” stimuli 

is presented only one time during an experiment to generate the experience of “novelty”. ERPs for 

those stimuli show a prominent anterior positive component peaking at about 250 ms post-stimulus, 
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namely the “P3a” (i.e., a type of anterior P300). This ERP component may reflect cognitive functions 

including focal attention handling novelty in sensory stimuli and inhibition processes (Huang et al., 

2015; Jeon and Polich, 2001; Polich, 2007; Rushby et al., 2005). Analysis of P3 peaks in the oddball 

paradigms is typically performed at scalp electrodes, but its spatial analysis implies an estimation of 

cortical sources, especially based on EEG recordings using 48 or more electrodes (Michel et al., 2004, 

Michel, 2019).  

A combined analysis of EEG activity in time and frequency domains measures the so-called 

“sensory-evoked or event-related EEG oscillations” (EOs/EROs). According to the definition of 

Başar and colleagues (1999), EOs/EROs result from the decomposition of EPs/ERPs into the parallel 

delta, theta, alpha, beta, and gamma oscillatory responses phase-locked to stimuli or cognitive-motor 

events (Başar et al., 2001; Başar and Stampfer, 1985; Başar-Eroğlu et al., 2001, 1992). These 

responses complement ERD/ERS, the latter being expected to be affected also by neurophysiological 

oscillatory processes non-phase-locked to the neural elaboration of sensory stimuli and cognitive-

motor events (Pfurtscheller and Lopes da Silva, 1999). An extensive study by Bernat et al. (2007) 

showed that major operating EROs of oddball P300 or other ERP components were mainly observed 

at delta and theta frequencies (Başar et al., 2001; Başar-Eroğlu et al., 1992; Demiralp et al., 1999; 

Spencer and Polich, 1999; Yordanova et al., 2000). Concerning the neurophysiological basis of 

ERD/ERS, it has been hypothesized that as compared to ERD/ERS, phase-locked cortical activity is 

more dependent on the signal transmission from relay thalamocortical neurons to cortical pyramidal 

neurons (Pfurtscheller and Lopes da Silva, 1999). Furthermore, recent evidence in rats showed that 

hippocampal and cortical P3-like and/or ERO theta responses to oddball target stimuli were 

modulated by cholinergic systems (Laursen et al., 2014; Annoui et al., 2018).  

A main advantage of the EEG measures mentioned above is their high temporal resolution for 

identification of the disturbance of brain dynamics associated with cognitive impairments that occur 

in neurocognitive disorders (Nuwer, 1997). The neurophysiological mechanisms involved in neural 

synchronization and desynchronization in the cerebral cortex may depend on efficient functional 

connectivity and underpin information transmission within both local and long cortico-cortical neural 

circuits (Mantini et al., 2007) Therefore, it is thought that EEG measures are sensitive to abnormalities 

in the vasculature of brain white matter “connecting” tracts and subcortical structures projecting to 

cerebral cortex, namely the main generator of EEG activity (Moretti et al., 2007, 2008; Pantoni et al., 

2010). Indeed, those abnormalities in VCI patients likely may cause disconnection among neural 

cells, damage to cortico-cortical and cortico-subcortical pathways as well as the loss of myelinated 

axons resulting in reduced neural signaling and synaptic activity at the cerebral cortex level. 
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THE AIM OF THIS ARTICLE AND GENERAL PROCEDURES USED TO REVIEW THE 

LITERATURE 

 Due to the huge amount of information embedded in scalp EEG waveforms and the gray zone 

between signal and biological/instrumental noise, there are uncertainties about the value of EEG 

measures for clinical trials in VCI patients. To address this issue, the Steering Committee of 

Electrophysiology Professional Interest Area (EPIA) of The Alzheimer's Association International 

Society to Advance Alzheimer's Research and Treatment (ISTAART), Alzheimer’s Association (AA; 

https://www.alz.org/), and Global Brain Consortium (GBC; https://globalbrainconsortium.org), 

encouraged the formation of a large multidisciplinary Expert Panel to review the literature and 

provide recommendations about candidate EEG measures for the stratification of VCI patients and 

exploring neurophysiological mechanisms of their brain function in clinical trials. Specifically, the 

Expert Panel addressed the question “What EEG measures most consistently reveal abnormalities 

across studies in mild and major VCI patients in comparison with age-matched cognitively 

unimpaired (CU) persons?  Are they suitable for use in future clinical trials?”  An ancillary 

question was about the specificity of those abnormalities to be addressed by comparing changes in 

EEG measures in other age-related neurocognitive disorders such as Alzheimer’s and Parkinson’s 

diseases. The members of the Expert Panel cover different disciplines (i.e., neurology, psychiatry, 

and neuroimaging of dementias; clinical neurophysiology and quantitative EEG of dementias; and 

cognitive and systems neurosciences) strictly related to this general question.  

The authors’ recommendations were based on a comprehensive review of the literature 

conducted using Web of Science (Core Collection) and PubMed databases, using a combination of 

different key words for the “population of interest” and for the “EEG measures of interest”: ("vascular 

cognitive impairment" OR “vascular contribution to cognitive impairment and dementia” OR 

"vascular dementia" OR "subcortical ischemic vascular disease" OR "small vessel disease" OR 

"multi-infarct dementia") AND (electroencephalography OR "resting state EEG" OR "ongoing EEG" 

OR "background EEG" OR "quantitative EEG" OR "brain rhythms" OR "brain oscillations" OR 

"evoked potentials" OR "event-related potentials" OR "oddball paradigm" OR P300 OR P3 OR 

"event-related oscillations" OR "evoked oscillations" OR "event-related desynchronization" OR  

"event-related synchronization").  

The selection of studies was based on several pre-defined inclusion criteria. We included peer-

reviewed articles in English on EEG studies carried out in VCI patients without restrictions in the 

year of publication. These studies included both resting state and task-based experiments and could 

use several data analysis techniques as listed in the following: a) visual analysis and description of 

well-known graphoelements observed on ongoing rsEEG traces; b) synchronization, reflecting the 
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time evolution of the synchrony of the activity of a local cortical neural population at a spatial scale 

of few centimeters required to generate recordable EEG rhythms; c) complexity, referring to the 

complex dynamics underlying temporal patterns at one scalp electrode or spatiotemporal patterns 

across many scalp electrodes (Jeong, 2004); and d) interrelatedness of EEG activity at scalp or EEG 

source connectivity. Regarding the experimental designs of interest, we included: a) longitudinal 

studies, cohorts of patients with VCI; b) cross-sectional studies, samples of VCI patients with 

different severity and disease duration; and c) classification studies, accuracy of EEG measures in the 

discrimination between CU persons, patients with VCI and/or other types of cognitive impairment at 

individual level.  

In addition and in order to ensure the high quality of the studies, all selected articles were 

critically reviewed by some authors (i.e., C.B., A.B., M. K., G.Y., B. G., and F.N.) using a sub-set of 

criteria reported in Jelic and Kowalski (2009) with some modifications: a) study population should 

have been recruited from the clinical research settings or well defined population based cohorts, and 

all patients should have passed uniform and extensive diagnostic procedure, including structural 

neuroimaging; b) all the patients should have been diagnosed according to the established consensus 

clinical diagnostic criteria used as a "gold standard”; c) ten or more participants should have been 

included at least in VCI diagnostic group and control groups should match in demographic variables; 

d) disease severity should have been quantified according to the universally accepted global cognitive 

or clinical rating scales; and e) EEG recording procedure and analyzing methods including 

classification algorithms should have been appropriate and described in detail.  

Based on that material and procedure, those authors produced a full draft narrative review 

with a focus on EEG measures revealing most consistent abnormalities across clinical studies in mild 

and major VCI patients. The draft was circulated among the other authors for further discussions for 

the sake of reaching a consensus about the recommendations and clinical guidance to deliver. 

Integrations, adaptations, and amendments were part of the project workflow. For that purpose, the 

original draft was repeatedly circulated and discussed across all authors for about two years (between 

2018 and early 2020) before being completed in May 2020.  

Noteworthy, the terms and methodological procedures discussed in this article may not 

correspond to those used in the daily medical practice supplied in services of clinical 

neurophysiology, and we do not recommend that neurologists and psychiatrists should necessarily 

use the present terms and methodological procedures in their practice for diagnostic, prognostic or 

monitoring purposes. Indeed, this paper is not a collection of guidelines for the application of 

techniques of clinical neurophysiology in daily medical practice. As mentioned above, this article is 

focused on EEG measures potentially useful for future clinical research in VCI patients.  
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As this manuscript was not designed to suggest revisions to diagnostic criteria but to reach 

consensus recommendations on next steps for the use of EEG measures into a broader spectrum of 

clinical trials, the present revision of the literature was not based on standard procedures typically 

adopted by international biomedical societies for the revision of the medical intervention and practice 

(e.g., among them, see the “GRADE” Handbook to address the so-called “PICO” health care 

questions, https://gdt.gradepro.org/app/handbook/handbook.html). The authors hope that the field 

will soon reach the maturity for the involvement of international biomedical societies for that purpose. 

 

RESULTS OF THE REVIEW 

Overview of included studies 

 We identified 390 studies, 381 from the database search and 9 through other methods such as 

review of reference lists of relevant articles. After removing duplicates, screening by title and abstract, 

and revising full text, 218 articles were excluded and 92 were finally included in the review (see 

Figure 2 for the pathway of the studies included). Of these 92 articles, 61 were classified as studies 

of resting state EEG measures and 37 as event-related EEG measures2. In the following description 

of the results, we termed as “abnormal” an EEG activity showing statistical differences with that 

recorded in cognitively unimpaired adults matched as age.  

Please insert Figure 2 around here 

 

Evolution of diagnostic terms in EEG literature in VCI patients 

It is well known that diagnostic terms and semantics to denote VCI patients evolved in the last 

decades (van der Flier  et al., 2018). It is only after the publication of NINDS-AIREN criteria in 1993 

that the term VaD was progressively replaced by that of multi-infarct dementia (MID), Later 

developments led to the understanding that not only multiple cortical infarcts, but small vessel disease 

can also lead to dementia (O’Brien and Thomas, 2015). 

Earlier literature linked the concept of VCI with that of MID, thus missing other possible 

causes of cerebrovascular lesions. In a similar vein more recent literature conceivably tends no longer 

to identify VCI with small vessel ischemic disease (SIVD) (Erkinjuntti and Gauthier, 2009; Roh and 

Lee, 2014).   

This shift of attention over the years may partly reflect differences in interpreting 

neuroimaging findings. Recent years have brought a distinct lexicon of neuroimaging findings 

 
2 Adding the results for both categories resulted in more than 92 articles, since some of the studies included both analyses of resting 

state EEG and event-related EEG. The same is true for the different sub-categories within the two general categories. 

about:blank
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corresponding to cerebral small-vessel disease (cSVD) as key factor for SIVD, including small 

subcortical infarcts that formerly could have been associated with MID (Wardlaw et al., 2013). 

The recent VICCCS-1 study proposed that the major forms of VCI (VaD) should be classified 

into four main subtypes: (i) post-stroke dementia (PSD); (ii) subcortical ischemic vascular dementia 

(SIVaD); (iii) multi-infarct (cortical) dementia (MID); and (iv) mixed dementias (further subdivided 

according to additional neurodegenerative pathologies). 

Another clear issue in revision of the literature is the heterogeneity of clinical diagnoses in 

VCI patients, creating a gray zone between VaMCI or VaD in several cases (mild or major VCI, 

respectively, with newer terminology) due to SIVD and MID.  

Finally, another critical aspect is that most EEG studies in VCI patients included “mixed” 

diseases belong to cognitive impairment and dementia, including AD and other neurodegenerative 

diseases. Future EEG studies in VCI patients may include the evaluation of diagnostic biomarkers of 

AD neuropathology (i.e., amyloidosis or tauopathy in the brain) or −synucleinopathy. To date, 

cerebrospinal (CSF) analysis may allow to rule out the possible confounding effects of mixed 

neuropathology in future EEG studies focused on VCI patients.  

Keeping in mind the above issues in the interpretation of the literature results, the present 

expert panel did not evaluate EEG measures as a function of different diagnostic classes of VCI. 

Rather, we systematically used “mild and major VCI” in this report. When appropriate, we added 

between brackets the original diagnostic classes of VCI patients in the articles revised (e.g., VaD, 

MID, cSVD, etc.).    

 

Resting state EEG measures in VCI patients  

Visual analysis of resting state EEG (rsEEG) waveforms (12 studies reviewed) 

According to Jonkman (1989; 1997), the literature up to 1996 showed no consensus on the 

utility of visual analysis of rsEEG waveforms to distinguish ADD from MID patients. This position 

was based on earlier studies by Bucht et al. (1984), Erkinjuntti et al. (1987, 1988), Ettlin et al. (1989), 

Harrison et al. (1979), Sloan et al. (1995), Soininen et al. (1982), and Wagner et al. (1985). Those 

studies did not find important differences between the groups or in the classification figures based on 

abnormalities in rsEEG waveforms. The most common results were a slowing of the predominant 

background frequencies more frequent in ADD than in MID, and more usual focal disturbances in 

MID. Moreover, about other neurodegenerative conditions, also patients affected by Parkinson’s 

disease or parkinsonian disorders could show a significant slowing of the dominant EEG rhythm.  

However, the main conclusion was that EEG waveforms could be valuable in differentiation of 

dementia patients from age-matched CU participants, but differentiation between MID and ADD was 
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not reliable using rsEEG activity alone. Although visual abnormalities in the EEG waveforms are not 

useful for separating dementia types, Gur et al. (1994) showed that non-demented patients with first-

ever ischemic stroke and abnormal EEG waveforms at baseline had 2.6 times more risk of developing 

dementia at two years than those with normal EEG activity.  

Afterward, Gawel et al. (2009, 2007) showed that visual EEG analysis was not able to 

differentiate major VCI (probable subcortical VaD) from age-matched CU individuals. Finally, 

Liedorp et al. (2009) performed a large retrospective study in more than one-thousand patients with 

cognitive disorders. They reported differences in patterns of rsEEG waveforms among several types 

of clinical diagnoses through an elaborate combination of focal abnormalities such as slow wave 

activity, epileptiform discharges, and diffuse abnormalities, such as background activity below 8 Hz, 

spatially widespread delta or theta rhythms, and diminished reactivity of posterior alpha rhythms 

during the eyes opening. Results showed that the co-occurrence of both focal and diffuse 

abnormalities in different periods of rsEEG waveforms was associated with an increased prevalence 

of all types of dementia due to VCI, dementia with Lewy Bodies (DLB), and ADD; however, only 

diffuse disturbances were associated with ADD (Liedorp et al., 2009).  

Keeping in mind the above data and methodological limitations about the heterogeneity of 

vascular lesions and lack of diagnostic biomarkers of mixed neurodegenerative diseases in the VCI 

cohorts considered, visual analysis of rsEEG waveforms cannot be recommended as a main measure 

for clinical trials in VCI patients. This conclusion may be revised in future studies using a 

combination of neuroimaging evidence of VCI and (i) high-resolution EEG electrode montages 

(Seeck et al., 2017), (ii) advanced scoring systems for EEG waveforms (Beniczky et al., 2017) and 

(iii) EEG topographic mapping.  

 

Quantitative spatial and frequency analysis of rsEEG rhythms (51 studies reviewed) 

Most of the earlier rsEEG studies in VCI patients used measures of EEG power density 

computed by well-known standard fast Fourier transform (Babiloni et al., 2020a). Compared with 

age-matched CU persons as a control group, major VCI patients showed the following abnormalities 

of EEG power density: (i) slowing in frequency of the peak posterior alpha frequency, (ii) a reduction 

in power density of dominant occipital alpha rhythms, (iii) an increase in power density of fronto-

central alpha rhythms (i.e., the component in the alpha range of sensorimotor mu rhythms, Crone et 

al., 1999), and (iv) a topographically widespread increase in power density of theta and delta rhythms 

(d’Onofrio et al., 1996; Erkinjuntti et al., 1988; Moretti et al., 2004, 2012; Neto et al., 2015; Saletu et 

al., 1991, 1992; Signorino et al., 1995, 1996; Sheorajpanday et al., 2013; Sloan et al., 1994; Wu et 

al.,2014). Szelies et al. (1999) showed that delta and theta power were inversely, and alpha power 
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was positively correlated with glucose metabolism in major VCI patients. In some studies, major VCI 

(MID and cSVD) patients also showed a decrease in beta power density associated with the above 

changes in delta, theta, and alpha power density (Holschneider and Leuchter, 1995; Martín-Loeches 

et al., 1991; Neto et al., 2015; Saletu et al., 1991; van Straaten et al., 2012). Partanen and colleagues 

(1997) reported reduced alpha amplitude ratio between eyes closed and eyes open condition in major 

VCI patients as compared to age-matched CU persons. Loring et al. (1985) reported a decrease in 40 

Hz activity at rest in major VCI (MID) patients compared to age-matched CU persons, whereas Lv 

et al. (2020) showed an increase of power of gamma for the same comparison.  

Compared with patients with other dementing disorders as a control group, VCI patients 

showed specific abnormalities in rsEEG measures. In this sense, Martin-Loeches et al. (1991) showed 

a significantly higher power for delta and theta frequency bands in ADD compared to MID patients 

during eyes open, especially over the central-parietal and occipital regions bilaterally. In addition, 

Saletu et al. (1992, 1991) found less beta activity over frontal areas in MID than in ADD patients. 

Moreover, MID patients revealed an increased in power asymmetry in the delta/theta range over the 

frontal regions, in the alpha range over the parietal region and in the beta range fronto-polarly (Saletu 

et al., 1992). Furthermore, Moretti et al. (2004) revealed that as compared to ADD patients, major 

VCI patients exhibited “slowing” in frequency of the power density peak in the alpha range and 

globally higher theta power density. In the same vein, Gawel et al. (2009, 2007) reported that the 

alpha/delta plus theta power density ratio, and the global rsEEG mean frequency, were higher in 

major VCI patients compared with an ADD group. Moreover, distributed theta cortical source 

activations were abnormally greater in major VCI patients but not mild ADD patients (Babiloni et 

al., 2004a). In comparison to control stroke patients who had completely recovered from transient 

ischemic attacks, Sheorajpanday et al. (2013) reported that mild VCI patients were characterized by 

a decrease in widespread alpha (including sensorimotor and visual-spatial components) and beta 

source activations, while delta sources increased in activation in comparison to amnesic MCI patients 

possibly suffering from AD.  

Drug effects on the EEG (Pharmaco-EEG) of VCI patients were also studied. Saletu et al. 

(1992) studied the effect of denbufylline on both ADD and MID patients, showing in both groups a 

significant increase of fast alpha activity and alpha adjacent beta activity over the right central region, 

as well as over the left occipito-temporal area as compared to placebo-treated ones. Saletu et al. (1995) 

also showed positive effects on EEG in MID patients treated with nicergoline, showing a significant 

decrease in delta and theta, and an increase in alpha 2 and beta activity. Moreover, these positive 

effects of nicergoline on the EEG of MID patients were positively correlated with a clinical 

improvement (Saletu et al., 1997). In two experiments, Muresanu et al. (2008, 2010) showed that 
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cognitive deficits (ADAScog score) of major VCI patients were positively correlated with delta-theta 

power and negatively correlated with alpha power. Furthermore, cerebrolysin treatment improved 

cognitive status, reduced delta power, and increased alpha activity (Muresanu et al., 2008) in major 

VCI patients. These authors also reported that positive effect of cerebrolysin treatment lasted at least 

12 weeks after treatment (Muresanu et al., 2010). The positive effect of galantamine treatment was 

reported by Sorokina et. al. (2007) since after treatment slow-wave power decreased and alpha power 

increased.  

Complexity measures of the rsEEG rhythms were derived by information theory or nonlinear 

dynamical theory to account for the brain as a system characterized by complex spatiotemporal 

dynamics of neural networks (Gao et al., 2011). Kim et al. (2000) employed a test of Wackermann’s 

global Ω complexity and found decreased complexity in major VCI patients compared with age-

matched CU persons.  Using the nonlinear dynamical measures including dimensional complexity 

and Lyapunov exponents, Jeong et al. (2001) found that the values of the complexity measures in 

rsEEGs were pathologically increased in several electrodes of major VCI patients, whereas the 

complexity measure values in most electrodes were decreased in ADD patients. Furthermore, most 

of the VCI patients showed an uneven distribution of the complexity values in rsEEG rhythms over 

widespread scalp regions compared with ADD patients and age-matched CU individuals. This result 

suggests that different patterns of EEG complexity measures across the scalp regions between VCI 

and ADD patients can be a potentially useful indicator for the diagnosis of VCI and ADD.  

Previous rsEEG studies in VCI patients have used heterogeneous methodologies to measure 

interrelatedness of rsEEG rhythms between electrode pairs. Although some studies have failed to 

find differences between ADD and major VCI patients in spectral coherence measures (Sloan et al., 

1994), Leuchter et al. (1994b, 1992, 1987) reported that major VCI (MID) patients were characterized 

by abnormally low rsEEG spectral coherence (i.e., the most popular linear measure of such 

interrelated rsEEG rhythms, typically derived by FFT) at a large frequency range over Rolandic areas, 

whereas a similar reduction was observed in ADD patients between anterior and posterior scalp areas 

overlying long cortico-cortical neural fibers. Leuchter and colleagues interpreted those findings as 

indicating a neocortical “disconnection syndrome” in ADD patients in which there may be a loss of 

cortico-cortical tracts. In contrast major VCI patients may be affected by impairment of broad 

complex networks of cortico-subcortical and cortico-cortical fibers, especially vulnerable to 

widespread subcortical vascular damage as that revealed by periventricular WMH (Leuchter et al., 

1994a, 1992). This interpretation agrees with a study (Babiloni et al., 2004b) showing that the most 

distinguishing feature in ADD patients with respect to major VCI (VaD) patients was a more 

prominent reduction of interrelatedness of rsEEG rhythms as revealed by synchronization likelihood 
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between fronto-parietal electrodes at low frequency alpha rhythms (a measure sensitive to both linear 

and nonlinear interrelatedness of rsEEG activity). In the same vein, Babiloni et al. (2008a, 2008b) 

investigated rsEEG measures in two groups of ADMCI patients (matched as cognitive deficits) with 

high versus low cerebrovascular disease load as revealed by WMH. As compared with age-matched 

CU persons, ADMCI group with low and high WMH load showed lower activity of posterior alpha 

sources and reduced parietal-to-fronto directional interrelatedness of rsEEG rhythms as revealed by 

directed transfer function (a multivariate measure derived from Granger causality sensitive to linear 

directional interrelatedness of rsEEG activity) between electrode pairs for theta, alpha, and beta 

rhythms (Babiloni et al., 2008a, b). Furthermore, in relation to the ADMCI group with low WMH 

load, those with high WMH load showed greater activity of posterior alpha sources (Babiloni et al., 

2008a) and higher parietal-to-fronto directional interrelatedness  of rsEEG rhythms as revealed by 

directed transfer function between those electrode pairs and frequencies (Babiloni et al., 2008b), 

thus suggesting a greater sensitivity of those rsEEG features to AD neurodegeneration than 

cerebrovascular brain neuropathologies in the explanation of cognitive deficits in MCI patients.  

Van Straaten et al. (2015) applied techniques for analysis of the directionality of 

interrelatedness of rsEEG rhythms between electrode pairs. They found clear phase gradients from 

anterior to posterior electrodes in all rsEEG frequency bands except in the delta band in the age-

matched CU group whereas this pattern was significantly different without a clear direction in the 

group of patients with major VCI (van Straaten et al., 2015).   

It should be noted that some negative results have been reported. van Straaten et al. (2015) 

found no differences between major VCI patients and age-matched CU persons in the interrelatedness 

of rsEEG rhythms between electrode pairs as revealed the Phase Lag Index and directed Phase Lag 

Index (measures sensitive to nonzero lag phase interrelatedness of rsEEG activity). Concerning the 

specificity of EEG interrelatedness measures, Sloan et al. (1994) showed no significant differences 

in rsEEG spectral coherence between ADD vs. major VCI (MID) patients with reduced regional 

cortical blood flow. Lv et al. (2020) reported decreased gamma-band connectivity in mild major VCI 

group compared with an age-matched CU group. 

Concerning the specificity of rsEEG measures of VCI, several correlation studies showed 

encouraging associations between rsEEG measures and both clinical features and neuroimaging 

markers (i.e., WMH) of cerebrovascular lesions. Specifically, some studies showed an association 

between rsEEG measures and clinical features in VCI patients such as disease severity 

(Sheorajpanday et al., 2014), progression of symptomatology (Sheorajpanday et al., 2013, Shibata et 

al., 2014), and cognitive deficits (Gawel et al., 2007; Leuchter et al., 1993), in comparison with 

patients with other forms of neurocognitive disorders (Erkinjuntti et al., 1988; Moretti et al., 2012; 
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Neto et al., 2015). Moretti et al. (2007) in a study comparing a cohort of mild VCI patients in four 

sub-groups based on subcortical CVD as scored by the age-related white matter changes scale 

(ARWMC) showing that the severity of the cerebrovascular WMH load was related to increased 

global delta power density and decreased global alpha power density in mild VCI patients. Moreover, 

theta/alpha1 power ratio was the most sensitive EEG marker of cerebrovascular damage, showing a 

significant increase in moderate and severe cerebrovascular WMH load groups, as compared to mild 

and no damage groups, related with the individual extent of CVD. 

Interestingly, mild VCI (subcortical CVD) patients with executive function deficits exhibited 

lower fronto-parietal spectral coherence of rsEEG rhythms at low-frequencies when compared with 

age-matched CU persons and MCI patients with prodromal AD and episodic memory deficits 

(Moretti et al., 2008). 

Concerning the accuracy of rsEEG measures in the discrimination of VCI and ADD patients 

at an individual level, some earlier investigations produced promising positive findings.  

Leuchter and Walter (1989) showed that EEG topographical spectral ratios were useful at 

discriminating between ADD and major VCI (MID) patients. In a later study, Leuchter et al. (1992) 

reported an accuracy of 76% in the classification between ADD and major VCI (MID) individuals 

considering the ratio of the rsEEG spectral coherence between near and far electrode pairs. However, 

Leuchter et al. (1993) showed no large differences in the classification of ADD and major VCI (MID) 

for relative or absolute powers, slow-wave ratio, and alpha ratio. In comparisons between normal 

persons and patients, the proportion of participants correctly classified was high for the absolute 

power measures (77% of ADD, 81% of MID), and low for the alpha ratios (63% of ADD, 67% of 

MID). Seal et al. (1998) showed that alpha and beta relative power in central and parietal electrodes 

allowing a correct classification between ADD and major VCI between 85-90% for eyes closed, open 

and the subtraction of both.  Szelies et al. (1994) reported that the relative theta power density 

discriminated ADD and major VCI (MID) patients from age-matched CU persons, while the ratio 

between occipital and frontal alpha power density distinguished ADD from major VCI patients.  

These results were confirmed even at the level of MCI status. Sheorajpanday et al. (2014) 

showed an overall classification accuracy of 95% using verbal fluency and (delta + theta)/ (alpha 

+beta) power density ratio as independent diagnostic predictors in the discrimination of MCI patients 

possibly due to AD and mild VCI patients.  

The above results were confirmed using more sophisticated classifiers based on artificial 

intelligence methods including artificial neural networks and other leaning machines. Anderer et 

al. (1994) obtained a classification rate of 90% through an artificial neural network as a classifier in 

the discrimination between major VCI and ADD patients using the topographic distribution of 
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absolute delta and theta power density as input features. In the same line, Snaedal et al. (2012) 

developed a step-wise classification procedure using support vector machines as classifiers and 

several rsEEG spectral features (i.e., power density and coherence) in the discrimination between 

age-matched CU persons, MCI patients who remained stable for more than 24 months, and several 

subgroups of neurocognitive disorders, namely ADD, major VCI, DLB/Parkinson’s disease dementia 

(PDD), fronto-temporal dementia (FTD), and depression mimicking mild dementia. This procedure 

reached an accuracy of 75% for the classification of ADD and major VCI individuals.  

An important aspect of the basic clinical question in the current article is the value of rsEEG 

measures of disease progression in VCI patients. Unfortunately, only a few longitudinal studies 

have published findings on this matter. Therefore, most of the candidate rsEEG markers of disease 

progression to be tested in future studies may be suggested by cross-sectional studies with VCI 

patients with different severity of cognitive deficits (e.g., mild and major VCI). Concerning 

longitudinal studies, an early investigation followed age-matched CU persons, ADD, major VCI 

(MID), and functional psychiatric patients over a 2-year period (Sloan and Fenton, 1993)3. There was 

to no change in rsEEG power density over time in the major VCI group (Sloan and Fenton, 1993). 

Another early longitudinal study (Dunkin et al., 1994) showed that the rsEEG spectral coherence 

between electrode pairs overlying Rolandic areas, likely reflecting short cortico-cortical and cortico-

subcortical connections, was stable as a “trait” marker in both groups of ADD and major VCI (MID) 

patients. In contrast, the rsEEG spectral coherence between electrode pairs in the anteroposterior scalp 

axis, e.g.  possibly reflecting long cortico-cortical connections, exhibited stability in major VCI 

(MID) and age-matched CU persons at 1-year follow-up, while ADD patients showed great 

variability in rsEEG spectral coherence indicating both “state” and “trait” features (Dunkin et al., 

1994).  

Concerning cross-sectional studies, Gawel et al. (2007) developed an investigation comparing 

some rsEEG features in subgroups of ADD and VCI patients at mild, moderate, and severe stages of 

dementia. They reported that: (i) mean frequency of rsEEG activity in temporal electrodes was lower 

in ADD than VCI patients at mild and moderate stages of cognitive deficits; (ii) global alpha/delta 

power density ratio was lower in ADD than VCI patients with moderate dementia; and (iii) the 

alpha/delta plus theta power density ratio, and the mean frequencies of rsEEG activity from temporal 

electrodes were lower at the most severe stages of cognitive deficits in patients with both 

neurocognitive disorders. Finally, some studies have investigated the effect of different risk factors 

for the development of VCI, such as diabetes and coronary artery disease, on rsEEG differences 

 
3 Although the study of Sloan and Fenton (1993) did not fulfil one of the quality criteria by Jelic and Kowalski (2009), i.e., enough 

sample size, we decided to include it anyway because of the importance of longitudinal studies and the scarcity of this type of studies 

in the literature. 
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between individuals with and without cognitive impairment. Abo Hagar et al. (2018) have found 

higher alpha 2 power and decreased alpha 1 power in MCI patients with diabetes compared both with 

diabetes patients without MCI and age-matched CU persons. On the other hand, Tarasova et al., 

(2018) in a regression model reported that theta/alpha ratio, theta rhythm in the frontal and occipital 

areas of the left hemisphere in eyes closed, and alpha 2 power with eyes open in the frontal areas of 

the right hemisphere, were the predictors more associated with an increased risk for MCI in patients 

with coronary artery disease, sensitivity of the model being 90.5%. 

Table 1 reports the most relevant findings among those reported above, supporting the value 

of spectral rsEEG measures in the characterization of brain functions in VCI patients.  

Please insert Table 1 around here 

 

Event-related EEG measures in VCI patients 

Oddball event-related EEG potentials (ERPs) analyzed in the time domain (20 studies reviewed) 

In contrast to the many oddball ERP studies carried out in ADD and amnesic MCI patients 

(Güntekin and Başar; 2016; Yener and Başar, 2013), the literature is relatively scarce in VCI patients, 

however converging results have been obtained. Specifically, oddball ERP studies in major VCI 

patients reported similar results using different modalities (auditory, visual, or somatosensory) of 

oddball tasks (Chen et al., 1997; Hanafusa et al., 1991; Ito, 1994; Kedhr et al., 2009; Neshige et al., 

1988; Muscoso et al., 2006; Oishi et al., 1996; Sloan et al., 1994; Xu et al., 2012; Yamaguchi et al., 

2000). There was a significant delay of posterior P3b peak latency when detecting targets in major 

VCI patients compared with age-matched CU persons. Other oddball ERP studies showed effects 

also in posterior P3b peak amplitude (Ito, 1994; Kedhr et al., 2009; Xu et al., 2012) or peak-to-peak 

amplitude of N2 and P3b components (van Harten et al., 2006). Moreover, some ERP studies have 

found a delayed N2 peak preceding the posterior P3b (Kedhr et al., 2009; Neshige et al., 1988; van 

Harten et al., 2006), and even peak delays in more exogenous components such as N1 and P2 (Kedhr 

et al.,2009).  

It is an open question if the above abnormalities in peak latency and/or amplitude of oddball 

ERP components in VCI patients may be disease specific, as similar oddball ERP findings were 

reported in other types of neurocognitive disorders (e.g., ADD patients; Bonanni et al, 2010; Onofrj 

et al., 2003; Polich and Corey-Bloom, 2005). In favor of the specificity of the oddball ERP effects, 

Muscoso et al. (2006) reported that major VCI patients were characterized by a selectively prolonged 

auditory P3b compared with changes in latency in many oddball ERP components in ADD patients. 

The P3b peak latency showed 59% sensitivity and 93% specificity in the discrimination of major VCI 
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patients versus age-matched CU persons, while P2 peak latency reached even better discriminant 

values, namely 79% sensitivity and 98% specificity (Muscoso et al., 2006). 

In favor of some specificity of the above oddball ERP components, Podemski et al. (2008) 

showed that mild VCI patients with leukoaraiosis and cortical atrophy had longer N2 and P3b peak 

latencies in relation to cognitive deficits compared with MCI patients with cortical atrophy only. 

Similarly, Jiang et al. (2014, 2013) showed significantly longer auditory P3b peak latency in mild 

VCI patients in relation to frontotemporal lesions and leukoaraiosis, as compared with age-matched 

CU persons and patients who had suffered from stroke but without any cognitive impairment. This 

prolonged P3b latency was even higher for mild VCI patients with hyper-homocysteinemia (Jiang et 

al., 2014). Finally, Yamaguchi et al. (2000) showed that the auditory P3a peak latency for rare 

distracters was longer and the amplitude lower in major VCI (VaD) patients than control ADD and 

age-matched CU groups. Furthermore, the scalp topography of the P3a peak was also different in the 

three groups; its maximum amplitude was frontal in age-matched CU persons, central in ADD 

patients, and parietal in major VCI patients (Yamaguchi et al., 2000).  

An auditory deviant-standard-reverse oddball paradigm to elicit the mismatch negativity 

(MMN) was used by Jiang et al. (2017) to compare mild VCI patients, mild ADD patients and age-

matched CU persons. The MMN reflect an automatic detection mechanism at the pre-attentive stages 

of information processing. The results showed a significant decrease of the mean MMN amplitude 

between both patients’ groups and age-matched CU persons, and the MMN peak latency in mild VCI 

patients was significantly shorter than in age-matched CU persons and ADD patients. However, no 

differences between prodromal VCI and ADD patients were found. 

Regarding pharmaco-EEG studies using oddball paradigm, Saletu et al. (1995, 1997) 

demonstrated a significantly shortened P300 latency under nicergoline treatment in both ADD and 

MID patients. Paci et al. (2006) also showed a reduction of P300 latency in major VCI patients after 

one month of treatment with donepezil. Moreover, Liu et al. (2016) reported the same result plus 

increased P300 amplitude in major VCI patients after treatment with donepezil and acupuncture. 

The studies regarding the relation between ERPs and risk factors for VCI are scarce. In this 

vein, Mecklinger et al. (2006) examined the relationship between the integrity of cerebrovascular 

microcirculation and ERPs in a nonclinical group of participants with arterial hypertension. The 

authors reported that latencies of the P3a and the P300 showed a reliable correlation with the measures 

of vascular pathology. 

The application of nonlinear measures for analyzing oddball ERPs is limited. Xu et al. (2012) 

applied complexity measures of approximate entropy in the analysis of visual oddball ERPs in major 

VCI (VaD) patients versus elderly and young CU persons. The major VCI patients showed greater 
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values of approximate entropy (as a measure of signal complexity) than those seen in age-matched 

CU persons.  

Overall, the most consistent findings were longer N2 and posterior P3b peak latency during 

the detection of auditory oddball targets in major VCI patients (Chen et al., 1997; Hanafusa et al., 

1991; Kedhr et al., 2009; Neshige et al., 1988; Muscoso et al., 2006; Oishi et al., 1996; Sloan et al., 

1994; Xu et al., 2012; Yamaguchi et al., 2000). 

 

Oddball event-related EEG measures analyzed in the frequency domain (6 studies reviewed) 

Few studies in VCI patients have analyzed oddball event-related EEG data in the frequency 

domain. Lou et al. (2011) used novel multichannel linear descriptors of EEG oscillations in major 

VCI patients involved in the detection of oddball targets. As compared to age-matched CU persons, 

major VCI patients showed greater spatial complexity and lower field strength in event-related EEG 

oscillations at delta frequencies, thus suggesting the involvement of more cortical areas during task 

performance (Lou et al., 2011). In another study, Xu et al. (2011) reported a decrease in delta power 

density (i.e., ERS) at frontal, central, and parietal electrodes during the detection of oddball targets in 

major VCI patients compared with age-matched CU persons. Central and parietal delta ERS was also 

lower in CU elderly as compared with young persons, thus suggesting some specificity for the effect 

in frontal areas in major VCI patients (Xu et al., 2011). However, it should be considered that similar 

changes in delta rhythms during the detection of oddball targets have been repeatedly reported in 

patients with ADD, AD-MCI, PDD and other brain disorders (Başar et al., 2016; Başar and Güntekin, 

2008; Güntekin and Başar, 2016), thus hinting that different neuropathological substrates may affect 

neurophysiological oscillatory mechanisms underpinning oddball event-related EEG activity at delta 

frequencies.  

Reports in VCI patients investigating the interrelatedness of oddball event-related EEG 

rhythms between electrode pairs are also quite limited. Wang et al. (2014) showed that compared 

with healthy persons, major VCI patients were characterized by decreased strength of information 

flow measures in oddball EEG activity, through directed transfer function from parietal to anterior 

electrodes at delta, theta, and alpha bands. Furthermore, the directed transfer function showed that 

those major VCI patients were also characterized by reduced inter-hemispheric interrelatedness of 

delta and theta rhythms as well as reduced interrelatedness of delta rhythms from parietal to anterior 

electrodes during the pre-stimulus period (Xu et al., 2015). In parallel, interrelatedness of EEG 

rhythms increased in both pre-stimulus and post-stimulus periods, as a possible “compensatory” 

function (Xu et al., 2015). Those EEG data were also used as an input to a topological graph analysis 

of cortical neural networks underpinning oddball target detections (Wang et al., 2016). Graph indices 
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showed that compared with healthy persons, the major VCI patients were characterized by weakened 

topological patterns of outgoing information flow (i.e., an out-degree index) estimated from EEG 

rhythms recorded at parietal electrodes, with this region losing its “hub” status in cortical neural 

networks in relation to cerebrovascular lesions (Wang et al., 2016).  

Noteworthy, the studies mentioned above computed interrelatedness of rsEEG activity at 

electrode pairs, so any explanation at underlying cortical areas should be taken with extreme caution 

due to head volume conduction effects.  

Finally, Wang et al. (2019) studied the same measure, interregional directed connectivity 

derived from directed transfer function, to differentiate major VCI patients from age-matched CU 

persons. They used three different machine learning methods, including linear discriminant analysis, 

error back-propagation neural networks, and support vector machine. Those authors reported that 

major VCI patients could be identified from healthy persons using error back-propagation and support 

vector machine classifiers. Furthermore, they found that combining support vector machine with 

feature choice by Fisher score, the accuracy reached 86.11%, sensitivity 86.67 % and specificity 

85.71%.  

 

Non-oddball event-related EEG measures (12 studies reviewed) 

The presence of cognitive deficits in VCI patients has mainly motivated the use of “cognitive” 

oddball paradigms, but a few non-oddball EP-ERP and frequency domain studies were published. 

Loring et al. (1985) compared the 40 Hz activity (gamma band) among ADD patients, major VCI 

(MID) patients and age-matched CU persons in both a verbal and a visual-spatial cognitive task. 

Despite ADD patients showing less 40 Hz activity under the two cognitive tasks when compared to 

CU persons, MID patients showed a decrease in 40 Hz activity just under the verbal task. In addition, 

MID patients showed more 40 Hz activity than ADD patients in the two conditions. In the same line 

Seal et al. (1998) aimed to discriminate between ADD and major VCI patients based on spectral 

power on two active conditions, an odor detection task, and a subtraction task. They used a 

discriminate function analysis and reported a 95% correct classification for both ADD and VCI 

patients using a combination of delta, theta, alpha and beta bands relative power during the odor 

detection task, and 91% for the subtraction task.  

Few works have studied the evoked potentials in the auditory, visual, and somatosensory 

modalities in vascular cognitive literature. In this vein, Tachibana et al. (1989) reported differences 

between major VCI (MID) patients and age-matched CU persons in different components of the 

brainstem auditory evoked potentials (BAEPs). MID patients showed significant prolonged inter-

peak latencies between waves I and V compared to normal persons, but not differences between MID 
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and ADD patients. Regarding visual evoked potentials (VEPs), Sloan et al. (1994) performed visual 

flash and pattern reversal recordings and failed to find any difference among major VCI (MID) and 

ADD. However, using a simple visual checkerboard paradigm, Rosengarten et al. (2007) showed a 

reduction of N75-P100 responses in major VCI patients as compared to ADD and age-matched CU 

persons. Interestingly, Huneau et al. (2018) used a flickering checkerboard stimulation to compare 

VEPs in preclinical VCI patients (asymptomatic CADASIL) and age-matched CU persons and did 

not find any significant difference at this preclinical stage.  

More prolific has been the study of somatosensory evoked potentials (SEPs). Kato et al. 

(1990) comparing major VCI (MID) patients, patients with multiple infarcts without dementia, and 

age-matched CU persons, and found a prolongation of central conduction time (CCT) measured by 

median nerve SEPs in MID patients compared with both groups. Later, Ito et al. (1994) studied SEPs 

in major VCI patients compared with patients with other neurocognitive disorders. They also reported 

prolonged CCT (from N13 peak to N20 peak) and delayed N20, N140, and P200 peak latencies in 

major VCI patients compared with patients of the ADD and PDD groups. Comparing major VCI 

(both cortical and subcortical) with different severity levels and healthy persons, Tsiptios et al. (2003) 

reported a latency delay in N13, a decreased amplitude in N19 and P27, and a prolongation of N11-

P27 conduction time in severely demented patients in comparison to age-matched CU persons. 

However, mild VCI patients did not differ from the other groups of persons in any one of the 

measurements. Paradowski et al. (2007) also showed prolonged latencies of N13 responses in major 

VCI patients compared with an age-matched CU group. Finally, Polak et al. (2009) measuring the 

vagus somatosensory evoked potentials did not find any difference between major VCI patients and 

age-matched CU persons, contrary to the results for ADD patients. 

 Two articles have studied ERPs in cognitive tasks other than oddball paradigm in VCI 

patients. Wranek and Ladurner (1993) analyzed the P300 component in a size discrimination task in 

major VCI patients and an age-matched CU group. Although the latency of P300 was longer in VCI 

patients, the repetition of the task lead to a learning effect in both groups reflected by a significant 

decrease in P300 latency. Using a memory workload task, Beuzeron-Mangina et al. (2009) reported 

a delay in the latency of a P300-like component (P450) over pre-frontal and frontal regions in major 

VCI patients compared to age-matched CU participants, but not differences between VCI and ADD 

patients. However, the amplitude of P450 was larger for ADD than for VCI and age-matched CU 

group especially at posterior areas, and no differences were found between VCI patients and age-

matched CU persons.  
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Table 2 reports the most relevant findings among those reported above, supporting the value 

of event-related EEG studies, especially those with oddball paradigms, in understanding brain 

dysfunctions underpinning cognitive deficits in VCI patients.  

Please insert Table 2 around here 

 

NEUROPATHOPHYSIOLOGICAL BASIS OF EEG MEASURES IN VCI PATIENTS 

In our review of the literature, major VCI patients with different vascular lesions showed the 

most consistent abnormalities in rsEEG rhythms at delta-theta and alpha bands as well as in the 

prolongation of N2 and posterior P3b peak latencies during the detection of oddball auditory targets 

(Tables 1 and 2). These abnormalities may reflect, at least in part, the effect of cortical and subcortical 

vascular lesions on distributed neural networks involved in the generation of cortical EEG activity. 

Those networks may be formed by basal forebrain, basal ganglia, and bidirectional thalamocortical 

neurophysiological circuits (Crunelli et al., 2015; Dey et al., 2016; Hughes and Crunelli, 2005), with 

a special role of thalamocortical functional connectivity during active event-related information 

processing accompanying ERPs (Pfurtscheller and Lopes da Silva, 1999). In this framework, the 

importance of thalamocortical functional connectivity is confirmed by converging evidence of 

prolonged central conduction time and delayed short-term EPs in VCI patients as compared to those 

with other neurocognitive disorders (Ito, 1994; Rosengarten et al., 2007). 

More specifically, cerebrovascular lesions in VCI patients may affect transmission of action 

potentials in subcortical white matter bundles connecting the mentioned cerebral circuits (with an 

emphasis on those between thalamus and cerebral cortex), possibly inducing delays in that 

neurotransmission with the following sequential impact: (i) abnormal timing of synchronization and 

desynchronization of neural activity, (ii) prolonged and less effective temporal summation of post-

synaptic potentials in cortical neural populations, and (iii) alteration in the time evolution of scalp-

recorded EEG activity at several frequencies (Crunelli et al., 2015; Dey et al., 2016; Hughes and 

Crunelli, 2005; Gawel et al., 2007; Pfurtscheller and Lopes da Silva; 1999). As a result, such an 

abnormal (de)synchronization of cortical neural activity in VCI patients may explain the increase in 

the peak latencies of EPs and oddball ERPs (Mecklinger et al., 2006; van Harten et al., 2006), the 

event-related reduction in delta and theta responses reported in several studies in VCI patients (Xu et 

al., 2011; Wang et al., 2014), as well abnormal increase of rsEEG delta and theta rhythms and a 

decrease or slowing of alpha rhythms underpinning vigilance as a pillar for cognitive processes such 

as attention, executive functions, and others (Tsuno et al., 2004; Walker et al., 2000).  

Based on in-vivo intracerebral EEG recordings and pharmacological manipulations in in-vitro 

electrophysiological recordings in rodent brain neurons, this derangement of neural synchronization 
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and connectivity may involve: (i) glutamatergic and cholinergic neurons, (ii) thalamocortical high-

threshold, GABAergic interneurons, (iii) thalamocortical relay-mode, and (iv) cortical pyramidal 

neurons (Crunelli et al., 2015; Dey et al., 2016; Hughes and Crunelli, 2005; Gawel et al., 2007).  

Of note, a previous study evaluated the changes of EEG in the vascular damage of the 

cholinergic system (Moretti et al., 2008) correlating the brain rhythmicity with the cerebrovascular 

damage of long-range (capsular tract) and short-range (medial and perisylvian tracts) cholinergic 

pathways in ninety-four patients with mild cognitive impairment. Results show different brain 

oscillations changes due to the cholinergic pathway involved. A significant increase of delta and theta 

power band was found in patients with the highest total cholinergic burden as well as in patients with 

highest capsular pathway damage; total load of cholinergic damage was also associated with 

decreased gamma power band. Alpha frequency was differentially affected: decrease of alpha3 power 

band was associated with the greatest damage of the capsular pathway whereas increase of alpha3 

power band was associated with the greatest damage of the perisylvian pathway. 

 

RECOMMENDATIONS 

In this article, a multidisciplinary panel of experts reviewed the field literature and reached 

consensus about the EEG measures more consistently found as abnormal in VCI patients when 

compared to cognitively healthy persons. These measures were obtained in major VCI patients tested 

in two main experimental conditions. In the first experimental condition (i.e., eyes-closed resting 

state), participants had to maintain quiet vigilance for few minutes, while in the second experimental 

condition they had to respond to rare auditory target stimuli and ignore frequent auditory stimuli 

(auditory “oddball” paradigm), namely a cognitive task based on cognitive processes including 

conscious attention and short-term memory.  

In the eyes-closed resting state condition, major VCI patients showed reduced amplitude of 

prominent alpha (8-12 Hz) rhythms in posterior regions and a widespread increase in the amplitude 

of delta (< 4 Hz) and theta (4-8 Hz) rhythms, associated with reduced interrelatedness of those 

rhythms at electrode pairs. These EEG measures of interest were able to classify major VCI and CU 

persons with a moderate discriminant accuracy > 80%. These EEG measures were those receiving 

the major number of converging experimental confirmations (Figure 3). 

Please insert Figure 3 around here 

 

In auditory “oddball” paradigms, major VCI patients showed delayed N2/P3b peak latencies 

during the detection of target stimuli (Figure 4). 

Please insert Figure 4 around here 
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 In the reviewed clinical trials, those EEG measure did not show specific relationships with 

cerebrovascular lesions in individual major VCI patients. Therefore, they should not be used for 

diagnostic purposes in VCI patients. In the instrumental assessment of VCI patients, neuroimaging 

biomarkers may supply more direct and objective measurements of cerebrovascular lesions (Adamis 

et al., 2005; Smith, 2005). 

The present multidisciplinary expert panel also reached consensus about the recommendations 

regarding the use of the EEG measures more consistently found as abnormal in major VCI patients.   

For heuristic purposes, those measures may be used to better understand the relationships 

between (i) the etiology, localization, and extension of the cerebrovascular lesions in the brain and 

(ii) the topographical, frequency, and/or latency features of the EEG measures obtained in major VCI 

patients. 

For future clinical trials, those measures may be tested as prognostic biomarkers and 

endpoints of pharmacological and non-pharmacological (e.g., noninvasive transcranial brain 

electric or magnetic stimulations) interventions targeting brain excitability. Indeed, taking equal the 

diagnosis of major VCI based on clinical and neuroimaging markers, major VCI patients with the 

greatest alterations of those EEG measures may present the fastest clinical decline over time. 

Furthermore, the major VCI patients with the smallest alterations of those EEG measures (then most 

preserved neurophysiological systems”) may present the greatest beneficial effects of interventions 

targeting brain excitability. 

The present multidisciplinary expert panel recommend international experimental initiatives 

aimed to (i) design and carry out further prospective cross-validation studies and (ii) cross-validate 

the proposed use of the EEG measures more consistently found as abnormal in major VCI patients at 

both group and individual levels. On the one hand, those studies at the group level may relate the 

EEG measures of interest to (i) qualified markers of cerebrovascular lesions derived from in-vivo 

neuroimaging and post-mortem neuropathology for heuristic purposes and (ii) the effect of 

interventions targeting brain excitability for clinical trials. On the other hand, those studies at the 

individual level may test prognostic value of the EEG measures of interest for clinical applications. 

Those future studies in major VCI patients may also explore further paradigms used to 

investigate neurophysiological mechanisms underlying sensory, motor, and cognitive (e.g., 

executive) functions such as recordings of steady-state evoked potentials accompanying serial 

sensory stimulations, “expectancy” contingent negative variations, movement-related potentials and 

sensorimotor mu rhythms, and potentials related to go/no-go decision making (Schomer and Lopes 

da Silva, 2017).   
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A limitation of the mentioned EEG measures of interest is that they were validated by a 

relatively low number of multi-centers, prospective, and longitudinal studies performed in major VCI 

patients. Therefore, future studies are needed to qualify EEG measures of disease progression in 

major VCI patients. Good examples of international initiatives for this purpose are PharmaCog 

(www.pharmacog.org) and ENIGMA (www.enigma.ini.usc.edu). A notable example in the field of 

neuroimaging is Alzheimer’s Disease Neuroimaging Initiative (ADNI, www.adni.loni.usc.edu). 

The present multidisciplinary panel of experts recommend future investments on the 

following promising research lines.  

Prospective population-based screening studies of EEG measures of interest in general aged 

people may be informed by genetics of VCI (O'Brien and Thomas, 2015; Schrijvers et al., 2012). 

Indeed, large-scale studies have established genetic vulnerability markers for VCI, for example the 

MTHFR vascular gene related to homocysteine metabolism. By screening prospective cohorts for 

genetic VCI liability, their resting state or oddball EEG measures of interest may be traced over long 

periods, the most sensitive of those EEG measures identified, and conversion into major VCI 

condition predicted for high genetic risk individuals. These investigations may be combined with 

large-scale genetic studies of the EEG parameters (Malone et al., 2014a, 2014b; Smit et al., 2018) 

and lifestyle/environment (UK Biobank) such as Cam-Can https://www.cam-can.org/). In those 

studies, a multimodal virtual brain bank may be updated over time (https://www.cam-

can.org/index.php?content=strategy) and may inform how disease progression can be slowed. 

Recent developments exploited EEG techniques for constraining generative brain network 

models that allow to infer the underlying neurophysiological processes in the healthy brain (Ritter et 

al.,2013, Becker et al.,2015, Schirner et al., 2019) and in diseases, i.e., utilization as mechanistic 

markers for diagnosis differentiation and disease trajectory prediction in encephalopathy (Symmonds 

et al., 2018) and different forms of dementing diseases (Solodkin et al., 2017; Stefanovski et al., 

2019). The consortium Virtual Brain Cloud (https://tvb.virtualbraincloud-2020.eu/tvb-cloud-

main.html) uses this brain network modeling approach in combination with data from several large-

scale cohorts (including the above mentioned) to further exploit noninvasive imaging measures like 

rsEEG with respect to their potential for dementia risk assessment and differentiation based on the 

underlying causal neurobiological processes. 

 

A THEORETICAL FRAMEWORK OF EEG MEASURES IN VCI PATIENTS  

In the view of the present panel of experts, the potential role of EEG measures as biomarkers 

in major VCI patients may be inspired by seminal publications of the International Working Group 

for New Research Criteria for the Diagnosis of Alzheimer’s Disease (IWG-2; Dubois et al., 2014) 

about:blank
about:blank
https://www.cam-can.org/
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and the Working Group of the National Institute on Aging - Alzheimer Association Research 

Framework (NIA-AA Research Framework, Jack et al., 2018).   

On the one hand, the IWG-2 suggested two classes of biomarkers for the assessment of ADD 

(Dubois et al., 2014), namely the “diagnostic” biomarkers (i.e., those measuring the 

pathophysiological hallmarks of the disease such as the cerebral amyloidosis and the amount of total 

or phospho-tau in the cerebrospinal fluid or directly within the brain by PET) and the “progression 

or topographical” biomarkers (i.e., those measuring progression of region-specific 

neurodegeneration with characteristic “AD-signatures”, such as FDG-PET and structural MRI). 

Furthermore, other promising candidates as progression biomarkers are currently under evaluation 

(i.e., diffusion tensor imaging and resting-state functional MRI).  

On the other hand, the Working Group of the NIA-AA Research Framework (Jack et al., 2018) 

suggested: (i) “diagnostic Alzheimer’s disease” biomarkers measuring cerebral amyloidosis (i.e., 

“A” biomarkers) and phospho-tau (i.e., “T” biomarkers) by CSF or PET techniques and (ii) 

“neurodegenerative/progression” biomarkers (i.e., “N” biomarkers) measuring total tau by CSF 

sampling, FDG-PET hypometabolism, and structural MRI markers of brain atrophy.   

Keeping in mind the above theoretical qualification of AD biomarkers, the present panel of 

experts posits the introduction of another class of biomarkers in the instrumental assessment of major 

VCI patients. These biomarkers may probe the brain vulnerability or resilience of subcortical and 

thalamocortical neural (de)synchronization mechanisms in relation to primary cerebrovascular 

lesions. These biomarkers would be represented by the rsEEG, EPs, and auditory oddball measures 

(time and frequency domains) consistently found as abnormal in major VCI patients in independent 

scientific studies, reviewed in the present article.  

Keeping in mind the “neurophysiological” meaning of the mentioned EEG biomarkers, the 

term “neural synchronization” biomarker may be used in the instrumental assessment of major VCI 

patients. These biomarkers would complement the standard neuroimaging and sonographic 

“diagnostic” and “topographical” biomarkers of primary vascular pathology (e.g., reactivity of the 

cerebral vasculature, O2-uptake capacity) and the routine assessment of clinical manifestations of the 

disease (Adamis et al., 2005; Smith, 2005).  

The present panel of experts posits that even with intrinsic low-moderate spatial resolution, 

those “neural synchronization” EEG biomarkers may significantly enrich the assessment of major 

VCI patients measuring an abnormal functional neural synchronization and connectivity in the brain 

regions affected by vascular neuropathology (Babiloni et al., 2008a, 2008b; Leuchter et al., 1992; 

Szelies et al., 1994; van Straaten et al., 2012, 2015). 
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Such a conceptual expansion of the biomarker panel for major VCI patients would be aligned 

with the effort to accomplish a systems-level integration of pathophysiological dynamics, from 

molecular pathways up to the downstream effect on large-scale brain networks, across a clinical 

continuum from resilience to functional failure and symptoms. Therefore, multimodal biomarkers for 

multidimensional information – including the EEG measures of interest recommended in the present 

article– could be integrated to identify clusters of major VCI patients sharing biological and 

neurophysiological features for precision medicine-oriented diagnostic and therapeutic approaches 

(Hampel et al., 2019a, b). 
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TABLE LEGENDS 

Table 1. Most relevant studies using resting state electroencephalographic (rsEEG) measures in 

patients with vascular contribution to cognitive impairment and dementia (VCI). 

 

Table 2. Most relevant studies using evoked potentials (EPs) and event-related potentials (ERPs) 

analyzed in time domain and derived measures of event-related EEG analyzed in frequency domain 

in patients with vascular contribution to cognitive impairment and dementia (VCI). 
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FIGURE LEGENDS 

Figure 1. The vascular cognitive impairment subtypes according to the Vascular Impairment of 

Cognition Classification Consensus Study (VICCCS-2) (changed from Skrobot et al., 2018). 

Abbreviations = VCI: vascular cognitive impairment or vascular contribution to cognitive impairment 

and dementia; VaMCI: vascular mild cognitive impairment; VaD: vascular dementia; AD: 

Alzheimer’s disease; DLB: dementia of Lewy bodies. 

 

Figure 2. Flow diagram of study selection followed in the review process. Abbreviations = VCI: 

vascular contribution to cognitive impairment and dementia; EEG: electroencephalography. 

 

Figure 3. An example of the decomposition of resting state eyes-closed (spontaneous) 

electroencephalographic (rsEEG) rhythms typically observed at delta (< 4 Hz), theta (4-7 Hz), alpha 

(8-12 Hz), and beta (13-30 Hz) frequencies in cognitively unimpaired adults. The illustrated rsEEG 

rhythms are produced by a digital filtering based on fast Fourier transform (FFT) of the recorded 

rsEEG activity. In these rsEEG rhythms, the dominant component is observed at alpha frequencies 

and posterior scalp areas, as a reflection of a widespread pattern of cortical neural inhibition due to 

the lack of significant visual, visuospatial, and somatomotor information processing. Indeed, resting 

state condition is characterized by a quiet and relaxed wakefulness in a subject at eyes closed kept in 

a silent environment. It is speculated that rsEEG rhythms may be generated at the cortical level as a 

reflection of neurophysiological oscillatory mechanisms of brain neural synchronization involving 

reticular ascending activating systems, reciprocal thalamocortical-corticothalamic, and cortico-

cortical systems. It is also speculated that in VCI patients, there are delays in neural transmission and 

abnormalities in functional connectivity in those systems. These abnormalities may induce a decrease 

in dominant alpha rhythms in posterior scalp areas and an increase in widespread delta and theta 

rhythms in VCI patients resting in quiet wakefulness. 

 

Figure 4. An example of auditory oddball event-related potentials (ERPs) typically observed in 

cognitively unimpaired adults. The illustrated oddball ERPs are produced averaging artifact-free EEG 

epochs related to auditory target stimuli followed by subject’s counting or hand motor responses. 

Those target stimuli (20% of probability to occur) are intermingled with frequent auditory stimuli to 

be ignored (80% of probability to occur). Normally, hundreds of auditory stimuli are delivered in this 

oddball paradigm, to enhance the signal-to-noise ERP responses. In these averaged ERPs, dominant 

components are negative ERPs peaking at about 200 ms after the target stimulus onset (N200). 

Afterward, there is a late positive component peaking at about 300 ms after the target stimulus onset 

(P300). It is speculated that rsEEG rhythms may be generated at the cortical level as a reflection of 

neurophysiological oscillatory mechanisms of brain neural synchronization involving reticular 

ascending activating systems and, mainly, thalamocortical and cortico-cortical systems. It is also 

speculated that in VCI patients, there are a variable delay stimulus-by-stimulus in neural transmission 

and abnormalities in those neural circuits, especially thalamocortical and cortico-cortical ones. In 

VCI patients, these abnormalities may induce a delay in the latency of N200 and P300 peaks. 
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Table 1 

 

 

 

 

 

  

EEG feature Sample comparisons EEG biomarkers Main findings Related references 

Synchronization VCI 

(MID/SIVD) 

vs age-

matched 

controls 

 Alpha frequency 

Delta, theta, alpha, beta, 

gamma power 

Delta and theta sources 

Slowing of alpha frequency                                                                      

Decrease in alpha, beta and gamma power 

Widespread increase in theta and delta power 

Decreased alpha amplitude ratio between 

eyes closed/eyes open 

 

D’Onofrio et al. (1996); Erkinjuntti et al. (1988); 

Holschneider and Leuchter, (1995); Martín-Loeches et al. 

(1991); Moretti et al. (2004, 2012); Neto et al. (2015); 

Muresanu et al (2008, 2010); Partanen et al. (1997); 

Saletu et al. (1991, 1992, 1995); Signorino et al. (1995, 

1996); Sheorajpanday et al. (2013); Sloan et al. (1994); 

Szelies et al. (1999); van Straaten et al. (2012); Wu et al. 

(2014) 

VCI (MID/SIVD) or 

VaMCI vs ADD 

Alpha frequency 

Delta, theta, alpha and beta 

power 

Theta sources 

Slowing of alpha frequency and higher EEG mean 

frequency Higher theta (eyes closed) and alpha 2 power 

Lower delta and theta (eyes open) power 

Less beta activity 

Increased in power asymmetry in delta/theta 

Widespread increase in theta power 

Higher alpha/delta plus theta power  

Higher ratio occipital/frontal alpha power 

Higher (delta + theta)/ (alpha +beta) ratio  

Babiloni et al. (2004a); Gawel et al. (2007, 2009); Martin-

Loeches et al. (1991);  Moretti et al., (2004); Saletu et al. 

(1991, 1992);  Sheorajpanday et al. (2014); Szelies  et al. 

(1994) 

Complexity VCI, vs ADD and age-

matched controls 

EEG dynamics complexity Increase of complexity of brain dynamics 

Decreased global Ω complexity (vs controls) 

Jeong et al. (2001); Kim et al. (2000) 

Connectivity VCI (MID) vs ADD 

and age-matched 

controls 

Alpha connectivity (SL), 

coherence, directed phase 

lag, gamma connectivity 

Decrease in coherence in Rolandic areas 

Higher fronto-parietal SL in alpha 1 band  

Reduction of anterior to posterior phase gradients in 

theta, alpha, and beta bands 

Decreased gamma-band connectivity (vs controls) 

Dunkin et al. (1994); Babiloni et al. (2004b); Leuchter et 

al. (1987, 1992, 1994a); Lv et al. (2020); van Straaten et 

al. (2015) 
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Table 2 

 

  

EEG feature Sample comparisons EEG biomarkers Main findings Related references 

EP/ERP 

synchronization 

VCI 

(MID/SIVD/VaMCI) 

vs age-matched 

controls 

P300 latency/amplitude 

N200 latency 

MMN amplitude and latency 

Sensory SEP/ERP latencies  

 

Latency prolongation of P300, N200 and or MMN 

Amplitude reduction of P300 and MMN 

Latency prolongation of N140 and P200 components of SERPs 

Latency prolongation of CCT (N20-N13), and N20 component of 

SSEP 
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