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ABSTRACT The gut microbiome is a well-recognized modulator of host immunity,
and its compositions differ between geographically separated human populations.
Systemic innate immune responses to microbial derivatives also differ between geo-
graphically distinct human populations. However, the potential role of the microbiome
in mediating geographically varied immune responses is unexplored. We here applied
16S amplicon sequencing to profile the stool microbiome and, in parallel, meas-
ured whole-blood innate immune cytokine responses to several pattern recognition
receptor (PRR) agonists among 2-year-old children across biogeographically diverse
settings. Microbiomes differed mainly between high- and low-resource environ-
ments and were not strongly associated with other demographic factors. We found
strong correlations between responses to Toll-like receptor 2 (TLR2) and relative
abundances of Bacteroides and Prevotella populations, shared among Canadian and
Ecuadorean children. Additional correlations between responses to TLR2 and bacte-
rial populations were specific to individual geographic cohorts. As a proof of con-
cept, we gavaged germfree mice with human donor stools and found murine sple-
nocyte responses to TLR stimulation were consistent with responses of the corresponding
human donor populations. This study identified differences in immune responses corre-
lating to gut microbiomes across biogeographically diverse settings and evaluated bio-
logical plausibility using a mouse model. This insight paves the way to guide optimiza-
tion of population-specific interventions aimed to improve child health outcomes.

IMPORTANCE Both the gut microbiome and innate immunity are known to differ
across biogeographically diverse human populations. The gut microbiome has been
shown to directly influence systemic immunity in animal models. With this, modula-
tion of the gut microbiome represents an attractive avenue to improve child health
outcomes associated with altered immunity using population-specific approaches.
However, there are very scarce data available to determine which members of the
gut microbiome are associated with specific immune responses and how these differ
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around the world, creating a substantial barrier to rationally designing such interven-
tions. This study addressed this knowledge gap by identifying relationships between dis-
tinct bacterial taxa and cytokine responses to specific microbial agonists across highly
diverse settings. Furthermore, we provide evidence that immunomodulatory effects of
region-specific stool microbiomes can be partially recapitulated in germfree mice. This is
an important contribution toward improving global child health by targeting the gut
microbiome.

KEYWORDS biogeography, gut microbiome, innate immunity

he gut microbiome is a well-recognized modulator of host systemic immunity

throughout life (1). Its compositions differ between geographically separated
human populations (2-4). Systemic innate immune responses to microbes are largely
driven by the stimulation of pattern recognition receptors (PRR), i.e., microbially derived
agonists, triggering production of a range of cytokines. These immune responses have
also been shown to differ between geographically distinct populations (5, 6). However,
the specific role of the microbiome composition and its function in mediating these dif-
fering immune responses across geographical regions remain unknown. Given the ability
of the host microbiome to modulate systemic innate immunity and the known geo-
graphical differences between both gut microbiomes and innate immune phenotypes,
what is missing is a mechanistic understanding of how the distinct microbiomes likely
contribute to immune differences. Robust correlations from human studies are therefore
needed to inform mechanistic work using animal models.

Previous studies have found associations between systemic immunity and host
microbiome within single cohorts, finding that relative abundance of microbial taxa or
their genes could be correlated with select cytokine responses to Toll-like receptor
(TLR) stimulation (7, 8). These studies relied on univariate statistics of relative abun-
dance data to find a small subset of microbiome-immune correlations. Components of
human microbiomes have also been shown to modulate immune phenotypes in vitro
(9). However, univariate statistical methods may often lead to spurious results, as the
independence assumption between predictor variables is not met. Furthermore, by
considering only one-to-one associations, univariate approaches test each operational
taxonomic unit (OTU) individually and disregard interactions or correlations among
OTUs, providing limited insight into the system (10).

Direct comparisons of innate immune responses across different locations are ham-
pered by the need to standardize and control all aspects of immune assessment to
avoid technical artifacts. We previously applied a rigorously standardized approach to
quantify cytokine responses to a panel of TLR agonists among 2-year-old children
recruited in Brussels (Belgium), Cape Town (South Africa), Quininde (Ecuador), and
Vancouver (Canada) (6). These four biogeographically distinct settings differ in many
ways that can potentially modulate both systemic immunity and the gut microbiome,
with resource availability, ancestry of the human populations, diet, climate, vaccination
schedules, and cultural practices being examples. Hence, these sites were chosen to
test the hypothesis that systemic innate immunity differs among diverse child popula-
tions. Recently, we found that differences in gut microbiomes and immune pheno-
types between HIV-exposed and healthy HIV-unexposed children were specific to each
cohort (11). Here, we extended this work by integrating the stool microbiomes of
healthy children measured via sequencing of the 16S rRNA genes (V6 region) to innate
immune responsiveness measured around the time of stool sample collection. This fur-
ther allowed us to test the hypothesis that regionally distinct gut microbiomes are
associated with differential development of systemic immunity. To do so, we employed
a sparse partial least squares (sPLS) integrative approach (12) to extract correlations
between the microbiome and immune phenotype. We also assessed causality, whether
a specific microbiome can drive the development of a particular immune phenotype,
via human fecal transplantation into germfree mice. Taken together, this study
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TABLE 1 Cohort characteristics of children included in immune or microbiome analysis

mBio’

Value or information

Characteristic? Belgium Canada Ecuador South Africa P value®
Child characteristics
n 21 33 43 21
Sex (n [%])
Female 1(4.8) 16 (48.5) 28 (65.1) 11(52.4) <0.001
Male 20 (95.2) 17 (51.5) 15 (34.9) 10 (47.6)
Missing (no.) 0 0 0 0
Delivery mode (n [%])
Caesarean 2(9.5) 16 (48.5) 9(20.9) 0(0.0) <0.001
Vaginal 19 (90.5) 17 (51.5) 34(79.1) 21(100.0)
Missing 0 0 0 0
Age (mo) (median [IQR]) 25.00 (21.00, 27.00) 18.00 (18.00, 20.00) 26.00 (25.00, 26.00) 24.00 (23.00, 24.00) <0.001
Missing (no.) 1 0 0 0
Gestational age (wks) (median [IQR]) 39 (38, 40) 39 (38, 40) 39 (38, 40) 38 (37, 40) 0.389
Missing (no.) 0 0 9 0
Birthweight (g) (median [IQR]) 3,095 (2,935, 3,480) 3,280 (3,062, 3,610) 3,250 (2,991, 3,647) 3,030 (2,740, 3,300) 0.092
Missing (no.) 3 0 17 0
WAZ (median [IQR]) 0.22 (—0.10, 1.63) 0.32(—0.30, 1.04) —0.37 (—0.98, 0.04) —0.46 (—1.16,0.07) <0.001
Missing (no.) 1 0 0 1
WLZ (median [IQR]) —0.04 (—1.07,0.81) 0.33(—0.33,0.80) 0.22 (—0.41,0.65) 0.06 (—0.56, 0.32) 0.448
Missing (no.) 1 0 0 1
HAZ (median [IQR]) 1.36 (0.59, 1.85) 0.27 (—0.50, 1.07) —1.01 (—=1.50, —0.30) —1.27 (—2.07, —0.03) <0.001
Missing (no.) 1 0 1 0
Maternal age (yrs) (median [IQRI) 33(28,36) 35(33,38) 26 (21, 30) 25(22,28) <0.001
Missing (no.) 0 0 0 6
Breastfeeding
Ever breast fed
Data collected No Yes Yes Yes
Yes (n [%]) NA® 33(100.0) 42 (100.0) 20(100.0)
Missing NA 0 1 1
Time since weaning (months)
Data collected No Yes Yes Yes
Yes (median [IQR]) NA 5(0,12) 13 (10, 16) 0.001
Missing NA 0 1 21
Breastfeeding duration
Data collected No Yes Yes No
Mo (median [IQR]) NA 14 (6, 18) 13 (10, 16) NA 0.872
Currently breastfeeding
Data collected No Yes No No
No (n [%]) NA 24(72.7) NA NA
Yes (n [%]) NA 9(27.3) NA NA

9WLZ, weight-for-length Z-score; WAZ, weight-for-age Z-score; HAZ, height-for-age Z-score.

bChi-square test for categorical variables, Kruskal-Wallis test for continuous variables with more than two classes, Wilcoxon rank-sum test for continuous variables with two

classes.
°NA, not applicable.

provided evidence that differences in systemic innate immunity across biogeographi-
cally diverse populations correlate with differences in the gut microbiome.

RESULTS

Cohort characteristics. Study participants were recruited between May 2011 and
January 2012. Cohort characteristics for the children included in the immune analysis
were previously described (6). Stool samples for microbiome analysis were collected
from a subset of these children, including 17 Belgian, 32 Canadian, 42 Ecuadorean, and
8 South African children. Blood samples were collected within 10 days of stool samples
(see Fig. S1 in the supplemental material). Baseline characteristics differed between the
two sites (Table 1). Notably, among the Belgians, only one of 17 subjects was female,
while sex was more balanced in the other regional cohorts. Belgians were almost exclu-
sively, and South Africans were exclusively, vaginally delivered, whereas Caesarean
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TABLE 2 Ethnic background of study participants included in either microbiome or immune analysis

mBio’

Belgium Canada Ecuador South Africa
Category Description No. (%) Description No. (%) Description No. (%) Description No. (%)
Ethnic African 6(28.6) Chinese 3(9.1) Latin American 43 (100) African 4(19.0)
background African/Arab 2(9.5) Filipino 1(3.0) Mixed race 16 (76.2)
Arab 7 (33.3) Latin American 3(9.1) White-Caucasian 1 (4.8)
Metis/White-Caucasian/Arab 1(4.8)  White-Caucasian 21 (63.6)
South Asian 1(4.8) White-Caucasian/Chinese 3(9.1)
White-Caucasian 1(4.8) White-Caucasian/Filipino 1(3.0)
White-Caucasian/Arab 1(4.8)  White-Caucasian/South Asian 1 (3.0)
Unknown 2(9.5)
Country of Belgium 13(61.9) Canada 33(100) Ecuador 43 (100) South Africa 21 (100)
birth Congo 2(9.5)
Germany 1(4.8)
Mauritania 1(4.8)
Morocco 3(14.3)
Uganda 1(4.8)

delivery was more common in the Canadian and Ecuadorean cohorts. Other differen-
ces included anthropometric measurements and the younger average age of recruited
Canadians (mean, 1.65 years). Ethnic heterogeneity also varied (Table 2). All children
were born and raised at the sites of sample collection, except for a subset of the
Belgian children (7%), who were born in African countries or, in one case, Germany.
Immune data for these children born outside Belgium were not available.

Child stool microbiome was strongly impacted by country of birth. The 165
amplicon libraries yielded a total of 4,030 OTUs after quality filtering and binning at a
97% similarity threshold. Sequencing depth did not differ significantly among cohorts
(data not shown).

(i) Alpha diversity. We first sought to understand whether there was a difference
in alpha diversity among the four cohorts by calculating the observed richness or the
Shannon index to estimate diversity. The Canadian children harbored significantly
fewer species than Ecuadorean children (Fig. 1A). Shannon diversity of fecal microbiota
did not differ among cohorts (Fig. 1B). Based on linear regression, host demographic
factors did not correlate with Shannon diversity across the four cohorts, but there were
some correlations within individual cohorts. Delivery mode correlated with diversity in
the Canadian cohort (see Fig. S2A). Maternal age correlated with diversity in
Ecuadorean and Canadian cohorts (Fig. S2B). Because Canadian mothers who deliv-
ered by Caesarean section (C-section) were older than those that delivered vaginally,
we used multiple linear regression, which showed that maternal age remained signif-
icantly associated with diversity, while the delivery mode did not. Interestingly,
maternal age was positively correlated with diversity in Ecuadoreans but negatively
correlated in Canadians. When data from both cohorts were combined, the younger
maternal age range of Ecuadoreans and older range of the Canadians revealed a sig-
nificant quadratic relationship (method; P < 0.05, R?=0.09), with both the youngest
and oldest mothers having children with lower diversity (Fig. S2C).

(ii) Beta diversity. We found that the microbiomes differed substantially for
Canadian versus Ecuadorian and South African populations (Fig. 1C). Of note, Belgian
microbiomes were distributed across both groups, with the Belgian African-born sub-
group (comprised of subjects born in different African countries) more often clustering
with South Africans and Ecuadorians (Fig. 1D).

Forward selection-based analysis to determine the contribution of demographic
variables (sex, delivery mode, gestational age, maternal age, and anthropometric meas-
urements) to the explanation of community composition resulted in cohort (country of
origin) as the sole variable of importance (adjusted R? = 0.11, P = 0.002), with no other
demographic variables contributing significantly to community composition. Because
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FIG 1 Alpha and beta diversity of child fecal microbiomes. Alpha diversity in cohorts from each
country determined using observed richness (A) or Shannon Diversity (B). Statistics: Kruskal-Wallis test
with Dunn’s posttest, P values adjusted with the Benjamini-Hochberg method. *, adjusted P < 0.05.
(C) Beta diversity based on nonmetric multidimensional scaling (NMDS) coded according to country
of residence. (D) Beta diversity based on NMDS with Belgian children coded according to country of
birth.

the effect of cohort could potentially mask effects of demographic variables within
each cohort, we performed distance-based redundancy analysis (dbRDA) and ordiR2step
for these variables in each cohort separately. We found that weight-for-length Z-score at
the time of sampling was significant in explaining community composition in Canadian
(adjusted R2 = 0.031, P = 0.031) and South African (adjusted R? = 0.17, P = 0.020) children.
No other host factors were significant for any other cohort. Thus, the demographic varia-
bles measured did not have major associations with microbiome composition.

(iii) Microbiome taxonomic composition. Taxonomic compositions of microbiomes
reflected commonly identified human taxa, with Prevotella, Bacteroides, Faecalibacterium,
Lachnospira, and Dialister being the top 5 most abundant genera (Fig. 2A). Most individuals
were dominated by either Prevotellaceae or Bacteroidaceae.

We tested for associations between abundances of individual OTUs and cohort
membership with the DESeq2 likelihood ratio test and found 442 OTUs differentially
abundant among the cohorts. These OTUs were ranked for their capacity to discrimi-
nate cohorts using partial least squares discriminant analysis (PLS-DA). The top 50
OTUs selected by PLS-DA discriminated Canadians and Belgian-born Belgians versus
Ecuadoreans, South Africans, and African-born Belgians (Fig. 2B). However, these 50
OTUs did not discriminate South Africans from Ecuadoreans or discriminate Belgians
from any other cohort. Selected OTUs enriched in the Ecuadorean and South African
clusters were almost exclusively members of Prevotella. A smaller subset of OTUs
enriched in the Canadian cluster included a diverse range of genera, mostly belonging
to the Firmicutes (including Ruminococcus, Clostridia, and unclassified Firmicutes).

January/February 2021 Volume 12 Issue 1 e03079-20

mBio’

mbio.asm.org 5

1sanb Aq Tz0z ‘Gz Arenuer uo /610 wse oiquy//:dny wody papeojumoq


https://mbio.asm.org
http://mbio.asm.org/

Amenyogbe et al.

A

Relative Abundance

Samples

AT

N O SR [ Cohort

)] G_Prevotella S_copri
G_Ruminococcus

P_Firmicutes
P_Firmicutes
K”Bacteria

C”Clostridia
G_Wolbachia

P_Firmicutes
_Dorea

G_Prevotella
G_Prevotella S_copri
G_Prevotella S_copri
G_Prevotella
G_Prevotella S_copri
G_Prevotella
G_Prevotella
G_Prevotella S_copri
G_Prevotella S”copri
G_Prevotella S_copri
G_Prevotella S”copri
G_Prevotella S”_copri
K Bacteria
G_Prevotella
G_Prevotella
G_Prevotella S_copri
G_Prevotella S_copri
G_Prevotella

F "Ruminococcaceae
G_Prevotella S_copri
G_Prevotella S”_copri
G_Prevotella
G_Prevotella S_copri
G_Prevotella S_copri
G_Prevotella S”_copri
G_Prevotella
G_Prevotella S_copri
G_Prevotella
G_Prevotella
G_Prevotella S_copri
G_Prevotella S_copri
G_Prevotella
G_Prevotella
G_Prevotella
G_Prevotella
G_Prevotella
G_Prevotella

F “Erysipelotrichaceae

G_Eubacterium S_dolichum
G_Eggerthella S_Tenta

G_Ruminococcus S_gnavus

Genus

G_Prevotella

B G_Bacteroides
G_Faecalibacterium

B G_Parabacteroides
G_Lachnospira

B G_Dialister
G_Salmonella

[ G_Succinivibrio
G_Klebsiella

B G_Roseburia

B other

[ |

Unknown

Cohort
15 BLG
gnavus

CAD
ECD
10 SAF

Family
F_Prevotellaceae
F_Lachnospiraceae

I F_Ruminococcaceae
0

5

K_Bacteria
P_Firmicutes
F_Erysipelotrichaceae
C_Clostridia
F_Coriobacteriaceae
F_Rickettsiaceae

Phylum
P_Bacteroidetes

. P_Firmicutes
P_Proteobacteria

P_Actinobacteria
K_Bacteria

FIG 2 Taxonomic compositions of child fecal microbiomes. (A) Top 10 most abundant genera in members of cohorts
from each country ordered by relative abundance of Bacteroides. (B) Heat map showing normalized abundance of the top
50 taxa differentially abundant across all cohorts determined via DESeq2 analysis (adjusted P < 0.01) and further selected
by multivariate PLS-DA. Hierarchal clustering of subjects according to abundance profiles of taxa (top) and of taxa
according to their abundance profiles across subjects (left).

Prevotella OTUs were very rare in Canadians, present at high abundances in only 3 of

32 children.
PRR ligand-specific responses associated with each cohort. Cytokine responses

to PRR stimulation were published previously (6), most notably showing that children
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from South Africa were distinct in profoundly underresponding to every PRR agonist
except for peptidoglycan (PGN; stimulates TLR2 and nucleotide-binding oligomeriza-
tion domain-containing protein 1/2 [NOD1/2]), based on univariate tests and principal-
component analysis (PCA). However, additional albeit more subtle differences existed
among the other cohorts. sPLS-DA identified discriminatory cytokine responses among
Canadian, Belgian, and Ecuadorean children. Canadians were classified largely by lower
responses to PAM3CYSK4 (PAM; TLR2 agonist) stimulation than Ecuadoreans and
Belgians (Fig. 3A and B), while Belgians were classified largely by lower responses to
endosomal PRR agonists, poly(I-C) (stimulates TLR3) and R848 (stimulates TLR7/8)
(Fig. 3C and D). Ecuadoreans did not have lower or higher responses to any PRR stimu-
lation and were thus classified by their exclusion from the other two cohorts. The
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cytokine response signatures allowed us to classify each cohort with an error rate of
25% or less with only two sPLS-DA components (Fig. 3E and F).

TLR responsiveness correlated with distinct microbiome features. (i) Findings
across cohorts. Integration analysis was performed using study participants with both
microbiome and complete immune data available: 8 Belgian, 19 Canadian, 41
Ecuadorean, and 8 South African children. Initial integration of OTU and cytokine data
using all available subjects yielded a very poor correlation structure between the two
data sets. Because South African immune profiles were highly distinct from those of all
other cohorts, we hypothesized that the extreme phenotype of this cohort correlated
poorly with those of the other cohorts. To this end, we performed sPLS integration
using data from Belgian, Canadian, and Ecuadorean children only. The features that
were selected whether South African children were included or not overlapped sub-
stantially. However, the covariance of selected features was weaker when South
African children were included (see Fig. S4).

The sPLS model including Belgian, Canadian, and Ecuadorean children was thus uti-
lized for further analyses. Covaried OTUs and cytokines were selected along the first
sPLS component (Fig. 4A). The selected features from both data sets were dominated
by negative correlations between Bacteroides OTUs and cytokine responses to PAM
(TLR2) stimulation and positive correlations between Prevotella OTUs and the same
responses (Fig. 4A to C). These associations were also significant in the Ecuadorean
cohort alone (Fig. 4D). Interleukin 6 (IL-6), IL-8, and interferon gamma-induced protein
10 (IP-10) responses to PGN (TLR2 and NOD1/2) and macrophage inflammatory protein
1 alpha (MIP-1a) and MIP-18 responses to endosomal TLR stimulation followed the
same pattern. IL-23 responses to both PGN and lipopolysaccharide (LPS) were selected
for their distinct relationships to the selected OTUs, correlating negatively with
Prevotella but not with Bacteroides.

(ii) Findings within cohorts. Unique OTU-cytokine correlations were additionally
identified within individual cohorts (Fig. 5; Fig. S4). Cytokine responses to PAM were
overrepresented features in sPLS models for Belgium, Canada, and Ecuador separately
and combined (Fig. 5E). Cytokine overrepresentation in models were rare and only
included MIP-1a and MIP-18 among Ecuadoreans, and IL-8 and IL-12p40 among South
Africans (Fig. 5F). The only bacterial family overrepresented in any cohort model was
the Prevotellaceae for both the three combined cohorts and Ecuador separately.

Among the Belgians, cytokine responses to PAM stimulation and to R848 (TLR7/8)
stimulation all negatively correlated with Firmicutes, including Lachnospiraceae and
Oscillospira, and cytokine responses to LPS positively correlated with Firmicutes, includ-
ing Clostridia and Ruminococcus (Fig. 5A and S4A).

The Canadian cohort was dominated by proinflammatory and Th17-supporting
cytokine responses to LPS (including IL-13, tumor necrosis factor alpha [TNF-a], IL-23,
and IL-12p40), and Th1 responses to R848 (including gamma interferon [IFN-], IL-
12p40, and IL-12p70) correlated with several Lachnospiraceae and Bacteroides OTUs
(Fig. 5B and S4B). Additionally, cytokine responses to PAM positively correlated with a
diverse subset of Firmicutes.

Among Ecuadoreans, cytokine responses to both PAM and PGN stimulation were
overrepresented and correlated with multiple Prevotella and Bacteroides OTUs (Fig. 5C
and S4C). Also, production of MIP-1a and MIP-183 correlated with diverse bacterial
taxa.

South African children were the only ones for which responses to PAM were not
overrepresented. However, responses to PGN were overrepresented, as were cytokines

FIG 4 Legend (Continued)

mBio’

(top). Correlation circle plot (B) and network showing correlation structure among selected OTUs and cytokines (C). In the circle plot, circles indicate
OTUs and triangles indicate cytokines. Network edge colors denote Pearson correlation strength, and nodes are sized according to number of
connections. (D) Selected correlations between Bacteroides OTU_1 and cytokine responses to PAM3CYSK4 stimulation (IL-10 and IP-10) and positive
correlations between Prevotella OTU_2215 and the same responses, as observed across Belgian, Canadian, and Ecuadorian cohorts (top) and in only

the Ecuadorian cohort (bottom).
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IL-12p40 and IL-8, in response to multiple ligands. These correlated almost exclusively
to Firmicutes (Fig. 5D and S4D).

(iii) Host factors did not associate with host microbiome-immune correlations.
At the time of enrollment, seven Canadian children and one Ecuadorean child included
in microbiome-immune integration were still being breastfed (see Fig. S5A). We identi-
fied a negative relationship between duration since weaning and OTUs belonging to
the Lachnospiraceae family and the Roseburia genus (Fig. S5B). These associations were
not present among Ecuadorian children (Fig. S5C and D). No correlations were identi-
fied between any breastfeeding factors and immune responses either in block sPLS or
in univariate assessment of each stimulus-cytokine pair individually. The remainder of
host factors demonstrated sparse relationships to either OTUs or cytokines unique to
either Canadian or Ecuadorean children, including associations between delivery
mode, sex, weight-for-length Z-scores (WLZ), and weight-for-age Z-scores (WAZ),
among Canadian children (see Fig. S7A and B, examples in E to G) and between deliv-
ery mode and maternal age for Ecuadorean children (Fig. S7C and D, examples in H to I).

Among Canadian and Ecuadorean children together, maternal age, height-for-age
Z-scores (HAZ), WAZ, and time since breastfeeding were found to covary with
Bacteroides, Prevotella, and responses to TLR2 stimulation (see Fig. S6A). Given that the
host factors showing strongest associations also differed between these cohorts, we
determined the correlation strength of these relationships among Canadian and
Ecuadorean children separately, finding that globally, these associations were no lon-
ger significant (Fig. S6B and C, with specific examples in D and E). Thus, demographic
factors, stool microbiome composition, and innate immunity did not correlate across
multiple cohorts.

Fecal transplant dictates immune phenotype of germfree mice. Mouse models
of human fecal transplantation are a potentially useful tool to dissect host-microbiome
relationships in vivo (13, 14). In a proof-of-principle experiment, we directly tested
whether human gut microbiota used to colonize germfree mice could induce differen-
ces in systemic immune phenotypes similar to those observed in the human donors.
We compared South African versus Canadian microbiomes for their potential effects
on splenocyte responses to TLR stimulation in germfree mice (Fig. 6A). Principal-com-
ponent analysis of recipient mouse cytokine responses to PRR stimulation demon-
strated that the type of stimulus primarily determined the response (principal compo-
nent 1), as was observed within the human data (6). However, within each stimulus,
cohort-specific clustering was evident for responses to both R848 (PC1 versus PC2)
(Fig. 6B) and LPS (PC1 versus PC3) (Fig. 6C). In mice inoculated with South African feces
versus Canadian feces, IFN-y and IL-10 responses to LPS and IL-10 and IL-6 responses
to R848 were significantly suppressed (Fig. 6D). Responses to proinflammatory cyto-
kines TNF-a and MIP-1 were similar between the groups, while IL-23 and IFN-a2 were
not produced in this assay (see Fig. S8A). Overall, mice inoculated with South African
feces mounted lower cytokine responses than those inoculated with Canadian feces,
as was observed in the corresponding donor children.

We assessed the intestinal and fecal microbiomes of recipient mice at the end of
the experiment alongside re-extracted DNA from human donor stools (Fig. 6E). The
microbiomes of the mice were distinct from those of their respective source feces.
However, within each tissue and the feces, the microbiomes were distinct between
mice with the different fecal sources (Fig. 6F). Furthermore, the small intestinal barrier
integrity was significantly lower between mice inoculated with South African feces
than those inoculated with Canadian feces (Fig. 6G). A subset of the differentially abun-
dant OTUs in the original human samples were also found in the mice (Fig. S8B to D).
Of the OTUs differentially abundant in both the human donors and the mice, six con-

FIG 5 Legend (Continued)

assigned at the family level for the top 8 represented families (or highest level of classification) in all analyses combined. The remaining OTUs are
colored according to phylum. (E) Overrepresented TLR ligand responses among all samples and within each cohort separately. (F) Overrepresented
cytokine responses within cohorts from Ecuador and South Africa.
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FIG 6 Human fecal transplantation into germfree mice recapitulated immune signatures in human donors. (A) Schematic of experimental design. Principal-
component analyses of cytokine responses by murine splenocytes showing principal component 1 versus 2 (B) and 1 versus 3 (C), demonstrating clustering
by stimulus and by transplant donor cohort. (D) Cytokine responses to TLR stimulation that significantly differed between mice gavaged with Canadian
versus South African child stools. Statistical analyses: Wilcoxon rank-sum test, P values adjusted via Benjamini-Hochberg method with g <0.1 considered
significant; *, ¢ <0.05; +, q<0.1 (all nominally significant). Boxplots indicate medians with first and third quartiles (25% to 75%); whiskers extend no
further than 1.5 x interquartile range (IQR) from the hinge. (E) NMDS of Bray-Curtis distance showing similarity of microbiomes in mouse feces, ileum, and
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Canadian (CAD) child stools; the groups are significantly different (P < 0.01, Student's t test).

sistently distinguished the treatment groups in the ileum, jejunum, or feces. Among
these, four OTUs, belonging to the genera, Alistipes, Odoribacter, and Prevotella, and to
the family Rikenellaceae, were enriched in the South African human donor stools and
in the mice inoculated with those stools (Fig. S8E). The remaining two OTUs, belonging
to the genus Clostridium, were enriched in the Canadian human donor stools and in
the mice inoculated with those stools (Fig. S8F).

DISCUSSION

Given the ability of the host microbiome to modulate innate immunity as well as
the known geographical variability of both gut microbiomes and innate immune phe-
notypes, it is surprising that a correlation between the two was not previously
assessed. Also missing is a mechanistic understanding of how the geographically dis-
tinct microbiomes contribute to host immune differences. Robust correlations from
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human studies are therefore needed to inform mechanistic work using animal models.
Here, we provide evidence from humans on the biogeography of the relationship
between host microbiome and systemic immunity and a proof of concept supporting
the existence of a causal relationship between them.

While this study did not incorporate data pertaining to diet and lifestyle, the
observed differences in stool microbiome compositions are consistent with surveys of
the gut microbiome in similar environments in terms of resource availability and diet.
For example, children living in a rural environment in Burkina Faso, where diets are
rich in complex carbohydrates and soluble fiber but low in animal fats and proteins,
were colonized by Prevotella, while children living in westernized environments such
as ltaly and the United States, where animal products are a major part of the diet, were
dominated by Bacteroides (2, 3). Some of these differences may be driven by lifestyles
associated with urbanization. Urban dwellers in both Nigeria and Burkina Faso have
microbiomes more closely resembling those of residents of industrialized urban cen-
ters than those of rural dwellers from the same countries (15, 16), again with greater
relative abundance of Bacteroides than Prevotella in the urban dwellers. However, the
Belgian children included in this study all lived in an urban environment, yet stool
microbiomes of some Belgians with African heritage were dominated by Prevotella
and clustered with Ecuadorean and South African children. Relative abundance of
Bacteroides among Ecuadoreans was variable and did not correlate with breastfeed-
ing. Hence, diet alone is unlikely to explain all global patterns of stool microbiome
composition we observed. Notably, Bacteroides were well represented within the
Ecuadorean children, even in individuals where Prevotella abundance was high.
However, Prevotella were not detected in Canadian children dominated by
Bacteroides, suggesting that those environments may have been unfavorable for
Prevotella colonization.

We found that the demographic factors we measured did not have strong associa-
tions with the compositions of the children’s microbiomes. In the Canadian and
Ecuadorean cohorts, we did find a quadratic relationship between maternal age and
microbial diversity, with lower diversity associated with both younger and older moth-
ers. The lack of this association within the Belgian and South African cohorts may
reflect the lower sample sizes in these cohorts, although it is possible that it reflects a
region-specific effect of maternal age on child microbiomes. Both extremes of maternal
age have been associated with increased risk for adverse birth outcomes (17), stunting
at 2 years of age, and altered glucose metabolism in adulthood (18). The possibility
that the microbiome is involved in such outcomes associated with maternal age war-
rants further investigation.

Using multi-omic integration, we identified correlations between the host micro-
biome and systemic immune responses, both within and across cohorts. Most notably,
we found that higher cytokine responses to TLR2 were associated with a greater rela-
tive abundance of Prevotella and a lower relative abundance of Bacteroides in the
Belgian, Canadian, and Ecuadorean cohorts. We did not provide direct evidence that
Prevotella modulates TLR2 responsiveness or identify any correlations with health out-
comes. Bacteroides and Prevotella have been shown to modulate mucosal immune
responses through TLR2. Prevotella copri induces a more robust proinflammatory cyto-
kine response from human dendritic cells in a TLR2-dependent manner (19, 20). These
effects on dendritic cells link Prevotella-rich gut dysbioses in humans to rheumatoid ar-
thritis (21, 22) and periodontal disease (23). Conversely, Bacteroides fragilis sphingolipid
polysaccharide A (PSA) also signals through TLR2, stimulating dendritic cells to pro-
duce IL-10, contributing to an anti-inflammatory environment systemically (24) and in
the mucosa (25, 26). Prevotella species have also been associated with positive health
outcomes. Research has revealed substantial diversity among the Prevotella genus (27),
and many of the OTUs identified as Prevotella in our data were not classified at the spe-
cies level. Gut microbiomes dominated by Prevotella have been associated with increased
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levels of short-chain fatty acids (SCFAs) in a rural African setting (2) and with high-fiber
diets among adults living in westernized nations (28, 29).

Our study revealed closer associations of the TLR2 response pathway with the host
microbiome than other PRRs. The selection of microbial taxa other than Bacteroides
and Prevotella in cohort-specific networks suggests other immunomodulatory relation-
ships that have not yet been experimentally evaluated. Finally, not all cohort-specific
immune responses correlated with fecal microbiomes. For example, we did not find
any relationships between increased IL-10 responsiveness among the Belgian children
and their gut microbiomes. Thus, there are likely additional environmental or genetic
determinants of systemic innate immune phenotypes that we did not capture.

Breastmilk modulates the gut microbiome through several mechanisms, including
variations in human milk oligosaccharide (HMO) composition (30). HMO compositions
vary by geographical region and lifestyle factors (31, 32). Among microbial taxa
selected by microbiome-immune integration, Bifidobacteria, Prevotella, and Bacteroides
are able to use HMOs for growth (33, 34). However, we were not able to identify effects
of time since breastfeeding on immune responsiveness in either Canadian or
Ecuadorean children, and among Canadian children, time since breastfeeding was only
associated with levels of Lachnospira and Rothia but not with cytokine responses, even
though seven of 19 children were still breastfeeding. With this, breastfeeding was not
a likely contributor to the host immune-microbiome correlations we observed. However,
given the small sample size applied to this analysis and that these data were only available
for Canadian and Ecuadorean children, identifying more subtle relationships between
breastfeeding and immune responsiveness or gut microbiota composition was not possi-
ble, and these findings do not preclude the existence of such relationships.

Innate immune phenotypes of South African children were previously described by
us to be highly distinct from those of the other cohorts (6), while our present study
found their gut microbiomes to be indistinguishable from those of Ecuadorean chil-
dren. Notably, fecal gavage of germfree mice resulted in mouse immune phenotypes
consistent with those of the respective donor children. South African donors induced
strikingly lower cytokine responses favoring Th1 and Th17 development. However,
proinflammatory cytokine responses were unaffected. Thus, the microbiome-induced
mouse phenotypes were partly, but not completely, in agreement with those previ-
ously reported for the children (6). Importantly, we did not identify a causal mechanism
or a specific component of the microbiome responsible for the observed effects on
immune phenotype in germfree mouse recipients. Hence, these results provide biolog-
ical plausibility that must be further explored using animal models and validated in
human cohorts. While this extreme-phenotype approach likely did not capture all rele-
vant interactions, these in vivo data support the existence of a causal relationship
between human gut microbiomes and systemic immune function.

There are limitations to this study worth noting. The major limitations of this study
were the sample size and the statistical power to detect associations between host micro-
biome and immune phenotypes. Similar studies that identified robust associations
between gut microbiome, immune phenotype, and host demographic factors among
adults included >500 adults (8). This limitation does not negate the associations that were
identified but may have caused us to overlook weaker associations. This study also suf-
fered from unequal sample numbers among the four cohorts. With this, the absence of
significant findings in some instances, especially the lack of associations with host factors,
may have been due to the lack of statistical power to detect subtle relationships. Belgian
children, uniquely, were almost all male, while child sex was more balanced for the other
three cohorts. However, given that child sex was not a significant contributor to micro-
biome community composition at the other three sites and child sex was not found to
contribute to cohort-specific cytokine responses in our previous findings (6), it is unlikely
that the sex bias of the Belgian cohort influenced the integration results. We limited the
number of OTUs retained for integrated analysis to roughly 5% of those identified among
the four cohorts. Also, especially for Ecuadorean children, differences in time between
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blood sample and stool sample collection may have influenced the results. We also did
not analyze the fecal metagenome, which has been shown to associate with systemic im-
munity in previous work (8). While the cohorts are referred to by their countries of recruit-
ment, the enrolled subjects are not always representative of the overall populations or
resource availability in those countries. The germfree mouse experiments were not con-
ducted in a germfree facility, which may have contributed to the divergence of engrafted
mouse microbiomes from the original inocula.

Conclusion. This study provided supporting evidence to link geographically distinct
immune phenotypes to gut microbiomes and identified a predominant association
between systemic cytokine responses to TLR2 stimulation and stool microbiome composi-
tion. We also provide supporting evidence via human fecal transplantation in germfree
mice showing that the human host microbiome can induce changes to systemic immu-
nity. Monitoring the gut microbiome and immune system ontogeny along with well-
defined clinical outcomes (e.g., infections or vaccine responses) in larger cohorts will fur-
ther the understanding of geographic differences in those clinical outcomes.

MATERIALS AND METHODS

Ethics statement. All research involving humans was conducted according to principles in the
Declaration of Helsinki and approved by the University of British Columbia ethics board under protocol
number H11-01423. Each study site obtained ethical approval separately from their research institutions.
Informed consent was obtained from primary guardians for children involved in this study. Research
involving animals was conducted under ethical approval from the University of British Columbia animal
care committee under protocol number A13-0265.

Recruitment of study participants. The recruitment of the four cohorts of children of approxi-
mately 2 years of age was previously described (6). Study participants were recruited from ongoing
collaborative studies or healthy child cohorts at each of the four sites. Canadian children were
recruited at the BC Children’s Hospital in Vancouver (35). Belgian children were enrolled in a birth
cohort enrolling St Pierre Hospital in Brussels and included mostly healthy male children presenting
for a routine circumcision. Ecuadorean children were enrolled in the ECUAVIDA birth cohort in
Quininde (36), and South African children were enrolled in a prospective birth cohort at the Tygerberg
Academic Hospital in Cape Town (37, 38). Participants were only included in the study if the child was
considered healthy based on medical history, and they were excluded if they met one or more of the
following criteria: significant chronic medical condition, immune deficiency, immunosuppression by
disease or medication, cancer, bone marrow or organ transplantation, receipt of blood products within
3 months, bleeding disorder, major congenital malformation, genetic disorder, or born to HIV-positive
mothers.

Innate immune phenotyping. Innate immune phenotyping for these cohorts was previously described
and published (6). Briefly, 3 to 5ml of peripheral blood was drawn per participant. Whole blood was then
stimulated with the following PRR agonists: PAM3CYSK4 (PAM, stimulates TLR2), poly(I-C) (stimulates TLR3), li-
popolysaccharide (LPS; stimulates TLR4), resiquimod (R848; stimulates TLR7/8), peptidoglycan (PGN; stimu-
lates both TLR2 and nucleotide-binding oligomerization domain-containing protein 1/2 [NOD1/2]), and me-
dium alone. Whole blood was stimulated for 24h, and supernatants were analyzed for the following
cytokines measured using the Luminex multiplex assay (Luminex, Upstate/Millipore Flex kit system): IFN-a:2,
IFN-y, CXCL10, IL-12p70, IL-12p40, IL-6, TNF-¢, IL-1 3, CXCL8, CCL3, CCL4, and IL-10.

Child fecal microbiome analysis. Human stool microbiome composition was determined using
amplicon sequencing targeting the V6 region of the 16S rRNA gene. Stool samples were collected within
the same month as blood samples for each child, stored at —80°C, and transported to the Vancouver
laboratory on dry ice. Total DNA was extracted from all samples within 1T month of arrival to the labora-
tory using the Qiagen QlAamp DNA stool minikit (Qiagen catalog number 51504). PCR and DNA
sequencing were according to previously described protocols and rationale for amplicon sequencing
targeting the V6 region of the 16S rRNA gene (39). Further details on microbiome analysis can be found
in Text S1 in the supplemental material.

Germfree mouse model of human fecal transplantation. To test whether divergent immune
phenotypes of South African children could be causally linked to their gut microbiomes, we per-
formed a proof-of-principle experiment whereby male germfree Swiss-Webster mice were gavaged
with stools from either Canadian or South African male children. Stool samples from only male chil-
dren were selected to match the sex of experimental animals, of which only males were available.
Three weeks after gavage, we compared the splenocyte cytokine responses to TLR stimulation and
assessed their gut barrier integrity by using the lactulose-mannitol test. Mouse fecal and intestinal
microbiomes at the end of the experiment were measured via 16S amplicon sequencing. DNA from
the donor human stools was re-extracted, PCR amplified, and sequenced on the same sequencing
run as the mouse samples. The experimental design is shown in Fig. 6A, and further experimental
details can be found in Text S1.

Statistical analyses. (i) Microbiome analysis. Briefly, we assessed differences in gut microbiomes
of children across study sites using measures of alpha diversity (observed richness and Shannon
index) and beta diversity. Differences in microbiome community composition were further explored
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by identifying discriminatory OTUs among cohorts using univariate (DESeq2 [40]) and multivariate
(sparse partial least squares discriminant analysis [sPLS-DA] [41]) approaches. We also conducted ex-
ploratory analyses to determine whether host factors captured in our study (sex, delivery mode, an-
thropometric measurements, gestational age, birthweight, and maternal age) were associated with
differences in either alpha or beta diversity of the gut microbiome. Further details can be found in
Text S1.

(ii) Cytokine response signatures among cohorts. We used sPLS-DA to identify cytokine signa-
tures that distinguish Belgian, Canadian, and Ecuadorean children in a multivariate space and calculated
the classification accuracy for each site.

(iii) sPLS integration of cytokine, microbiome, and demographic data. To uncover potential gut
microbiome-host immune interactions, we examined the joint multivariate structure of gut microbiota
compositions and host innate immune responses via sPLS analysis, a method that incorporates variable
selection, making it particularly suitable for high-dimensional data sets (41). This analysis was performed
to identify both interactions that were robust among all children and interactions specific to individual
cohorts. To this end, separate analyses were performed for all cohorts combined and for each cohort
separately. Further details can be found in Text S1.

Data availability. All sequencing data presented in the manuscript has been deposited at the
National Center for Biotechnology Information Sequence Read Archive (NCBI SRA). Sequencing data
from stool samples are available under BioProject accessions PRINA660015 for human stool microbiome
and PRINA662365 for germfree mouse microbiome data sets.

Data presented in the manuscript and accompanying scripts are publicly accessible at https://github
.com/nelly-amenyogbe/Global_cohort_microbiome_immun.
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