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Abstract 20 

The induction of vomiting by activation of mechanisms protecting the body against ingested 21 

toxins is not confined to natural products but can occur in response to manmade medicinal and 22 

non-medicinal products such as liquid cleaning products where it is a commonly reported 23 

adverse effect of accidental ingestion. The present study examined the utility of an historic 24 

database (>30 years old) reporting emetic effects of 98 orally administered liquid cleaning 25 

formulations studied in vivo (canine model) to objectively identify the main pro-emetic 26 

constituents and to derive a predictive model. Data were analysed by categorizing the 27 

formulation constituents into 10 main groups followed by using multivariate correlation, partial 28 

least squares and recursive partitioning analysis. Using the ED50 we objectively identified high 29 

ionic strength, non-ionic surfactants (alcohol ethoxylate) and alkaline pH as the main pro-30 

emetic factors. Additionally, a mathematical model was developed which allows prediction of 31 

the ED50 based on formulation. The limitations of the use of historic data and the model are 32 

discussed. The results have practical applications in new product formulation and safety but 33 

additionally the principles underpinning this in silico study have wider applicability in 34 

demonstrating the potential utility of such archival data in current research contributing to 35 

animal replacement. 36 

 37 

 38 

 39 

 40 

 41 
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 42 

Highlights 43 

• Constituents causing the emetic effect of ingested liquid cleaning formulations are 44 

unknown.  45 

• Recursive partitioning was used to model historic in vivo data on 98 liquid cleaning 46 

formulations. 47 

• Emesis was positively associated with ionic strength, non-ionic surfactant, and high 48 

alkaline pH.   49 

• The mathematical model predicted the ED50 from formulation composition.  50 

• Application to product development, safety and wider assessment of emetic liability is 51 

discussed.  52 

  53 
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1. Introduction 54 

 55 

Emesis or vomiting, i.e., the forceful oral expulsion of gastric contents, is one of the body’s 56 

initial responses to toxins following ingestion as a food constituent or a contaminant (Davis et 57 

al., 1986). A wide range of substances of plant and animal origin with diverse structures can 58 

evoke nausea and vomiting in humans, e.g.  muscarine, (Diaz, 2015); vomitoxin, (Wu et al., 59 

2014); domoic acid,  (Sobel and Painter, 2005); tetrodotoxin (Hayama and Ogura, 1963). 60 

Additionally, bacteria and their toxins, e.g.  Staphylococcus aureus enterotoxins, (Angeles et al., 61 

2010) and viruses, e.g. norovirus, (Baker et al., 2011); rotavirus, (Crawford et al., 2017) and 62 

COVID-19, (Andrews et al., 2020a) have nausea and vomiting as symptoms.  The mechanisms 63 

and pathways by which these naturally occurring emetics induce nausea and vomiting can also 64 

be triggered by synthetic therapeutic drugs where nausea and vomiting then become side-65 

effects, e.g. cancer chemotherapeutic agents such as cyclophosphamide, (Andrews and Rudd, 66 

2015).   67 

 68 

The activation of emetic pathways which evolved to protect the body against ingested natural 69 

toxins is not only confined to synthetic therapeutic agents but can also occur in response to 70 

non-medicinal synthetic products as exemplified by liquid cleaning products. Vomiting is the 71 

most common effect reported in cases of accidental ingestion of cleaning products in both 72 

children and adults (Day et al., 2019a, Day et al., 2019b, Smith et al., 2014).  While there are 73 

reports decades earlier showing that cleaning products produced emesis in a canine model 74 

(Snyder et al., 1964, Weaver and Griffith, 1969), such accounts are sporadic and limited. 75 
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Considering, the large number of concentrated cleaning products currently marketed, e.g., 76 

laundry packets and tablets, further investigation into the components and physiochemical 77 

properties responsible for such events is warranted. 78 

 79 

Previously we systematically reviewed and critiqued an historical database comprised of 80 

original study reports of liquid cleaning products tested in a canine model of emesis (Andrews 81 

et al., 2020b). The purpose was to determine if historical studies might inform and be reapplied 82 

to current formulations without additional animal testing thus contributing to the Replacement 83 

element of the “3Rs” (Replacement, Reduction, Refinement; (Russell and Burch, 1959)). The 84 

initial study determined that historical data could be used, with some limitations, to 85 

characterize the latency and magnitude of the emetic response and to demonstrate dose-86 

response relationships for the incidence of emesis. Furthermore, detailed analysis of a sub-87 

group of 15 formulations for which a complete data set (latency, intensity and ED100) was 88 

available enabled calculation of a “vomiting index” (VI) showing an association between a high 89 

VI, a high percentage of non-ionic surfactants, high ionic strength, and a  pH of ~10 which was 90 

proposed to be causally linked with the possible mechanism(s) discussed. Additionally, we 91 

found that the ED50 (the calculated dose evoking emesis in 50% of the group tested) provided a 92 

metric derived in a relatively consistent manner in all such studies, which serves as a dependent 93 

variable when assessing emetic potency for this group of cleaning products.  94 

 95 

The present study extends the findings from Andrews et al. (2020b) by developing an in silico 96 

model to predict emetic potency of liquid cleaning products. The constituents of liquid cleaning 97 
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products, e.g., surfactants, polymers, hydrotropes, solvents, and physiochemical measures, e.g., 98 

pH, ionic strength, were placed into categories and, using multivariate and recursive 99 

partitioning statistical models, used to predict their contribution to emetic potency based on 100 

ED50. It was hypothesised that surfactants, i.e., anionic, cationic and nonionic, would emerge as 101 

the categories responsible for emetic potency.  However, we found that emetic potency of 102 

complex liquid cleaning product mixtures were most influenced by the ionic strength and 103 

concentration of non-ionic surfactant, i.e., alcohol ethoxylate. This study illustrates the value of 104 

using historical data to model, in this case emesis, without conducting additional animal testing.  105 

Moreover, this predictive modeling helps understand emetic potency of liquid cleaning 106 

products in cases of accidental ingestion.  107 

 108 

2. Materials and methods 109 

2.1. Data set 110 

The studies used in this analysis were performed between 1973 and 1987 as part of 111 

toxicological testing commonly performed during this time period. None of the authors 112 

participated in the conduct of the studies which were performed in accordance with the ethical 113 

and regulatory requirements in place at the time. For an overview of the methodology and 114 

experimental details the reader is referred to Andrews et al. 2020b. This study of 74 liquid 115 

cleaning products (Andrews et al. 2020b) focused on the overall emetic characteristics of the 116 

formulations and explored the relationship between ingredient composition and the vomiting 117 

index (VI). Calculation of the VI required detailed reporting of emetic data (latency and 118 

magnitude in 4 animals at the ED100) and so was only possible for a relatively small (20%) subset 119 
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of formulations. Whilst the VI approach provided insights into the relationship between emesis 120 

and formulation characteristics, the data requirements limited its wider use. However, as 121 

experimental records usually reported the ED50, an additional 24 studies for a total of 98 data 122 

records were identified with both well-defined liquid cleaning product formula details and ED50 123 

values (see below) defining the emetic potency. Statistical relationships were examined 124 

between formulae variations and this measure of emetic potency, i.e., ED50.  125 

 126 

2.2. Measure of formulation emetic potency 127 

The ED50, i.e., the calculated dose of the undiluted liquid formulation in mL/Kg which induced 128 

vomiting in 50% of the treatment group within 120 min, was determined using the “up and 129 

down” procedure according to Brownlee et al. (Brownlee et al., 1953) but over the 14 years of 130 

the study period other recognized comparable methods for determining the ED50 such as Dixon 131 

(Dixon and Mood, 1948), Weil (Weil, 1952) and Probit (Finney, 1947) were also used. The 132 

smaller the ED50 value, the more potent the emetic effect of the formulation. It should be noted 133 

that based on a limited data set of 20 formulations where both an ED100 value was achieved and 134 

an ED50 value was calculated for the same formulation that the two were significantly linearly 135 

correlated (Andrews et al., 2020b) 136 

 137 

Although the historical reports reliably reported the ED50 as noted in Andrews et al. (2020b) 138 

information about vomiting onset time, repeated episodes and duration of effect were not 139 

reported consistently so are of limited utility in developing a predictive model requiring a large 140 



Page 8 of 30 

24 September 2020 

 

data set and therefore these parameters are not in the scope of this manuscript (see 141 

Discussion).  142 

 143 

2.3. Grouping of formulation Ingredients - dimension reduction 144 

As part of data curation, different formulation ingredients and key physicochemical properties 145 

were grouped into the following 10 categories: (1) alkyl sulfonate – anionic surfactant, (2) alkyl 146 

sulfate – anionic surfactant, (3) ethoxylated alkyl sulfate – anionic surfactant (AES), (4) alcohol 147 

ethoxylate – nonionic surfactant (NI), (5) amine oxide/amine/amide/ - cationic surfactant 148 

(Zwitterionic/Cationic), (6) fatty acid, (7) solvent, (8) hydrotrope, (9) pH, and (10) ionic strength 149 

(IS). The IS is a function of the concentration of all ions present in each formulated product 150 

(IUPAC, 1997) according to equation 1: 151 

 152 

!" = !
"$ %#&#"

$
#%!  (eq. 1) 153 

 154 

where ci is the molar concentration of ion i (mol/L), zi is the charge number of that ion, and the 155 

sum is taken over all ions in the solution.  156 

 157 

2.4. Statistical methods 158 

JMP software (version 12.2, SAS Institute Inc., Cary, NC) was employed as the statistical 159 

evaluation tool. Considering that the dataset did not originate from a statistical design of 160 

experiments, exploratory analysis including possibility distribution of variables and multivariate 161 

correlations were initially performed on the data, followed by three different regression 162 
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methods to investigate the formulation drivers for emesis. These different models were 163 

developed to check for concordance. 164 

 165 

2.4.1 Probability Distribution of the Variables 166 

A probability distribution is a mapping of all the possible values of a random variable to their 167 

corresponding probabilities. A histogram graph and outlier box plot were reported for each 168 

variable. The key aspects of the outlier box plot [SAS JMP Software (version 12.2) user manual, 169 

SAS Institute Inc., Cary, NC] include: (i) The ends of the box represent the first and third 170 

quartiles; (ii) The horizontal line within the box represents the median sample value; (iii) The 171 

confidence diamond contains the mean (the middle of the diamond) and the upper and lower 172 

95% of the mean (top and bottom points); (iv) The red bracket outside of the box identifies the 173 

shortest half, which is the most dense 50% of the observations (Rousseeuw and Leroy, 1987); 174 

and, (v) The whiskers extend from the ends of the box to the outermost data point that falls 175 

within the distances computed as follows: 176 

first quartile - 1.5*(difference between the first and third quartiles) 177 

third quartile + 1.5*(difference between the first and third quartiles) 178 

If the data points do not reach the computed ranges, then the whiskers are determined by the 179 

upper and lower data point values (not including outliers). 180 

 181 

2.4.2 Multivariate correlation 182 

The multivariate correlation analysis calculates the pairwise correlation between multiple 183 

variables. For variables x and y, the Pearson correlation coefficient, r, is computed as follows:  184 
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 185 

' = ∑ (! (!)(̅)(,!),-)
.∑ ((!)(̅)"! 	.∑ (,!),-)"!

    (eq. 2) 186 

 187 

where the value r = 1 indicates an exact positive linear correlation, the value r = -1 indicates an 188 

exact negative linear correlation, and the value r = 0 means there is no linear relationship 189 

between x and y. Besides the correlation matrix, a scatterplot matrix is also reported to 190 

demonstrate how the variables relate to each other. 191 

 192 

2.4.3 Recursive Partitioning Analysis (RPA) 193 

Recursive partition (Kass and Hawkins, 1982, Kass, 1980) creates a decision tree that strives to 194 

correctly classify the response variable Y by splitting it into subsets where the distribution of Y is 195 

successively more homogeneous, based on a vector of independent variables X. The process is 196 

termed recursive because each subset may in turn be split an indefinite number of times until a 197 

particular stopping criterion is reached. 198 

 199 

2.4.4 Multivariable Linear Regression (MLR) 200 

Multiple linear regression is the most common form of linear regression analysis. It models the 201 

relationship between one continuous dependent variable y and two or more independent 202 

variables X. Multiple linear regression makes three key assumptions that need to be checked 203 

along the model development process (Kutner et al., 2005): (i) Multivariate normality ― 204 

residuals of the regression are normally distributed; (ii) No multicollinearity ― the independent 205 
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variables X are not highly correlated with each other; (iii) Homoscedasticity ― the variance of 206 

residuals need to be similar across the values of the independent variables X.  207 

 208 

2.4.5 Partial Least Squares (PLS)  209 

Partial least squares regression is an extension of the multiple linear regression model and 210 

bears some relation to principal components regression. It fits linear models based on factors, 211 

namely, linear combinations of the independent variables. These factors are obtained in a way 212 

that attempts to maximize the covariance between the independent variables and the 213 

responses. PLS exploits the correlations between the independent variables and the responses 214 

to reveal underlying latent structures. PLS regression is especially useful when the independent 215 

variables are highly collinear, or when there are more independent variables than observations 216 

(Cox and Gaudard, 2013). 217 

 218 

3. Results 219 

3.1  Exploratory Analysis 220 

Probability distributions of both independent, i.e., formulation variables, and dependent, i.e., 221 

ED50, variables are presented in Figure 1.  The ED50 value ranges from 0.0125 mL/kg to 32 222 

mL/kg. To better fit the “multivariate normality” assumption underlying regression, a natural 223 

Log transformation was applied to the ED50 values to achieve a near normal distribution. As 224 

shown in the plot labeled “Ln (ED50), the resulting Ln (ED50, mL/kg) ranges from -4.4 to 3.5 for 225 

the 98 samples, with the mean of -0.9 and median of -1.0. The first and third quartiles of Ln 226 

(ED50, mL/kg) are at -2.3 and 0.7, respectively. All the points are within the whiskers.  227 
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 228 

The probability distribution of formulation ingredients and physicochemical properties are also 229 

plotted in Figure 1.  The formulation ingredients, including alkyl sulfonate, alkyl sulfate, AES, NI, 230 

zwitterionic/cationic, fatty acid, solvent, and hydrotrope, carry units of weight percentage (%) 231 

in the finished products (y-axis). The physicochemical properties include pH and IS with units of 232 

mol/L (y-axis). Since this historical dataset was not originated from statistically designed 233 

experiments, the distribution of many independent variables is peaked near the lower 234 

boundary of 0% with the tail on the higher concentration side, except for solvent and pH. The 235 

concentration of alkyl sulfonate ranges from 0% to 40.8%, with the mean of 6.1%, first quartile 236 

at 0%, medium at 2.4%, and third quartile at 7.1%. The concentration of alkyl sulfate ranges 237 

from 0% to 32.8%, with the mean of 1.4% and all the points in the fourth quartile.  The 238 

concentration of AES ranges from 0% to 36.3%, with the mean of 5.9%, medium of 0% and third 239 

quartile at 9.2%.  NI ranges 0% to 64% with the mean of 6.0%, medium of 0% and third quartile 240 

at 4.0%. Zwitterionic/Cationic ranges from 0% to 40%, with the mean of 1.4%, medium of 0%, 241 

and third quartile at 2.7%. FA ranges from 0% to 28%, with the mean of 1.9%, medium of 0% 242 

and third quartile at 0.3%. The solvent concentration ranges from 0% to 18.4%, with the mean 243 

of 4.9%, medium of 5.0%, first quartile at 0% and third quartile at 7.0%. The hydrotrope 244 

concentration ranges from 0% to 9%, with the mean of 2.0%, medium and third quartile at 0% 245 

and 3%, respectively.  pH ranges from 5.1 to 11.9 with the mean of 8.9, first quartile at 7.1, 246 

median at 8.5, and third quartile at 10.5. The IS ranges from 0 to 28.4 mol/L, with the mean of 247 

5.4 mol/L, first quartile, medium, and third quartile at 1.2 mol/L, 2.3 mol/L, and 4.5 mol/L, 248 

respectively.   249 
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 250 

Multivariate correlation of Ln ED50 and formulation variables are summarized in Table 1. A 251 

scatterplot matrix is also reported in the supplementary file (Supplementary Figure S1).  Six 252 

samples were excluded from the multivariate analysis due to missing values of pH. As shown in 253 

Table 1, there is relatively strong correlation between Ln ED50 and AES (0.45), NI (-0.32), solvent 254 

(0.35), pH (-0.36) and IS (-0.55). Among the independent variables, pH has negative correlation 255 

with all the surfactants (r ranges from -0.46 to -0.20). IS also shows negative correlation with 256 

solvent (-0.53) and positive correlation with pH (0.39). Overall, the formulation variables are 257 

not highly correlated with each other, which satisfies the “no multicollinearity” assumption of 258 

the MLR analysis in 3.3. 259 

 260 

3.2   Recursive Partitioning Analysis  261 

 The partitioning tree of RPA are illustrated in Figure 2. The actual Ln ED50 values against 262 

predicted Ln ED50 values by this RPA model are included in the Supplementary file 263 

(Supplementary Figure S2), with a fitting R2 of 0.76. As shown by Figure 2, there are 5 partitions 264 

that split the 98 samples: (i) The first split is based on the criteria if IS ≥ 5.09 mol/L. The samples 265 

meeting the criteria are put on the left side predicted with lower Ln ED50 values and the 266 

samples that do not meet the criteria are placed on the right predicted with higher Ln ED50 267 

values. (ii) The second split is based on all the samples with IS < 5.09 mol/L, among which the 268 

samples with NI ≥ 2.75% are predicted to have lower Ln ED50 values and the samples with less 269 

than 2.75% NI have higher Ln ED50 values. (iii) The third split is based on samples with IS < 5.09 270 

mol/L and NI ≥ 2.75%. The samples with NI ≥ 18.00% are predicted to have lower Ln ED50 values 271 
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than the samples with NI < 18.00%. (iv) The fourth split is based on samples with IS < 5.09 mol/L 272 

and NI < 2.75%. The samples with IS ≥ 2.80 mol/L is predicted to have lower Ln ED50 values than 273 

the samples with IS < 2.80 mol/L. (v) The fifth split is based on the samples with NI < 2.75% and 274 

IS < 2.80 mol/L. Samples with pH ≥ 10.3 is predicted to have smaller Ln ED50 values than the 275 

samples with pH < 10.3.  276 

 277 

A leaf report1 that displays the mean Ln ED50, mL/kg, and count of each leaf node is presented 278 

in Table 2. The 23 samples with IS > 5.09 mol/L have the smallest mean Ln (ED50, mL/kg) of -279 

2.75. The 9 samples with IS < 5.09 mol/L and NI > 18% have the second smallest mean Ln (ED50, 280 

mL/kg) at -2.67. The Ln ED50 value increases with the reduction of IS and NI in the formulation. 281 

For the samples with IS < 2.80 mol/L and NI < 2.75%, the 11 samples with pH >= 10.3 has mean 282 

of Ln (ED50, mL/kg) at -1.56 and the other 11 samples with pH < 10.3 has the highest mean of Ln 283 

(ED50, mL/kg) at 1.19 mL/kg among all the 98 samples. Overall, results of RPA suggest the lower 284 

the IS, and concentration of NI, and the lower the pH (< 10.3), the higher the ED50 value, which 285 

is a reduction in the emetic potency of these liquid cleaning products. 286 

 287 

3.3   Multivariable Linear Regression  288 

The two graphs in Figure 3 illustrate the fitting quality of the experimentally determined, i.e., 289 

“measured”, Ln ED50 vs. model predicted value (Left panel) and the residue of model prediction 290 

(right panel), with R2 of 0.6. As shown, the MLR model satisfies the “Homoscedasticity” 291 

 
1 Each “leaf node” corresponds to one of the rectangles in Figure 2, which depicts the RPA “tree”. 
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assumption. Due to the existence of missing values, pH was excluded from the formulation 292 

variable selection to enable all 98 formulations to be used to train the model. Response surface 293 

effects (including linear terms, quadratic terms, and binary interaction terms) of the 294 

formulation variables were taken into consideration during regression. Stepwise regression was 295 

used with minimum Bayesian Information Criterion as the stopping rule (Burnham and 296 

Anderson, 2004). The developed MLR model can be described as: 297 

 298 

Ln	(ED50) = 0.730 − 0.072 ∗ NI − 0.379 ∗ 45 + 0.014 ∗ (45 − 5.368)!   (eq. 3) 299 

 300 

where ED50 has unit of mL/kg, NI has unit of % concentration, and IS has unit of mol/L. The 301 

model indicates that increasing NI and IS leads to smaller Ln ED50, and therefore greater emetic 302 

potency. The quadratic term describes the plateau effect of extremely high IS on Ln ED50 value.  303 

 304 

3.4   Partial Least Squares Regression 305 

Similar to the MLR, pH was also excluded from the formulation variable selection to enable all 306 

98 formulations to be used to train the PLS model. As shown in Figure 4, two factors (X1, X2) 307 

cover a total of 62.8% of the variation in Ln ED50, with factor X1 capturing 54.2% of Ln ED50 308 

variance and factor X2 capturing 8.6% of Ln ED50 variance. Figure 5 summarizes the model 309 

coefficients based on centered and scaled data. As illustrated in Figure 5, IS and NI are 310 

identified as the two major negative drivers for Ln ED50 with model coefficients of -0.43 and -311 

0.39, respectively. Alkyl sulfonate and AES are identified as major positive drivers for Ln ED50 312 

with coefficients of 0.33 and 0.32, respectively, which is counter intuitive and probably due to 313 
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their intrinsic negative correlation with pH (as shown in Table 1). It can be the lower pH that 314 

actually drives higher Ln ED50. The other formulation variables are less significant based on 315 

smaller absolute values of model coefficient.  316 

  317 

4. Discussion 318 

 319 

In a previous study of historical data (from >30 years ago) from canine studies of the emetic 320 

response to liquid cleaning formulations we established its utility to characterize the emetic 321 

response and to identify pro-emetic physicochemical factors (Andrews et al., 2020). The 322 

present statistical analysis of a larger data set reporting the ED50 of 98 liquid cleaning 323 

formulations extends the previous study by developing a mathematical model for predicting the 324 

ED50. In the sections below we discuss the factors influencing emetogenicity, the limitations of 325 

the model, and the specific and more general applicability of the findings from this study.  326 

 327 

4.1. Factors influencing emetogenicity identified by the model. 328 

 The original experimental data used to develop the model included the ED50 and the 329 

formulation composition categorized by 10 key constituents. Statistical analysis using three 330 

regression models revealed that the formulae components driving emetic potency were ionic 331 

strength, non-ionic surfactant (alcohol ethoxylate) and, to a lesser extent highly alkaline pH. 332 

Thus, a lower ED50 indicative of a higher emetic liability at a lower dose is associated with 333 

higher ionic strength and concentration of alcohol ethoxylate, i.e., non-ionic surfactant. This 334 

conclusion is consistent with the preliminary analysis in Andrews et al. (2020) using the 335 
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“vomiting index” as the outcome measure but which was limited to 11% of formulations 336 

because calculation of the “vomiting index” requires a more detailed data-set which was not 337 

available for the large number of formulations studied here. A discussion of the mechanisms by 338 

which the above key constituents activate the pathways inducing the nausea and vomiting is 339 

outside the scope of the present paper. Potential emetic mechanisms were discussed in 340 

Andrews et al. (2020) with a focus on the effect of the key constituents with mucosally located 341 

enteroendocrine cells in the stomach and small intestine releasing mediators locally to act on 342 

terminals of the abdominal vagal afferents. Additionally, Andrews et al., (2020) compared the 343 

profile of the emetic response to liquid cleaning formulations with that reported in the 344 

literature for a wide range of emetics also given by gavage in the canine model. 345 

 346 

4.2. Limitations of the model 347 

The model developed and the resulting predictions depend upon the quality of the data derived 348 

from the original historical studies and the mathematical/statistical methodology used in its 349 

genesis. The challenges and limitations in using historic data including variability of data 350 

collection, protocol variations with time, nature of the data collected, and controls were 351 

discussed in Andrews et al. (2020b) and will not be reiterated here. However, here we focus on 352 

the data used in the current model and its limitations. 353 

 354 

The ED50 is a well-established metric of the potency of a biologically active substance and in the 355 

historic studies although differing methods (see section 2.2) were used for its derivation, each is 356 

valid, likely yielding comparable values. Our previous study included twenty of the same 357 
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formulations analyzed here where the dose (ED100) producing an emetic response in all animals 358 

in a group was established allowing us to show a significant linear correlation (R2= 0.84) 359 

between the ED50 and the ED100 (Andrews et al., 2020b, Supplementary material). In view of the 360 

latter finding, we are confident that the use of the ED50 is a valid metric reflecting the emetic 361 

potency of a given formulation. However, it must be noted that the ED50 is a reflection of the 362 

incidence of emesis (i.e. the probability of occurrence) which although directly relevant to 363 

safety assessment of a consumer product, does not reflect either the magnitude (number of 364 

vomits) or latency (time for onset of vomiting) of the response. Future development of the 365 

mathematical model should ideally incorporate a measure of the magnitude of the emetic 366 

response although it should be noted that the previous study of a subset of formulations 367 

showed no obvious relationship between the ED100 and the magnitude or latency of the 368 

response for 18 formulations for which a full data-set was available (Andrews et al., 2020b). 369 

Nevertheless, the analysis based on ED50 values has identified constituents increasing the 370 

probability of emesis and enabled derivation of a mathematical predictive model.  371 

  372 

The three regression models used in the present analysis are straightforward with respect to 373 

their application and utility. The selection of multiple methods to analyse the current dataset 374 

was an attempt to determine concordance amongst the key findings using more than one 375 

statistical model.  However, the most significant limitations were the limited number of studies 376 

available and the diversity of formulae used in the analysis.  Ideally, for such an exercise there 377 

would be hundreds to thousands of studies which could be used in such a retrospective 378 

regression evaluation. Realistically, however, historical in vivo databases may be limited in 379 



Page 19 of 30 

24 September 2020 

 

useable data and/or number of completed studies (see Andrews et al., 2020b for further 380 

discussion). Even so, we have shown there is some value even with a limited number of studies.   381 

 382 

The liquid cleaning formulae were not created to test a specific hypothesis related to emesis.  383 

These were products made for marketing and consumer use and, as such, lack broad formula 384 

diversity in the concentration and selection of ingredients. This is both an advantage and 385 

disadvantage. The advantage is in grouping of formula components; it is achievable in that the 386 

assortment of ingredients in these formulations is limited.  Of course, this is also a disadvantage 387 

to the extent that liquid cleaning products are not monolithic in design or make up requiring 388 

the qualification of current findings. Moreover, grouping of formula components is relatively 389 

broad.  For example, amongst non-ionic surfactants of the alcohol ethoxylates, there are many 390 

different chemistries based on alkyl chain length and number of ethoxylates which may 391 

influence the biological potency (Broening et al., 2019). Even with such limitations, there was 392 

agreement in the model findings with the systematic evaluation of individual studies as 393 

reported in Andrews et al. 2020b.       394 

 395 

4.3 Practical applications.  396 

The findings presented here have two main practical implications. Firstly, the immediate impact 397 

is to inform the development of new liquid cleaning product formulation and hence further 398 

improve product safety. Additionally, this modeling of liquid cleaning products identified non-399 

ionic surfactants (alcohol ethoxylates) and ionic strength as key factors predicting emetic 400 

potency of such products, which significantly improves our ability to anticipate the 401 
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consequences of accidental ingestion. Finally, the development of this predictive model further 402 

contributes to the commitment of Procter& Gamble to eliminating the use of animals in 403 

product testing (https://us.pg.com/policies-and-practices/animal-welfare-policy/) and the 404 

creation of new state-of-the-art approaches to evaluate this important endpoint. Secondly, this 405 

work is, to some extent, a proof of concept with applications beyond liquid cleaning products.  406 

Institutions, i.e., commercial, government, often have vast caches of experimental data that 407 

were never published. Such data are often based on animal models that have been abandoned 408 

for one reason or another yet have some value with respect to endpoint evaluation.  The canine 409 

emesis model is one such example.  During the 1970-1980s, such studies were performed 410 

routinely in the commercial sector usually as part of product safety assessment requirements. 411 

Such data often remains stored or even “lost” in company archives because of a short 412 

corporate memory and hence is unused, with little effort to examine its applicability to current 413 

product development or research questions. Such In vivo studies are no longer performed 414 

routinely, so the historic data represents a potentially valuable resource which with the 415 

techniques now available to analyse large data sets, together with greater mechanistic 416 

understanding, can contribute to answering current practical and research problems. Although 417 

this in silico study has focused on liquid cleaning products the methodology here has wider 418 

applicability in assessing emetic liability in toxicology. For example, assessing the emetic 419 

potential of novel drugs intended for therapeutic use where nausea and vomiting as side-420 

effects can both curtail drug development and reduce patient compliance; the potential use of 421 

historical data in this area has been discussed previously (Holmes et al., 2009, Percie du Sert et 422 

al., 2012).  423 
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 424 

5. Conclusion 425 

 426 

This study, together with a previous related one (Andrews et al., 2020b) has demonstrated the 427 

utility of data from historic in vivo animal studies to identify pro-emetic constituents of liquid 428 

cleaning formulations and perhaps of greater significance to develop a predictive model.  429 

Despite the acknowledged limitations, the results have practical applications in new product 430 

formulation and safety but additionally the principles underpinning this in silico study have 431 

wider applicability in demonstrating the potential utility of such archival data in current 432 

research contributing to animal replacement. The approach taken here has wide applicability as 433 

similar unique data sets from animal studies are likely to be in the archives of many 434 

organizations and could contribute to replacement of the use of animals. The approach taken 435 

here to develop a predictive model based on analysis of historic data exemplifies the potential 436 

of predictive toxicology for “next generation” risk assessment which could inform regulatory 437 

decisions, e.g., (Fitzpatrick et al., 2020). 438 

 439 

 440 

 441 

  442 
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Table 1. Pairwise multivariate correlation of Ln ED50 and formulation variables

 Ln (ED50) 
Alkyl 

Sulfonate 
Alkyl 

Sulfate AES NI Zwitterioinc
/Cationic Fatty Acid Solvent Hydrotrope pH IS 

Ln (ED50) 1.00 
          

Alkyl Sulfonate 0.25 1.00 
         

Alkyl Sulfate 0.04 0.22 1.00 
        

AES 0.45 -0.18 0.09 1.00 
       

NI -0.32 -0.13 -0.08 -0.21 1.00 
      

Zwitterioinc/Cationic 0.07 -0.13 0.04 0.23 0.23 1.00 
     

Fatty Acid -0.04 0.05 0.03 -0.08 -0.02 -0.06 1.00 
    

Solvent 0.35 -0.01 -0.01 0.17 0.12 -0.07 0.14 1.00 
   

Hydrotrope 0.08 -0.09 -0.11 0.14 -0.27 -0.04 -0.20 0.10 1.00 
  

pH -0.36 -0.27 -0.20 -0.46 -0.33 -0.34 -0.12 -0.18 0.13 1.00 
 

IS -0.55 -0.02 0.01 -0.25 -0.21 -0.14 -0.04 -0.53 -0.23 0.39 1.00 

* 6 samples were excluded from the multivariate analysis due to missing values of pH  
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Table 2. The leaf report of the decision tree for Recursive Partitioning Analysis 456 

Leaf of the decision tree Mean of Ln (ED50, mL/kg) Sample count 

IS > 5.09 -2.75 23 

IS < 5.09 & NI > 18.00 -2.67 9 

IS < 5.09 & 2.75 ≤ NI < 18.00 -0.49 18 

2.80 ≤ IS < 5.09 & NI < 2.75 -1.56 11 

IS < 2.80 & NI < 2.75 & pH 10.3 -0.16 11 

IS < 2.80 & NI < 2.75 & pH < 10.3 1.19 26 

  457 
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Figure legends 458 

Figure 1. Probability Distribution of independent variables (formulation variables) and 459 

dependent variable (ED50).  Ten (10) independent variables Alkyl sulfonate – anionic surfactant, 460 

Alkyl sulfate – anionic surfactant, Alkyl ethoxylate sulfate (AES) – anionic surfactant, Nonionic 461 

surfactant (NI) – alcohol ethoxylate, Zwitterionic/Cationic surfactant, Fatty acid, Solvent, and 462 

Hydrotrope are presented as percent concentration (y-axis) and probability distribution (x-axis).  463 

For pH and ionic strength (IS) – mol/L, the y-axis are these measures versus probability 464 

distribution (x-axis).  The Ln (ED%) for all 98 formulations analysed are presented.   The right-465 

hand panel of each constituent independent variable shows a box and whisker plot indicating 466 

the median, confidence diamond and first and third quartile for each distribution and these are 467 

also labelled in the Ln (ED50) panel at the extreme lower right of the figure. 468 

 469 

Figure 2. Partitioning tree of the Recursive Partitioning Analysis. IS=Ionic strength; NI=non-ionic 470 

surfactant; pH= -log10 [H+] 471 

 472 

Figure 3. Model quality of the Multivariable Linear Regression. The left panel plots the 473 

relationship between the measured Ln ED50 vs. model predicted value. The diagonal red line 474 

shows the linear regression (R2=0.6). The right panel plots the residue of model prediction vs. 475 

model predicted Ln ED50 and shows that they are not correlated. 476 

 477 

Figure 4. Scatterplots of the X and Y scores for each extracted factor in the Partial Least Squares 478 

Regression together with the linear correlation (diagonal red line). From the X-Y scores plots, 479 



Page 26 of 30 

24 September 2020 

 

the two extracted factors (X1, X2) cover a total of 62.8% of the variation in Ln ED50, with factor 480 

X1 capturing 54.2% of Ln ED50 variance and factor X2 capturing 8.6% of Ln ED50 variance.  481 

 482 

Figure 5. Key formulation drivers for Ln ED50 from Partial Least Squares Regression; negative 483 

drivers are plotted to the left and positive drivers to the right. See text for details but note that 484 

AES and alkyl sulfonate have an intrinsic negative correlation with pH (Table 1).  485 
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